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We have analyzed the interplay of ITG turbulence and zonal flows as derived by the reductive

perturbation method. Not surprisingly, the overall transport level depends strongly on the physics

description of ITG modes. In particular, the fluid resonance turns out to play a dominant role for

the excitation of zonal flows. This is the mechanism recently found to lead to the L-H transition

and to the nonlinear Dimits upshift in transport code simulations. It is important that we have here

taken the nonlinear temperature dynamics from the Reynolds stress as the convected diamagnetic

flow. This has turned out to be the most relevant effect as found in transport simulations of the L-H

transition, internal transport barriers, and Dimits shift. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4964772]

I. INTRODUCTION

The problem of the normalization of drift wave turbu-

lence has been a well known problem in turbulence simula-

tions since it was discovered that drift wave turbulence, due

to its quasi-2D nature, has an inverted cascade,1,2 feeding

energy into the longest wavelengths as determined by the

system size. The problem arises since, when the amplitude

of the longest wavelengths becomes dominant, also the cor-

relation length gets comparable with the system size thus

leading to exceedingly strong transport. Thus, in the absence

of a damping mechanism for long wavelengths, the transport

may not saturate at all. Zonal flows3 or the similar more cir-

cular structure convection cells in drift wave turbulence have

essentially two important effects. First, they are the natural

mechanism for the damping of long wavelengths. Second,

they are responsible for different types of transport barriers

when active at the correlation length. In fact, experience

from turbulence codes indicates that absorbing boundaries

are needed for both long and short wavelengths in order to

have the right experimental level of transport. The diffusivity

will then be of the type

vi ¼
c3=kr

2

xr
2 þ c2

: (1)

Transport coefficients of the type (1) or its simplified

Markovian version (c/kr
2) are the central parts of almost all

transport coefficients discussed in the following.4–41 The

type (1) was first obtained in Ref. 4 for the diagonal part of

the thermal conductivity, with further details in Refs. 5–8

and later in Ref. 10. As it turns out, all we need to obtain the

type (1) is to have a linear growth rate that is balanced by a

nonlinear ExB convection which is entirely stabilizing.

Thus, while the turbulence in Refs. 4–8 was of a reactive

toroidal type, the turbulence in Refs. 9–11 was driven by col-

lisions. Important aspects are also that the quasilinear deriva-

tions in Refs. 4 and 6–8 included also a Doppler shift due to

the magnetic drift while the derivations in Refs. 5 and 10

were strongly nonlinear, the derivation in Ref. 10 confirming

the validity of a quasilinear treatment here. The need for

absorbing boundaries for both short and long wavelengths

enters through the condition that ExB convection is entirely

stabilizing.

Second, we know that transport barriers sometimes

develop in tokamak plasma. Here, experience from transport

codes, including the strongly nonlinear Reynolds stress,

shows that zonal flows can trigger and maintain such barriers

both at the edge34,36 (H-mode) and internally.35 In such

cases, zonal flows have become important at the correlation

length. The correlation length is determined by the mode

number of largest linear growth rate as normalized by the

drift frequency. This was found numerically already in Ref.

4 and was recently explained in Ref. 18. The same thing has

recently been observed to be the reason for the nonlinear

“Dimits” upshift,14 which is a nonlinear increase of the criti-

cal temperature gradient for transport. As recently found, it

is the poloidal rotation driven by the temperature gradient

that triggers both the internal transport barrier and the L-H

transition.34–36 However, here it is not the temperature gradi-

ent itself but rather the temperature length-scale Lt¼�T/dT/

dr which is important. This means that the triggering of inter-

nal and edge barriers is somewhat different. In our present

model, zonal flows are enhanced by the fluid resonance in

the energy equation. This has turned out to be important in

particular, for the Dimits shift.

As we have seen, zonal flows play important roles for

several types of transport barriers. An important aspect is

here also that zonal flows are reducing the correlation

length26,27 which contributes to reducing transport. Because

of this, zonal flows are also a leading candidate for providing

the needed damping mechanism for waves with wavelength

of the system size. Since zonal flows are driven by the

ponderomotive force of the Reynolds stress, it is obvious

that we need waves propagating in both poloidal directions

in order to create nonlinear structures of the zonal flow type

that do not vary in the poloidal direction. It was clearly dem-

onstrated by Wakatani and Hasegawa11 that the turbulence

of collisional drift waves does not saturate if we allow the
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propagation of drift waves in only one poloidal direction. It

was also found that the saturation level of the turbulence

increases if we disturb the symmetry between the two poloi-

dal directions by including Landau damping. There are sev-

eral different numerical codes giving different results for

important phenomena. For the Dimits shift, however, we

believe that a fully nonlinear kinetic model as used by

Dimits12 and our reactive fluid model14 are the only models

which work. It is also very interesting to note that the

Hasegawa–Wakatani model11 with zero ion temperature

gives the same transport coefficient as the diagonal part of

our transport coefficient4–8 for ion temperature, also omitting

the Doppler shift due to the magnetic drift.

These models have the common feature of using a reac-

tive fluid closure. For the Hasegawa–Wakatani model this is

exact and comes as a consequence of zero ion temperature.

In our case, it comes as a consequence of using only

moments with sources in the experiment and treating this

system self consistently. Clearly, adding a dissipative wave

particle resonance in a fluid treatment means that we include

infinitely many moments that are not treated self consis-

tently. The reactive closure, with finite ion temperature, then

leads to the same normalization of transport as in the

Hasegawa–Wakatani system.10 In fact, the fluid resonance in

the energy equation plays a central role in most phenomena

of interest here. The fact that it should be treated as exact

was pointed out in Ref. 17. Here we note that it leads to the

same type of diffusivity as found in Ref. 10.

A. Formulation

We will in this work focus on transport in an advanced

fluid model.4–8 This model has recently been able to repro-

duce the spin-up of poloidal momentum in internal transport

barriers35 and the L-H transition36 in more complete

versions. However, the basic trigger is, in both cases, the

excitation of poloidal rotation by the Reynolds stress. The

simplest case of this is the electrostatic case with Boltzmann

electrons. This case is simple enough to be derived analyti-

cally. We will here recall the mechanism using the Reductive

perturbation method.13,15,17,28

We start with a description of the equations used in sim-

ulations of the Dimits shift. The energy equation is

3

2
nj

@

@t
þ vj � r

� �
Tj þ Pjr � vj ¼ �r � qj (2a)

with closure

qj ¼ q�j ¼
5

2

Pj

mjXcj
ejj � rTj

� �
: (2b)

Now using

r � q�j ¼ �
5

2
nv�i � rTi þ

5

2
nvDi � rTi (2c)

and taking into account cancellations between convective

diamagnetic effects we obtain

dTj

Tj
¼ x

x� 5xDj=3

2

3

dnj

n
þ x�e

x
gj �

2

3

� �
e/
Te

� �
: (2d)

Eq. (2d) is fundamental for the model in general and in

particular, for the spin-up of poloidal momentum through

the Reynolds stress. The presence of the temperature

dependence of the Reynolds stress has recently been recog-

nized also by other authors.33 Eq. (2d) contains both con-

vective and compressional effects in combination with the

fluid resonance. If we apply these equations only for ions,

taking Boltzmann electrons, we will get the toroidal ITG

mode. We note that in this case, using quasi-neutrality in

(2d) simplifies our equations very much and we get a sec-

ond degree dispersion relation if we ignore parallel ion

motion.

Thus Boltzmann electrons means

dne

Te
¼ /

_

¼ e/
Te
: (3)

We then get the quadratic local dispersion relation4,6

x�e
Ni

x 1� enð Þ þ gi �
7

3
þ 5

3
en

� �
xDi

�

�k2qs
2 x� x�iTð Þ

x
x�e
þ 5

3s
en

� ��
¼ 1; (4a)

Ni ¼ x2 � 10

3
xxDi þ

5

3
xDi

2; (4b)

where en¼ 2Ln/R. It is here straight forward to include paral-

lel ion motion as6

vjji ¼
kjj

xmi
euþ dTi þ Ti

dni

n

� �
: (4c)

However, this leads to considerably more complicated

equations.

This system has, with electron trapping,22 given trans-

port in surprisingly good agreement with experiments apply-

ing standard quasilinear fluxes.22–24 Electron trapping also

gives us particle and electron temperature transport, includ-

ing possibilities for pinches.22,24 However, already the sim-

ple ITG mode had first given good agreement (except for

Dimits shift) with nonlinear simulations in the Cyclone sim-

ulations.12 These results, of course, depend on the fluid clo-

sure which was recently verified in Ref. 21. Ref. 21 also

resolves an apparent contradiction between Refs. 19 and 20

and 8 and 13. In Refs. 19 and 20 three slab ITG modes are

considered while in Refs. 8 and 13 toroidal ITG modes are

considered. While the gross oscillations between the modes

are here due to three wave interaction, periodic wave-

particle interaction effects are superimposed on these. This

is shown in Refs. 6 and 7. The numerator of the kinetic inte-

gral is the same for slab and toroidal modes. However, for

toroidal modes, the magnetic drift frequency is added in the

denominator. This changes the phase of the wave-particle

oscillations so that the wave particle resonance is destabiliz-

ing linearly for slab modes while it is stabilizing linearly for

toroidal modes.
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II. TRANSPORT AND BOUNDARY CONDITION
FOR LONG WAVELENGTHS

As mentioned above, we first applied standard quasilin-

ear theory to the system (2)–(4). We then obtained the satu-

ration level by balancing linear growth and nonlinear terms

(we take x¼xrþ ic)

cdT ¼ vE � rdT: (5)

This gave for inverse correlation lengths

eu
Te
¼ c

x�e

1

kxLn
: (6a)

We now generalize the usual wave breaking limit to include

a finite eigenfrequency.

With the displacement

n ¼ � 1

ix
vE ¼ �

1

ixB
ejj � r/
� �

;

we find (cf. Ref. 6, p. 52)

jnxj ¼
c
jxj

1

kx
: (6b)

Here nx acts as the step length in the transport. It is reduced

by the real eigenfrequency. The usual mixing length expres-

sion for transport is then generalized to (cf. Ref. 6, p. 52)

vi ¼
c3=kr

2

xr
2 þ c2

: (7)

This result was directly confirmed numerically by nonlinear

turbulence simulations4 but also later confirmed for particle

transport using extensive analytic calculations and simula-

tions.10 The common form (7) is due to having the corre-

sponding balance at saturation (5) and extending a large eddy

simulation (LES) up to the correlation length. It was also

pointed out in Ref. 10 that the result is insensitive to the

detailed structure of the high k spectrum. In (7) xr is due to a

rocking of the turbulent eddies which reduces transport. It was

also found in Ref. 10 that the linear eigenfrequency here is a

good approximation. This is a non-Markovian effect5 and (7)

goes into the usual c/kx
2 result by Kadomtsev when c2� xr

2.

We notice that the nonlinearity is entirely stabilizing in

(5). This means that we have no reflections from the bound-

aries in k-space. For long wavelengths, this requires zonal

flows which are thus implicitly assumed in (6a).

The similarities between energy and continuity equa-

tions even lead us to derive a Hasegawa–Wakatani system

for temperature dynamics as seen in Ref. 16. Of course the

generation of transport barriers requires the turbulence to

drive rotation. This is in our present model due to the

Reynolds stress and this is a strongly nonlinear effect. Thus,

the transport code is no longer quasilinear. The main trigger

of transport barriers as well as of the Dimits shift is the spin-

up of the poloidal rotation as described by Eq. (8)

Cp ¼ hvErvhi ¼ �D2
Bkrkh

1

2
/̂
�

/̂ þ 1

s
p̂i

� �
þ c:c: (8)

We here use only the ExB motion for convection while both

ExB and diamagnetic drifts are convected. This leads to the

presence of the pressure perturbation in (8) and in it the tem-

perature perturbation is given by (2d). This gives us a feed-

back since an increased temperature gradient (increased flux)

gives us an increased temperature perturbation which in turn

increases the Reynolds stress, thus reducing the flux. When

the flux is reduced, the temperature gradient is also reduced

and ultimately the turbulent flux is turned off. This mecha-

nism is the same for internal and edge transport barriers. The

mechanisms for internal and edge transport barriers are,

however, slightly different since it is actually the tempera-

ture length scale which is important for turning off the insta-

bility. At the edge there is no problem since the barrier is

formed just inside the separatrix where the temperature is

kept fixed. Thus a reduction in the temperature gradient

(flux) directly gives a reduction of the length scale. For an

internal barrier, however, the situation is different because

there, in principle, the temperature and temperature gradient

can decrease at the same time, thus keeping the length scale

unchanged. However, if we have small magnetic shear at the

barrier, the transport is small and the temperature is kept

small by the fact that the transport increases outside this

point due to increased magnetic shear. Another important

point here is that the temperature perturbation (2d) contains

the fluid resonance. This resonance is strongest for the reac-

tive fluid resonance and will be reduced if we add a kinetic

resonance as done in gyro-Landau fluid models. This has

been directly shown by the Dimits upshift which is smaller

in gyro-Landau fluid models. This is also the reason why

gyro-Landau fluid models give too large transport, in

general, a factor between 2 and 3 to large transport in the

Cyclone tests. This has to be compensated by renormaliza-

tion in transport codes using such models.29,30 This has

been discussed in Progress in ITER Physics basis30 where

this renormalization gave about a factor 2 increase in the

fusion Q for pedestal temperature 4 KeV. We note that the

mechanism used here was also the active trigger in the sim-

ulation of the L-H transition on EAST.36 There we

obtained the same region for gradients on the H-mode ped-

estal as previously found by local, fully nonlinear turbu-

lence simulations.31

The fact that it is zonal flows that give the damping of

long wavelengths was particularly clear from the fully non-

linear turbulence simulations in Ref. 11. There it was found

that no saturation of the turbulence (and accordingly trans-

port) occurred if only modes propagating in the electron drift

direction were included. However, when also modes propa-

gating in the ion drift direction were included there was satu-

ration. Obviously both directions are needed for creating

modes of the zonal flow type with no poloidal variation due

to nonlinear beating. It was also found that the transport

increased when linear Landau damping was included. Again

the interpretation that this introduced an asymmetry between

the poloidal directions of propagation is obvious. In Ref. 10

there was an averaging over the poloidal variation leading to

E kð Þ ¼ 1

2
k

þ
F kð Þdh ¼ pkhF kð Þih �

1

2
L kð Þ; (9a)
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where

FðkÞ ¼ hk2jukj2i (9b)

and

k ¼ keih:

We introduce

W kð Þ ¼ AF

ðk

k0

k2L kð Þdk þ 1

2
k2DF kð Þ
� 	2

; (9c)

where k0 is the minimum k determined by the system size

and AF is a constant of order 1.

Analytical calculations in Ref. 10 lead to

d

dk
W kð Þ ¼ 2

9k
cL kð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL kð Þ2 þ 6W kð Þ

q� �2

; (9d)

where cL is the linear growth rate and the boundary condition

W k0ð Þ ¼
1

2
cL k0ð Þ2: (9e)

This analytical solution is consistent with (1) and is also in

excellent agreement with numerical simulations in Ref. 10.

In the equations used in our transport code, (7) is just

the kernel. Our full derivation uses the flux

Cr ¼ hdTivEri ¼ �v
dT

dr
;

where dTi is given by (2d) including all drift frequencies. As

indicated above, flow shear leads to a damping of instabil-

ities. This has been noticed early but the formula generally

used today is the Waltz rule39,40

c! c� xExB; (10)

where xExB is the flow shear rate proportional to the flow

shear d Vh/dr in a cylindrical system. The simplest transport

coefficient with Boltzmann electrons is then

vi ¼
1

gi

gi�
2

3
�10

9s
en

� �
c�xExBð Þ3=kr

2

xr�
5

3
xDi

� �2

þ c�xExBð Þ2
: (11)

We notice that we recover (7) if we omit flow shear and off

diagonal terms and finally ignore the Doppler shift due to the

magnetic drift. The magnetic drift is due to the fact that the

ions move with this drift velocity. The radial magnetic field

is obtained from ion radial force balance

Er ¼ BhVu � BuVh þ
1

eZni

@Pi

@r
; (12)

xE�B ¼
r

q

@

@r
qVEh=rð Þ; (13)

where Veh¼�Er/B. In our code we simulate both poloidal

and toroidal fluid fluxes which are then inserted into (12) to

give the radial electric field. Then the flow shear is calculated

from (13). As it turns out, it is usually the poloidal rotation

which triggers particularly interesting phenomena like inter-

nal and edge transport barriers and Dimits shift. We will

thus focus on the poloidal flux, given by (8) where we add

neoclassical damping. The transport equation for poloidal

flux in our code is then

@Uh

@t
þ @

@r
Cp ¼ Sv: (14)

Here the source will contain neoclassical damping.

III. ZONAL FLOWS

Eq. (8) is the equation we use for numerical calculation

of the poloidal rotation. It is also possible to make the calcu-

lation analytically using a suitable ordering scheme. For sim-

plicity, we will here show this without including electron

trapping. We then use the Reductive perturbation scheme28

in the nonresonant case

f ¼
X

a

X
l

eafl
aðx; n; 1Þeil½kjjzþkyy�xt� þ c:c

þ
X

n

e2nf0
4=3þð2=3Þnðx; n; 1Þ; (15)

where we used standard slab coordinates and x¼ x,

n¼ e(y�kt), and f¼ e2t. In the present nonresonant ordering,

f does not enter. In (15) z is the toroidal coordinate, which is

ignorable in the linear calculations and which is multiplied

by its complex conjugate to obtain the nonlinearly driven

zonal flow. Thus, z does not appear explicitly in the follow-

ing. Here e 	 1 is the expansion parameter and k is a con-

vective velocity which will turn out to be the group velocity.

We have here given the nonresonant ordering, as used in

Ref. 15. However, its stationary limit coincides with the res-

onant ordering in Ref. 17 for the zonal flow amplitude It is

used in Ref. 17 for estimating the nonlinear upshift.

Our notations are: qs ¼ cs=Xci, ion sound speed cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, ion gyro-frequency Xci ¼ eB=mi, vdi and vde are

the ion and electron magnetic drift velocity, respectively. gi

is the ratio of the density gradient scale length and the tem-

perature gradient scale length, i.e., gi � nijrTij=ðTijrnijÞ.
Note that the perturbed electric potential u has been normal-

ized, i.e., / ¼ eu=Te. Here, we assumed Boltzmann elec-

trons, thus keeping only the Hasegawa–Mima nonlinearity.

We will here be mainly concerned with flows. The low-

est orders will here give the linear dispersion relation and the

group velocity k.

To first order we get the linear dispersion relation (see

Ref. 6 page 160 for the derivation)

x2 þ 10

3s
xxd þ

5

3s2
xd

2 � 5

3s
kjj

2cs
2 1þ xd

sx

� �

¼ x x�n � xdeð Þ �
1

s
gi �

7

3
þ 5

3
en

� �
x�nxd

�k?
2qs

2 xþ 1þ gi

s
x�n

� �
xþ 5

3s
xd

� �

þ xþ 5

3s
xd þ

1

s
gi �

2

3

� �
x�n

� �
kjj

2cs
2

x
: (16)
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Here we introduced xxn as the electron diamagnetic drift fre-

quency with only density gradient and s¼Te/Ti. In order to

obtain an eigenvalue equation41 we now temporarily intro-

duce polar coordinates:

y! rh; kjj ! �
i

qR

@

@h
: (17)

After solving the quadratic eigenvalue solution in strong

ballooning we have for the unstable branch6

x ¼ xL ¼
x�n
2

1� en 1þ 10

3s

� ��

� 1

s
1þ gi þ

5

3
en

� �
ky

2qs
2

�
� icd; (18a)

cd ¼ 1þ 5

3s

� �
enjsj
4q

x�n; (18b)

where q is the safety factor and s¼ (r/q)dq/dr where r is the

local plasma radius.

By differentiating (16) we get the group velocity

k¼ @x
@ky
¼ x

ky
� 1

ky

ky
2qs

2

x 1þky
2qs

2
� �

�xL
xþ 5

3s
xde

� �"

� xþ1þgi

s
x�n

� ��
: (19a)

We finally obtain our equation for the flow dynamics

from the vorticity equation to order e2.

We introduce

U ¼ vn � vdeð Þ k 1þ 5

3s

� �
� 5

3
vdi 1þ 1

s

� �" #

þ gi �
2

3

� �
vn vdi þ

k
s

� �
; (19b)

where vn is the electron diamagnetic drift with only density

gradient. Integration over n and using the linear relation (2d)

finally leads to the excitation level of zonal flows.

We assume a standing wave structure in the x direction

with box size L

u
_ 1

1 x; n; sð Þ ¼ / n; sð Þ
ffiffiffi
2

L

r
sin kmxð Þ: (20)

We find that the stationary state, where the f derivative van-

ishes, is the same as the nonresonant state, i.e.,

u
_ 2ð Þ

0 ¼ F
@

@x
j/
_

1ð Þ
1 j

2
(21)

F ¼ ky
2qs

2cs 1þ C xð Þ½ �kmL

km kþ 1

s
1þ gið Þvn �

U

4km
2qs

2N
vdi

� � sin 2kmxð Þ; (22)

where C xð Þ¼ 1
x�5

3
xDi

2
3
xþðgi� 2

3

� �
x�e� and N¼k k� 10

3
vdi

� 	
þ5

3
v2

di.

We here took the second harmonic part in the x variation

since that gives stronger flow shear. This is the nonresonant

solution for the excitation of zonal flows by ITG modes. We

here still have the resonance from the fluid resonance in the

energy equation as contained in C. This resonance here

comes from the diamagnetic drift in the Reynolds stress.

Although the corresponding resonance in the energy equa-

tion is quadratic, the resonance from the Reynolds stress is

wider and has turned out to be more important in numerical

simulations.

For practical purposes we, however, use Eq. (8), which

has a more general ordering and has been widely tested, for

this purpose.

IV. NUMERICAL RESULT

Our main result for the excitation of zonal flows is Eq.

(22). Thus we take the radial electric field, Er as

Er ¼ �
@u0

2ð Þ

@r
(23)

and use (13) to get the flow shear. As it turns out, the present

ordering is not completely identical to the ordering in the

numerical solution. Thus, while the numerical solution used

khqs¼ 0.3 (actually (0.1)0.5¼ 0.316) and km¼ kh, we have

here used km¼ kh/2
0.5 for the analytical solution. This may

sometimes be realistic near marginal stability before the non-

linear mixing has reached full strength. Then, using the

Cyclone base-case data we obtain the result in Fig. 1.

A. Gyro fluid resonance

As is seen from Fig. 1 there is a very strong resonance at

marginal linear stability in the reactive model. We are now

FIG. 1. (a) Ion thermal conductivity for a scan in the Cyclone (Ref. 10) gra-

dient. (b) Linear growth rate (full line) and flow shear (dashed line) for the

same scan as in (a).
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interested in comparing with a gyro-Landau fluid model. The

main reason for this is to show that zonal flows are much

weaker in gyro-Landau fluid models in order to explain the

vast difference in normalization which had to be introduced

artificially for gyro-Landau fluid models. Here we use the

gyro fluid resonance according to Refs. 33 and 34. We have

previously used these in Ref. 11. The model is

r � qj ¼ r � q�j þr � qGf ; (24a)

where

r � qGf ¼
9

8
�

ffiffiffi
2
p
þ i

� �
xDendTi: (24b)

After adding the gyro-Landau fluid resonance (24) the reso-

nance in Fig. 1 changes significantly as shown by Fig. 2.

Our first observation is here that while the reactive non-

linear upshift, in Fig. 1(a), is close to that of Dimits (thresh-

old near 6), the nonlinear upshift in Fig. 2(a) is close to that

of the IFS-PPPL model in Ref. 12. However, the most

remarkable difference here is the difference between the

flow shear (wexb) in Figs. 1(a) and 2(a). The reason is that

here the dissipative resonance enters in the denominator of

(2d) thus detuning the resonance in the temperature perturba-

tion which enters in the Reynolds stress (8). As was pointed

out in Ref. 17, our fluid model amounts to treating the fluid

resonance as exact, thus allowing us to go infinitely close to

it. Thus, we expect the gyro-Landau resonance to detune it

strongly. However, a consequence of treating the reactive

fluid resonance as exact is that we must include it by multi-

plying by the denominator. This, of course, implies that also

the numerator of (2d) will have to vanish at the pole. The

present calculation verifies that we still have a strong singu-

larity at the fluid resonance. The same result was, in fact,

obtained in Ref. 13 but there we calculated a zonal flow from

the convective nonlinearity in the energy equation. However,

the resonance was the same, i.e., the pole in (2d). Thus,

although the nonlinear upshifts in the reactive and gyro-

Landau fluid models were in good agreement with Ref. 12 it

is actually the very strong difference at marginal stability

that is of main interest here. This is since the zonal flow in

the reactive model is so much stronger than that in the

gyro-Landau fluid model This is the reason for the need to

normalize gyro-Landau fluid models against nonlinear gyro-

kinetics.29,30 We have already noticed that Landau damping

gives an increased transport in the Hasegawa–Wakatani

model11 since it introduces an asymmetry between waves

propagating in the two possible poloidal directions. In our

case we get a very strong difference in the strength of zonal

flows when dissipative wave-particle resonances are intro-

duced. The validity of our reactive closure was verified very

clearly in Ref. 21. Another point is that the gyro-Landau fluid

model here gives much less overall transport than it gave in

the Cyclone tests. This is because the gyro-Landau fluid

model here was normalized in the same way as the reactive

model in Fig. 1 while, in the Cyclone work, it had its natural

normalization where the weak zonal flows were not able to

create an absorbing boundary for long wavelengths.

V. CONCLUSIONS

Recent simulations of internal transport barriers on JET,

the L-H transition on EAST, and the Dimits nonlinear upshift

in the Cyclone work have, as pointed out previously, shown

the importance of including the temperature perturbation in

the Reynolds stress. In fact, the fluid closure, as expressed by

the reactive resonance in (1) is of utmost importance for

dynamic phenomena of drift waves involving temperature

dynamics in magnetized plasmas. The most easily inter-

preted phenomena is the Dimits nonlinear upshift. The first

attempt to understand the upper boundary of this was the

effect of higher order nonlinear decay of the zonal flow,31

ignoring drift terms that are of the same order as the basic

generating terms. A more recent attempt was made in Ref.

33 where the formulation goes directly into drift wave

action. Also here further nonlinear effects were introduced in

terms of a renormalized frequency broadening. However,

these authors also included the temperature dependence of

the Reynolds stress and it will be interesting to see if a modi-

fied isotope effect will eventually come out of this. We here

recall that the nonlinear upshift in the Cyclone simulations

was very sensitive to the resolution in terms of the number

of particles in the codes. The upshift area was more sensitive

to this resolution than other regions in the graph. This clearly

indicates that the nonlinear upshift is closely related to the

wave particle resonance in the kinetic simulations. This is

directly transferred to the reactive fluid resonance in our

simulations as a consequence of our derivation of the fluid

closure in Ref. 21.

Thus, as far as we can see, our simulation of the Dimits

shift in Ref. 14 was the first including the temperature
FIG. 2. (a) Same scan as in Fig. 1(a) but including the gyro-Landau reso-

nance (24). (b) Same scan as in Fig. 1(b) but now again using (24).
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dynamics consistently. We have here shown that we can

derive a strong excitation of the background flow potential u
by systematic and often used ordering relations giving good

agreement with both Dimits original result and our own pre-

vious simulation results. The main conclusion that the limita-

tion of the Dimits shift is due to the detuning of the fluid

resonance is confirmed. The fluid resonance in the energy

equation enters through C giving enhanced excitation close

to the resonance. The procedure of the calculations is to cal-

culate the radial electric field in (12) and from there the flow

shear from Eq. (13). We have then used the Waltz rule37–39 to

obtain the stabilization of the drift waves caused by the flow

shear (13). The resonance of the potential u at the fluid reso-

nance is the same as obtained in transport simulations giving

the L-H transition on EAST35 and the nonlinear Dimits

upshift.12 It is important that we have here taken the nonlin-

ear temperature dynamics from the Reynolds stress as the

convected diamagnetic flow. This has turned out to be the

most relevant effect as found in transport simulations.14,35,36

Thus, is summary, the fluid resonance in the energy equa-

tion is instrumental in obtaining internal and edge (H-mode)

transport barriers and also the Dimits nonlinear upshift. As

found in the present work, the zonal flows get so much stron-

ger in our reactive model than in gyro-Landau fluid models

that they must be the reason for the absorbing boundary

condition for long wavelengths in the reactive model. This

explains why gyro-Landau fluid models have to be normal-

ized against nonlinear kinetic theory as shown in Refs. 29 and

30.

The good properties of the model, already in its original

2d version, are due to the fact that parallel ion motion is sub-

dominant and enters only near marginal stability. For inter-

nal barriers, this means that small magnetic shear can trigger

a barrier since it is stabilizing. However, for edge barriers

and the Dimits shift, the flow shear comes first and takes the

modes near marginal stability. Thus, here parallel ion motion

is not needed for obtaining the phenomenon as such but only

for precision. This means that already our first simple model

in Ref. 4 would be able to describe the Dimits shift at least

qualitatively if we add the dynamics of poloidal rotation.

Thus, the original model in Ref. 4 still has an appreciable

regime of validity!
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