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The transition between different mechanisms of two-proton decay in exotic nuclei and the governing 
physical conditions are generally studied. To perform this large-scale survey, the direct-decay model, 
which is widely used, was improved by generalizing the semi-analytical approaches used before. The 
improved model provides a flawless phenomenological description of three-body correlations in 2p
decays, as is demonstrated by several examples of decays of low-lying states in 16Ne. Different transition 
mechanisms are shown to occur beyond the proton dripline for s–d shell nuclei. It is found that the 
transition dynamics of 2p-emitters allows the extraction of the width of the ground-state resonance of 
the core + p subsystem. The practical application of the method is illustrated by determining properties 
of the 14F ground state derived from the 15Ne → 13O + 2p decay data, and of the 29Cl ground state 
derived from the 30Ar → 28S + 2p decay data.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Two-proton (2p) radioactivity has attracted a large interest in 
theory and experiment in recent years. This peculiar radioactive 
decay mode was predicted for even-proton systems in the year 
1960 [1] and experimentally discovered in 2002 [2,3]. Since then, 
important advances in the studies of two-proton (2p) radioactiv-
ity, and, more generally speaking, of true two-proton decays [4]
were made. These studies comprise part of a general effort to ex-
tend our knowledge to the limits of existence of nuclei, up to the 
neutron and proton driplines and as far beyond them as possi-
ble. It is known that the true 2p decay mechanism, where both 
protons are emitted simultaneously, is realized under certain ener-
getic conditions, in particular when the relation between one- and 
two-proton separation energies (S p and S2p , respectively) makes 
sequential decay (two single-proton emissions separated in time) 
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impossible: S(A)
2p < 0 and S(A)

p > 0, where A denotes the mass 
number of the mother nucleus. However, in light proton-rich and 
in neutron-rich nuclei, where the potential barriers governing the 
decay are relatively small, the genuine three-body decay mecha-
nism can materialize in the form of a democratic decay [5]: these 
democratic decays exhibit distinct correlations between the decay 
products and follow a different systematic of lifetimes compared 
to true 2p decays [4]. Together, and at variance to the sequential
decay mechanism, which requires the population of intermediate 
narrow states, the true 2p and democratic decays are often char-
acterized as direct decays. A schematic view of the various decay 
mechanisms and their energy balance is shown in Fig. 1 (a,b,d,e).

The transition from the true 2p mechanism to the democratic 
decay dynamic is typically governed by the relation of the two 
quantities, �r (the width of the resonance ground state) and Er

(the ground state decay energy in the core + p subsystem of the 
three-body system core + p + p). The characteristic of this transi-
tion and the underlying physics have so far not been considered 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2016.09.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:lgrigorenko@yandex.ru
http://dx.doi.org/10.1016/j.physletb.2016.09.034
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.09.034&domain=pdf


264 T.A. Golubkova et al. / Physics Letters B 762 (2016) 263–270
systematically. This is the purpose of the present Letter, and the 
motivation will be further detailed in the following.

In general, the decay dynamics of 2p emission is fully charac-
terized by three parameters: (i) the 2p decay energy E T = −S(A)

2p , 
(ii) the ground state (g.s.) decay energy in the core + p subsystem 
Er = −S(A−1)

p = S(A)
p − S(A)

2p , and (iii) the width �r of the interme-
diate state. As the width �r is a function of Er , the delimitation 
of different 2p decay mechanisms can be depicted by a kind of 
“phase diagram” in the {ET , Er} plane, see Fig. 1 (c).

The transitions between different mechanisms (or decay dy-
namics) were rudimentary mentioned in previous works [4,6–8]. 
Here, Fig. 1 provides an overall view of the transition dynamic in 
2p decays. At first glance, one would expect that the direct 2p
and the sequential decay are separated by the line where Er = ET . 
However, it was shown in Refs. [6,7] that this transition happens 
at lower values Er = (0.75–0.85)ET . Similarly, it was found experi-
mentally for decays of 6Be and 16Ne in Refs. [9,10] that the transi-
tion “Democratic 2p”↔“Sequential 2p” does not even happen for 
energies ET considerably higher than ET = 2Er ; this issue remains 
an open question. In the present work we investigate systemati-
cally the transition regime “True 2p”↔“Sequential 2p”, and, while 
moving along this line, we obtain detailed quantitative results for 
the transition region “True 2p”↔“Democratic 2p” in Section 5. 
It is demonstrated that this transition region is often involved in 
ground-state decays of s–d shell nuclei beyond the proton dripline.

Besides the general interest, there is another motivation for the 
present study, which has practical impact. Any phenomena of the 
transition type are expected to be prone to abrupt changes of 
its properties in response to minor variation of the parameters. 
Here even small variations of the characteristic decay parameters 
can lead to strong modifications of the decay properties and ob-

Fig. 1. (Color online.) Energy conditions for various possibilities of how 2p-decays 
can materialize: (a) as democratic decay directly to the daughter nucleus or (b) via 
broad intermediate states, (d) as true 2p-decay, also referred to as 2p-radioactivity, 
or (e) as sequential decay via narrow intermediate states. The true and democratic 
decays are usually summarized as “direct decays”. A schematic sketch of different 
2p decay regimes in the {ET , Er} plane is shown in panel (c): true, democratic, 
and sequential mechanisms are indicated by different colors. The transition region 
separating these regimes is shown in gray color. The dashed lines delineating the 
boarderline of the transition region correspond to the displayed ratios between the 
2p-decay energies ET in a three-body system and the 1p-decay energies Er of the 
g.s. of the core + p subsystem.
served quantities (such as branching ratios, lifetimes, etc.). In turn, 
this sensitivity can be used for a precise derivation of the nu-
clear parameters from measurements or for imposing limitations 
on their relations. Among the relevant parameters {E T , Er, �r}, the 
most interesting one is the sensitivity to �r . While resonance ener-
gies can be determined with rather good precision from available 
experimental data, much better resolution and/or statistics is re-
quired to derive the width of a state. The latter conditions are 
presently often not attainable for exotic dripline systems. More-
over, there is a rather large experimental “blind spot” with re-
spect to the g.s. resonance widths, which covers the interval from 
∼ 1 meV to ∼ 10 keV (corresponding to resonance lifetimes rang-
ing from ∼ 10−19 s to ∼ 1 ps): the invariant and missing mass 
methods using spectrometers or kinematical complete measure-
ments can be applied when resonance widths exceed ∼ 10 keV
(i.e.: resonance lifetimes � 10−19 s), while other techniques (such 
as the in-flight decay method, plunger, etc.) are applicable only for 
long-lived states with lifetimes exceeding a few picoseconds (i.e.: 
widths � 1 meV). Therefore, we derive here an indirect method 
to obtain information on the widths �r of the proton subsystems 
in the transition regimes between different mechanisms of two-
proton emission. The practical feasibility of this method is demon-
strated with the examples of 14F g.s. populated in the 2p decay 
of the 15Ne g.s. [11] and of 29Cl g.s. populated in the 2p decay of 
30Ar [12].

2. Dynamics of three-body systems near the proton dripline

As mentioned above, the relationship of S(A)
p and S(A)

2p is one of 
the decisive conditions for different forms of nuclear dynamics in 
the even-proton systems in the proximity of the proton dripline. To 
illustrate this behavior, the systematics of the p and 2p separation 
energies for Ne and Ar isotopes near the proton dripline is shown 
in Fig. 2. These nuclides represent the lower and the upper parts of 
the s–d shell, respectively. One can see that the evolution of S(A)

p

and S(A)
2p values is different, and the corresponding curves intersect 

near the proton dripline, leading to rapid changes of the dynami-
cal properties of nuclides in this region. Particle-stable nuclei that 
are closest to the dripline typically exhibit a so-called Borromean 
structure (this denotes the phenomenon that removal of one of 
the three bodies, either one of the two protons or the core, leads 
to disintegration of the whole three-body system) with the con-
dition S(A)

p > S(A)
2p . Particle-unstable nuclei located just beyond the 

dripline often undergo direct decays, i.e. either 2p decay by the 
true (S(A)

2p < 0, S(A)
p > 0.2S(A)

2p ) or by the democratic (S(A)
2p < 0, 

S(A)
p ∼ 0) mechanism; in addition, a transition situation is possi-

Fig. 2. (Color online.) Systematics of p and 2p separation energies (S(A)
p and S(A)

2p , 
respectively) for neon [panel (a)] and argon [panel (b)] isotopes, which are shown 
by circles and diamonds, respectively. The hollow symbols in panel (b) joined by a 
dashed line show the mass predictions from Ref. [13]. Isotopes with specific struc-
ture and decay properties defined by the ratios of the S(A)

p and S(A)
2p values are 

highlighted by arrows and the corresponding text legends.
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ble. Nuclei located further beyond the dripline pass the transition 
area and arrive either at a domain of democratic 2p decays (very 
likely for the lightest nuclei) or at a domain of sequential 2p de-
cays (rather expected for the heavier, higher-Z systems). Thus, the 
transition dynamics investigated here is a quite likely situation in 
the area between the direct (true or democratic) and sequential 
2p-decay dominance.

3. Improved direct 2p-decay model

Simplified analytical models of 2p decay are useful theoreti-
cal tools, which can substitute complicated and time-consuming 
three-body calculations when “quick” estimates, systematic stud-
ies, or just a phenomenological comparison with experimental ob-
servations is needed. The derivation of the direct decay model for 
2p emission was described in detail in Refs. [7,14]. The model 
is based on the utilization of simplified three-body Hamiltonians, 
which allow a factorization of the Green’s function. This approach 
can be traced back to the ideas of Galitsky and Cheltsov [15]. The 
expressions originating from the resonant R-matrix-type approx-
imation [14] look very similar to those arising from the quasi-
classical approximation [16], later used for 2p emission in a num-
ber of works [17,18, and references therein]. However, the models 
have important differences, which are discussed for example in [4,
14,19].

The direct decay models of Refs. [7,14] have some disadvan-
tages, which are overcome in the present approach. Namely, the 
decay amplitudes must be factorized either in the “V” system [see 
Fig. 3 (a)], or in one of the “Y” systems [see Fig. 3 (b,c)]. In the 
“V” system, the anti-symmetrization between identical protons is 
straightforward. However, the assumption of an infinite core mass 
is required in this case. Also the interaction of the protons (includ-
ing Coulomb repulsion) is neglected, which leads to some over-
estimation of the width. This type of approximation is called “no 
p–p Coulomb” (NPP), see Eq. (21) of Ref. [7]. Working in the “Y” 
systems, the p–p Coulomb interaction can be effectively consid-
ered by taking the Zi Z j term of the Coulomb interaction in the X
dimension as Zc while in the Y coordinate as Zc +1. Unfortunately, 
a consistent anti-symmetrization is complicated in the “Y” system, 
and one of the core + p resonances is not treated appropriately. 
That is because the X coordinate is exactly the vector between 
core and p, but the Y coordinate is only approximately equal to 
the vector between the core and another p. The latter approxima-
tion becomes exact in the limit Ac → ∞ (in this limit “Y”→“V”). 
This approximation is called “effective p–p Coulomb” (EFC), see 
Eq. (22) of Ref. [7].

In the following, an improved direct decay model (IDDM) is 
developed which is based on simple R-matrix-type analytical ap-
proximations for amplitudes; it combines the positive features of 
both approximations, NPP and EFC. The general expression derived 
in Ref. [7] [see Eqs. (30)–(32) of this work], however with a modifi-
cation, which accounts in a correct way for the angular momentum 

Fig. 3. (Color online.) Three coordinate systems, “V”+“T”, “Y1”, “Y2”, with their re-
spective kinematical variables as used in this work for the description of the three-
body system core + p + p, are shown in panels (a), (b), and (c), respectively.
coupling of { j1, l1} and { j2, l2} of the first and the second core + p
subsystems, is:

d�(E3r)

d��

= 8E3r

π(2 J + 1)

∑
M J

∣∣∣∣∣∣
∑
γ

A
J M J
γ (ε,�1,�2)

∣∣∣∣∣∣
2

, (1)

where J is the total angular momentum, γ = { j1, l1, j2, l2}, �� =
{ε, �1, �2}, and the angles �i are related to the vectors ri (see 
Fig. 3). The amplitude A

J M J
γ is defined as

A
J M J
γ (��) = [ j1 ⊗ j2] J M J√

v1 v2

∫ R

0
dr′

1

∫ R

0
dr′

2 ϕ j1l1(k1r′
1)

× ϕ j2l2(k2r′
2)	V (r′

1, r′
2)ϕ Jγ (r′

1, r′
2) , (2)

where ϕ Jγ is assumed to be the radial part of the three-body 
resonant wave function (WF) in j j coupling. The nature of the 
short-range potential 	V and its derivation and the underlying 
approximations are discussed in detail in Ref. [7]. The amplitude 
A J M J does not depend on the parameter R when it is chosen be-
yond the range of 	V . The integral in Eq. (2) can be evaluated 
by replacing the continuum WFs with the quasi-stationary WF in 
proximity of the two-body resonance energies:

ϕ jl(kr) =
√

v(E)

2
A jl(E) ψ̂ jl(Er, r) , (3)

where k, v , E are the related momentum, velocity, and energy in 
the two-body channel. The pure radial function ψ̂ jl(Er, r) is the 
quasi-bound WF: it has a resonant boundary condition at the two-
body resonant energy Er and is normalized to unity in the internal 
domain as

ψ̂ jl(Er, r > R) ∝ Gl(krr) ,

R∫
0

dr
∣∣∣ψ̂ jl(Er, r)

∣∣∣2 = 1 ,

where Gl is irregular at the origin Coulomb WF with angular mo-
mentum l. In this definition, the value of parameter R should be 
chosen around the classical outer turning points for the core + p
Coulomb barriers. The amplitude A jl of the resonance with the pa-
rameters Er and �r = �(Er) is defined as

A jl(E) =
√

�(E)

Er − E − i�(E)/2
+ A(p)

jl (E) . (4)

The width as a function of energy is defined by the standard R-
matrix expression

�(E) = 2
θ2

2Mr2
cp

Pl(Z1, Z2, rcp, E) , (5)

via the penetrability function Pl , channel radius rcp, and reduced 
width θ2. In Eq. (4), the resonant term typically used in such 
calculations is augmented by taking into account the “potential 
scattering” contribution A(p)

jl . This allows additional tests of reli-
ability of the obtained results. The potential scattering term can be 
approximated reasonably well by the scattering off a solid sphere 
with radius rsp:

A(p)

jl (E) = −2Fl(krsp)√
�(E)

Gl(krsp) − i Fl(krsp)

F 2
l (krsp) + G2

l (krsp)
. (6)

From Eq. (3) the amplitude is factorized into a momentum-
dependent term and a radial integral
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A
J M J
γ (��) = V J

γ

4
[ j1 ⊗ j2] J M J

A j1l1(E1) A j2l2(E2),

V J
γ =

∫ R

0
dr′

1

∫ R

0
dr′

2 ψ̂ j1l1(Er1, r′
1) ψ̂ j2l2(Er2, r′

2)

× 	V (r′
1, r′

2) ϕ Jγ (r′
1, r′

2) . (7)

Because the spin degrees of freedom cannot be observed even 
in the most sophisticated modern radioactive-ion-beam experi-
ments, the summation over the final state spin quantum number 
is performed. For systems with zero core spin there are two terms 
to be treated. The first type is with S = 0 where J = L, and the 
second is with S = 1 where L = { J − 1, J , J + 1}. After averaging 
over M J , it is obtained that

d�(E3r)

d��

=
∑
L S

E3r

2π(2L + 1)

∑
ML

∣∣∣∣∑γ
ALML

Sγ (��)

∣∣∣∣
2

, (8)

ALML
Sγ (��) = C J L S

γ V J
γ [l1 ⊗ l2]LML

A j1l1(E1)A j2l2(E2) , (9)

[l1 ⊗ l2]LML
=

∑
m1m2

C LML
l1m1l2m2

Yl1m1(r̂1)Yl1m1(r̂1) .

The coefficient C J L S
γ provides the j j to L S re-coupling for two pro-

tons in the orbitals j1 and j2:

C J L S
j1l1 j2l2

= L̂ Ŝ ĵ1 ĵ2

⎧⎨
⎩

l1 l2 L
1/2 1/2 S

j1 j2 J

⎫⎬
⎭ .

The potential matrix elements V J
γ can be reasonably approximated 

[7,10] as

V J
γ = c J

γ

√
[Er1 + Er2 − ET ]2 + [�1(Er1) + �2(Er2)]2/4 ,

where c J
γ are phenomenological complex coefficients, all normal-

ized to unity, as 
∑

γ |c J
γ |2 ≡ 1. The expression in Eq. (9) uses inter-

mediate states in the subsystems with appropriate sets of quantum 
numbers and correctly couples them to the total spin of the sys-
tem. However, there are important drawbacks in the approxima-
tion which do not allow the reproduction of realistic momentum 
distributions of fragments in 2p decays.

Therefore, a phenomenological improvement of Eq. (9) is pro-
posed by replacing the amplitude with a more realistic one. The 
latter uses terms composed in different Jacob systems instead of 
those in the “V” system. For the case without potential scattering 
contribution in Eq. (4), it reads

ALML
Sγ (��) → ÔS

([
lY1
x ⊗ lY1

y

]
LML

A
j
Y1
x l

Y1
x

(EY1
x )

√
�2(EY1

y )

+
[
lY2
x ⊗ lY2

y

]
LML

√
�1(EY2

y )A
j
Y2
x l

Y2
x

(EY2
x )

)

× C J L S
γ V J

γ A(pp)
S (E T

x )

ET − Er1 − Er2 + i [�1(EY1
x ) + �2(EY2

x ]/2
. (10)

The permutation operator OS provides the correct symmetry of 
the WFs with respect to proton permutations. As the isospin WFs 
of two protons are symmetric, it should be used as

Ô0 ≡ S , Ô1 ≡ A .

The amplitude A(pp)
S introduces corrections for the p–p final 

state interactions both for the S = 0 and S = 1 states of the two 
protons. The following expression is used:
A(pp)
S (E T

x ) = N

v T
x

√
2

π

∞∫
0

dr ψ
(pp)

l=S (kT
x r)φ(r) , (11)

where kT
x and v T

x are momentum and velocity associated with the 
p–p energy E T

x . The meaning of such an approximation is to treat 
the protons as being emitted from a broad spatial region defined 
by the function φ(r). The source function φ(r) with a Gaussian 
type formfactor is used

φ(r) = 1

a3/2
pp

√
54

π
r exp

(
− 3r2

4a2
pp

)
. (12)

The radius parameter app in the above expression is equal to the 
root mean square radius of the function φ(r). The simple singlet 
p–p potential V (r) = −V 0 exp[−(r/r0)

2] with V 0 = −31 MeV and 
r0 = 1.8 fm is used to define the s-wave proton scattering WF 
ψ

(pp)

l=0 . The zero nuclear interaction is assumed for the p-wave p–p

motion ψ(pp)

l=1 . The normalization coefficient N is chosen such that 
for a fixed three-body decay energy ET

1∫
0

dε
√

ε(1 − ε) |A(pp)
S (εET )|2 = π/8 . (13)

In the calculations, app = 4 fm is used, for which |A(pp)
S (E)|2

closely resembles the free p–p scattering cross section profile; a 
difference appears at small E values, where A(pp)

S (E) has the cor-
rect asymptotic behavior.

The IDDM unifies the advantages of both the NPP and EFC 
models and also goes beyond, thus providing a reliable tool for 
quantitative estimates and a phenomenological description of 2p
decays.

(i) It can be shown, that Eq. (10) returns exactly Eq. (9) in the 
approximation Ac � 1, Zc � 1, A(pp)

S → 1. Thus, the improved 
expression shows the proper transition to the previously used 
models.

(ii) The spins of the resonances in the subsystems and total an-
gular momentum coupling schemes are correctly accounted in 
the proposed expressions as well as the proper symmetries of 
two-proton amplitudes.

(iii) In the present model two resonances can be treated simulta-
neously in two core + p subsystems without the infinite-core-
mass assumption.

(iv) The proton–proton final state interaction is treated in a phe-
nomenologically sufficient way.

4. Application to 16Ne decays

In the following, the IDDM is applied to the examples of the 
16Ne 0+ g.s. and the 2+ first excited state, both decaying to 
14O + p + p, and its properties and performance is illustrated. 
In Refs. [10,20], the 16Ne decay data have been compared with 
sophisticated full-scale three-body calculations. The comparison 
yields quantitative agreement, therefore the results of the detailed 
three-body calculations are used as a reference for the results ob-
tained in the present work. This allows a direct and general com-
parison and avoids the use of Monte-Carlo (MC) simulations. The 
latter are needed for a realistic comparison of the semi-analytical 
model results with the data, which comprise the bias of the partic-
ular detector setup. In Fig. 4 the energy and angular distributions 
are presented, and widths are given in Table 1. It is assumed that 
a single configuration is involved in the decay: [s2

1/2]0 for the 0+

state and [s1/2d5/2]2 for the 2+ state. The corresponding {Er, �r}
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Fig. 4. (Color online.) Energy and angular distributions in the Jacobi “Y” system cal-
culated by the 3-body, NPP, EFC, and IDDM models for the decay of the 16Ne 0+
g.s. (a,b) and the 2+ first excited state (c,d).

Table 1
Widths (in keV) of 16Ne states calculated with the NPP, EFC, IDDM and 3-body mod-
els. The decay energy of the 0+ state is ET = 1.466 MeV, and that of the 2+ state 
is ET = 3.16 MeV.

� (keV) NPP EFC IDDM 3-body Exp.

0+ 4.6 2.4 4.1 3.1 < 80 [20]
2+ 14 11 12 56 175 ± 75 [10]

sets in 15F are {1.405, 0.7} for s1/2 and {2.8, 0.37} for d5/2. The 
contributions of the [s2

1/2]0 and [s1/2d5/2]2 configurations in the 
structure of 16Ne are taken as 67% [21] and 16% [10].

The different models yield the following results given in Ta-
ble 1. The NPP model tends to overestimate the decay width [14]. 
The results of the IDDM lie in between the NPP and EFC width 
values. The NPP and EFC models also have different deficiencies 
in describing the momentum distributions of the 2p decay. The 
IDDM model reproduces all features of the momentum distribu-
tions qualitatively correct, see Fig. 4. Also a quantitative agreement 
with the full-scale three-body calculations is largely obtained. For 
example, one should note the correct positions and intensity-ratio 
of the two peaks in Fig. 4 (c). For the 2+ state, however, a complete 
agreement with full-scale three-body calculations is not expected, 
as several quantum configurations are needed for description of 
the data [10].

As an intermediate result, the example of 16Ne decays shows 
that the proposed IDDM combines the advantages of the NPP and 
EFC models, and it provides results which are close to the sophis-
ticated three-body calculations. This makes the proposed approach 
a reasonable substitute for complicated three-body calculations, at 
least for exploratory and systematics studies.

5. Transition patterns in the s–d shell nuclei

In this Section, the IDDM will be applied more generally to sev-
eral s–d shell nuclei and the decay dynamics is studied. The first 
case is 30Ar decaying to 28S + p + p via the [s2

1/2]0 configuration, 
see Fig. 5. In the calculation, the {ET , ε} plane is scanned for a 
fixed proton resonance energy Er(

29Cl) = 1.8 MeV and several de-
cay widths �r(

29Cl) = 60, 170, 330, 500 keV. In the considered “Y” 
Jacobi system ε = E(core–p)/ET is the relative energy content of 
the core + p subsystem.

Transitions between different decay mechanisms become visible 
and the following evolution pattern can be recognized in Fig. 5 (a). 
At low ET values, the true 2p decay mechanism prevails, which 
is characterized by a relatively narrow, bell-shaped distribution 
centered at ε ∼ 1/2 (i.e., where the energies of both protons are 
equal). For ET > Er , two new peaks, associated with the sequen-
tial emission of protons, appear on the rising and falling edge of 
the central bell-shaped distribution. At an energy of E T ∼ 1.2Er ∼
2.2 MeV, the sequential-emission peaks become higher than the 
central peak around ε ∼ 1/2, and this value marks the transi-
tion point to the sequential decay mechanism (this was already 
sketched in Fig. 1 using the label “True 2p”↔“Sequential 2p” tran-
sition). Overall, the triangular structure reflects the evolution of the 
double-peak sequential decay pattern as a function of E T . At the 
tip of the triangle, at ET = 2Er , the two peaks belonging to the 
sequential emission overlap; at still higher E T they split up again.

Fig. 5 (b,c,d) shows the results for different, larger widths �r , 
which is achieved by variation of the reduced width θ2 parame-
ter in Eq. (5). At first glance, similar patterns are obtained as for 
case (a). In detail, one can see that with increasing �r the triangu-
lar sequential-decay pattern arises at higher energy E T . However, 
it gradually smears out, and finally vanishes with increase of �r . 
This qualitative difference reflects the transition to the democratic 
decay mechanism: the evolution observed in the decay patterns 
from (b) to (d) corresponds to the “Sequential 2p”↔“Democratic 
2p” transition regime (which is also indicated in Fig. 1).

The panels (a) and (b) in Fig. 5 correspond to the θ2 values of 
0.5 and 2, respectively. The first value should correspond to the 
structure of a nucleus with strong configuration mixing. The sec-
ond value is the upper limit of the admissible range for θ2, which 
corresponds to a pure single-particle structure. The difference be-
tween the discussed ET evolution patterns is quite significant. For 
instance, the transition “True 2p”↔“Sequential 2p” in the calcula-
tion (b) takes place at an ET value, which is about 300 keV larger 
than that in the case (a). Unrealistically large θ2 values of 4 and 
6 are used in cases (c) and (d), respectively. They are considered 
for the study of the transition to the democratic 2p-decay mech-
anism. From these and analogous evaluations it is found that the 
“True 2p”↔“Democratic 2p” transition takes place when the width 
�r is described by the relation

�r = �(Er) ∼ (0.2–0.3)Er , (14)

for this, see also Fig. 1.
It is obvious that the charge of 30Ar is too large (hence the 29Cl 

g.s. width is too small) to allow the democratic decay mechanism 
to materialize with the Er = 1.8 MeV value used. The evolution of 
2p-decay mechanisms similar to the one shown in Fig. 5 (a)→(d) 
can be achieved by variation of a charge of the 2p precursor or/and 
energy Er . Fig. 6 illustrates this issue by presenting three examples 
of the calculated transition patterns ranging from light to heavy 
s–d shell 2p emitters. In the calculated cases of 15Ne, 26S, and 
34Ca g.s. decays, it can be seen that the observed (15Ne) as well 
as the evaluated (26S) separation energies provide the g.s. location 
near the transition points. This means that it can be expected that 
the latter cases exhibit a strong sensitivity of the decay correla-
tion patterns to the parameters of the involved nuclear states. In 
the following section, these findings will be utilized to study the 
core + p subsystem of a core + p + p nucleus.

6. Decay of the 15Ne ground state

The first illustration, where the 2p-decay transition dynamics 
is used to study the core + p subsystem, is provided by the 15Ne 
g.s. decay. One can see in Fig. 6 (a), that the 2p-decay energy of 
15Ne g.s., ET (exp) = 2.52 MeV [11], is located in the region where 
the width of the ε-distribution strongly varies with E T . The shape 
of the ε-distribution by itself can be seen as a not very reliable, 
model-dependent indicator. However, the width of the 15Ne g.s. is 
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Fig. 5. (Color online.) Energy correlations as a function of the 2p-decay energy ET calculated by IDDM in the “Y” Jacobi system for 30Ar. The 29Cl 1/2+ g.s. energy is 
Er = 1.8 MeV. The panels (a, b, c, d) correspond to the assumed �r (29Cl) values of 60, 170, 330, 500 keV, respectively. The distributions for each energy ET are normalized 
to unity maximum value.

Fig. 6. (Color online.) Energy correlations as a function of the 2p-decay energy ET calculated by IDDM in the “Y” Jacobi system for 15Ne, 26S, and 34Ca. The corresponding 
{Er , �r} values are {1.56, 0.9} (both values taken from the experiment in Ref. [22]), {1.51, 0.12}, {2.41, 0.25} (Er from [13], �r calculated assuming an s-wave decay with 
θ2 = 2, which is the single-particle limit). The vertical dotted lines mark the ET values from the experiment for 15Ne [11] as well as from the systematics [13] for the cases 
26S and 34Ca. The thin dotted lines for 15Ne indicate the ET region within experimental value of the g.s. width � = 0.59 MeV [11]. The distributions for each energy ET are 
normalized to unity maximum value.
Fig. 7. (Color online.) Energy distributions of the 2p decay products of 15Ne (dots, 
with statistical uncertainties, in the “Y” Jacobi system [11]) calculated at three ET

values (in MeV) of the 15Ne g.s. The 14F g.s. width is assumed to be either 0.7 MeV 
(a) or 1.1 MeV (b).

quite broad, �(exp) = 0.59 MeV, and one may in addition investi-
gate the evolution of the ε distribution as function of E T depend-
ing on model parameters. In Fig. 7 the “Y” system ε-distributions 
are calculated for different decay energies of 15Ne within the g.s. 
resonance peak (namely, ET (exp) and ET (exp) ± �(exp)/2), and 
for different widths of the 14F g.s. within the experimental un-
certainty for this value. Ref. [22] provides Er(exp) = 1.56(4) MeV
and �r(exp) = 0.9(2) MeV for 14F g.s., so the values �r = 0.7 and 
�r = 1.1 are used for calculations in Fig. 7.

As expected, the ε-distributions, calculated for the centroid 
(ET ) and for the limiting cases (ET ± �/2) of the 15Ne g.s. res-
onance, differ from each other. In particular, the differences are 
quite pronounced with respect to the different values of the 14F 
g.s. widths �r(

14F), which, in turn, allows to extract some infor-
mation on the widths �r from the 15Ne decay correlation data. 
The data for 15Ne g.s. measured in Ref. [11] are shown in Fig. 7 (a). 
A direct quantitative comparison is not appropriate, since the mea-
Fig. 8. (Color online.) Energy distributions of the 2p-decay products of 30Ar, calcu-
lated in the “Y” Jacobi system for the two ET values shown in panels (a) and (b). 
The Er = 1.8 MeV value is fixed, while the curves represent different �r values. In 
panels (c) and (d), the experimental angular distribution between core and one of 
the protons measured for 30Ar g.s. decay in Ref. [12] (histograms) is compared with 
those from the respective theoretical distributions shown in panels (a) and (b). The 
experimental bias is taken into account in the Monte-Carlo simulations.

sured distribution is broadened by the experimental resolution and 
the counts is not sufficient to study the ET evolution in detail. 
However, we would like to mention that such an analysis is possi-
ble with better statistics and better experimental resolution, as can 
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Fig. 9. (Color online.) Panels (a,b,c) show the likelihood of agreement between theoretical and experimental angular distributions (see Fig. 8) of 2p-decays of the 30Ar g.s. 
The probability is shown as function of the {Er , �r} variables for fixed ET values as indicated in the panels. Panel (d) shows the band of {�r, 	�r} values correlated with ET . 
The best-fit ET value and its 1σ -uncertainty are indicated by the vertical line and the hatched area, respectively.
be seen in the similar example of the 16Ne g.s. decay [20]. The pre-
cision of the latter experiment seems to be sufficient to distinguish 
the solid and dotted curves in Fig. 7 (a) or dashed and solid curves 
in Fig. 7 (b). So, the proposed analysis is in principle feasible.

7. Decay of the 30Ar ground state

The observation and study of the new isotopes 30Ar and 29Cl 
were reported recently [12]. It was concluded that the 2p decay 
of the 30Ar g.s. is located in the transition regime between true 
2p and sequential 2p decays. The analysis was carried out in a 
simplified way with the decay energy as the only parameter. Here, 
the 30Ar data are re-analyzed using IDDM calculations.

Several calculated correlations and the respective “experimen-
tal” distributions (simulated by taking into account the setup re-
sponse function, along the lines described in [12]) are shown in 
Fig. 8 together with the experimental data. Despite strong effects 
of the experimental setup, the measured angular distributions of 
the 2p-decay products appear to be informative. One can see from 
the figure, that the specific patterns connected with the formation 
of sequential-decay correlations of the 30Ar g.s. produce sizable 
changes in the angular distributions 28S + p.

In order to find the best match with experimental data, the 
parameters {ET , Er, �r} were systematically varied; a Kolmogorov 
test provides the probability for agreement between simulation 
results and experimental histograms, see Fig. 9. In the previous 
study Ref. [12], the assigned parameters were ET = 2.25+0.15

−0.10 MeV, 
Er = 1.8(1) MeV. On the basis of the present, more refined analy-
sis, whose results are shown in Fig. 9, a more precise value ET =
2.45+0.05

−0.10 MeV is inferred (in agreement with our previous find-
ings), and also the width of 29Cl g.s. is derived as �r = 85(30) keV. 
A pleasant feature of this analysis is that uncertainties of the major 
parameters are correlated, which can be used for imposing fur-
ther limits. For example, it is shown in Fig. 9 (d) that a smaller 
	�r ∼ 15 keV can be established for a fixed ET value.

It should be emphasized that the analysis performed is in the 
“proof of concept” stage, and should be validated by direct mea-
surements.

8. Sensitivity of IDDM results

The reliability of the proposed width determination of a 
core+ p g.s. nuclear system from the energy distributions obtained 
in the “Y” coordinate system depends on the robustness of the 
distributions with respect to the model parameters used. Such a 
sensitivity was systematically investigated, and it was found that 
the only significant dependence results from the general decay pa-
rameters {ET , Er, �r}. For instance, the transition patterns strongly 
depend on the interference of two-body amplitudes at resonant 
and near-resonant energy. However, Fig. 10 shows that a modifi-
Fig. 10. (Color online.) Sensitivity of energy distributions in the “Y” system to 
modifications of amplitudes (4) by “potential scattering” contributions (6) with dif-
ferent rsp. The example shows the case 30Ar (see Fig. 8) with ET = 2.35 MeV, 
Er = 1.8 MeV and two different �r values.

cation of amplitudes outside the resonance peak does not lead to 
significant changes of the characteristic behavior.

The other important assumption is that only one quantum con-
figuration provides a dominating contribution to the decay width 
of the state. However, this is a natural situation for the transition 
dynamics, which is connected to the strong variation of the par-
tial width just in one selected channel. This may be estimated in a 
forthcoming theoretical study.

9. Summary

Nearly half of the neutron-deficient s–d shell nuclei located 1–2 
neutron numbers beyond the proton dripline decay by 2p emis-
sion. This decay mode exhibits three different characteristic: true 
2p, democratic and sequential decay mechanisms. Their occurrence 
depends mainly on the relationship of the three parameters E T , 
Er , and �r . The changeover from one decay mechanism to another, 
which is reflected by altered momentum distributions of the decay 
products, occurs within rather narrow transition areas, i.e. within 
small changes of the relevant 2p-decay parameters. The behavior 
of the momentum distributions of 2p-decay products in the tran-
sition regions can be described by the semi-analytical improved 
direct decay formalism, IDDM. At variance to previously used ap-
proximations, the IDDM depicts all qualitative features of 2p-decay 
distributions in the whole kinematical space; in particular it covers 
the mentioned 2p-decay transition regions. Even with moderate 
computing effort, this model yields reliable quantitative estimates 
and phenomenological evidence, ideally suited for large-scale sys-
tematic surveys. Further development and refinements of such a 
model are of importance for future studies. In the transition re-
gions, the momentum distributions of the decay products exhibit 
a strong sensitivity with respect to the variation of the three gen-
eral 2p-decay parameters. Therefore experimental data from the 
2p correlations in transition regions can be used to extract res-
onance parameters in the core + p subsystem of the 2p-decay 
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precursor. The practical feasibility of such an approach has been 
demonstrated here with the example of the 15Ne g.s. 2p-decay. 
By relying on the transition dynamics, improved constraints for 
the parameters ET , Er , and �r for the 30Ar and 29Cl g.s. can be 
set in comparison with the values derived in Ref. [12]. Overall, this 
will contribute to a better understanding of structure and decay 
dynamics of nuclei and resonances at and beyond the driplines.
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