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Targetless extrinsic calibration of vehicle-mounted lidars
CHRISTOFFER GILLBERG & KRISTIAN LARSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract
This thesis presents a method for unsupervised extrinsic calibration of multi-beam
lidars mounted on a mobile platform. The work was done on a reference sensing
system for low-speed manoeuvering, in development at Volvo Car Corporation. The
system is intended to create a detailed 3D representation of the immediate sur-
roundings of the vehicle. This representation will be used for performance analysis
of the vehicle’s on-board sensors, as well as provide ground truth for verification of
advanced driver assist functions.

The calibration algorithm utilises lidar data recorded during vehicle movement,
combined with accurate positioning from a GPS/IMU, to map the surroundings.
Extrinsic calibration aims to find the mounting position and angle of the lidar,
and different values for the extrinsic calibration parameters will result in different
mappings. The assumption is made that the real world can be represented by a large
number of small continuous surfaces, and a mathematical description of how well
the mapping from a certain a set of calibration parameters fulfills this criterion is
introduced. This measure quantifies the distance from each measurement point to a
nearby surface constructed from its surrounding points, and the extrinsic calibration
is then found by optimising its value of this measure.

The results show that this method can be used for extrinsic calibration of a single
lidar, with an accuracy that is beyond what is reasonable to expect from manual
measurements of the lidar position. The total remaining error after calibration was
2.9 cm and 0.85°, for translation and rotation respectively. The remaining error is
measured against the mean value for calibration done on 9 different data sets. This
shows both the superior accuracy of the method compare to manual measurements,
and the repeatability for different locations. The current implementation is a proof-
of-concept and as such has very long computation time, however several ways to
considerably shorten this time are suggested as future work. The presented method
has low operator dependency, and does not require any dedicated calibration targets.
This is a strength when data-collection and post-processing is done on different sites
and by different individuals. This method has potential to provide an easy-to-use
calibration procedure, that given a rough position estimate, can provide accurate
extrinsic calibration.

Keywords: extrinsic lidar calibration, multi-beam lidar, Velodyne VLP-16, point
cloud, reference sensor, verification
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1
Introduction

Over the last decades, an increasing number of driver assistance functions have been
implemented in modern cars. An early example of a driver assistance function is
cruise control, which simply helps the driver to maintain a constant speed. With
more advanced and less costly sensors as well as faster processors, this technology
has become increasingly accessible and today the cruise control can be much more
complex where the car adapts the speed to its surroundings. More functions are
continuously implemented and the cars are becoming less dependent on the driver.
An important step in the development is verifying both sensor and function perfor-
mance. The verification is often done using a reference system including a 3D-laser
scanner (lidar). In this thesis a method of targetless and automatic calibration for
vehicle mounted lidars is presented.

Driver assistance functions such as adaptive cruise control are often referred as
Advanced Driver Assistance Systems, ADAS, and also include functions such as
driver drowsiness detection, lane departure warning/lane keeping aid and collision
avoidance. Another example of an ADAS function is semi-automatic parking, where
the car uses sensors to read the surroundings and control the steering to help the
driver park the car. However, the system is still dependent on the driver and can-
not park completely by itself, hence semi-automatic. The natural progression of
developing new driver assist functions is to create completely autonomous functions
which do not depend on the driver at all. Fully autonomous vehicles, or autonomous
driving, is currently a hot topic with major investments in research and develop-
ment. Many car manufacturers have announced that they will be testing prototype
autonomous cars on public roads within a few years [1]–[6].

The sensors needed for autonomous driving must work properly in all sorts of
traffic situations, in any weather and also both with and without daylight. The
system must therefore consist of a broad variety of different sensors such as sonars,
cameras and radars. The sensor data is then filtered or processed with various sensor
fusion methods in order to create a combined perception of the vehicle state and its
surroundings. With more sophisticated systems that control the vehicle, the need of
a high reliability is increased. The sensor readings need to be very accurate and the
system verification is an essential part of the development for autonomous drive.

1.1 Test and verification

To ensure that each of these ADAS or autonomous drive functions work properly, the
system needs to be verified. This can be done by performing a number of test cases,

1



1. Introduction

Figure 1.1: Field of view for the on-board sensors that sense the immediate vehicle
surroundings. These sensors are used in e.g. driver assistance functions such as
semi-automatic parking and collision warning [7].

designed to evaluate if any issues (or bugs) exist within the software or hardware.
With enough test cases it can with increasing certainty be said that the system is
verified to be working according to specification.

If the system is not tested thoroughly the output from the system can be very
different than what is intended. Fig. 1.1 shows the combined field of view for a
number of on-board sensors which are used to sense the immediate surroundings
of the vehicle. The data from these sensor can be used in for example collision
detection during automatic parking or other low-speed manoeuvres.

When verifying the on-board sensor systems used for ADAS and autonomous
drive, it is common to use some ground truth as reference. A ground truth is
considered to be the “true answer” of, in this case, the surroundings. It is used to
evaluate the performance of the vehicle’s own sensors in comparison to the ground
truth. Since the vehicle’s sensors’ data is the perception of the environment that the
ADAS functions then bases its decisions on, the performance of the sensors must
be known when determining the margin of error for the different functions. If the
sensor performance is worse then what the functions take into account, this can
lead to collisions during autonomous parking. Fig. 1.2 exemplifies why knowledge
of the sensor performance is important and what the difference can be compared to
the ground truth, by showing a collision that results from the sensors giving a very
different view then what the ground truth is. Once sensors performance is verified,
the ADAS functions themselves also must be verified to be safe and according to
specification. This in turn also requires a reference point, a ground truth, with
which to evaluate the method’s performance.

The ground truth can be obtained with many different methods of different
level of sophistication. For a case of verifying automatic parking of a car, one
straightforward way is to manually take relevant measurements using a tape ruler.
Relevant measurements could be the width of the parking spot, how well the car
places itself in it, and distance to adjacent objects and cars. This method is easily
available and useful for tests that are only done a few times. However if there are
hundreds, or even thousands, of different parking cases that need to be performed,
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1. Introduction

True trajectory, “ground truth”
Vehicle perception of its trajectory

Figure 1.2: Vehicle sensor perception of the trajectory, compared to the ground
truth, i.e. the true trajectory, for a parking case.

and if each case requires manual measurements, this becomes very labour intensive.
In these cases a more automated method of obtaining the ground truth is preferred.
A ground truth for on-board sensor verification could then be a completely separate
reference system, consisting of sensor equipment with a higher precision then the
on-board sensors that are being verified.

1.2 What’s a lidar?

A possible solution for a reference system to the on-board sensors is to use lidar1.
The lidar technology is in essence a laser range meter (using time-of-flight range
measurement) where the beam is swept over the surroundings while continuously
taking range measurements. A simple lidar, shown in Fig. 1.3, can consist of only one
laser beam rotating a certain amount to map the surroundings. Current state-of-the-
art lidars consists of several beams, rotating 360° around a centre axis, measuring the
environment with high resolution and accuracy. These range measurements results
in data points of the surroundings, and put together they can shown a detailed
3-dimensional view of the world. The set of data points in a three dimensional
coordinate system is called a point cloud, which is the type of data obtained from a
lidar. An example of a small point cloud is shown in Fig. 1.4. This is the raw lidar
data for a single “frame”, or rotation, from a 64-beam lidar.

Lidar is commonly used in areas such as geo-mapping, with both airborne mea-
1The word lidar is attributed two different origins: as an acronym of Light Detection And

Ranging (LIDAR), or as an portmanteau of light+radar=lidar [8]. There is no consensus on
capitalisation of the word, but the spelling using lower case is the most frequent in currently
available litterature [9]. The authors have chosen to use lower case for the word lidar throughout
this report.
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1. Introduction

Figure 1.3: Schematic image of the workings of a simple lidar. This example has
a single beam reflected of a moveable mirror, letting the laser beam sweep 180° to
perform range measurements, and thus map the surroundings.

Figure 1.4: Typical 3D lidar raw data, created from a single rotation of a multi-
beam lidar, mounted on the roof of a vehicle. In this case a 64-beam Velodyne
HDL-64E [10].
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1. Introduction

Figure 1.5: The test vehicle used in this thesis work. The reference system is built
by Volvo Car Corporation and used for verifying the vehicle’s on-board proximity
sensors. The proximity sensors’ field of view is shown in Fig. 1.1. The reference
system is mounted on top of the vehicle and includes four lidars, one placed on each
side of the car.

surements and on the ground, as well as a perception sensor for robotic applications.
Over the last decade, with a great leap after the DARPA Grand challenge in 2005
and 2007 [11], [12], the level of sophistication and accuracy of lidars have increased,
as well as reducing prices which has increased the accessibility of the technology.
This has made lidars popular as reference systems in the automotive industry and
they are now an important part of the sensor setup of autonomous vehicles. Because
of their high accuracy and detailed data, lidars are excellent to use as a ground truth
when verifying various functions on a vehicle. Volvo Car Corporation (VCC) has
developed a reference system to verify the vehicle’s proximity sensors, whose field of
view was shown in Fig. 1.1. The proximity sensors are used in different low-speed
manoeuvres, such as narrow lane keeping and automatic parking. The reference sys-
tem in development is shown in Fig. 1.5, and consists of four lidars, one on each side
of the vehicle. The system is intended to create an accurate view of the immediate
surroundings of the vehicle. This is the hardware system that was used throughout
the thesis.

By incrementally adding the new sensor data to a single point cloud (in a global
frame of reference) one can construct a map of the surroundings that the vehicle
moves through. This requires knowledge of the vehicle movement, and the sensor
position on the vehicle platform. Building a point cloud over time like this is called
mapping. Fig. 1.6 shows an example of a map created from lidar data while driving
through a parking lot. Note that the lane markings are readily discernible when the
points are coloured based on reflection intensity.

The environment, or objects in it, is broadly classified as either being static or
dynamic. When sampling the environment, objects of two types are detected: either
objects which are stationary (static) during the entire sampling run, or objects which
are moving during the sampling run, called dynamic. Static objects includes the

5



1. Introduction

Figure 1.6: Mapping of a parking lot, two rows with several cars parked, seen
from two different angles. The black line indicates the trajectory of the vehicle’s
rear-wheel axis (vehicle driven from right to left in the figure). Point cloud from
17 s of lidar data, 2.7·106 points, from the front mounted lidar as seen in Fig. 1.5.
Points are coloured according to the surface normal vector at that point, with x, y, z
components corresponding to red, green and blue channel, and colour saturation
based on the intensity of the reflection for that point.

ground, walls of buildings, parked cars, etc. Dynamic objects are typically other
moving vehicles, bicyclists and pedestrians. When the sensor data is transformed
to a global coordinate system, to create a single point cloud, all static objects will
appear in the same location in the point cloud. Each point measured with the lidar
will build a more dense point cloud reproduction of that object. Dynamic object on
the other hand, have been moving during the sampling run, and when transformed
into the global coordinate system they will appear in different locations of the point
cloud. To successfully create a useful point cloud, points belonging to dynamic
objects must be identified and cut away from the data when creating the map of
the environment. When the dynamic objects are classified, useful information about
them can be extracted, such as their size, position, velocity and heading. Separating
static from dynamic objects is indeed possible, but requires sophisticated filtering
methods for the data.

The data from a lidar has a huge potential in what type of information can be
extracted. By clustering (grouping points that likely belong to the same object)
and segmentation (classifying points belonging to different regions), objects can be
identified [13]. By further processing the object properties they can be classified
to identify different types of objects. These classes could for example be static
objects such as curb stones, lamp posts and walls, as well as dynamic objects such
as other vehicles, mopeds, pedestrians and bicyclists. With this information at
hand, combined with the distance and intensity data, the evaluation of the vehicle’s
performance can be much more sophisticated.
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1. Introduction

1.2.1 Lidar mounting position calibration
All the data processing to extract different information about the surrounding and
its objects is dependant on that the initial data is of high quality. One part in this
is of course using a high precision lidar, but another crucial part is knowing exactly
where in the vehicle coordinate system the lidar is mounted. Without this lidar
position, combining data recorded over time while the vehicle has moved will not
result in a useful mapped point cloud. The same can be said for combining data
from several lidars mounted differently: inaccurate calibration of the mounting po-
sition will result in two different sensors detecting e.g. the ground plane at different
heights or a pedestrian at two different positions. The extrinsic calibration, which
considers the mounting position of the entire lidar unit relative to the vehicle’s own
coordinate frame, needs to be accurate. If the setup must be able to measure dis-
tance from the vehicle to surrounding objects with for example 1 cm accuracy, the
mounting location of the lidar must known with a sub-centimetre accuracy. For the
angles of the mounting position this is doubly important. An error of just 1° in the
calibration translates to a measurement error of 17 cm for an object ten metres away.
Finding the lidar’s mounting location, the extrinsic calibration, is thus essential for
a reference system used as ground truth.

The system used in this thesis is still in development and there is no procedure
for its extrinsic calibration. For a similar system that is already in use by VCC,
a reference system consisting of a single lidar, there is an established calibration
method. This method makes use of accurate manual measurements and which is
then used as an initial calibration guess. Data for a few seconds of sampling, while
the vehicle is moving, is then mapped on top of itself. For a correct calibration
the ground plane and any objects such as house walls will be contiguous surfaces.
However, for a poor calibration, the surfaces will not be properly aligned. The initial
calibration is then repeatedly adjusted manually until the surfaces appear to align,
by manual inspection. The level of accuracy needed for the calibration is dependant
on how the lidar data is going to be used. While the calibration is important for
a single lidar, it can still produce data of acceptable accuracy with a less accurate
calibration. If only a few seconds of data is mapped, any inaccuracies will not make
a drastic difference in the point cloud. For a system with multiple lidars, where the
data is intended to be combined together into a single point cloud, the accuracy
of calibration is more important. Combining a single 360° measurement from four
different lidars to a single coherent view of the surrounding, will not be possible if
they do not have a calibration of high accuracy. This effect is further amplified if
several seconds of data from each lidar is combined. For the lidar setup used in this
thesis, with four lidars, accurate calibration is therefore of high importance.

In order to determine the lidar position a total of six parameters must be speci-
fied; the translation parameters x, y and z, and also three rotation parameters roll,
pitch, and yaw. Fig. 1.7b shows an example of the lidar coordinate frame with
respect to the vehicle coordinate frame.

In addition to the extrinsic calibration, a lidar also has intrinsic parameters.
Lidars are manufactured to high accuracy and factory calibrated, in the sense that
all internal parameters that affect the reading are tuned to produce a reading that
is within some specification. However, with suitable methods the factory calibration
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(a) Frames of reference, showing the lidar frame L
for the left side lidar, the vehicle frame V and the
ground fix global frame G. The transformation MV

between V and L is indicated with a vector.

(b) The lidar system mounted on a vehicle. The
left side lidar is circled.

(c) Measurement data from a single rotation of
the left side lidar. Measured points (in blue) are
aligned and overlaid on the photograph of the ve-
hicle.

Figure 1.7: The car with the sensors mounted, and the three different frames of
reference G, V and L. The cones in the photograph are placed approximately in the
centre of the overlapping areas for the four lidars different field of view.

8



1. Introduction

can be further improvemed by finding the more precise parameter values for that
particular individual lidar. This is referred to as the intrinsic calibration. If the
manufacturer’s specifications of the lidar are acceptable, no intrinsic calibration
needs to be done. Some manner of extrinsic calibration, i.e. finding the mounting
position, must always be done if the data is going to be used in any other another
frame of reference than the lidar’s own.

1.3 Thesis aim
The aim of this thesis was to create a proof-of-concept for a lidar calibration method
for the reference sensing system built by Volvo Car Corporation. The reference sys-
tem is intended to create a detailed 3D representation of the immediate surroundings
of a vehicle. This means that the calibration of the system has to be accurate enough
so that the reference system can be used as a ground truth when verifying the accu-
racy of the vehicles on-board sensor systems and the performance of its autonomous
manoeuvres. The questions to answer with the thesis are firstly if the chosen method
of calibration works for this application, and secondly what accuracy can be achieved
and how it compares to what can be achieved by manual measurements.

1.3.1 Limitations
Each lidar is treated separately, as it would be the only lidar on the vehicle. The
fact that the reference system configuration has four lidars on the platform, with a
partially overlapping field of view, is not exploited in the calibration method. The
lidar measurements return both the measured point and the intensity of reflection
of that point. The data for intensity of the reflection is not used in the calibration
method.

This thesis will only consider extrinsic calibration. The intrinsic calibration is
deemed to be accurate enough already as specfied by the manufacturer, and these
specifications have also been verified in [14].

There are no requirements set on the computational speed on the calibration
method. This thesis will only focus on a proof-of-concept, leaving speed optimisation
as a future work. The calibration procedure is designed to run offline, i.e. during
post-processing of the data.

The calibration algorithm is not designed to handle dynamic objects, therefore
the data will need to be limited to static environments, or data where all dynamic
objects are removed. Filtering dynamic objects from the data is decided to be
outside the scope of the thesis. Therefore when doing sampling runs to collect lidar
data, it will be made sure that no moving objects are within detection range for the
lidar.

1.3.2 Calibration approaches
The first approach to extrinsic calibration is to by hand take measurements of the
lidar mounting position, using tape ruler and protractor. This has the benefit of
being easily accessible and straightforward, but the downside of large measurement

9



1. Introduction

errors and the result is user dependant. To reach the degree of accuracy needed for
a lidar system intended to be used as ground truth, more sophisticated automatic
methods must be employed.

There are several recently published works in the topic of extrinsic calibration
of lidars. Most methods are intended to be run offline, i.e. as post processing after
the data collection has been done. The computational intensity of the calibration
methods often prohibit them from being run online. An exception is Gao and
Spletzer [15], who suggests an online method where reflective markers are used as
calibration targets. This method is able to calibrate multiple lidars on the same
vehicle, however their conclusions state that further work on the accuracy is needed.

Maddern et al. have developed a method for unsupervised extrinsic lidar cal-
ibration, with positioning of the vehicle from a GPS/IMU, with good results in
accuracy [16]. The method of evaluating the point cloud quality is computationally
expensive, and they also presents faster, approximative, variants.

A supervised calibration method is suggested by Zhu and Liu [17] and provides
an improvement over factory calibration for the range measurement, however such
supervised calibration methods will be cumbersome for a setup with several lidars.
The calibration has the benefit of being straightforward and done by measuring
the distance to known obstacles in the environment, but as such it is very labour
intensive.

Brookshire and Teller presents a method of joint calibration for multiple coplanar
sensors on the same mobile vehicle [18]. Their method recovers the relative position
between two lidars, where the vehicle position itself is not known. This makes use
of the multiple lidars, which the system in this thesis have, however its intended use
is for smaller indoor vehicles, so it does not utilise the accurate positioning obtained
from the GPS/IMU.

A method capable extrinsic calibration of multiple 2D lidars is presented by He
et al. [19]. The method takes advantage of the overlapping fields of view from five
2D lidars, as well as positioning from GPS/IMU. They use classification of different
geometric features in the environment and matches the data from each lidar to
these features by adjusting the calibration. This method is promising for multi-lidar
setups, however it does not utilise the potential of 3D lidars, and in addition the
feature classification is done manually which does not make this a fully unsupervised
calibration method.

Levinson and Thrun has also conducted research in targetless extrinsic calibra-
tion of a 3D-lidar [20]. Their method recovers the calibration by alignment of sensed
three-dimensional surfaces. They formulate the calibration as a minimisation prob-
lem of the alignment of all surfaces in the sensed environment, where the minimal
solution is the correct calibration. In addition they shows that the same approach
can be used for calibration of intrinsic parameters. Their setup is similar to the one
in this thesis, with positioning from GPS/IMU and a Velodyne multi-beam lidar.
Some differences exists: the setup used in this thesis had a different lidar model,
which produced less dense data, as well as a different mounting angle of the lidar
compared to Levinson’s setup. It was decided this method was the most suitable
to be used for calibration of the reference system in this thesis. Partly because the
similarity of the setups, but also because of the relative simplicity of the implemen-
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1. Introduction

tation and its future potential to use for intrinsic calibration as well as extrinsic.
As specified in the limitations of the thesis aim, no focus was put on computation
speed. The method presented in this thesis should theoretically be able to perform
similar to the implementation done by Levinson and Thrun in [20], whose calibration
procedure requires one hour of computation time on a regular laptop.
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2
Hardware setup

This section describes the different sensors used, how they are mounted and some
parts of the data acquisition. An schematic diagram of the system is shown in
Fig. 2.1 and, in essence, the setup consists of four lidars and one Inertial Mea-
surement Unit (IMU). Note that the GPS base station shown in the diagram is
technically not necessary for the system to work, however it greatly improves the
position accuracy and thereby also the accuracy of the results. The sensor placement
on the vehicle is shown in Fig. 2.2.

All lidars were connected to a aluminium frame which in turn was mounted on
the roof rails on top of the vehicle. The frame is scalable, making it possible to
adjust the position of each lidar in both translation and rotation.

The field of view for all four lidars is shown in Fig. 2.3. The field of view for
each lidar used in this thesis differs from the field of view in Fig. 1.4. This is due
to the fact that each lidar used in this thesis was mounted such that the centre axis
pointed almost horizontally, whereas the lidar used in Fig. 1.4 had its centre axis
pointed vertically. Each lidar therefore had a field of view on one side of the car
with some overlap at the corners. By adding the individual field of view from each
lidar, the system could map the area closest on all sides of the vehicle.

2.1 Lidar - Velodyne VLP-16
The specific lidars used during the thesis were four Velodyne VLP-16, shown in
Fig. 2.4a and with specifications in Tab. 2.1. This model has a small footprint
and a IP67 protection marking, making it suitable for automotive applications. It
is a multi-beam rotating lidar. The sensor has an array of 16 laser range finders
which rotates with 10 Hz around its centre axis while rapidly taking measurements,
approximately 300 000 measurements per second. The measurements are time of
flight distance measurement, and also returns the intensity of reflection.

On a low level perspective, each measurement consists of a id number of the
beam, a rotation angle around the lidar’s axis, a distance and an intensity. However,
every measurement is transformed in the sensor software such that, for the end user,
each measurement simply consists of a point (xyz) in a Cartesian coordinate system,
where the lidar is located at the origin, seen by beam i and the intensity of the
reflection at that point.

Each lidar is connected to a separate GPS unit, which is used to time stamp the
data. The time stamp is crucial when synchronising the lidar data to the others
sensors. The GPS time stamps for the lidars have a margin of error to the order of
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GPSGPS
Lidar

IMU

Wheel Speed Sensor

Antenna

DGPS

GPS
Lidar

GPS
Lidar

GPS
Lidar
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Logging computer

Figure 2.1: Connection diagram for the sensor setup used. The setup consisted of
four lidars with an individual GPS, as well as an GPS/IMU with several GPS’s and
a wheel speed sensor.

Figure 2.2: Mounting frame attached to vehicle, and with sensors circled. The
lidar on the passenger’s side is obscured in the figure but is mounted in the same
way as the lidar on the driver’s side, and the GPS/IMU is mounted inside the trunk
of the vehicle.

Figure 2.3: Placement indicated with red circles, and field of view for the four
lidars indicated in blue colour. Note that the lidars field of view have some overlap
at the corners of the car.
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(a) Velodyne VLP-16 [21].

(OPTICAL
CENTER)

2.00°

41.9mm

CENTER AXIS
(MEASUREMENT ZERO)

(b) Schematic figure with the beams shown.
The beams rotate around the centre axis dur-
ing measurement. Figure adopted from [22].

Figure 2.4: Velodyne VLP-16, the lidar model used during the thesis.

Table 2.1: Specifications for the accuracy of the VLP-16 lidar [22], [25].

Property Value and unit
Number of beams 16
Measurement range ≤100 m
Typical accuracy ± 3 cm
Rotation rate 5− 20Hz
Field of view (vertical) 30◦ (+15◦ to −15◦)
Beam separation (elevation angle) 2◦
Beam elevation angle accuracy ±0.11◦
Field of view (azimuth angle range) 0◦ − 360◦
Azimuth angle accuracy ±0.01◦

magnitude 10 ns [23]. This is accurate enough for this application, where a single
firing of each of the 16 lasers takes 55 µs [24].

Specifications for the VLP-16 is shown in Tab. 2.1. The angle between the beam
and the optical centre is called the elevation angle. The beam rotation around the
centre axis is denoted the azimuth angle. The measurement uncertainty presented
in the tabular is for the angles, however the data used is always transformed to
Cartesian coordinates. Because the measurement uncertainty is in both the range
reading and azimuth angle, the uncertainty is in fact dependant on what the range
to the object is from the sensor. A typical accuracy according to manufacturers
specification is ±3 cm. The validity of the manufacturers listed specifications of the
lidar was verified in [14], where the temperature stability was also tested and found
to be within acceptable bounds.

2.2 GPS/IMU - OxTS RT3003

The position of the vehicle is acquired from a so called GPS/IMU (Inertial Measure-
ment Unit). This is a single unit that has GPS coupled with IMU functions (gyro,
magnetometer and accelerometer), and uses Kalman filtering to estimate position,
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Figure 2.5: OxTS RT3003 from Oxford Technical Solutions, the GPS/IMU used
during the thesis [26].

Table 2.2: Specifications for the accuracy of the RT3003 Inertial Measurement
Unit [26].

Property Value and unit
Position (xyz) resolution (with RTK) ±0.01 m
Yaw angle (rz) resolution ±0.1°
Pitch angle (ry) resolution ±0.03°
Roll angle (rx) resolution ±0.03°

velocity, acceleration and other states of the vehicle. The model used was an Ox-
ford Technical Solutions ‘RT3003v2’, shown in Fig. 2.5 [26]. During the thesis dual
GPS-antennas and a GPS base station were used with the RT3000, which allows the
position to be done using Real-Time Kinematic GPS (RTK GPS) [27]. This allows
for positioning accuracy of 1 cm. In addition to this a wheel speed sensor was also
used, which further improves the accuracy of the positioning by adding odometry
data. The RT3000-models have internal algorithms for finding its own mounting po-
sition in the vehicle reference frame given the proper initialisation procedure, which
lets the IMU produce data that is already in the vehicle’s frame (even if the IMU is
mounted with an offset to vehicle frame origin). Further accuracy specifications for
the RT3003 is listed in Tab. 2.2.

The position from the GPS/IMU is given as longitude[◦], latitude[◦] and alti-
tude[m]. To transform the point cloud the position must be in metres, however the
projection of spherical coordinates onto a flat surface will inevitably result in defor-
mations. To minimise the effect of such deformations, the coordinates are projected
according to the national map projection SWEREF 99 TM [28]. The largest defor-
mations are in longitudinal direction (east-west). Projection according to SWEREF
99 TM minimises these deformations by dividing Sweden into 12 different projection
zones, in effect 12 strips that share almost the same longitude. For data sampled at
Hällered Proving Ground, the projection zone 13°30′0′′ was used, and for Gothen-
burg, zone 12°0′0′′.
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2.2.1 Wheel speed sensor
To improve the position accuracy from the IMU, a Wheel Speed Sensor (WSS) was
used. The sensor connects to one of the wheels, and measures the rotation with 8bit
accuracy, which means one wheel revolution is measured with a resolution of 1024
steps. The model used was a Pegasem Messtechnik GmbH “WSS3” [29].

2.2.2 GPS base station
To improve the GPS positioning accuracy, the option to use a ground fix GPS
base station was used. This required an additional radio receiver connected to the
IMU, as well as a GPS base station mounted within radio range (which typically
is several kilometres). This enables use of Differential GPS (DGPS), which means
that the base station records and transmits corrections to the current GPS position
indicated by the satellites. This can improve the position accuracy up to one order
of magnitude, from tens of centimetres to single digit centimetres [30]. For the
RT3003 the improvement was approximately from 20 cm with only GPS to 1 cm
with DGPS.
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3
Background

This chapter describes the notation used to formulate the calibration method math-
ematically, as well as some introduction to the synthetic lidar data which was used
through the thesis to verify the methods.

3.1 Frames of reference
In order to transform all lidar data into a single so called point cloud, three different
frames of referece has to be introduced; lidar frame, vehicle frame and global frame.
The different frames are described below.

3.1.1 Lidar frame: L
The data obtained from the lidar output is given as points in a Cartesian coordinate
frame with the lidar placed at the origin, as illustrated in Fig. 3.1. This frame
is called lidar frame, denoted L. Note that each lidar in the system has its own
coordinate frame, but since only one lidar at a time is calibrated the lidar frame
is always called L without distinguishing which one of the four lidars is currently
discussed.

3.1.2 Vehicle frame: V
The vehicle frame, denoted V , has the vehicle kept at the origin as shown in Fig. 3.2.
More precisely, the origin is placed at the centre of the rear wheel axis, but on ground
level.

Figure 3.1: Axis placement for the lidar frame. Aperture opening ω = ±15◦ and
azimuth angle α ∈ (0, 360)◦ [22].
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3. Background

Figure 3.2: Frame of reference fixed to the vehicle, ISO8855 standard for road
vehicles [26]. This frame is referred as vehicle frame and denoted V in this thesis.

3.1.3 Global frame: G
The global frame, denoted G, is a ground fixed frame of reference where the origin
can be placed at an arbitrary local position on the ground. For practical reasons,
the origin is placed at the coordinates where the position measurement is initialised
for each individual data set.

3.2 Coordinate transformations
The measurement data in this thesis are all sampled in the lidar frame L, however
the calibration algorithm makes use of the data in the global frame G. The transfor-
mation between these two frames is a matter of simple coordinate transform, given
that the correct transformation matrices are known. The standard way of a rigid
transformation which includes both translation and rotation, is to first rotate and
then translate the point p in question as

p′ = R · p+ t (3.1)

with R a rotation matrix, t a translation vector and p′ the transformed point.
The convention used for defining the rotation angles is yaw-pitch-roll, or (aero)nautical

angles [31]. The rotation matrix R is created by multiplying rotation around the
z, y, x-axis as follows:

R(rz, ry, rx) = Rz(rz) · Ry(ry) · Rx(rx), (3.2)

where the matrices for counter-clockwise rotation around the axis z, y, x with angles
rz, ry, rx are defined as:

Rz(rz) =

 cos(rz) − sin(rz) 0
sin(rz) cos(rz) 0

0 0 1

 Ry(ry) =

 cos(ry) 0 sin(ry)
0 1 0

− sin(ry) 0 cos(ry)



Rx(rx) =

 1 0 0
0 cos(rx) − sin(rx)
0 sin(rx) cos(rx)

 . (3.3)
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The rotation is applied to a body-fix coordinate system. The first rotation is around
z-axis, then around the “new” rotated axis y′, and finally around the 2-times rotated
x′′ axis. The rotation angles rz, ry, rx in this convention are referred to as yaw, pitch
and roll, respectively. This notation is used when referring to the pose of air crafts
or vehicles as the angle name relates directly to a specific movement. Note that the
sequence of rotations zyx around the body-fix frame is equivalent to a sequence of
rotations xyz around the current frame.

3.2.1 Homogeneous coordinates
If more then one transformation needs to be applied, the (3.1) way of writing quickly
becomes cumbersome. A convenient notation is then homogeneous coordinates [31].
Each measurement represents a point p = [x, y, z]T in space. In homogeneous coor-
dinates, the point is augmented as follows p̃ = [p; 1]. The transformation in (3.1) is
instead written as:

p̃′ = M · p̃ =

 R t

0 0 0 1


(
p
1

)
=
(

R · p+ t
1

)
. (3.4)

A single matrix multiplication p̃′ = M · p̃ can then apply both rotation and trans-
lation. A sequence of n coordinate transformations is expressed as:

p̃′ = M1 ·M2 · ... ·Mn · p̃. (3.5)

For simplicity the tilde notation for homogeneous coordinates is from here on disre-
garded. All point vectors p are assumed to be in homogeneous coordinates.

3.2.2 Transformation matrices
For this thesis two coordinate transformations are particularly interesting: from
global frame G to vehicle frame V , and from vehicle frame V to lidar frame L.
These are denoted:

• MV = MV (xcal): Lidar frame to vehicle frame. The lidars are assumed to
rigidly attached to the vehicle, so this transformation is an (unknown) constant
matrix. The position of the lidar has both translation and rotation with respect
to the vehicle frame. These six parameters are called the calibration vector
xcal = [x, y, z, rx, ry, rz].

• MG = MG(t) = MG(xvehicle(t)): Vehicle frame to global frame. This is the pose
of the ego vehicle, with six degrees of freedom. The pose varies with time, and
is measured using the IMU. The individual position parameters for the vehicle
xvehicle(t) = [x(t), y(t), z(t), rx(t), ry(t), rz(t)] are never explicitly used outside
of the implementation in code, so MV (t) is written as just dependant on time
t, to keep the notation shorter.
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Measured data points from the lidar are written as

p
(frame)
(measurement index). (3.6)

The k:th measurement point, projected in the lidar’s own frame L, is written as pL
k .

Transformed to vehicle frame it is

pV
k (xcal, tk) = MV (xcal) · pL

k (tk) (3.7)

and transformed to global frame

pG
k = MG(tk) ·MV (xcal) · pL

k (tk)︸ ︷︷ ︸
=pV

k
(xcal,tk)

(3.8)

where tk is the sampling time for point pk. As stated previously, MG(tk) is created
from the vehicle pose, and since the vehicle is moving, it is dependant on time.
To transform a single point pL

k (tk) from lidar frame to global frame, the vehicle
pose at the time of sampling for that point must be used to create MG(tk). When
transforming an entire sampling run consisting of several million data points, MG is
different for each point, while MV is constant since lidar mounting position on the
vehicle remains constant.

3.3 Synthetic lidar data
The development of the calibration algorithm required some realistic data in order
to test the functionality of the code. While real data was accessible, any problems
that would emerge in the computations could be either due to issues with the data,
problems with the algorithm itself or from the search method used. A way to have
control over all the sensors, sources of noise, and world parameters, is to use data
generated from a simulated environment. The true calibration values, i.e. the sensor
position xcal, can also never be known for the real system, while they are trivially
known from synthetic data where the user configures everything.

The simulation environment was constructed to work in principle like the real
physical system does, i.e. a mobile vehicle with a number of sensors that is traversing
some world. The simulated world is represented by a number of polygons represent-
ing ground plane, buildings and other vehicles. The sensor is represented by a large
number of rays emitted from the same point. The vehicle is simply a coordinate
and the sensor is attached a fixed distance from the vehicle origin. During a simu-
lation run the vehicle is moved through a series of positions. For each position in
the trajectory, the intersection between the sensor rays and the world polygons is
computed. These intersections represent where the lidar’s lasers would have hit the
real world object, causing a detection. A simulation run where the vehicle moves
to three different poses, and has a single front mounted lidar, is shown in Fig. 3.3.
The coloured dots are the intersections between the laser beams and the grey world
objects. Note that each “firing” of the lidar results in a thin strip of detections
across the simulation world. An example of a simulation run which is closer to the
type of data the real system will produce, is shown in Fig. 3.4.
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Figure 3.3: Simulated sampling run consisting of three vehicle poses. The simu-
lation world consists of grey polygons representing ground and buildings. The lidar
measurements from the three poses are also plotted, with one colour for each vehicle
pose.

Figure 3.4: Example of a synthetic data set with coloured lidar detection points.
The surrounding is the same as in Fig. 3.3 but from a different view. The black line
represents the trajectory of the vehicle, driving in a figure-eight through roughly
500 different poses. The point cloud is coloured according to each point’s surface
normal, with xyz component controlling the red, green and blue colour.
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The data is created in the global frame G. To use it to test the calibration
algorithm, the synthetic lidar data is transformed to lidar frame L. Based on (3.8)
and multiplying with the inverse transformations of the true calibration

pL
k (tk) =

(
MV (xtrue)

)−1
·
(
MG(tk)

)−1
· pG

k . (3.9)

A synthetic data set consists of the set of points pL
k sorted based on what lidar

beam they were sampled with, and the set of vehicle poses MG(t) for the entire
simulation run. The data sets emulates using ideal, noiseless, sensors. When noisy
data was wanted, the noise was set as a normal distributed deviation from the true
sensor measurements. As listed in Sec. 2.1 the sensors have a typical deviation of
3 cm for the measurement. The noise in the real lidar is caused by uncertainty
in azimuth angle, elevation angle and range measurement. This means that the
uncertainty in measurement depends on the distance, and the elevation angle is
a fix angle (but its true value is not know). Therefore the sensor noise on the
measurements xyz is not expected to be completely normal distributed. However as
a simplification the noise for the synthetic data is created as a normal distributed
error from the noise-free lidar measurements of xyz. This simplification could be
done since the robustness to the real noise would be tested when using the real data
sets anyway.
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This chapter describes the method used for the extrinsic calibration. As mentioned
in Sec. 3.2, extrinsic calibration is equivalent of finding the transformation matrix
MV . This transformation is used when transforming a point pL (lidar frame) to
pG (global frame). Because the point cloud data is recorded while the vehicle is
moving, each lidar measurement will be taken from a slightly different pose of the
vehicle. Transforming the recorded point cloud from the lidar frame to the global
frame includes this time dependent transformation as well as MV as follows:

pG = MG(t) ·MV (x) · pL(t), (4.1)

where MG(tp) is the transformation from vehicle to global frame at time t, created
with IMU information. MV (x) is the transformation matrix based on a calibration
vector x.

Changing the calibration vector x results in an complex transformation of the
entire point cloud. Therefore traditional methods of point cloud registration such as
Iterative Closest Point (ICP) [32] cannot be used, as ICP assumes the entire point
cloud needs to undergo the same transformation. The calibration algorithm used in
this thesis is based on work done by Levinson and Thrun in [20]. They present a
method for extrinsic calibration of a multi-beam 3D-lidar mounted on a vehicle. It
is similar to ICP and point-to-plane matching, but with some differences specific to
this type of registration (or calibration) problem. Their algorithm makes use of both
the properties of a multi-beam lidar as well as the fact that the system is mounted
on a mobile platform. The first section below explains the calibration method as
introduced by Levinson/Thrun and following that the modifications done for the
implementation used in this thesis are presented.

The proof-of-concept for the calibration method in this thesis was done in Mat-
lab [33], using its implementation of nearest neighbour search from [34] and surface
normal methods included in the Computer Vision System-toolbox. Matlab was
chosen for its ease of implementation and testing of ideas, and since no strict re-
quirement on computation time was set, Matlab’s slower computation speed was
acceptable.

4.1 Single lidar extrinsic calibration
The calibration method in [20] was developed with the Velodyne HDL-64E [35] in
mind, a lidar similar to VLP-16 but with 64 beams instead of 16. The method makes
use of the fact that the lidar has several beams, with fix angles between them, which
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can map the entire surrounding. In addition to the lidar data, the algorithm also
needs accurate vehicle pose in some ground-fix frame of reference. This frame may
be local to the sampling site, rather than absolute longitude, latitude, and altitude
coordinates. What is important is to obtain the movement and heading of the vehicle
relative to the static environment, during a sampling run. Similar to the setup for
this thesis, Levinson/Thrun uses a GPS/IMU to obtain position data.

The rotating multi-beam lidars return huge amounts of measurement data which
opens up for new approaches to calibration. Combined with the vehicle pose data,
and knowledge of where and how the lidar is placed on the vehicle, the lidar data
can be transformed to a dense point cloud representation of the surrounding en-
vironment. An observation is made that the world tends to consist of contiguous
surfaces - in contrary to random points scattered in the air. The calibration method
is based on the idea that the best calibration will be one for which the world de-
scribed by the point cloud is as close as possible to a world represented by small
plane surfaces. By testing different transformations and evaluating how well the
tested transformation fulfils this criterion, the true calibration values can be found,
or closely approximated.

The algorithm uses the assumption that the surrounding environment is static.
This is important since the lidar samples data over time which then transforms
every point into a single global and time independent point cloud. Dynamic objects,
objects which move during the sampling run, will result in a more noisy mapping of
the environment.

Apart from a static environment, the algorithm also uses the assumption that the
environment can be represented as small and smooth surfaces. This assumption is
typically true when measuring urban environments consisting mostly of flat ground,
buildings and other vehicles. This assumption does not hold when measuring in less
structured environments such as parks, since grass and trees are not locally smooth.
However, an urban environment with a few trees or other non-smooth object is not
an issue, as long as these objects only make up a smaller portion of the point cloud.

Using these assumptions, a way to measure how well a certain transformation
from lidar to vehicle frame conform to the true transformation, is to compute how
close all the points in the point cloud are to small surfaces constructed from their
closest neighbouring points. In general, one can calculate the distance d from a
point to a plane by

d = ‖η · (p−m)‖ (4.2)

where p is the point of interest, η surface normal to a plane andm is a point on that
plane. The distance d between the point pk and the plane around mk is illustrated
in Fig. 4.1.

If d is computed for all the points in the point cloud, and a calibration xcal where
the sum of all distances d is as low as possible is somehow found, xcal should be the
true calibration. To further supress points far from surfaces, the distance is squared
before summation. This results in that single large deviations from the plane is
supressed while many small deviations are accepted, which is the wanted behaviour.
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Figure 4.1: Small point cloud (the circles) with a plane ηk fitted to the nearest
neighbours of mk. The point closest to mk is pk. The perpendicular distance
between the fitted plane and pk, is indicated as d.

Summation of all values d:

Dsum =
∑

k

‖ηk · (pk −mk)‖2. (4.3)

The minimum of Dsum is found when the true calibration vector x∗cal is used to
transform the point cloud. For a synthetic data set without noise, the value of Dsum
is close to zero. Fig. 4.2 shows two examples of a synthetic dataset transformed
to the global frame using the true calibration, and a calibration which deviates 20°
from the true value around the x-axis. Note that the erroneous calibration results
in a point cloud where the surfaces are distorted. A 20° error in calibration is highly
exaggerated but the effect is the same even for small deviations from the true value.

4.1.1 Objective function
Levinson/Thrun introduces an objective function, based on the idea of Dsum from
equation (4.3), which penalises the points which lies far away from planes defined
by its neighbouring points. The lidar that is being calibrated with this method has
B individual laser beams with which measurements are made. The beams have a fix
elevation angle relative to the optical centre (seen in Fig. 2.4b). The measurement
and calibration of this angle belongs to the intrinsic calibration. To reduce the
impact that any errors in the calibration of the elevation angle has on the extrinsic
calibration method, the point cloud data is separated per beam. A plane fitted to
data from all beams will have the different errors in elevation angle from all beams
affect the orientation of the plane, while the orientation of a plane fitted to data
points from a single beam will not be effected in the same way, since the error in
alignment of the created plane will only come from the error of a single beam, and
not from all beams. Creation of the plane is illustrated in Fig. 4.1.

The lidar data is sorted based on what beam the data was sampled with. A
full data set D = ⋃B

i=1 P(i) from a lidar consists of B number of subsets of data
points from each of the lidar’s beams. The algorithm loops over these data sets
when calculating the value of the objective function.
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(a) True transformation. (b) Erroneous transformation, rotated
20° around the x-axis. .

Figure 4.2: Synthetic point cloud where a simulated vehicle has driven in a circle
(black line) and data collected with a single front mounted lidar. Gray areas are
walls and ground which the lidar can detect. Two different transformations MV (xcal)
are shown in 4.2b and 4.2a. When using a erroneous transformation (i.e. the wrong
position where the lidar is located on the vehicle) the smooth surfaces becomes
distorted. For clarity the points are coloured according to their surface normal,
xyz-components of the normal corresponding to red, green and blue colour channel.

Given an hypothesis for a calibration vector xcal and for a single point pk in the
point cloud, the contribution to the total objective function is calculated as follows:
0) Transform the point cloud in D using the current hypothesis for xcal; 1) Select one
beam bi and its data P(bi); 2) For that beam, select one of the neighbouring beams
nj and its data P(nj); 3) Select a point pk ∈ P(nj); 4) From P(bi), find the point
mk that is the closest neighbouring point to pk; 5) Compute the surface normal
ηk to a small plane created by the closest neighbouring points to mk, using points
from P(bi). The steps 1-5 are then repeated for all points in all beams. This can
be expressed as a sum, which is the objective function the method wants to minimise.

The definition of the objective function J is:

J(x) =
B∑

bi=1

bi+N∑
nj=bi−N

nj 6=bi

K∑
k=1

wk‖ηk · (pG
k −mG

k )‖2 (4.4)

where the parameters are listed below.
• pk is the k:th point seen by beam nj:

pG
k = MG(tpk

) ·MV (x) · pL
k (tpk

) ∈ P(nj).
• mk is the closest point to pk that is seen by beam bi:

mG
k = MG(tmk

) ·MV (x) ·mL
k (tmk

) ∈ P(bi).
• ηk is the surface normal at point mk (normal to a plane created from the 20

nearest neighbours to mk from the points generated by beam bi).
• bi iterates over all the lidar’s beams: {1, 2, ..., B − 1, B}.
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Figure 4.3: Selection of the current beam bi and its 2N neighbouring beams.

• nj iterates over the 2N neighbouring beams of bi: {bi−N, bi−N+1, ..., bi+N}.1.
The neighbouring beam selection is illustrated in Fig. 4.3.

• k iterates over the points seen by beam nj. To reduce computation time, k can
be set to not iterate over every point in the point cloud, but rather iterated
over every K:th point. In [20] K = 16 was used.

• wk excludes points far away from the core of the point cloud:

wk =

1, if ‖pk −mk‖ < dmax

0, otherwise.

The switch wk is included since otherwise the magnitude of J could be dominated
by points which are very far away from the core of the point cloud. Now the
cost value of points further away then dmax is set to zero. Using a switch could
theoretically allow J to become zero, if there exist a transformation such that all
points are so sparsely placed and they all trigger the switch to get a zero return.
In practice this is not an issue for the minimisation method used, which limit the
search to the parameter space reasonably close to a reasonable initial estimate for
the transformation.

Equation (4.4) was implemented in Matlab. Pseudo-code that describes the
implementation of how J(xcal) is computed is shown in Alg. 1. The way of generating
the calibration hypothesis xcal is described further down in Sec. 4.2.

4.1.2 Modified objective function
The lidar Levinson/Thrun used in their research [36] was a Velodyne HDL-64E,
while this thesis used Velodyne VLP-16. These models of lidars are very similar in
performance, only differing in number of beams (64 vs. 16). The main difference
between the two sensor setups is not the model of the lidar, but how they are
mounted on the vehicle. Levinson/Thrun used a lidar mounted with the centre-axis
parallel to the vehicle z-axis, while the setup in this thesis has the lidars mounted

1Theoretically any of the beams can be used. The reason for selecting the neighbouring beams
is that they are more likely to see almost the same surfaces in the surrounding.
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Algorithm 1 Levinson/Thrun calibration algorithm.
1: function CalculateCostForCalibrationHypothesis(xcal)
2: TransformPointCloud(xcal) . according to current hypothesis xcal
3: cost_sum := 0
4: for bi := 1 : B do
5: for nj := bi −N : bi +N \ {bi} do
6: for k := 1 : K : number of points in bj do
7: cost_sum := cost_sum+SinglePointCost(pk)
8: return cost_sum
9: function SinglePointCost(pk)

10: mk := nearest neighbour to pk

11: if distance between pk & mk > dmax then
12: return 0
13: else
14: ηk := surface normal to mk

15: return ‖ηk · (pk −mk)‖2

with their centre axis close to parallel to the vehicle x-axis (front and back lidar)
or y-axis (left and right lidar). Fig. 4.4 illustrates the different mounting positions
and how it affect the field of view for the lidar. For a roof-mounted lidar the field of
view will at any given time contain most of the surroundings, except for a circular
area immediately around the vehicle. An example of the field of view was shown
previously in Fig. 1.4. The purpose of the system used in this thesis is to use lidar to
provide a field of view of only the immediate surroundings of the vehicle. As such,
at any given time the lidar will only have vision of a small strip of ground very close
to the vehicle, as shown in Fig. 1.7 and Fig. 2.3.

These differences in mounting position change the structure of the data. When
the vehicle with the roof-mounted lidar is driving along some trajectory, it will
always keep almost the same surrounding objects in the field of view. For a 30 s
drive in a semi-circle close to a building, data from all the entire 0-30 s will be
incrementally building a more and more dense point cloud mapping of the building
walls. On the other hand, for the system used in this thesis, the same 30 s drive in a
semi-circle will only have seen each portion of the building wall during a very brief
time interval, when the wall was inside the thin strip of the lidars field of view.

This is important since the calibration method relies on some movement of the
vehicle between sampling the points used in order to create ηk. Without movement
between sampling two points, their relative positions will not be affected when test-
ing different hypotheses xcal. If the vehicle only sees each part of the surroundings
once, during maybe 1 s, this does not sufficiently satisfy the condition of vehicle
movement. The solution is to make sure that each part of the surrounding is sam-
pled more then once, which is achieved by driving the vehicle in almost the same
trajectory several times2. For example driving in several figure-eights.

Changing the sampling procedure gives a more dense point cloud with each area
2Using exactly the same trajectory would not help, since this is equivalent of only driving in

the trajectory a single time.
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centre axis

optical zero

(a) Mounting position and field of view for HDL-
64E. Field of view −2◦ to −24.8◦ from the optical
zero [35].

centre axis
optical zero

(b) Mounting position and field of view for front
lidar VLP-16. Field of view −15◦ to −15◦ from the
optical zero [22].

Figure 4.4: Difference in the mounting position between the VLP-16 lidars used in
this thesis, and the setup used by Levinson/Thrun. The beams are rotating around
the centre axis. Only the front lidar of the reference system is shown in this figure.
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sampled during several time intervals, but does still not solve the problem fully.
The objective function (4.4) will often use pk and mk sampled at almost the same
time (i.e. when the vehicle had barely moved), because these points are each-
others nearest neighbours. These points will not contribute with information to
the calibration method. To ensure that there definitely have been some movement
between the sampling of mk and pk, a requirement on their sampling time is set.
The computation of J in (4.4) does not take sample time into consideration3. The
objective function (4.4) was modified to include a minimum time distance between
the sampling time for pk and the closest pointmk. A parameter ∆tmin is introduced
which represents the minimum time spread between tpk

and tmk
. The parameter is

used when finding the nearest neighbour and an extra condition |tpk
− tmk

| > ∆tmin
is added. If this condition is not fulfilled,mk is set to the second nearest neighbour,
and so on. In effect, the previous parameter choice ofmk as “the closest point to pk

seen by beam bi” gets the additional criterion “with |t(pk)− t(mk)| ≥ ∆tminimum”.
With this modification, line 10 in the pseudo-code Alg. 1 for computing the

value of the objective function is replaced with Alg. 2. This requirement of a ∆tmin
between point sample times is the only modification done to the objective function
in (4.4), otherwise the expression for J is used as introduced by Levinson/Thrun.

Algorithm 2 Modified calibration algorithm. The lines 101− 105 replaces line 10
in Alg. 1.
101: repeat
102: mk := nearest neighbour to pk

103: if time between pk & mk < ∆tmin then
104: exclude current mk

105: until time between pk & mk ≥ ∆tmin

4.1.3 Convexity of the objective function
For the algorithm to be able find the true calibration successfully, the objective func-
tion’s global optimum must correspond to the true calibration. If this is the case,
a minimisation method can be used to find this value. However, for a practically
feasible optimisation, the objective function also needs to have an area of convex-
ity around that optimum. Both of these properties are examined in the following
section.

The convexity of the objective function was studied using a synthetic point cloud,
created as described in Sec. 3.3, as input. Visualising the behaviour of a function in
six variables is not possible. However, by only varying one or a few parameters at
a time and keep the others fixed, it is possible to get some information about the
behaviour. Fig. 4.5 and Fig. 4.6 visualises the objective function (1) while varying
one and two parameters, respectively.

The behaviours shown in the figures do vary depending on how the synthetic
point cloud is created. For example, the number of local optima and the individual

3Time is only to synchronise position data with lidar data, no comparison between sample time
of data points is made.
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Figure 4.5: Objective function value J with respect to the offset from the true
value for a synthetic data set. Here, only one parameter is changed at a time and
the rest is kept constant at its true value. The figure shows that the global minimum
corresponds to the true value and, individually, some local convex behaviour around
that value. The only exception is the z-value, which does not have any impact on
J at all.
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Figure 4.6: Objective function value with respect to the offset from the true value,
for a synthetic data set of 1.4·106 points. True calibration value is at (0, 0) in the
plot. Offset from the true values in x and y coordinate is varied, and the parameters
(rx, ty, rz) are kept fixed at their true value. The figure shows the existence of several
local minima, but also that true calibration value correspond to the global minimum,
and that there is a locally convex surrounding of the global minimum.
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4. Calibration Method

parameter convexity depends on the point cloud’s density and vehicle trajectory.
However, they all have some common features. The global optimum does correspond
to the true calibration, but the function is not necessarily globally convex. The
objective function in is however locally convex around the global optimum, which
can be seen in Fig. 4.5 and Fig. 4.6. This means that, with a sufficiently accurate
initialisation, the objective function can be treated as convex and the minimisation
method should therefore be able to find the global optimum.

When examining Fig. 4.5 it can be seen that the objective function value J does
not change when varying z. It turns out that the z-value has no impact at all
on the objective function. This can be explained by the fact that this method of
calibration assumes that there is some movement in the direction of the parameters
that are being calibrated. The value of J is affected if varying one of the calibration
parameters would result in a different point cloud. Since a car practically always
moves in parallel to the ground, there is no movement in the z-direction. For the
synthetic data, the vehicle keeps exactly the same distance above the ground. For
the real vehicle, there is some small movement in z-direction, because the vehicle
has some small amount of roll during sharp turns. However this change in z is in
practice too small to allow the z value to be calibrated using this method, especially
considering the real data will have noise of the same magnitude as the movements
in z. Therefore the value for the z-parameter is not varied in the minimisation
method, it is kept constant at the initial value4. The sensor’s height, i.e. z-value, is
however one of the more straightforward parameters to measure accurately by hand.
Solutions to calibration of z are further discussed in Sec. 7.2.

4.2 Minimisation method

The objective function J(x) is shown to have a local area of convexity around the
global minimum. This means that minimisation methods for convex functions can
be used to find the global minimum of J , given that it is initialised sufficiently close
to the true value, i.e. with values for x that are inside the locally convex area.
Measuring the lidar position on the vehicle by hand gives this initial estimation of
the calibration parameters x, and this can be used as initialisation for the search.

The approach during minimisation was to iteratively generate a number of new
sets of parameters x, evaluate J(x) for all of them and in this way update the new
lowest value. With the parameter z fixed as discussed in Sec. 4.1.3, the minimisation
problem is one in 5 variables: 2 for translation (x, y) and 3 for rotation (rx, ry, rz).
The method alternate between jointly varying all parameters for either translation
or rotation. Parameters are varied in all directions on a grid of fixed step length,
as shown in Fig. 4.7. For the translation parameters it means that 8 directions
are searched for lower J , and for the rotation parameters 26 directions are searched.
When no lower value of J is found when varying translation nor rotation, the method
changes to a smaller step length. A number of step lengths of decreasing size are
defined manually. The method is said to have converged once a lower J cannot be

4Levinson/Thrun also encounters this issue in [20], and also keeps the z-parameter constant
during minimisation.
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Parameter variation method for ‘grid search’ in 2-dim

(a) Search in 2 dimensions. Gener-
ates 8 new hypotheses for xcal.
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(b) Search in 3 dimensions. Generates 26 new
hypotheses for xcal.

Figure 4.7: Method for generation of new sets of parameters (hypotheses)
for the grid search method. During minimisation the “previous best” vector
xcal = [x0, y0, z0, rx0, ry0, rz0] is varied; alternatly the translation (xyz) and rota-
tion (rx, ry, rz) are changed in small steps. A step length of ∆ is used.

found using the smallest step length. As a precaution against converging to a local
minimum, the grid search method is restarting at the largest step length after the
first convergence. Alg. 3 in appendix A shows more details of the implementation
by listing pseudo-code for the entire the grid search algorithm.
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5
Experimental procedure

This chapter describes the method for data collection and lists the sampling loca-
tions. There is also a smaller discussion about issues with the data acquisition.

All data was collected at Volvo’s test facility Hällered Proving Ground (HPG).
This is a large test facility with many different roads and tarmac areas which are
shut from the public. The main reason for using the test facility was the access
to a very stable local GPS base stations, which allowed for use of differential GPS
and RTK improvements of the positioning. This improved the position data to a
resolution of 1 cm (compared to 20 cm without). The calibration algorithm might
be robust enough to work without the differential GPS but since the thesis only
consists of a proof-of-concept, the potential sources of error were kept at a mini-
mum. Another benefit with HPG was its variety of different surroundings as well
as highly controllable areas with respect to dynamic objects, i.e. no other mov-
ing cars or pedestrians. Several sampling runs were done with the same setup but
different environments. This way the robustness of the algorithm could be tested
(i.e. if and how well it finds the true transformation), but the results are also more
reliable if different (and independent) measurements converges to the same result.
When several measurements had been executed with the same setup, the lidar posi-
tions were changed slightly and new measurements were made again (with the same
surroundings as with the first setup).

The mounting position for the lidars’ leaves their centre axis is almost parallel
to the ground, so only a thin strip of the ground is seen for each rotation of the 16
beams. For the calibration method to work, all (or most of the) walls and ground
areas in the surrounding need to have points taken from several different vehicle
positions. This was achieved by driving in (almost) the same place over and over
again during one sampling run. Since our setup contains four lidars, with one lidar
mounted on each side of the car, all sampling runs were executed by driving in
figure-eights so that all lidars had the same vision of the surroundings. The data
was collected during about 60 s runs and typical speed was around 10 km h−1. This
resulted in three or four complete figure-eights during one sampling run.

5.1 Initial lidar position measurements

All lidars’ mounting positions were measured by hand using tape ruler and a digital
protractor. In Fig. 5.1 the method for measurement of the rx angle for the front
lidar is shown. The measurements needs to be from the lidar frames L, which have
origin in the optical centre of each lidar, to the vehicle frame V , which has its origin
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Figure 5.1: Measuring the angle rx for the front lidar using a digital protractor.

in the ground plane, below the centre of the rear wheel axis. This measurement is
somewhat complicated to perform by hand, because the two origins are not directly
accessible to measure from. This leads to a large estimated measurement uncertainty
compared to the least count of the measuring instruments. The least count of the
instrument is the smallest division indicated. The digital protractor has a least count
of 0.01° but the measurement uncertainty, including human error, is estimated to
1.5°. The tape ruler has a least count of 1 mm, and the estimated measurement
uncertainty (including human error) is 30 mm. The large estimated uncertainty is
partly due to the difficulty of accessing the measurement origins, but also due to
the more general difficulty in measuring individual components xyz of a distance.

As mentioned earlier, each lidar was mounted in two different positions. Each
mounting position was measured in the same manner. The estimated measurement
uncertainty for the relative movement between these two positions is much smaller,
because these movements were in only one or two directions (e.g. one rotation and
one translation). The largest contribution to the uncertainty is measuring from the
mounting frame to the IMU’s centre, and this is not necessary when only measuring
the relative distance between the first and second position of the lidar mounting.

5.2 Sampling locations
The following section lists the different locations and a summary of the data col-
lected. In general the locations chosen for data collection had certain properties:
large flat ground (tarmac or gravel) and one or more large structures such as house
walls, containers or storage tents. Data was collected at three different locations
inside HPG, and on each location three sample runs were executed.
Location 1: “Skid pad”: Area with a large flat tarmac in one direction, as well as
two large storage tents to the side. Some smaller objects like lamp-posts and pallets,
otherwise both the ground and walls are almost completely flat surfaces similar to
the synthetic data. The trajectory for a test run and a photograph is shown in
Fig. 5.2.
Location 2: “Behind houses”: Area behind a building, on a gravel yard where
the sample runs were made. There are houses on two sides and a small hill with a
fence on the third side. The ground is somewhat uneven compared to the tarmac
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(a) Vehicle trajectory for one data col-
lection run, overlayed on satellite photo.

(b) Photograph of location.

Figure 5.2: Location “Skid pad blue tent”. Large tarmac flat surface and storage
tent with large flat walls. Tent is approximatly 35 m in length. Note that to the
right outside of the photo there is another large tent that is visible in the lidar data
but not shown in the satellite photo.

surfaces.
Location 3: “Repair workshop”: Location in front of a large building with flat
walls. Surface is mostly even where there is tarmac, but parts are gravel which are
more uneven. See Fig. 5.4 for photograph and vehicle trajectory.

5.3 Issues with data acquisition and time stamps
In Tab. B.1 all sampled data is listed, a total of 39 sampling runs were made,
resulting in 156 data sets. Not all the collected data was usable. The first issue
was with the time stamping of the lidar measurements. Each measured point is
accompanied by a time stamp, which is obtained from the GPS connected to each
lidar (as shown in Fig. 2.1). For a sequence of points measured after each other, the
time stamp is expected to be strictly increasing. For unknown reasons, this time
stamping would sometimes have discontinuities, in the sense that two measurements
after each other could have a time difference of up to 1 s, which is unrealistic seen
that the lidar produces 300·103 points per second. An example of the discontinuous
time stamping is shown in Fig. 5.5. All the data sets with discontinuities in the
time stamps were discarded. Another issue was that some data files would become
corrupted, and not possible to open in the software used1. Out of the 156 collected
data sets there were 42 data sets which were corrupted so that that they could not
be opened. Of the remaining 114, another 40 data sets had issues with the time
stamping. 74 data sets that was usable for testing the calibration remained. No
complete set with data from all four lidars was obtained.

1In Veloview 3.1.1 [37].
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(a) Vehicle trajectory for one data col-
lection run, overlayed on satellite photo.

(b) Photograph of location.

Figure 5.3: Location “Behind houses”. House walls or fence on all sides, uneven
gravel ground surface.

(a) Vehicle trajectory for one data col-
lection run, overlayed on satellite photo.

(b) Photograph of location.

Figure 5.4: Location “Repair workshop”. Mixed tarmac and gravel ground surface,
not completely flat. One large building with flat walls, and also some shrubbery and
parked vehicles.
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Figure 5.5: Two typical examples of the lidar data time stamps. The plots shows
the value of the time stamps [t1, t2, t3...] from a sequence of measurements, plotted
against the index of the time stamp [1, 2, 3, ...]. The time stamp index has the range
1 to 9·106, and the total measurement time is 70 s or 7·107µs. Expected behaviour
is t1 < t2 < t3 < .... The left subfigure shows discontinuities in the time stamping,
while the right subfigure shows the expected behaviour.
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6
Results

This chapter demonstrates the performance of the algorithm on both synthetic data
and a number of real data sets collected at HPG. The synthetic data was used to ver-
ify that the algorithm is converging to the true transformation. This is only possible
with synthetic data since only then the true transformation is known. Calibrations
on real data sets were done in order to show that the method is robust enough
to handle the various, real world, terrain - in contrast to the synthetic idealised
surrounding.

6.1 Synthetic data
A synthetic data set was used to verify that the calibration method does result in
transformation parameter values that are very close to the true values. The synthetic
data sets can be created with a custom number of data points. The chosen size of the
used synthetic data set was a compromise in short computation time (small point
clouds) while still containing enough information to be representative for results on
the real data (larger point clouds). The data set was created with approximately
230k points, compared to the real data sets with roughly 8M points. A smaller size
was chosen in order to test a large number of initialisation values for the minimisation
method, and to get a more reliable result that shows the method works for a range of
initialisations. Other simulation parameters were 170 vehicle positions, comparable
to real world duration of 51 s, and a lidar with 8 beams.

6.1.1 Convergence to true value
In our experiments, 14 different initial values were randomised to be within a stan-
dard deviation of 10 cm and 2° from the true calibration values. The calibration
method was applied on the same data set, starting in the different initialisations.
Two batches of calibration runs with the same 14 initial values were done, where
only the parameter ∆tmin was changed, using values 0 s and 6 s. Other parameters
used were K = 200, N = 3, dmax = 1, same for both batches. Vertical position
z of the lidar was not calibrated due to lack of movement in vertical direction, as
discussed in Sec. 4.1.3.

The remaining error after calibration
∆x = xcal − xtrue = [∆x,∆y,∆z,∆rx,∆ry,∆rz] (6.1)

is calculated for each parameter individually. The distribution of the remaining error
for the translation parameters (∆x,∆y) and rotation parameters (∆rx,∆ry,∆rz) for
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the calibration runs is shown in Fig. 6.1. It also shows the distribution of the errors
for the initial values. Both the calibration runs with ∆tmin = 0 and 6 converge to
the true values, i.e. the distribution of remaining errors is approximately centred
around zero. The current data appears to be in slightly in favour of ∆tmin = 6, both
with a mean closer to zero and the same or lower standard deviation.

(a) Mean (µ) and standard deviation
(σ) for calibration done with ∆tmin = 0:
µ =0.40 cm, σ =1.02 cm and ∆tmin = 6:
µ =0.27 cm, σ =0.73 cm .

(b) Mean (µ) and standard deviation
(σ) for calibration done with ∆tmin = 0:
µ =−0.07°, σ =0.20° and ∆tmin = 6:
µ =0.01°, σ =0.21°.

Figure 6.1: Remaining error for individual translation and rotation parameters, af-
ter calibration for 2 batches of 14 different initialisations using synthetic data. Each
calibration has used the same point cloud but different initialisations. Distribution
of the error for the initialisation is also shown. Both translation and rotation tends
to converge to the true transformation for both values of ∆tmin.

An additional measure of how well the calibration conforms to the true value
for translation is the Euclidean distance between calibrated and true translation
parameters. The remaining error in translation is defined as:

etrans =
√

∆x2 + ∆y2 + ∆z2. (6.2)

The remaining error for rotation can be quantified as the angle between two vectors
transformed according to the true and calibrated rotation matrices. The angle α
between two normalised vectors is α = arccos(u ·v). Rotation matrices R(rz, ry, rx)
are created according to definition in Eq. (3.2). A normalised test vector v =
1/
√

3[111]ᵀ is rotated using the true values (Rtrue) and calibrated values (Rcal) of
the rotational angles rx, ry, rz. The remaining error in rotation (after calibration) is
defined as the angle between these two resulting vectors:

erot = arccos
[(

Rtrue · v
)
·
(
Rcal · v

)]
. (6.3)
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Note that this removes the sign of the error, so only the magnitude of the error
can be studied. For the same 2 batches of 14 calibration runs as before, the mean
values for erot and etrans are calculated. For ∆tmin = 0: erot =0.97°, etrans =0.15 cm,
and for ∆tmin = 6: erot =0.84°, etrans =0.13 cm. These values are also in favour of
using ∆tmin = 6 over ∆tmin = 0, with lower mean total error for both rotation and
translation.

The measures of µ, σ, etrans and erot are all sensitive to outliers, in the form of
calibration runs which have minimised towards a local minimum instead of the (true)
minimum. The results indicate that the calibration method converges towards the
true minimum, but also shows that for some initialisations it will instead stop at
a local minimum. The calibration runs which converge to a local minimum have a
higher final value of J then the runs which end up closer to the true value. This
further strengthens the thesis that J indeed has its global minimum at the true
calibration values.

6.2 Real data
The calibration method was applied to a number of the sampled data sets. The
computation time was very long1, limiting the amount of data examined. From the
collected data, 13 of the 19 data sets for the front lidar were used for the calibration
method. In addition, a single data set from the right-side lidar was used. The four
lidar sensors are identical and the only difference between them was their mounting
position on the vehicle. It was therefore reasonable to assume that a proof-of-concept
for the calibration method for data from one of the lidars would be applicable as
proof-of-concept for all of them. The most important difference between the front or
rear lidars, and the right- or left-side lidars, is a rotation of 90° (around the vehicle’s
z-axis). To verify that this difference in mounting did not result in any fundamental
difference that would break the calibration method, calibration on one data set from
the right-side lidar was also done.

6.2.1 Parameter selection
As mentioned in Sec. 4.1, the algorithm penalises points which lies far away from
planes defined by neighbouring points. The number of neighbours used when esti-
mating the planes was set to 20.

The max distance dmax allowed between pk and mk was set to 0.5 m. This
parameter relates to the radius of the small surfaces the world is approximated by.
Ideally this parameter should have a low value, but a too small distance can cause
the algorithm to get stuck in a local optima if a less dense point cloud is used. This
is because a low dmax will cause a large portion of the less dense areas from the point
cloud to be excluded when evaluating J , but these less dense areas are typically the
ones which are affected the most by a change in xcal because they are far away from
the vehicle. A value of dmax =0.5 m was used, this value kept the portion of excluded

124-48 h calibration time for 60 s data, when using Parallel Computing Toolbox [38] in Matlab
and utilising 30 cores on the computer.
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Figure 6.2: Objective function value J over generations. The green markings
indicate where the step length has been changed and the red marking indicate the
first generation where the lowest J value is reached. For every generation, the value
is either decreasing or constant. When J is unchanged for two generations in a row
(when alternately varying rotation and translation) the step length is changed.

points below 5% and is still small enough so that the approximation of small planes
is reasonable.

The velocity during the sampling runs was typically 10 km h−1, so 1 s was equiv-
alent to ≈3 m vehicle movement. The minimum time difference allowed between pk

and mk, ∆tmin, was set to 2 s. This corresponds to a ∆tmin in the range of 0.03 s
for movement speed of 10 km h−1 and sensor noise of 3 cm. The value of ∆tmin =2 s
that was used could therefore be unnecessarily large, however with 60 s data it only
corresponds to excluding a small portion of the total data. To make sure that data
from points where the vehicle had moved a significant distance were used, this large
value of ∆tmin was selected.

Iteration over k was done using every K = 200:th point, in order to reduce
computation time. The parameter was chosen as a compromise in order to make
the computation time reasonable while keeping sufficient information. The number
of neighbouring beams used was N = 3, also a compromise between computation
time and amount of data used when evaluating J .

Fig. 6.2 shows how the J-value decreases over with increasing number of gener-
ations of the grid search minimisation. The green markings indicate where the step
length has been changed and the red marking indicate the first generation where the
lowest J value is reached. In this particular case, the lowest J value is found after
14 generations with only two step length changes. Four step lengths of decreasing
sizes were used: [2, 1, 0.5, 0.1]cm and [1, 0.2, 0.1, 0.02]°. The data used in Fig. 6.2-6.7
are all taken from the same calibration run and on the same real data set.

For one evaluation of J , and for one of the generated hypotheses xcal, a number
of points pk and their closest neighbours mk are used. The pairs of pk and mk

are separated by an distance in space (Euclidian distance). They are sampled at
different times tmk

and tpk
, with a sampling time difference of ∆t. The distribution

of the distances in space gives an indication of how dense the point cloud is, as well as
an indication towards how large the small surfaces the world is approximated by is.
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(a) The red line shows dmax = 0.5. More
than 98 % are below 0.2 m, and only
0.5 % are excluded due to d > dmax.

(b) Three peaks can be seen, this is be-
cause the sampling run consisted of driv-
ing in four figure-eights (and returning
to the same position three times). Value
∆tmin =2 s used.

Figure 6.3: The Euclidian distance d = ‖pk −mk‖ and time difference ∆t =
|tmk
− tpk

| for all pk/mk pairs in for the final calibration hypothesis xcal (i.e. the
hypothesis resulting in lowest J-value).

The distribution of difference in sampling time ∆t shows if point pairs from several
different locations of the vehicle are used when calculating J . Both distributions
space and time distances are shown in Fig. 6.3.

6.2.2 Calibration results
In Fig. 6.4 a point cloud for 60 s of sampled data at the “Skid pad” location is
shown. Two versions are shown; before calibration, using the initialisation, and after
calibration, using the calibrated position for the lidar. The phenomenon ghosting, or
double vision, where several images of the same physical object are plotted slightly
offset from each other, can be observed to the right in the figure for the uncalibrated
point cloud. The object in this case is a small tent structure, which can be seen
having several offset images. In the calibrated point cloud all points belonging to
that tent are aligned properly to a single image.

The calibration run results in individual values for the parameters in the calibra-
tion vector x = [x, y, z, rx, ry, rz]. Average values of x are also calculated based on
the 9 calibration runs on data sets with the lidars mounted in position 1, and the 4
calibration runs with lidars in position 2. These average values of x are more likely
to be close to the true value of the calibration parameters. The standard deviation
from the average values gives a measure of how reliable any single calibration run
can be expected to be. Tab. 6.1 shows the results from 13 calibration runs of the
front lidar. The standard deviation for the translational parameters is in the range
of 1.4 cm to 3.0 cm, and the rotational parameters 0.07° to 0.36°.

The individual parameter values for all calibration runs are visualised in Fig. 6.5
for lidar position 1, and Fig. 6.6 for lidar position 2. The exact parameter values
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(a) Point cloud before calibration.

(b) Point cloud after calibration.

Figure 6.4: Point clouds from a 60 s sampling run at the “Skid pad” location, photo
shown in Fig. 5.2. The two point clouds in 6.4a and 6.4b are constructed using the
transformation (3.8) before and after calibration, respectively. Points are coloured
according to the surface normal vector at that point, with x, y, z components corre-
sponding to red, green and blue channel. After calibration, the point cloud is less
distorted than before and exhibits no ghosting.
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Table 6.1: Average values and standard deviation for the values of the calibration
vector x = [x, y, z, rx, ry, rz], for two different lidar mounting positions (1&2). For
position 1, the average value is for calibration of 9 data sets, and for position 2
over 4 data sets. The measurement error for the absolute mounting position is quite
large, but significantly smaller for the difference in mounting position between pos.
1 and 2. Therefore a comparison of the difference between the calibrated values for
pos. 1&2 and the difference between the measured values for pos. 1&2 is relevant.
These values ∆xcal and ∆xmeas are shown at the bottom of the table.

Lidar
pos. x[m] y[m] z[m] rx[◦] rx[◦] rz[◦]

Average calibrated values x̄cal1 1 4.019 -0.039 1.69 74.23 -1.58 88.54
Std. dev. 1 0.030 0.018 0 0.36 0.15 0.14

Average calibrated values x̄cal2 2 3.972 -0.016 1.69 69.57 -1.68 88.42
Std. dev. 2 0.024 0.017 0 0.34 0.07 0.25

Manual measurement xmeas1. 1 3.978 0.005 1.69 74.0 0 90.0
Manual measurement xmeas2 2 3.928 0.005 1.69 69.9 0 90.0

Calibrated values diff.
∆xcal = x̄cal1 − x̄cal2

0.047 -0.023 0 4.66 0.10 0.12

Measured values diff.
∆xmeas = xmeas1 − xmeas2

0.050 0 0 4.1 0 0

and sampling locations are listed in Tab. C.1-C.2. The figures show that the average
value of the calibration lies some distance away from the manually measured value,
in fact the manual measurement is outside one standard deviation from the average
in all but one case. This shows the unreliability of manual measurements: the
estimated measurement uncertainty for each individual parameter [x, y, z, rx, ry, rz]
was 1.5° and 30 mm as stated in Sec. 5.1.

The large estimated measurement uncertainty was why two different mounting
positions were used: it was significantly easier to measure the relative movement
between position 1 and 2 with a high accuracy, than to measure their absolute
positions. The idea was to compare the values for relative position obtained from
manual measurements, with the same values of relative position but obtained from
the calibration. If the values are close, this would serve as an additional verification
that the calibration method provides correct values.

The measured change between position 1 and position 2 was a movement of
5.0 cm in x and 4.1° in rx. Tab. 6.1 shows both the manually measured relative
position, and the relative position between the calibrated vales for position 1 and 2.
Comparing the two sets of values, the deviation (∆xmeas−∆xcal) in each parameter
is: ∆x =0.3 cm, ∆y =2.3 cm, ∆rx =0.56°, ∆ry =0.10° and for ∆rz =0.12°. With the
exception of ∆y the values are small, which means that the calibration algorithm
could accurately find the measured movement. This indicates that the calibration
algorithm indeed provides values close to the true calibration.

The difference between the measured and calibrated relative movement is sig-
nificantly smaller than the difference between the measured and calibrated absolute
position. The manual measurement of the relative movement had a smaller measure-
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Figure 6.5: Calibrated values for x for real data sets from the front lidar mounted
in position 1. The individual calibrated parameters, their total mean and standard
deviation, as well as the initialisation (i.e. the manually measured value) are shown.
Exact values are listed in Tab. C.1.

ment error then the manual measurement of the absolute position. The difference
between measured and calibrated absolute position is therefore likely from measure-
ment error, and not from inaccuracies in the calibration method’s results.

To obtain a value of the calibration accuracy in total for translation and rotation
respectively, the same method as used for the synthetic data is applied. Since the
true values are not known as they are in the synthetic data, the average of all
calibration runs is used in lieu of the “true” value. Equation (6.2) is used to calculate
etrans and (6.3) for erot. The mean values of the remaining errors are etrans =2.9 cm
and erot =0.85° for position 1 (9 data sets), and etrans =2.5 cm and erot =1.86° for
position 2 (4 data sets). The mean values for the calibration of position 2 are less
reliable due to the smaller sample size.

To qualitatively show that the calibration does in fact result in a reduction of
the distortions and ghosting of the point cloud, some parts of a point cloud which
are sampled on a surface which is very close to flat were extracted. The point cloud
is transformed according to the initial values as well as the calibrated values. The
point cloud after calibration has a much better fit as a single plane, compared to the
point cloud before calibration. The flat area is shown as several planes with a offset
from each other, i.e. ghosting behaviour, in the uncalibrated point cloud. Fig. 6.7
shows an extraction of the tent wall and some of the ground in Fig. 6.4, with point
cloud before and after calibration. The areas extracted are the tarmac in front of
the blue tent shown in Fig. 5.2b, and a part of the tent wall in the same location.
Both of these areas are very flat.

By least squares fitting a single plane to the entire extracted wall or ground,
and then calculate Root Mean Square (RMS) distance between the points and the
plane, a measure of how well the surfaces conform to that plane is obtained. Since
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Figure 6.6: Calibrated values for x values for real data sets from the front lidar
mounted in position 2. The individual calibrated parameters, their total mean and
standard deviation, as well as the initialisation (i.e. the manually measured value)
are shown. Exact values are listed in Tab. C.2.

the real world that was sampled is known to be very planar, the RMS distance for the
sampled data can be seen as a measurement of how noisy the resulting point cloud
is. A comparison of the RMS distances shows how the calibration can improve the
quality of the resulting point cloud. The wall has a RMS distance of 0.15 m before
calibration and 0.04 m after, whereas the ground has a RMS distance of 0.36 m and
0.06 m respectively. The RMS distance can be compared to the typical measurement
accuracy of the lidar, which is specified to 0.03 m [25]. The measurement uncertainty
of the lidar puts a lower limit on the RMS distance even with perfect calibration.
The low RMS values verifies that the calibration method results in a point cloud
which is a close reproduction of the real flat surfaces.

The calibration method only takes a single lidar into consideration, however the
reference system that the calibration is intended to be used on has four lidars. To
show that the data from two individually calibrated lidars can be combined, without
any ghosting effects or other artifacts resulting from poor calibration, a single data
set from the right side lidar was calibrated. The right side lidar had some vision
of the ego-vehicle itself during the sampling, which means that it was sampling a
dynamic object. The method assumes no dynamic objects, however vast majority
of points still represents static objects so this was not an issue. Fig. 6.8 shows
the combined calibrated point cloud from both the front lidar and the right side
lidar. The figure shows that no major difference exists between the point cloud from
only the front lidar (previously shown in Fig. 6.4), and the point cloud from the
combined front and right side lidar. This is also what is expected if the calibration
has sufficient accuracy. Any artifacts from poor calibrations, such as ghosting, would
be even more visible when the data from several lidars is combined.
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(a) Extracted tent wall from the point cloud before and after calibration,
respectively. The axes are given in metres.

(b) Extracted ground from the point cloud before and after calibration,
respectively. The axes are given in metres.

Figure 6.7: The tent wall and a part of the ground extracted from the point cloud
shown in Fig. 6.4. The wall and the ground is extracted before and after calibration,
respectively. The uncalibrated point cloud for both the wall and the ground is more
distorted and also shows some ghosting behaviour. The RMS distance for an aligned
surface is substantially reduced for the calibrated point cloud.
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Figure 6.8: Combined calibrated point cloud from both the front lidar and the
right side lidar. Points are coloured according to the surface normal vector at that
point, with x, y, z components corresponding to red, green and blue channel. The
right side lidar had the ego-vehicle in its field of view during the sampling. This is
seen in the figure as the the red-and-green coloured figure-eight, since the vehicle is
a moving (dynamic) object.
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7
Discussion

This chapter discusses the results and the algorithm’s performance and its limita-
tions. Potential future work and conclusions are also presented below.

7.1 Calibration algorithm

The calibration algorithm used is a good candidate for use in a calibration procedure
for the VLP-16 lidars in the of the low-speed manoeuvring reference system this the-
sis has worked with. The method has been proven to provide the correct calibration,
as well as shown to give accuracy which is undoubtedly better than what is possible
to measure manually. The data sets were exclusively taken from the front lidar, with
only a single data set calibrated from the right side lidar. By fusing the calibrated
point clouds from front and right side lidar it could be seen that the two lidars’
images aligned well. This shows that there is no major difference that hinders this
calibration method from being used on either lidars with either mounting positions,
even if only data from the front lidar was examined. All work has been done using
data from a single VLP-16 lidar, but even when calibrated individually the result
is accurate enough that data from several lidars can be instantly merged without
artifacts from poor calibration.

Part of the motivation for focusing the thesis work on calibration was that an
accurate calibration can significantly improve the quality of the point cloud data,
making it much more useful in later processing. The reference system has four
different lidars, and their point clouds must be fused to get field of view around the
entire vehicle. The task of fusing point clouds from different lidars is made easier
if the point clouds are well calibrated. A goal was that the calibration should be
accurate enough so that later uses of the reference system can focus on maximising
the potential of the data, and not be troubled with noisy (i.e. uncalibrated) data.
This was achieved, the extracted point clouds of walls and ground confirms this
calibration method provides a significant improvement in the alignment of the point
cloud.

During the thesis and study on synthetic data, it became apparent that a deciding
factor whether if the calibration would succeed or not, was how the vehicle had been
driven during the sampling run. As mentioned in Sec. 5 it was necessary to drive past
approximately the same position several times for the calibration method to work
properly. This was an issue that appeared because of the lidars having their centre
axis almost in parallel to the ground, only scanning a small strip of the ground.
This also led to the introduction of the parameter ∆tmin, a modification of the
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initial cost function J . Samples taken from when the vehicle have moved a distance
shorter than the magnitude of the sensor noise would not add any information
to the calibration method, and they could be excluded with this parameter. The
plots in Fig. 6.1 indicates that introducing ∆tmin gives a tighter distribution for the
remaining error after calibration on the synthetic data sets. However the sample
size is only 2 batches of 14 runs (with 2 translational and 3 rotational parameters
in each run). This sample size is too small to draw any significant conclusions on
how the introduction of ∆tmin affects the calibration results. Larger samples with
several different values of ∆tmin would needed to thoroughly evaluate what value of
the parameter is suitable. If two points pk &mk are selected where the vehicle has
moved a shorter distance then the magnitude of the sensor noise or not moved at
all, it is clear that this case can not add any information to the calibration. If values
of ∆tmin greater then this adds any significant improvement is a topic for future
study. Current parameter choices were made through studies into each parameter’s
impact on computation speed and accuracy of result, but only using smaller sets of
synthetic data. The calibration method would likely benefit from a more systematic
evaluation of all the parameters’ effects, using larger data sets and both real and
synthetic data.

7.2 Future work
This section describes the future work for improving the performance of the cal-
ibration method and making it useful beyond a proof-of-concept. Segmentation,
visualisation and other applications of the resulting point cloud will not be consid-
ered in this section.

With the current implementation, one calibration run for a single lidar needs
over 24 hours using a high performance computer. A necessary improvement to
give a calibration procedure which is possible to make use of on a larger scale, is to
implement the algorithm in a faster programming language, or at least significantly
optimise the current Matlab script. When implementing the algorithm in a different
platform, it would be suitable to use existing libraries for handling point cloud
data, such as Point Cloud Library (PCL) [39]. As the algorithm itself is highly
parallelisable, it would also be possible to improve computation time by utilising
work stations or computing clusters with a large number or processor cores. Another
option is to use libraries such as CUDA [40], which opens up the graphics card for
general purpose computation, and allows for great gains in computational speed for
parallelisable problems.

Faster computation would also enable a more extensive parameter examination
as well as to option to use a much larger data sets, both of which would improve the
accuracy. A larger data set, which is obtained either by sampling more data and thus
more dense point clouds or by using a smaller k in (4.4), should in theory also make
the algorithm more tolerant when it comes to the sample location choice and loosen
the requirements on large planar surfaces. Given a calibration algorithm which is
computationally faster than the current implementation, it would also be possible
to analyse the sensitivity to the initial position measurement. This is in essence an
examination of the size of the area of convexity around the global minimum and any
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surrounding local minima. This would be a interesting result since it could provide
an end-user specification that states how accurate the manual measurement must
be, in order to find the proper calibration instead of a local minimum.

The algorithm could also potentially utilise the fact that there are several lidars
in the setup. Currently, each lidar is treated individually but in the future one could
use the overlapping areas to extract more information and possibly optimising the
calibration performance even further. There are several approaches to utilise the
overlapping area. One approach is to simply extend the objective function 4.4 and
add another cost term for the overlapping area. The relatively simple structure of
the cost function J is such as it can be extended to include data from several sources,
and be made dependant on the calibration parameter xcal of multiple different lidars.
However this also increase the number of parameters for the minimisation problem
so the implementation must have a even greater focus on low computation speed
and optimisation. Another potential extension is to use the same calibration method
for improving the intrinsic parameters as well, as done in [20]. This is achieved by
transforming the data based on different intrinsic calibration parameters, instead of
transforming the data based on different mounting positions, and then minimise the
objective function in the same manner as before.

As mentioned in Sec. 4.1.3, the current calibration algorithm cannot find the
z-value, i.e. sensor’s height above the ground, due to lack of movement in that di-
mension. Therefore, it is necessary to develop a separate method for calibrating the
z-value, possibly by triangulating the vertical distance between the ground and the
lidar, based on the point cloud data after the other parameters are calibrated. Alter-
natively, utilising data from multiple lidars could possibly add sufficient information
to calibrate the z-value.

The minimisation method used, grid search, was selected for ease of implementa-
tion, and relative robustness against getting trapped in local minima when compared
to other gradient decent methods. It is a straightforward method but with perfor-
mance that has proven sufficient for this application. Improvements to the search
method could be made, most notably regarding selection of step lengths. Tests on
improving the grid search method was made, for example that the function keeps
trying to step in the direction that is currently the best direction for finding lower J .
It keeps doubling the step length s (1s, 2s, 4s, 8s, ...) until it no longer gets a lower
value of the objective function. This is a good solution if the search method has al-
ready moved to the smallest step length (e.g. 1 mm) but still has several centimetres
to move until it lands in the global minimum.

A limitation set early on was to not allow for dynamic objects in the environ-
ment. This was not a issue during the thesis since all data acquisition was done in
restricted areas. However, in the future it might be necessary to calibrate in highly
dynamic surroundings with moving traffic and pedestrians. This would require a
pre-processing step which filters and excludes all dynamic objects from the point
cloud, before calibrating.
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7.3 Conclusion
The results of the show that the algorithm can be used for target-less extrinsic cali-
bration of a single lidar, to an accuracy that is beyond what is reasonable to expect
from manual measurements. The resulting calibrations had a remaining error of
2.9 cm for translational and 0.85° for rotational parameters, averaged over 9 differ-
ent real data sets. This shows the accuracy of the calibration method for the current
implementation, and also proves its repeatability over different sets of data and sam-
pling locations. The current implementation is a proof-of-concept for the method,
with long computation time. For large scale use it is necessary to improve the com-
putation time, for example by implementing it in a faster programming language
and utilising the its highly parallelisable characteristic. Improved computation time
would also enable even more dense point clouds to be used as input, which would
further improve the accuracy and robustness. This method of calibration is accurate
and automated, with no special calibration targets needed. It also has no operator
dependency, which makes it suitable to be used when the data collection and post-
processing are done on different sites and by different people. The method has high
potential of providing an easy to use calibration procedure, which gives accurate
calibrations given only rough manual position measurements.
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A
Minimisation method

Algorithm 3 Minimisation method “Grid search”, for minimising the objective
function J(xcal). The search method is initialised in xinit and the min-point x∗cal is
improved by comparing the value of J , when moving with small steps in different di-
rections. step_length_vector typically contains three or four values for step_length
of decreasing size.
1: function GridSearch(xinit, step_length_vector)
2: x∗cal := xinit
3: . Run grid search for decreasing size of step lengths
4: for all step_length ∈ step_length_vector do
5: x∗cal := GridSearchSingleStepLength(x∗cal,step_length)
6: return x∗cal

7: function GridSearchSingleStepLength(xinit, step_length)
8: . Initialise the search using J∗ = J(xinit) as lowest value so far.
9: J∗ := CalculateCostForCalibrationHypothesis(xinit)

10: x∗cal := xinit
11: converged := false
12: while ¬(converged) do
13: . Generate new hypotheses xcal based on the previous best x∗cal. Alter-

nately vary rotation/translation
14: X := CreateAllHypotheses(x∗cal, step_length)
15: . Calculate J for all new hypothesis in set X
16: for all xi ∈ X do
17: Ji := CalculateCostForCalibrationHypothesis(xi)
18: . If a new lowest J is found, save it
19: if Min(Ji) < J∗ then
20: x∗cal := xi

21: J∗ = Ji

22: . Check if algorithm has converged
23: if neither varying translation or rotation found a lower J∗ then
24: converged :=true . Search done! Found a minimum
25: return x∗cal
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B. Data sets

Table B.1: All captured data sets. On each location three data sets were taken
where the vehicle was driven in the same figure-eight pattern. Sets marked “OK*”
were used in calibration. Sets marked with superscript 1 or 2 have calibration results
presented in Tab. C.1 and Tab. C.2 respectively. Other notations: “OK”: data was
usable; “corrupt”: data was not possible to open in VeloView 3.1.1; “discont. time”:
data had discontinuities in the time stamping which means the data cannot be
properly synchronised with the GPS position data. In total there were 156 data
sets, of which 42 were “corrupted” and of the remaining 40 sets had “discont. time”.

Data set Lidar
pos. lidar1 (Front) lidar2 (Right) lidar3 (Rear) lidar4 (Left)

Skid pad 1 1 OK*1 OK discont. time corrupt
Skid pad 2 1 OK*1 OK discont. time OK
Skid pad 3 1 OK*1 OK* OK corrupt
Skid pad side 1 1 OK*1 corrupt discont. time OK
Skid pad side 2 1 corrupt corrupt discont. time OK
Skid pad side 3 1 OK*1 OK OK corrupt
Repair workshop 1 1 OK*1 corrupt OK corrupt
Repair workshop 2 1 corrupt OK OK OK
Repair workshop 3 1 OK*1 OK corrupt corrupt
Behind houses 1 1 OK*1 corrupt discont. time corrupt
Behind houses 2 1 discont. time corrupt discont. time corrupt
Behind houses 3 1 OK*1 OK discont. time OK
Skid pad 1 2 corrupt OK discont. time OK
Skid pad 2 2 OK*2 OK corrupt OK
Skid pad 3 2 OK*2 OK discont. time discont. time
Skid pad side 1 2 discont. time corrupt discont. time OK
Skid pad side 2 2 corrupt OK discont. time corrupt
Skid pad side 3 2 OK*2 OK discont. time OK
Repair workshop 1 2 OK*2 OK corrupt OK
Repair workshop 2 2 corrupt OK discont. time OK
Repair workshop 3 2 discont. time corrupt corrupt OK
Behind houses 1 2 discont. time OK discont. time OK
Behind houses 2 2 discont. time OK discont. time OK
Behind houses 3 2 discont. time OK discont. time OK
Support garage 1 1 discont. time OK discont. time OK
Support garage 2 1 corrupt corrupt discont. time OK
Support garage 3 1 OK corrupt discont. time OK
Support garage 1 2 OK corrupt discont. time corrupt
Support garage 2 2 corrupt corrupt discont. time corrupt
Support garage 3 2 corrupt OK discont. time OK
Skid pad between tents 1 1 OK corrupt discont. time OK
Skid pad between tents 2 1 OK OK corrupt corrupt
Skid pad between tents 3 1 discont. time OK discont. time corrupt
Transport tent 1 2 discont. time OK corrupt corrupt
Transport tent 2 2 discont. time corrupt corrupt OK
Transport tent 3 2 discont. time OK discont. time OK
Transport tent 4 2 discont. time OK corrupt OK
Transport tent 5 2 OK OK discont. time OK
Transport tent 6 2 OK OK discont. time OK
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C. Calibration results

Table C.1: Calibrated values for x for the front lidar, while it was mounted in
position 1. The manual measurement was used as initiation for the minimisation
method. Value for z was not included in the calibration.

Cal. no.# Data set Lidar
pos. x[m] y[m] z[m] rx[◦] rx[◦] rz[◦]

1 Skid pad 1 1 4.023 -0.040 1.690 74.01 -1.60 88.60
2 Skid pad 2 1 3.983 -0.045 1.690 74.01 -1.58 88.46
3 Skid pad 3 1 4.037 -0.026 1.690 74.09 -1.66 88.68
4 Skid pad side 1 1 4.066 -0.060 1.690 74.09 -1.66 88.38
5 Skid pad side 3 1 4.059 -0.061 1.690 74.01 -1.70 88.32
6 Repair workshop 1 1 3.999 -0.016 1.690 73.83 -1.40 88.68
7 Repair workshop 3 1 3.993 -0.010 1.690 74.81 -1.40 88.68
8 Behind houses 1 1 3.998 -0.045 1.690 74.51 -1.40 88.60
9 Behind houses 3 1 4.012 -0.045 1.690 74.75 -1.80 88.46

Average 1 4.019 -0.039 1.690 74.23 -1.58 88.54
Std. dev. 1 0.030 0.018 0 0.36 0.15 0.14

Manual measurment 1 3.978 0.005 1.690 74.0 0.0 90.0

Table C.2: Calibrated values for xcal for the front lidar, while it was mounted in
position 2. The manual measurement was used as initiation for the minimisation
method. Value for z was not included in the calibration.

Cal. no.# Data set Lidar
pos. x[m] y[m] z[m] rx[◦] rx[◦] rz[◦]

1 Skid pad 2 2 3.988 0.005 1.690 69.07 -1.62 88.36
2 Skid pad 3 2 3.998 -0.036 1.690 69.65 -1.72 88.18
3 Skid pad side 3 2 3.949 -0.016 1.690 69.71 -1.62 88.78
4 Repair workshop 1 2 3.954 -0.015 1.690 69.85 -1.76 88.36

Average 2 3.972 -0.016 1.690 69.57 -1.68 88.42
Std. dev. 2 0.024 0.017 0 0.34 0.07 0.25

Manual measurment 2 3.928 0.005 1.690 69.9 0.0 90.0
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