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Background 
This study is conducted within the project Recycling of metals from spent Li-ion batteries (LIBs) 
running 2014-2016 and funded by the Swedish Energy Agency (Energimyndigheten)1. The main aim 
of the project is to generate fundamental knowledge for resource efficient thermal recycling of current 
and future Li-ion batteries.  
The use of LIBs is rapidly increasing and in addition there is a rapid development of different Li-ion 
technologies (e.g. Scrosati and Garche 2010). Consequently, spent batteries with varying specific 
battery technologies in the waste stream have been steadily increasing and is expected to continue to 
increase. The increasing interest in LIB technology is also evident from the increasing number of 
studies on environmental impacts from batteries. The metals and materials in batteries are valuable 
resources that can be recovered in recycling processes. However, current recycling processes recover 
only few elements from LIBs and also when designing new processes different element are more or 
less easily recovered. In addition, the precise amounts and composition of future spent batteries cannot 
be known today which makes designing recycling processes for this growing waste stream difficult.  
Assessing the environmental impacts of LIB technologies in a life cycle perspective can provide 
guidance in regards to what technologies are viable in a long-term sustainability perspective and 
thereby guide the design of recycling processes. Also this provides knowledge to safeguard that any 
direct impacts of a recycling process itself isn’t environmentally harmful.  
Purpose of study 
This study provides an overview of the current knowledge of environmental concerns from the use of 
metals in LIBs, with the purpose to identify what elements are most important to recycle from an 
environmental and resource perspective. Impacts are assessed along the life cycle of batteries.  
Other known hazards associated with LIB such as risk of thermal runaway, fire or explosions due to 
chemical instability of the active components have not been evaluated here. See e.g. Lisbona and Snee 
(2011) for a review. 

Method 
The subject has been approached through the identification of concerns related to environmental 
impacts from metals in LIBs as evident from different perspectives, and then doing a combined 
evaluation. The perspectives are market data on metal resources, reserves, supply and demand, 
material inventories of LIB technologies, life cycle assessment, and criticality studies. The main 
source of information for this study has been the existing literature. Scientific articles and other 
publications have been found with search phrases relevant to Li-ion battery recycling, life cycle 
assessment, criticality, material content, etc. Economical information on metals has also been sought 
from metal market websites and surveys on resources and reserves. Some data presented here has been 
calculated e.g. by updating previous published results with more recent data. 
The results have been presented to the project group and at reference group meetings and feedback 
provided from the audience at these meetings has been considered. 

                                                      
1 Recycling of metals from spent Li-ion batteries.  
Energimyndigheten project no: 39060-1, Dnr: 2014-001958 
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Metal elements in Li-ion batteries 
Lithium-ion batteries are a collection of several technologies to store energy that have different 
qualities useful to different applications. Common denominators are the use of lithium in the cathodes 
and electrolytes and also (in general) regarding metals used for casing and current collectors including 
aluminium, iron, and copper. The main differences are found in the material chemistry used in the 
cathodes and anodes.  

Examples of cathode compositions: 
LiCoO2   Lithium Cobalt Oxide 
LiNiO2   Lithium Nickel Oxide 
LiNiCoAlO2  Lithium Nickel Cobalt Aluminium Oxide (NCA) 
LiNixCoyMnzO2  Lithium Nickel Manganese Cobalt Oxide (NMC/NCM) 
LiNixMnyO4  Lithium Nickel Manganese Oxide 
LiNixMnyAlzO2   Lithium Nickel Manganese Aluminium Oxide (NCA) 
LiMn2O4  Lithium Manganese Oxide (LMO) 
LiCoPO4  Lithium Cobalt Phosphate (LCP) 
LiFePO4   Lithium Iron Phosphate (LFP) 
Li-S    Lithium Sulphur 
Li-air 
Al (Current collector) 
Examples of anode compositions:  
Li2TiO3 or Li4Ti5O12 Lithium Titanate (LTO) 
C   Carbon 
C/Si 
Li/C/Sn 
Cu (Current collector) 

Minor quantities of doping elements including niobium and zirconium can be used in the electrode 
material matrix adjust the battery performance. 
 Electrolyte compositions: 
The most common electrolyte salt in current LIBs is LiPF6 (lithium hexafluorophosphate) in an 
organic solvent, such as ethylene carbonate, dimethyl carbonate, and diethyl carbonate (Younesi 
2015). Several other Li-salts are applied with varying anion composition of non-metal elements: B, C, 
N, O, F, P, S, Cl. In early LIB technologies in 1970-80’s AsF6- (hexafluoroarsenate) and ClO4- 
(perchlorate) was used but have been phased out of commercial applications for toxicity and safety 
concerns. 

The metals used in LIBs that has been further assessed in this study are:  
Cathode: Al Co Fe Li Mn Ni  
Anode: Li Ti Cu Sn 
Electrolyte: Li 
Casing/collector/other: Fe Al Cu 
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Quantities of metals in Li-ion batteries 
There is a rapid development of materials used in LIBs which makes it difficult to assess the actual 
quantities of the different elements in current and future batteries. For the purpose of this project 
which is focussing on recycling, it would be very valuable to have data on the specific composition of 
batteries in current and coming products, to be able to forecast future compositions and quantities of 
waste for which efficient recycling methods needs to be to developed and applied.  
At present, used LIBs arriving to the recycling facilities rarely have any information on chemical 
content. There is no standardised way to document and communicate content of batteries through the 
supply chain, i.e. manufacturing of batteries and products using the batteries. This makes it difficult to 
quantify current amounts of different metals in batteries and even more difficult to forecast future 
compositions and quantities. 
Table 1. Composition of materials and components in a selection of LIBs for PHEV (Gaines et al 2011). 

 BATTERY NCA-Graphite LFP-Graphite 
LMO (Spinel)-Graphite 

LMO (Spinel)-TiO AVERAGE 

 Cathode LiNi0.8Co0.15Al0.05O2 LiFePO4 LiMn2O4 LiMn2O4   
 Anode Graphite Graphite Graphite Li4Ti5O12   
 Battery mass (kg) 75.9 81.6 62.6 106.2 81.575 
             

Ma
teri

al C
om

pos
itio

n (m
ass

 %) 

Cathode active material 24.8% 22.2% 24.4% 28.3% 24.93% 
Anode active material 16.5% 15.3% 16.3% 18.9% 16.75% 

Electrode elements:        
Lithium (Li) 1.9% 1.1% 1.4% 2.8% 1.80% 
Nickel (Ni) 12.1% 0.0% 0.0% 0.0% 3.03% 

Cobalt (Co) 2.3% 0.0% 0.0% 0.0% 0.58% 
Aluminum (Al) 0.3% 0.0% 0.0% 0.0% 0.08% 

Oxygen (O) 8.3% 9.0% 12.4% 22.3% 13.00% 
Iron (Fe) 0.0% 7.8% 0.0% 0.0% 1.95% 

Phosphorus (P) 0.0% 4.4% 0.0% 0.0% 1.10% 
Manganese (Mn) 0.0% 0.0% 10.7% 12.4% 5.78% 

Titanium (Ti) 0.0% 0.0% 0.0% 9.8% 2.45% 
Graphite (C) 16.5% 15.3% 16.3% 0.0% 12.03% 

Carbon 2.4% 2.1% 2.3% 4.5% 2.83% 
Binder 3.8% 3.4% 3.7% 4.5% 3.85% 
Copper parts 13.3% 13.8% 13.5% 2.6% 10.80% 
Aluminum parts 12.7% 13.3% 12.5% 13.7% 13.05% 
Aluminum casing 8.9% 9.4% 9.2% 8.8% 9.08% 
Electrolyte solvent 11.7% 14.2% 11.8% 13.4% 12.78% 
Plastics 4.2% 4.6% 4.5% 3.6% 4.23% 
Steel 0.1% 0.1% 0.1% 0.1% 0.10% 
Thermal insulation 1.2% 1.3% 1.2% 1.2% 1.23% 
Electronic parts 0.3% 0.3% 0.4% 0.2% 0.30% 
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Figure 1. Average composition of a selection of PHEV batteries based on Gaines et al. (2011). 
 

  
Figure 2. Average composition of elements in a selection of PHEV batteries based on Gaines et al. (2011). 
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The bulk of the expected increased use of LIBs is due to forecasts of growth of the market for electric 
vehicles (EV). The amount of spent LIBs in future waste streams therefore largely depends on the 
future EV market.  
A study by Gaines et al. (2011) provides a distribution of mass% of metals in a selection of typical Li-
ion batteries used in plug-in hybrid electric vehicles (PHEV), as shown in table 1. In general these 
batteries are similar in composition except for the cathode active material. It should be noted that these 
are all batteries for the same application in PHEV. The average composition of components are shown 
in figure 1. The “other” category contains carbon, binder, steel, thermal insulation, and electronic 
parts. Figure 2 shows the average elemental composition of the same batteries. The large proportion of 
carbon content is partly due to that this includes electrolyte and plastics whose elemental composition 
is not further specified. The lithium salt content and additives of the electrolyte is thereby counted as 
carbon. The elements in the binder, electronic parts, thermal insulation is also not known and 
constitute the 8 % of the “other” category. 
Richa et al. (2014) made an estimation of the development of future total quantities of main elements 
in electric vehicle (EV) battery cells waste in the United States, as shown in figure 3. This estimation 
includes only the cells and excludes casing, thermal insulation, electronics, etc. Furthermore it 
includes PHEV, hybrid electric vehicles (HEV), and battery electric vehicles (BEV) and is thereby a 
wider range of battery applications than by Gaines (2011).  

 

 Figure 3. Estimated future EV battery mix and total mass in future US waste. From Richa et al. (2014).  
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Comparing these two estimates shows a similar large proportion of non-metals, mainly C, O, and H 
(ca. 45% mass) in both the full battery and in the cells. Notable also is the large difference in Al and 
(Fe) between the two estimates. This may be due to the specific assumptions and selection of batteries, 
but also that the bulk part of the complete battery casing and structural part are in general made of 
aluminium, while the structural components of the cells are mostly made of steel. A significant part (6-
11%) is copper both in the full battery and cells. The remainder is the metals of the active materials in 
the electrodes, i.e. Al, Co, Li, Fe, Ni, Mn, Ti, ca 19% of the whole battery and ca 25% of the battery 
cells.  
The Li content of the electrolyte is not included in these percentages but counted as carbon. Assuming 
a typical LiPF6 salt concentration of 1M/kg (Younesi 2015), the mass of Li is ca 6.9 g/kg electrolyte. 
This corresponds to less than 0.1 mass% Li in solvent per kg battery in addition to the estimated 1.8 
mass% (fig. 2).  
The forecast of future amounts of spent batteries in the waste has a spread of one order of magnitude 
between a low and a high scenario of LIB market expansion. 

Production and demand of metals in Li-ion batteries 
Global data on resources of and demand for metals in Li-ion batteries have been collected to provide a 
snapshot overview of current or potential future supply (table 2). The data was derived from several 
sources (USGS 2016, EC 2013ab, EC 2014, Steen 2013, UNEP 2011, current metal prices online e.g. 
infomine.com) with varying scopes and assumptions since no single source could provide all data 
sought. No source could provide specific data for future demand in LIBs. As a proxy the demand of 
metals to produce 10M electric vehicles has been estimated based a combination of the above 
estimates of LIB elemental composition. The recycling rates in table 2 are calculated as three different 
values as illustrated in figure 4. 

 
Figure 4. Flows in the life cycle of metals. Source UNEP (2011). Recyling rates in table 2 are given as: 
EOL-RR - global end-of-life recycling rates i.e., the percentage of a metal in spent products that is recycled as the 
same metal = g/d 
RC - recycled content in metal production = (j+m)/(a+j+m) 
OSR - old scrap ratios i.e., the share of old scrap in the total scrap flow. = g/(g+h)  
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Table 2. Resources and demand data on metals in Li-ion batteries. Data collected from USGS 2016, EC 2013ab, 
EC 2014, Steen 2013, UNEP 2011, current metal prices online e.g. infomine.com. 

Element Resources 
identified 
global 
(tonne) 

Reserves 
current 
global 
(tonne) 

Production 
primary 
2015 
(tonne/yr) 

Recycling rate 
current 
 (%) 

Current 
demand in 
LIB 
(% of  current prod) 

Demand for 
10 M EV. 
 (% of 
current 
prod) 

Price primary 
US$/tonne 
(5 yr history  
trend Apr 2016) 

Al 5.5-7.5E+10 
(bauxite) 

 2.8E+10 
(bauxite) 

5.8E+7 EOL-RR 42-70 
RC 34-36 
OSR 40-50 

< 1%  
(EV-LIBs) 

< 1% 1600 
(decr) 

Co  2.5E+7 
terrestial 
1.2E+8 ocean 
floor 

7.1E+6  1.2E+5 EOL-RR 68  
RC 32  
OSR 50 

30% 
(all batteries 
EU 2011) 

35% 25 000 
(decr) 

Cu  2.1E+9 7.2E+8 1.87E+7 EOL-RR 43-53 
RC 20-37 
OSR 24-78  

<1% 
 
10% of prod (EU 2011 
automotive) 

1.3%  5 000 
(decr) 

Fe  2.3E+11 8.1E+10 
 (ore iron 
content) 

1. 178+9  
(pig iron) 

EOL-RR 52-90 
RC 28-52 
OSR 52-65 

<1% 
 
15% of prod (EU 2011 total 
automotive) 

< 1 % 300 
(decr) 

Li 3-4E+7  (excl. oceans) 1.4E+7 3.3E+4  EOL-RR <1 RC <1 
OSR <1 

20% 125% 
 

6 000 (Li2CO3) (steady) 

Mn  “large” 
75% in South 
Africa 

6.2E+8 1.8E+7 EOL-RR 53 
RC 37 
OSR 33-67 

2% 
(all batteries 
EU 2012) 

2% 
tonne/yr  

1 700 
(decr) 

Ni  1.3EE+8 7.9E+7 2.53E+6 EOL-RR 57-63 
RC 22 OSR 66-88  

<5% 
(all batteries EU 2012) 

2.75% 
 

8 500 
(decr) 

Sn “extensive” 4.8E+6 2.7E+5 EOL-RR 75 
RC 22 OSR 50 

? ? 17 000 
(slight decr) 

Ti  >2E+9 7.9E+8 
 

6.09E+6 
 

EOL-RR 91 
RC  52 OSR 11 

< 1%  < 1%  13 000 
(decr) 

 
While this data is of varying reliability it does indicate that for many of the metals there is no acute 
concern in terms of supply for current or future expanded LIB market. For cobalt and lithium a large 
proportion of total production is used for batteries (30-35%). Currently there are ca 1,3M electric 
vehicles in use globally (statista 2016). Estimations of future EV car production differ e.g. between 
5M to 20M in 2020 (Richa et al 2014 and references therein). Another recent study indicate that 
production will pass 10M cars/year around year 2030 (Bloomberg 2016). Future demand of Li does 
likely overshoot current production which indicate a relatively near term supply issue where 
production must increase. If the trend continues there must also be a significant recycling unless more 
Li reserves are secured. Current recycling of Li is very small. See also “Focus on lithium” p11. The 
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production of tin is also relatively small which may pose supply shortage if LIB technologies include 
Sn-based materials. Data for demand for tin in LIB was not found. 
Criticality assessment of metals 
To assess the risk of material shortages a number of criticality studies have been conducted (e.g. EC 
2014, NRC 2008, USDoE 2010, NEDO 2009, Hatayama and Tahara 2015, Öko-Institut 2009). The 
criticality concept is a combination of risk of supply shortage and the importance of negative 
economic impact of shortage as illustrated as in figure 4. Criticality assessments are mostly done with 
regards to the supply risks associated with a specific geographical jurisdiction such as a region or 
country or to the supply needs of an organisation or an industrial sector. The assessments’ 
methodologies and scopes differ substantially and are lacking in transparency and clear policy 
recommendations are rare. 

 
Figure 5. Left: Illustration of the criticality concept as a combination of risk of supply shortages and economic 
negative impact of shortage. Right: method pathway applied by EC to assess criticality. From EC (2014).  

 
Figure 6. Criticality characterisation from EC (2014), LIB elements highlighted. 
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The resulting designation of elements from the EC (2013) study is given in figure 6. Of LIB metal 
elements only cobalt was categorised as critical (in the white area of figure 6). All LIB elements 
scored higher than the threshold of economic importance. The thresholds are however somewhat 
vaguely defined based on a “clustering” of resources scoring high in a previous study (EC 2010). 
A review of 7 criticality studies was done by Erdmann and Graedel (2011). They compiled which 
elements were designated as “critical” by the studies as shown in figure 7.  

 
Figure 7. Designations of critical elements from a review of seven criticality studies. From Erdmann and Graedel 
(2011). Elements related to LIBs are indicated by a star.  
None of the elements related to LIBs were consistently categorised as critical in all studies. Li, Co, and 
Sn was considered critical in half of the studies where these elements were assessed; Mn was 
considered critical in two of seven assessments; Al, Ti, and Ni by one of six; Cu and Fe was not 
critical by any assessment. While this doesn’t provide conclusive data on criticality for metals in LIBs 
it does indicate concern for Li, Co, and Sn which is consistent with what is indicated by the supply and 
demand data in table 2. 
Focus on Lithium 
The issue with supply risk of lithium has been studied mostly in the context of whether Li production 
capacity could meet any foreseeable up-scaling of the EV market or not. There is a general consensus 
from studies that in the short term, ca 10-15 years ahead, there are no foreseen supply problems as 
long as lithium production capacity increases steadily to meet the increasing demand (e.g. EC 2013b), 
(fig 8).  
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Figure 8. Short term forecast of lithium demand and supply capacity. From EC (2013b).  
In the longer perspective the supply risk depends to a large degree on whether extraction of lithium 
from ocean water will become viable. If so, Li-reserves would increase tremendously. However 
Kushnir and Sandén (2012) conclude that in either case virgin production capacity will not grow 
sufficiently fast to meet plausibly large future increases in lithium demand. E.g. in a scenario of 3 
billion HEV or EV in 2100 with LIB technology is only possible with a substantial increase in lithium 
recycling (fig. 9). Current recycling of lithium is less than 1%. EC (2010) also reached similar 
conclusions and recommends that a recycling system for lithium is set up to avoid exhaustion of 
known lithium resources (fig. 10).  

 
Figure 9. Long term forecast of virgin lithium demand from EV (scale Mt). Assuming ca 3 billion cars in 2100 all 
HEV or EV. Dashed arrows indicate assumed 30Mt Li-resources. From Kushnir and Sandén (2012).  
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Figure 10. Forecast to 2050 on Li demand resources and reserves. From EC (2010).  
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Life cycle assessment  
Characterisation factors for metals in LIBs 
There are several different life cycle impact assessment (LCIA) methods available, each with their 
own coverage and definitions of environmental impacts and resource depletion, and how to calculate 
the impacts. All commonly used LCIA methods are however equal in that they have a set of 
characterisation factors (CF) to calculate environmental impacts. A CF is applied as a linear multiplier 
of quantified flows of use of natural resources and emissions (in case of metals given as mass flows in 
kg) to and from the technical system being assessed. This yields quantified impact scores according to 
environmental indicators as defined by the specific LCIA method.  
For most flows of elemental metals including the LIB metals the mainstream LCIA methods provide 
CFs only for impacts on resource depletion and human and ecological toxicity. Other environmental 
problems are considered to have negligible impacts from elementary metal flows.  
Figure 11 shows diagrams of CFs for the impact category resource depletion from a selection of 
commonly used LCIA methods. The figure should be read as an indication of the severity of resource 
depletion per kg of metal extracted from nature, as assessed by commonly used LCIA methods. The 
comparison of CFs shows that extraction of tin is consistently given high resource depletion scores in 
different LCIA methods. For lithium no CF is given in most methods this may be due to the high 
degree of uncertainty of future demand of lithium or as in the case of the EPS method (Steen 2015) a 
comparably low value is assigned to depletion of Li because a very long time perspective is adopted 
and extraction from ocean resources is assumed to be available. 

  

  
Figure 11. Comparison of characterisation factors for impact on resource depletion from four LCIA methods:  

- ReCiPe “Minerals consumption” unit: USD/kg extracted material. (Goedkoop et al. 2013) 
- EPS “Resource depletion” unit: ELU/kg (ELU – environmental load unit comparable to 1€) (Steen 2015) 
- IMPACT “Mineral extraction” unit: MJ/kg (Jolliet et al. 2003) 
- EDIP “Resources” unit: PR2004 (Hauschild 2005) 
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Metals are not only a resource issue, many of them are also toxic when emitted to the environment, 
which is an aspect considered in LCA. Figures 12-15 show the CFs for toxicity impact categories from 
the commonly used LCIA methods ReCiPe (Goedkoop et al. 2013) and CML (Guinée et al. 2002). 
The impact category human tox indicates toxic impact on humans whereas ecotox indicates toxic 
impact in the ecosystem.  The figures should be read as an indication of the severity of toxic impact 
per kg of metal if emitted to the environment. As can be seen Co, Cu, and Ni are characterized as 
problematic relative to other metals in both methods. Mn stands out as having the largest human 
toxicity impact by ReCiPe while data is missing in CML. 

 
Figure 12. Impact on human toxicological effects per kg of the pure elemental metal emitted into different 
environmental compartments. Based on ReCiPe 1.08 (Goedkoop et al. 2013).  

 
Figure 13. Impact on human toxicological effects per kg of the pure elemental metal emitted into different 
environmental compartments. Unit 1,4 DB-eq/kg. Based on CML 2002 (Guinée et al. 2002).  
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Figure 14. Impact on ecotoxicological effects per kg of the pure elemental metal emitted into different 
environmental compartments. Unit: affected species*year/kg Based on ReCiPe 1.08 (Goedkoop et al. 2013)  

 
Figure 15. Impact on human toxicological effects per kg of the pure elemental metal emitted into different 
environmental compartments. Unit: 1,4-dichlorobenzene-eq/kg. Based on CML 2002 (Guinée et al. 2002).  
Within LCA there are also methods available which puts different kinds of environmental impact on a 
common scale through weighting. Figure 16 show impacts per kg metal weighted to a common unit 
(dimensionless points) according to one such method, ReCiPe, as an indication of overall 
environmental impact, including both toxicity and resource depletion.  
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Figure 16. Weighted impact on resource depletion and toxicological effects per kg of the pure elemental metal 
emitted into different environmental compartments. Unit: Points (dimensionless) / kg. Based on ReCiPe 1.08 
(Goedkoop et al. 2013) 

 
Figure 17. Weighted impact based on average amount of elements in LIBs according to table 1 according to 
ReCiPe 1.08. Unit: Points (dimensionless) / kg. Not all elements shown due to incomplete data.  
In figure 17 the weighted impact factors per kg element (fig. 16) have been multiplied with the 
average composition of elements in LIBs (table 1). This gives an indication of total potential impacts 
of the element in batteries, although it rests in the unrealistic scenario that all battery material is 
extracted from nature and eventually emitted into different natural compartments. The result shows 

ReCiPe – weighted impact in Points (Pt) 
per kg element extracted from nature or 
emitted to different natural compartments 
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that according to the ReCiPe impact method toxicity may be a bigger concern than resource depletion, 
in particular toxic impact on humans (again, under the unrealistic assumption all metals in used 
batteries are released to the environment). The result also show that the inclusion of Mn in LIBs has 
the highest potential total impacts compared to other elements in LIBs. Potential Cu emissions from 
LIBs also have a significant impact. Note that the emission impact values are not additive per element; 
e.g. if all Mn in LIBs was emitted to ocean water the total weighted impact from Mn emissions is ca 
32 Points/kg and thus zero from Mn emission into other compartments (since there is no more Mn that 
could be emitted into other compartments). Note also that data for Li and Sn is missing as either 
impact factors or data on battery content is missing. 
Taken together, the available data of characterisation factors show consistently that raw material 
extraction of tin should be avoided. Extraction of cobalt, nickel, copper, and manganese is also 
problematic according to more than one method. Emissions of elemental manganese and cobalt and 
nickel to air have potential human toxic impacts. Manganese, cobalt, copper and nickel have potential 
ecotoxicological impacts.  
Life cycle assessment of Li-ion batteries and electric cars 
The growth of electric vehicle (EV) technologies has spurred several LCA studies. Some studies are 
focussed on the function of a LIB alone but mostly LIBs are assessed in an EV use context. LCA of 
vehicles can be schematically described as the equipment life cycle, combined with the energy supply 
life cycle, see figure 18. The equipment life cycle includes the production, use, and end-of life of the 
actual car including the battery. The energy supply chain is often called well-to-wheel (WTW) 
originating from extracting fuel from “wells” for conventional internal combustion engine vehicles 
(ICEV). This in turn is divided into well-to-tank (WTT) to deliver the energy to the car, and tank-to-
wheel (TTW) to utilize the energy for propulsion. For EVs the well-to-tank correspond to electricity 
production and battery charging and well to tank correspond to discharging. 

 
Figure 18. Overview of main life cycle processes related to vehicles. Recycling options excluded. From Nordelöf 
(2014). 
Well to wheel lifecycle 
Most LCAs on vehicles focus on energy use and GHG emissions. A general conclusion is that the 
WTW life cycle contributes the most to overall impact for all ICEV and hybrid-EV. For ICEV as well 
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as semi electrified cars (hybrid and plug-in hybrid) the TTW phase dominates, i.e. fuel combustion in 
the vehicle.  For BEV it is the WTT phase i.e. the electricity production that heavily influences the 
environmental performance of the EV (Nordelöf 2014). If the electricity is produced from fossil fuels 
such as coal, oil or natural gas the overall impact is often greater than from conventional ICEV. On the 
other hand if the electricity is produced from low CO2-emission technologies including renewables 
and nuclear the emissions are substantially lower. Figure 19 shows in blue well-to-wheel GHG 
emissions for battery EVs (BEV) with different types of electricity production (Nordelöf 2014, 
Swedish Energy Agency 2016, Vattenfall 2016). For reference, displayed in red are EC legislation on 
emission limits for newly manufactured cars 2015 and 2021 (ICCT 2014) as well as Swedish 
legislation (Vägtrafikskattelag SFS 2006:227) emission limit to qualify as ‘environmental car’ (in 
Swedish: ‘miljöbil’) for a 2015 average passenger car weight of 1491 kg (Trafikanalys 2016). A value 
of 13 g CO2-eq have been added to the references to account for the WTT as the legislation only 
considers TTW (Nordelöf 2014).  

 
Figure 19. BLUE: Well to wheel GHG emissions for a mix of BEV for different types of electricity production. 
(Based on Nordelöf 2014, Swedish Energy Agency 2016, Vattenfall 2016). RED: EC legislation emission limit for 
new cars 2015 and 2021 (ICCT 2014), and Swedish classification of ”Environmental car” (“Miljöbil”) 
(Vägtrafikskattelag SFS 2006:227) for 2015 average weight of cars of 1491 kg (Trafikanalys 2016). 
Equipment life cycle 
The equipment life cycle is excluded from the comparison in figure 19. Including the equipment life 
cycle shows how the impact of the manufacturing stages increase with degree of electrification from 
hybrid, plug-in hybrid to pure BEV (Nordelöf 2014). Also, better performing electricity production 
leads to that the share of the impact that comes from the equipment increases.  
As study by Volkswagen (2012) of their BEV provides data for the upstream equipment life-cycle, see 
figure 20. The total GHG emissions per km to manufacture is 74 g CO2-eq/km; approximately the 
same as the WTW emissions of 76 g CO2-eq/km for an average BEV running on average EU 
electricity (fig. 19). 
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Figure 20. Life cycle GHG emissions to manufacture a BEV. From Volkswagen (2012). 
A significant part of the equipment emissions, 33 g CO2-eq/km, is due to manufacturing of the LIB. 
Specifically it is the extraction of elements and preparation, including grinding into very fine particles, 
of the cathode material that is very energy intensive (Dunn et al. 2012, Kushnir and Sandén 2011).  
Battery life cycle including recycling 
When considering recycling of LIBs it is in a life cycle perspective not only the yield of elements from 
recycling processes that matters, but also what species result from the recycling process. This is due to 
that much of the energy needed to produce batteries are used to refine the active materials. Dunn et al. 
(2012) made a comparative LCA of three different recycling technologies for automotive LIB: 
hydrometallurgical resulting in lithium as a salt; a commercial intermediate physical recycling process 
resulting in Li2CO3; and a direct physical process (under development) that recovers LiMn2O4, i.e. the 
active material is conserved. LCA results, as illustrated in figure 21, show that the production of 
LiMn2O4 via the hydrometallurgical process is nearly as energy intensive as virgin production while 
the direct recycling only requires approx. 25% energy. They also estimated that recycling the active 
cathode component, aluminium and copper, reduce the total cradle to gate energy requirement to 
produce a battery by 48% compared to virgin production. Several studies show similar significant 
differences in energy demand and environmental impact depending on assumptions about battery 
recycling technology and capacity (Nordelöf 2014 and references therein). While such results points to 
a large potential for energy and environmental savings from recycling, they rest on assumptions as 
highly efficient recycling processes for LIBs are not yet in commercial practice. 
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Figure 21. Life cycle energy consumption to manufacture LiMn2O4 via three different recycling technologies (from 
Dunn et al. 2012). 
Other impact categories 
As mentioned most LCAs on LIB applications focus primarily on energy consumption coupled with 
GHG emissions. An exception is Kang et al. (2013) who looked at other effects of the direct extraction 
of elements and emissions from smartphone batteries. Results point out cobalt and copper as 
contributing the most to resource depletion and potential toxic effects from leakage from mine tailings 
and spent batteries in landfills, which is fairly consistent with the above analysis of life cycle 
characterisation factors.  
The potential enlarged toxic effects from an increased use of batteries and other electric components 
have raised concerns. A comparison by Messagie (2013), show a nearly double human toxicity 
potential from a BEV compared to two conventional ICEVs. The production of LIBs alone contribute 
almost as much to the toxic impact as the complete propulsion system of the assessed ICEV. The toxic 
emissions are mostly connected to mining processes (Nordelöf 2014), see figure 22. 
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Figure 22. Human toxicity potential for three passenger cars (From Nordelöf 2014, Messagie 2013). 
Contribution to acidification and eutrophication, while only rarely quantified in LCAs for LIB and EV, 
is, similarly to GHGs, highly correlated to combustion of fuel either in the vehicle or in fuel based 
electricity production plants.  
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Discussion and conclusions 
A combined evaluation of criticality studies, supply and demand prognoses, and LCA studies point out 
the potential future supply risk of lithium. In order to meet future Li demands, largely driven by an 
expected rapid growth of EV production, Li production capacity must increase and the limited reserves 
implies recycling of Li must increase in a medium (decadal) time perspective. Li is currently not 
recycled to any significant extent as there is little commercial value of lithium species resulting from 
current recycling practices.  
Cobalt is identified as a critical element. Total Co resources and reserves are limited and a large part of 
total Co demand is projected to come from batteries. Recycling processes for Co are however in 
commercial use. 
The production of batteries and especially the manufacturing of active material matrices are generally 
pointed out as high contributor to environmental impact in battery life cycles. In LCAs of EVs LIB 
production contributes significantly to the total impact per km accounting both for WTW and 
equipment life cycle of the vehicle. Assumptions about electricity production as well as recycling 
scenario has a large impact on results regarding the overall performance of the EV per km.  
The refinement of elements including Li to active anode and cathode material is energy intensive and 
expensive. Hence, energy savings and corresponding avoided environmental burden significantly 
depend on in what form and at what stage the recycled metal products are fed back in the production 
of new batteries.  
Assessment of impact factors for extraction and emission of elements from LCIA methods combined 
with average elemental composition of LIBs indicate that high potential impact from emissions of Mn 
and Cu. This suggests that efforts to avoid Mn and Cu emissions from end-of-life processes including 
recycling should be prioritized. 
The rapid development of LIB technology makes it difficult to assess. Scrosati and Garche (2010) 
conclude that the pace of LIB development is so fast that efforts to evaluate the progress may easily 
become obsolete. Recycling technologies are also under development. Much ongoing development of 
technologies, policies and markets, scarce and often inconclusive data makes it difficult to predict the 
future.  
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