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Abstract—This paper reviews the performance of optimized

modulation formats in 2, 4, and 8 dimensions. We present perfor-

mance (lower bounds) for higher dimensions by exploiting known

performance of binary block codes. Ultimately, the achievable

information rates of given modulation formats and receiver types

are limited by the mutual information and generalized mutual

information. We exemplify how these metrics can be used for

system performance as well as to quantify the performance

differences between four types of systems; using hard or soft

decision on bits or symbols.

I. INTRODUCTION

Coherent fiber-optic transmission channels have a four-
dimensional signal space made up by the two quadratures
in the two polarizations [1]. There are three critical design
choices that must be made for such systems, namely those
of modulation format, bit-to-symbol mapping, and forward-
error correction (FEC) code. These blocks are shown in Fig. 1
and will be discussed below, together with a few performance
metrics used to characterize the different parts. The design
involves the choice of modulating the data in a simple way,
e.g., using binary phase shift keying (BPSK), independently in
the four dimensions (4d) or to make full use of the 4d signal
space and use a format that is optimized in 4d. The former
is known as polarization-multiplexed quadrature phase shift
keying (PM-QPSK) [2], [3] and is the standard (and nowadays
commercialized) way of modulating data in coherent, long-
haul optical transmission systems.

A. System overview
The communication link consists of, innermost, a physical

channel. The channel transmits continuous waveforms from
the input to the output, while adding noise and possibly
distorting the signal. Mathematically, this can be modeled by
a stochastic differential equation relating the output waveform
Y (t) to the input waveform X(t), such as the nonlinear
Schrödinger equation or the Manakov equation.

Before the channel is a modulator, which takes an incoming
discrete train of N -dimensional (Nd) symbols and transforms
it to waveforms compatible with the channel. On the receiver
side, a demodulator receives the waveform from the channel
and either detects a symbol that with a high probability
corresponds to the transmitted one (hard demodulation) or
emits a vector that lies in the Nd space of the symbols (soft
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Fig. 1. Schematic of a communication system. The colored rectangles denote
key system components and the grey areas indicate the components involved
in a specific metric, indicated by the white rectangles.

demodulation). The symbols are often chosen from an M -ary
set called the constellation or modulation format. The input to
the modulator X is related to the output of the demodulator
Y via a stochastic channel model PX,Y (x, y). The input and
output signals are in the memoryless case vectors in Nd space.
More generally, the channel may contain memory, so that
every output vector depends on a sequence of input vectors.

One can define the mutual information (MI) for the channel
and the selected modulation format. This important quantity
represents the maximum data rate, in bit/symbol, that can be
transmitted over the channel with the given modulator and
demodulator. The MI may be hard or soft depending on the
demodulator. Another relevant performance metric in the case
of a hard demodulator is the symbol error rate (SER) between
the symbols entering the modulator and the symbols received
from the hard demodulator.

Before the modulator is a mapper, which takes a sequence
of m = log2 M incoming bits and maps them to one of
M symbols. Hence, somewhat counter-intuitively, the mapper
controls the modulation format by its selection of symbols.
On the receiver side, the inverse process is called demapping,
and just as for the demodulation this may be hard or soft.
The hard demapper just outputs the detected bits, whereas the
soft demapper outputs probabilistic (“soft”) information about
the bits, usually in the form of log-likelihood ratios (LLRs),
which is the logarithm of the ratio between the probabilities
of a received zero or one. By considering the input to the
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mapper and the output of the demapper, a channel (or more
specifically m binary channels) can be defined that accounts
for the mapper/demapper, the modulator/demodulator, and the
physical channel. The sum of the mutual informations for these
m channels

we will refer to as the BICM-generalized mutual infor-
mation, BICM-GMI, or BGMI for short. The BICM (bit-
interleaved coded modulation) concept will be briefly de-
scribed in the next subsection. The BGMI represents the
maximum total data rate, in bit/symbol, that can be transmitted
over these parallel binary channels if ideal FEC coding and
decoding are applied to each channel separately. Also the
BGMI may be hard or soft, depending on the information
output by the demapper. In the case of hard demapping, one
can compare the input-to-mapper bits with the output-from-
demapper bits, and the probability of bit error here is called
the pre-FEC bit error rate. This, or the SER, is usually what
is measured in experiments.

Finally, we have the FEC encoder and decoder. The encoder
adds redundancy by mapping k information bits to a frame of
n data bits, where the code rate is R = k/n. The decoder
selects the most probable data bits from the received frame of
n bits (hard decoding) or based on the LLRs (soft decoding).
Note there may be m separate encoders and decoders with
different rates or a joint encoder/decoder for the m bit streams.
The error rate between the data bits into the encoder and out
from the decoder is the overall system bit error rate (BER).

B. Coded modulation

When designing a communication system, the selection of
modulation format, bit-to-symbol mapping, and FEC code is
a delicate trade-off between complexity and performance. The
co-optimization of code, mapping, and modulation format is
often called coded modulation. Two main types of coded
modulation are trellis-coded modulation (TCM) proposed by
Ungerboeck [4], which use convolutional codes, and multilevel
coded modulation (MLCM) proposed by Imai et al. [5], which
uses

block codes. Both these approaches are based on multilevel
modulation formats, transmitting m bits per symbol. Bit-to-
symbol mappings can be designed that yield very different
pre-FEC BER among the m bits, for example by so-called set
partitioning, and by tailoring the FEC protection for every bit,
a good combination of coding and modulation can be realized.
For optical systems, TCM was first studied by Zhao et al. [6],
and MLCM by Djordjevic and Vasic [7] and later by Beygi
[8], [9].

A more recent, often called “pragmatic,” approach is BICM,
which interleaves all bits in the same FEC frame, thereby
obtaining a single virtual bit channel with a pre-FEC BER
equal to the average of those of the m constituent bit channels.
A single powerful soft-decision FEC code is applied to this
average bit channel. This can give almost as good performance
as the other coded modulation schemes [10], [11].

In fiber-optic applications, it has been used, e.g., in [12],
[13]. Reviews of coded modulation techniques for optical
systems can be found in [14] and more recently in [15].

The use of modern codes such as low-density parity-check
(LDPC) and turbo codes requires the use of soft data in the
FEC decoding. The decoding is done iteratively, where the
data is processed through the decoder repeatedly. At the price
of increased complexity, latency, and power consumption, this
type of decoder enables transmission at a data rate very close
to the MI or BGMI, while still being reasonable to implement.

C. Transmission system metrics

A central part in this paper are useful metrics for comparing
transmission systems and modulation formats. The choice of
modulation format in these approaches is critical, as it will
set an upper limit to the data rate that can be transmitted (via
its MI), as well as set the complexity required by the digital
signal processing (DSP) in the coherent receiver. Critical DSP
elements such as those for polarization and phase tracking
often depend on the format used. This trade-off between
performance and complexity has initiated a lot of fundamental
research on modulation formats for optical systems in the last
few years [16]–[20], in 4d as well as in higher dimensions.
Some of this research will be reviewed in this article, which
is an extension of the conference paper [21], and will discuss
some fundamental performance metrics and what they sig-
nify from the optical system designer’s perspective. A more
detailed literature review was recently provided in the book
chapter [17].

We separate this paper in two parts based on two kinds of
metrics. First, in Sec. II we consider metrics relevant in the
high SNR limit without any explicit SNR dependence. These
metrics (asymptotic power efficiency and constellation figure
of merit) are straightforward to use for format optimization
in low dimensions like 2, 4 and 8d. Extensions to higher
dimensions based on coding will be discussed as well, to see
how these metrics scale with dimensionality.

Second, in Sec. III, we consider SNR-dependent metrics
such as MI and BGMI. It is worth mentioning that the
generalized mutual information, GMI, concept has a general
meaning in the information-theory literature, where it emerged
in the context of mismatched decoding [22]. Martinez et
al. [23] showed that the GMI could be used to derive an
achievable information rate for BICM receivers, equal to the
sum of the individual bits’ mutual information. This sum is
known under various names in the literature, e.g., “BICM
capacity” in [11], [24], “BICM-GMI” in [25], [26, Eq. (4.55)],
or simply “GMI” in [27]. For simplicity, we will refer to this
quantity as “BGMI” in this paper to avoid confusion with
the GMI concept. We will give its mathematical definition in
Sec. III. In [27] it was shown that for BICM with practical
bit-wise decoders, e.g., iterative soft-decision LDPC decoders,
the use of lower-dimensionality parallel modulation schemes
(like PM-QPSK) will perform well and come reasonably close
to the MI/BGMI limits. The true capacity of a system with a
bitwise decoder is not known, but for most practical purposes,
the BGMI seems to be a good approximation.

Finally, in Sec. IV we discuss some implications.
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II. THE GEOMETRY OF GOOD MODULATION FORMATS

This section will present the basic system terminology
and performance metrics, followed by the geometrical theory
behind efficient multidimensional modulation.

A. Modulation format metrics
We now assume a lossless channel with additive white

Gaussian noise (AWGN), which is a good approximation to
coherent long-haul optical links [28], [29] although many
other channel models have been proposed, see e.g. [30] for
a review. The main assumptions for using the AWGN channel
for coherent links are (i) that optical amplifier noise is the
dominating noise source, (ii) that fiber nonlinearities are weak
and negligible, (iii) that the coherent receiver linearly maps
the optical signal to the electrical domain. If nonlinearities
are present, one may still use an AWGN-like model under
some additional assumptions. For long-haul systems, which
accumulate dispersion during transmission, the nonlinearity
can be modeled as an additional, signal-dependent, Gaussian
noise source, as originally pointed out in [31] [32, Ch. 13]
and later rediscovered in, e.g., [33], [34]. A finite-memory
version of this channel model was proposed and analyzed in
[35]. For shorter links, or long links with inline dispersion
compensation, the nonlinear distortion will be more phase-
noise-like. For direct-detection receivers or links without op-
tical amplifiers, other noise sources that lead to non-AWGN
channels are often dominating (e.g. signal–noise beating or
thermal noise added to signal in the electrical domain).

We transmit a constellation (modulation format) with M
points in Nd space. The spectral efficiency for such a constel-
lation is given by � = m/(N/2) in units of bits per dimension
pair or, assuming Nyquist pulse shaping, bits per second
per hertz. Here “hertz” refers to the transmitted bandwidth
for a single channel multiplied with the number of channels
(dimension pairs). Sometimes “polarization” is used instead
of “dimension pair”, since the transmitted signal in each
polarization can be described in a 2d signal space.

In the limit of high signal-to-noise ratio (SNR) we can
use the leading term in the union bound to approximate the
symbol error rate [29], [36] as SER ⇠ erfc(

p
d2min/(4N0)),

where dmin is the minimum Euclidean distance between two
constellation points and N0 is the power spectral density of
the (complex) additive noise. The energy per symbol Es is
the average squared Euclidean distance from the origin and is
related to the energy per bit Eb via1 Es = mEb. Thus the
SER is a function of

d2min
4N0

=

Eb

N0
� (1)

which defines the dimensionless parameter � = md2min/(4Es).
If modulation formats are compared at the same power and
the same bit rate, i.e., the same Eb/N0, then � will give the
signal power gain of the modulation format over BPSK, still

1

Note that this assumes uncoded transmission. If an FEC code is included,
Eb in (1) should be replaced by the energy per transmitted (coded) bit with
Ec = Eb/Rc, where Eb denotes energy per information bit and Rc is the
code rate.
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Fig. 2. Asymptotic power efficiency � for the clusters CM,N in dimensions
N = 2 (red), N = 4 (blue), and N = 8 (green).
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Fig. 3. Constellation figure of merit CFM for the clusters CM,N in
dimensions N = 2 (red), N = 4 (blue), and N = 8 (green).

in the high-SNR limit, and is therefore called the asymptotic
power efficiency. It is noteworthy that � depends only on the
constellation’s geometric properties.

Alternatively, we may want to compare formats at the same
total bandwidth. We can then rewrite (1) as

d2min
4N0

=

Eb

N0

�

4

CFM =

SNR · CFM

4

(2)

where SNR = Es/(N0N/2) is the signal-to-noise ratio and
CFM = Nd2min/(2Es) is the constellation figure of merit.

In the digital communications literature, both CFM [36],
[37] and � [38, Eq. (5.8)] have been used as performance met-
rics, whereas � is more common in optical communications
[29]. Which of the two metrics is the most relevant depends
on the exact scenario. If the problem is to maximize the
throughput in a given bandwidth, then the modulation format
with the higher CFM is the better, whereas if the problem is
to minimize the bandwidth needed to transmit at a certain bit
rate, then the format with the higher � is the better [39].
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B. Optimization of modulation formats
In this section, we will look further in to the idea of using

power-efficient multidimensional modulation formats, which
are optimally (in the maximum likelihood sense) demodulated
by using soft data (which are the received symbol coordinates),
without the use of an external FEC code. For relatively small
dimensions N , one can use sphere-packing algorithms to find
optimum or near-optimum constellations of given sizes M that
minimize Es (and thereby maximize � and CFM ). The best
known constellations in this sense are called clusters, denoted
by CM,N , and the known clusters are listed in, e.g., [16],
[40], as well as online [39], [41]. The power efficiencies and
constellation figures of merit for the clusters in dimensions
N = 2, 4, 8 are shown in Figures 2 and 3 respectively.
The commonly used rectangular QPSK and 16-ary quaternary
amplitude modulation (16-QAM) formats are shown as stars
for comparison.

For every dimension N , the CFM of the clusters is mono-
tonically decreasing with M . This is however not the case for
the power efficiency �. There exists for every given N a value
(or possibly more than one value) of M that maximizes � of
the clusters [17]. In 4d, the maximum � belongs to the clus-
ter C8,4, corresponding to polarization-switched QPSK (PS-
QPSK) [29], [42]. For 8d, it is the 16-ary cross-polytope C16,8,
which can be constructed by all combinations of sign and
permutations of the vector [1, 0, 0, 0, 0, 0, 0, 0] [43], [44]. The
8 dimensions can be implemented, e.g., as two synchronized
wavelengths [43] or via pairwise symbols in time [44], [45].

The implementation of the 8d cross-polytope presented in
[45] is practical in the sense that the cross-polytope is rotated
in 8d to satisfy certain constraints on the polarization, which
reduces the nonlinear distortions. This version of the 8d cross-
polytope corresponds to the 16 codewords of the extended
(8,4) Hamming code. This example illustrates the insight that
some modulation formats can be interpreted as an outer code
on a simpler inner format, and maximum likelihood demodu-
lation is equivalent to soft-decision decoding of that code. In
Sec. II-D, we will explore the correspondence between formats
and codes by finding good formats in higher dimensions.

In spatial division multiplexed systems, many dimensions
can be naturally realized if symbols are synchronized between,
e.g., multiple fiber cores or modes. Formats for such systems
have been explored in, e.g., [20], [46]. To design high-
dimensional sphere packings by numerical optimization is
however computationally very demanding, if not infeasible.
Nevertheless, based on experiences from low-dimensional re-
sults, near-optimal constellations can be designed by constrain-
ing the sphere packings to certain structures. Which structure
to choose depends on the spectral efficiency.

C. High spectral efficiency: Lattice theory
If the spectral efficiency � is high, the best known con-

stellations have roughly the same structure, namely, spherical
subsets of lattices. A lattice is an infinite arrangement of
points such that the vector sum of any two points is also a
lattice point. Dense lattices are known for many values of the
dimension N [47, Ch. 1], such as the hexagonal lattice for
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Fig. 4. Spectral vs. power efficiency for spherical codes in dimensions N =
2, 4 compared with the clusters in Fig. 2.

N = 2, the D4 lattice for N = 4, and the E8 lattice for
N = 8 [47, Chs. 1 and 4]. A powerful method to design good
Nd constellations is to select an Nd lattice, select a centroid
anywhere in Nd space, not necessarily a lattice point, find
the M lattice points nearest to this centroid, and shift this
set of points to have zero mean [40], [48]. If the spectral
efficiency is high enough, this technique yields near-optimal
constellations, because the performance of the constellation
will be essentially determined by the interior structure, i.e.,
the lattice, and it matters little if the points on the boundary
are not ideally located.

The performance of constellations designed by this method
can be analytically approximated by considering the influence
of the lattice and the spherical bounding region separately.
Expressions for � and CFM obtained in this manner, which
get increasingly exact as � increases, were given in [47, Ch. 3,
Eq. (32)], [17, Eqs. (2.7)–(2.8)], and the corresponding curves
are included as dashed lines in Figs. 2–3.

Spherical cuts of high-dimensional lattices may lead to
practical difficulties as the encoding, decoding, and bit-to-
symbol mapping operations in general have to rely on complex
lookup tables. Therefore other shaping methods have been
studied in the literature, e.g., the use of external codes [49] or
vector quantizers [50].

D. Low spectral efficiency: Spherical codes
At low spectral efficiencies, which in this case means � well

below 2 bits per dimension pair, the lattice framework is not
so useful, as more or less all points will lie on the boundary of
the constellation. In fact, many such clusters consist of points
with equal norms, i.e., the points lie on the same hypersphere.
A collection of points on an Nd sphere is known as a spherical
code and such constellations with large minimum angular
separation have been designed in various contexts [51]–[53].
In Fig. 4, we compare the power efficiencies of the clusters
with those of the best known (i.e. highest �) spherical codes
in 2d, which are trivial, and 4d, which are tabulated online
[54]. It can be seen that at low spectral efficiencies, spherical
codes give optimal or near-optimal constellations.

As a further constraint, we may restrict the points of the
spherical codes to have coordinates ±1 in each dimension.
This brings us into the realm of block-coding theory. Good
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constellations for high dimensions and low spectral efficiencies
can be designed by using a low-dimensional modulation
format together with a block code with good distance prop-
erties. Practical benefits are low latency and relatively simple
implementations, provided that one has access to the required
number of dimensions and a soft-decision decoding algorithm
for the code in question. Similar ideas have been used in the
communication literature since the sixties [37], [55], and more
recently in optical transmission by Millar et al. [56]. Single-
parity check codes were implemented as modulation formats
for multicore fiber transmission in [46].

Consider the binary block code (n, k, dH), where n is the
code length (dimensionality), k is the number of information
bits, and dH is the minimum (Hamming) distance of the
code. The code rate is R = k/n, which is often equivalently
expressed in terms of the overhead 1/R � 1. We will now
use this code together with simple BPSK modulation, and this
will result in a modulation format with dimensionality N = n,
M = 2

k points, and a minimum squared Euclidean distance
of d2min = 4EsdH. This gives a spectral efficiency � = 2R, and
since R < 1, this approach will limit the spectral efficiency to
be < 2, although higher spectral efficiencies can be obtained
by starting from a format with higher spectral efficiency than
BPSK. The power efficiency is given by � = dHR. The
constellations obtained in this manner form a subclass of the
spherical codes, for which many constructions and analytical
results are available in the coding-theory literature.

Particularly useful codes in this context are the Reed–
Muller (RM) codes RM(r, u), characterised by the two in-
tegers r, u chosen so that 0  r  u. The RM(r, u) code
has parameters (n, k, dH) = (2

u,
Pr

i=0

�u
i

�
, 2u�r

). Special
cases include uncoded transmission (r = u), single-parity-
check codes (r = u � 1), biorthogonal codes (r = 1), and
repetition codes (r = 0). The cases r = 0, . . . , u are shown
connected with red lines for u = 2, 3, 4, 5, 6 in Fig. 5(a). The
dimensionality of the formats is N = n = 2

u, which increases
from 4 to 64 as indicated in the graph. We may note that the
best known constellations in 4d and 8d are obtained by the
biorthogonal codes, i.e., RM(1, u), for u = 2, 3. Specifically,
the RM(1, 2) code has parameters (n, k, dH) = (4, 3, 2) and
is known as PS-QPSK [29], [42]. The RM(1, 3) code has
(n, k, dH) = (8, 4, 4) and is the 8d cross-polytope discussed
above and experimentally implemented in [43]–[45].

Other examples we may consider is the 24d extended Golay
code with parameters (n, k, dH) = (24, 12, 8), which is a
particularly efficient sphere packing in 24d, investigated by
Millar et al. [56] and shown as a black circle in Fig. 5(a) at
� = 1 and � = 6.02 dB. It has the same performance as the
RM(5, 2) code which is (less efficiently) embedded in 32d.
Also, the performance of binary primitive Bose–Chaudhury–
Hocquenghem (BCH) codes is illustrated in Fig. 5(b). These
codes are in general stronger than RM codes at lengths 63 and
above, although stronger codes exist for very long lengths [57,
Ch. 9, §5].

The modulation technique proposed here is implementation-
ally different from the conventional approach of using separate
(low-dimensional) modulation and FEC coding. Some of the
benefits of implementing codes as modulation formats are that
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Fig. 5. (a) Asymptotic power efficiency for the RM(r, u) codes, for 0 
r  u and u = 2 . . . 6. The 24d Golay code is shown with the black circle.
(b) Asymptotic power efficiency for primitive binary BCH codes of lengths
7, 15, 31, and 63. The clusters from Fig. 2 are shown for comparison and the
code length n = 2u (equivalent to the cluster dimensionality) is marked for
each family of codes.

the latency can be lower, the digital signal processing often
need well-separated constellation points to converge, and the
transmitted symbols may already be in a higher-dimensional
space, due to polarization, wavelength, or spatial multiplexing,
meaning that the extra complexity incurred is small. However,
in Sec. II-E we will study what gains are possible by inter-
preting these formats in terms of some common code families.

E. Maximum power efficiency
As can be observed in Fig. 2, the maximum � occurs at

relatively low spectral efficiencies, at � = 1.58, 1.50, and
1.00 for N = 2, 4, and 8, resp. In this relatively low range of
spectral efficiencies, modulation formats based on binary block
codes perform well (see Sec. II-D), and results from coding
theory can therefore be invoked to approximately assess the
maximum power efficiency of clusters of a given dimension.

From curves like Fig. 5, the maximum � for a given code
family and code length can be obtained. These results are
shown in Fig. 6(a) and extended to longer code lengths and
code families such as Reed–Solomon (RS) and BCH codes.
Fig. 6(b) shows the code rate at which these maximum power
efficiencies were obtained. The results for RM and RS codes
were calculated analytically, whereas those for BCH codes
were obtained by constructing all relevant generator polyno-
mials, since no simple closed-form expression are known that
relate n, k, and dH for BCH codes. Using known expressions
to asymptotically approximate sums of binomial coefficients
[57, Ch. 10, §11], it can be shown that as n increases, the
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optimal r/u approaches 1/3, R approaches 0, and � increases
as (3/2)u, i.e., the power efficiency increases by a factor of
3/2 (1.76 dB) with every doubling of the code length. It is
well known that the performance of RM codes scales less
beneficially with the code length than many other classes of
codes.

The maximum power efficiency corresponding to the
Gilbert–Varshamov bound [58, Eq. (3)], [57, Ch. 1, §10;
Ch. 17, §7] is also shown in Fig. 6. According to this bound,
there exists for any n and dH a binary block code with
parameters (n, k, dH), where k = n � log2

PdH�1
i=0

�n
i

�
. This

bound thus proves the existence of a cluster with N = n and �
at least dHk/n. A similar asymptotic analysis as above reveals
that the optimal rate asymptotically approaches a constant
0.379 and that the power efficiency scales linearly with n,
i.e., increases by a factor of 2 (3.01 dB) with every doubling
of the code length, which in comparison shows the inferiority
of RM codes at high n.

III. INFORMATION-THEORY METRICS

The maximum achievable rate over a given channel with a
given modulation format is given by the MI, and the maximum
achievable rate with the additional constraint that the FEC
decoder processes each bit stream separately is the BGMI. The
BGMI depends on the bit-to-symbol mapping and can never
be larger than the MI. In this section, we will describe how the
MI and BGMI are computed for soft and hard demodulation

and demapping. We will use the notation MI hard/soft and
BGMI hard/soft to denote the four cases. In [59] an alternative
notation referring to the four cases as bit/symbol-wise detec-
tion with hard/soft decision was used. As a case study, we
will focus on the real-valued AWGN channel with quaternary
pulse amplitude modulation (4-PAM). This is the simplest case
where the MI and BGMI are different. MI and BGMI results
obtained for this scenario can be easily generalized to 16-
QAM and PM-16-QAM by multiplying by 2 and 4, resp.,
corresponding to the number of parallel 4-PAM channels.

The real, memoryless, discrete-time AWGN channel is
Y = X + Z, where X and Y are the real modulator input
and demodulator output, resp., see Fig. 1. The distribution
of X is specified by a probability density function (pdf)
pX(x). For 4-PAM, this pdf is real and discrete at four equally
spaced positions with zero mean, i.e., at (c1, c2, c3, c4) =

(�3,�1, 1, 3). The additive noise is modeled by a real-valued
Gaussian random variable Z with zero mean and variance
N0/2. The received signal is denoted by Y , and its pdf pY
can be computed from the channel model and pX . The average
energy per symbol is given by Es =

R
x2pX(x)dx.

A. Channel capacity
Every channel has an upper limit of the throughput, the

channel capacity, which is the maximum data rate in bit/s
that it can carry with arbitrarily low bit-error rate [60]. For
the capacity to be calculated, a mathematical channel model
is needed.

According to Shannon’s celebrated channel coding theorem
[60], the channel capacity can be calculated as

C = max(I(X;Y )) (3)

where I(X;Y ) is the mutual information between X and Y .
The maximum should be taken over all possible pdfs pX(x),
which is obviously very challenging. The mutual information
in bits per symbol is defined as

I(X;Y ) =

ZZ
pX,Y (x, y) log2

✓
pX,Y (x, y)

pX(x)pY (y)

◆
dxdy. (4)

For the real-valued AWGN channel defined above, the
capacity is known and equal to C =

1
2 log2(1 + SNR) in

bits per symbol, where SNR = Es/(N0/2). The general
expression for the N -dimensional AWGN channel is C =

N
2 log2(1 + SNR) bits per symbol, with SNR as defined in

(2).

B. Mutual information—soft demodulation
For 4-PAM transmission, pX(x) is a discrete pdf with

probability 1/4 for each level; so the integral over x in (4)
becomes a discrete sum. Some simplifications can be made by
writing the remaining integral as sum of two entropy functions,

MI soft = H(Y )�

1

4

4X

i=1

H(Y |X = ci) (5)

where H(Y ) = �

R
pY (y) log2 pY (y)dy denotes the entropy

functional and H(Y |X = ci) denotes a similar integral with
pY (y) replaced by the conditional pdf pY |X(y|ci). Numeric
integration must be used in the end to calculate the entropy
integrals.

C. Mutual information—hard demodulation
If a decision is made in the demodulator about which

symbol was transmitted, hard MI is the relevant metric. For the
AWGN channel, minimum distance demodulation is optimum,
which means that given a received symbol y, we estimate
the transmitted x to be the constellation point closest to y.
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This means, in the 4-PAM case, that we introduce decision
boundaries between the symbols at (�2, 0, 2). By integrating
pY within the four regions, the transition probability matrix
Pi,j = Pr(Y = ci|X = cj) can be calculated. Using the
marginal probability Pi = Pr(Y = ci) =

P4
j=1 Pi,j/4, the

hard MI becomes

MI hard = �

4X

i=1

Pi log2 Pi +

4X

i=1

4X

j=1

1

4

Pi,j log2 Pi,j (6)

where the first sum is the “hard” entropy H(Y ) and the double
sum is �H(Y |X = ci), averaged over ci.

D. Bitwise generalized mutual information—soft demodula-
tion

The BGMI depends not only on the modulation format but
also on the bit-to-symbol mapping. We use Gray mapping
in the 4-PAM example, so that the two-bit words B1B2 =

00, 10, 11, 01 correspond to the symbols X = c1, c2, c3, c4,
resp.

The soft BGMI is then defined as the sum of the MI between
each of the two bits and the received (soft) value Y ,

BGMI soft = I(B1;Y ) + I(B2;Y ). (7)

This is the most well known achievable rate in BICM
systems [23], [27], although not necessarily the highest one
[61]. To calculate I(Bi;Y ) for i = 1, 2, we can use a modified
version of (5)

I(Bi;Y ) = H(Y )�

1

2

H(Y |Bi = 0)�

1

2

H(Y |Bi = 1). (8)

This again leads to integrals that need to be computed numer-
ically.

Interestingly, the two last terms in (8) are in general
different, i.e., the binary channels obtained from the individual
bits in a multilevel constellation are not necessarily symmetric.

E. Bitwise generalized mutual information—hard demodula-
tion and demapping

The hard BGMI is, in analogy with the soft,

BGMI hard = I(B1;
ˆB1) + I(B2;

ˆB2), (9)

where ˆBi are the hard estimates of the received bits, based
on hard decision of the received symbols. Thus, similarly to
the hard MI case in Sec. III-C, a 2 ⇥ 2 transition matrix
can be constructed for each bit and a simplified version of
(6) can be applied. The elements of this transition matrix
can be calculated from the corresponding symbol transition
probabilities Pi,j . For example, the probability of transmitting
B1 = 0 and receiving ˆB1 = 1 equals the probability of
transmitting symbol c1 or c4 and receiving symbol c2 or c3,
i.e., P2,1 + P3,1 + P2,4 + P3,4.

Also in this case, the binary channels are not necessarily
symmetric.
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Fig. 7. Channel capacity C (red), MI soft (blue), BGMI soft (purple), MI hard
(yellow), and BGMI hard (green) for a 4-PAM (or 16-QAM or PM-16-QAM)
constellation with Gray mapping. The bit error rates for the two bits are also
shown.

F. Numerical example

The five metrics discussed above are plotted for 4-PAM as
a function of SNR in Fig. 7, along with the bit error rates
for the two bits. Very low SNRs are included to illustrate
the asymptotic behavior. We see that the soft MI approaches
the capacity at low SNRs, whereas the soft BGMI and MI are
indistinguishable for SNR above 10 dB. The relevant operating
point for 4-PAM is often at SNRs of 15 dB and above where
all four metrics are close to 2. It is noteworthy, however,
that practical 16-QAM systems tend to operate at SNRs well
above 15 dB, when the differences between these metrics are
negligible.

The following inequalities hold for all channels, modulation
formats, and bit-to-symbol mappings:

C � MI soft � BGMI soft � BGMI hard (10)
MI soft � MI hard � BGMI hard. (11)

One can note that MI hard can be either less than or greater
than BGMI soft, depending on the transmission system and
SNR regime. Examples of this can be found in [59].

IV. DISCUSSION

Whether BGMI or MI is the most relevant metric depends
on whether a symbol-wise or a bit-wise receiver is used. In
today’s optical communication systems, bit-wise receivers are
more common, which makes BGMI the better predictor of
system performance. The choice of hard or soft demodulation
is a trade-off between complexity and performance. There has
been an increasing interest in soft FEC for optical systems in
the last decade, but there are recent indications in favor of
a return to hard FEC. Hard-decision decoders are much less
complex, and a recent study [59] shows that as long as symbol-
wise decoding is used, the performance penalty in going from
soft to hard demodulation is negligible for a wide range of
realistic fiber-optic transmission scenarios.
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In this context, it is relevant to also mention the recent
experimental work on characterizing system performance in
terms of MI and BGMI [62]–[64]. The difficulty in such
experiments is to estimate the received signal pdf, which in
[63] was done by uni- or multivariate Gaussian fits in 2d or 4d.
It was found that in transmission lines with much nonlinear
phase noise, e.g., systems with inline dispersion compensation,
a receiver accounting for the 4d noise pdf is necessary to
achieve full performance.

Another interesting extension of this work would be to
characterize the optimized formats from Sec. II in terms of MI
and BGMI. While results for some special cases have appeared
on the literature [18], [27], this is still a largely unexplored
area.

It is likely that information-theoretic measures such as
MI and BGMI will increase in importance in future optical
systems, not only for their direct information on achievable
data rates, but also to guide the system design. Comparisons
between MI, BGMI, and various lower bounds thereon provide
useful indications on how to achieve said rates by means of,
e.g., suitable modulation formats and receiver algorithms.
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