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Abstract

Previous swim start measurements at Chalmers University of Technology involved electromyography (EMG) in order to get an

overall picture of the muscle activation pattern during the swim start. In order to fully evaluate sports performance trainers may

facilitate additional tools, like videography and force plates, to be able to underpin the feedback given to the athletes. However, the

output of the different tools are often complicated and lengthy to handle. Therefore it would be valuable to find an easily applicable

tool to visualize biomechanical data. Feedback to athletes based on scientifically measured variables would then ideally be more

efficient and effective. This paper evaluates three different software tools regarding musculoskeletal modelling and simulation with

quick, meaningful and unambiguous data processing and presentation: OpenSim, BoB and AnyBody. The software package SWUM
was also analyzed as it is currently the only tool that can model forces and buoyancy during swimming. It has been found that

OpenSim is a beneficial tool for academic projects as it is freely available and provides a big pool of users and papers available to

support the user with additional knowledge. BoB is the most straight-forward tool being appropriate for biomechanical teaching

and applications where a fast analysis is required. AnyBody has the most sophisticated model which can be adjusted to the users

demands in great detail and is favorable for investigations with focus on the interaction between the body and the environment or a

detailed medical analysis. Great potential lies in the further development and usage of SWUM as its basic interface with valuable

outputs and simulations as well as the possibility of connecting to AnyBody might allow for advancements in swim training.
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1. Introduction

In elite swim races fractions of a second decide on success or defeat. Therefore the analysis of human motion

has always been of interest in sports so that swimmers can improve every movement of the race. Musculoskeletal

models and simulations driven by previously recorded motion data are nowadays a common method to investigate

motion patterns in detail as it has been understood that muscles and joints - the initial units driving the athlete - should

be investigated further [1–3]. However, the focus of modelling tools in sports including bones and muscles is only

seldomly placed on swimming as numerical simulation in the water environment is demanding [4,5]. Projects like the
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complex CFD crawl model of Keys et al. mainly deal with the flow field around the swimmer and its motion, but do

not comprise musculoskeletal modelling [6]. Another study developed a realistic musculoskeletal swimming model

driven by neural network activations but do not allow for easy customization of the model [7]. Moreover only some

papers discuss the actual usability of these tools for unexperienced persons like trainers and physiotherapists [8].

The work presented in this paper is supposed to be an evaluation of tools regarding musculoskeletal modelling

and simulation with application in swimming. It is intended to investigate whether the properties of the different

software packages permit individual adjustments regarding posture and environment as well as the data import from

various motion analysis modalities used in competitive swim training. This includes videography and force plate data

as well as EMG data from a previously conducted study involving the nowadays most common start dive techniques

of competitive swimming events [9]. Additionally it will be assessed whether a steep learning curve for new users

is achievable and a supporting analysis within a limited time frame is feasible. It is assumed that the application of

a visual, scientific tool in swim training can improve training session by making it more versatile and by explaining

biomechanical concepts in not only numbers and graphs but also images and videos [10,11].

Besides the usage of such tool may aid in a better understanding of potentially injury causing movements and

thereby aid in injury prevention [8,12,13]. As swimmers are predisposed to musculoskeletal injuries like swimmer’s

shoulder, overuse and fatigue, a visual presentation of their muscle usage is assumed to clarify that a correct, versatile

training and a sufficient amount of rest is just as important as the training itself [14,15].

2. Methods

Many tools can be found for a biomechanical analysis of motion capture data in sports. This paper focuses on

the applications which encompass a musculoskeletal representation of the human body allowing the evaluation of

muscle activations during the observed motion. Therefore three differing tools have been selected. The first one is

the plain Matlab-based tool BoB, the second is the more advanced, widely used freeware OpenSim and the third is

the purchasable software AnyBody which is one of the most detailed and multifunctional tools on the market. In

addition to these packages the software SWUM is implemented as it provides the essential calculation of fluid forces

for modelling in swimming.

All tools have been applied from the first step of converting and inputting motion capture data via the detailed

scaling of the model to various analysis procedures. If possible previously captured start dive data from developmental

level swimmers was used (Qualisys motion capture). In case the number or naming of the facilitated markers did not

match the requirements of the software, freely available trial data has been utilized. Additionally forums and direct

conversations with the producers have been consulted to gain an all-encompassing insight into the scope of each tool.

Fig. 1. (a) Lower extremity model of OpenSim; (b) Qualisys motion capture data from the start jump in swimming imported into OpenSim; (c)

OpenSim model follows the markers after performing the inverse kinematics analysis.
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3. Results

3.1. OpenSim

OpenSim is a freely available software package that allows users to build, exchange, and analyze computer models

of the musculoskeletal system and dynamic simulations of movement. A muscle model, an analysis, contact models

or controllers can be designed from scratch (C++) or already existing models from other users can be scaled to newly

recorded movement data for further analysis [8].

Kinematics from motion capture systems can be imported when they have the .trc format [16]. Force plate mea-

surements, center of pressure data or joint angles can be added to the OpenSim analysis when they have the .sto or

.mot format. EMG can only be imported for comparison with the simulation (.sto or .mot files).

Biomechanical data can be analysed by following certain steps: first the size of a predefined musculoskeletal

model is scaled to static marker data recorded for the subject of interest (Fig.1a). The scaling process fits a number of

variables like bone and muscle length, the position of the centre of mass of each bone and the mass of each segment

(incl. bones and muscles) to the recorded subject [17]. Thereafter the inverse kinematics or inverse dynamics analyses

can be performed to calculate joint moments from joint angles and external forces (Fig.1b). Mismatches between

the recorded trajectories and the recorded ground reaction forces are minimized by the Residual Reduction Analysis

(RRA). Static optimization can then be conducted to further resolve calculated net joint moments into individual

muscle forces for each point in time [3]. The whole analysis can then be transformed into a simulation of the complete

movement including the muscular activation of the involved muscles.

3.2. BoB - Biomechanics of Bodies

BoB has the most simple and straight forward interface of the three evaluated tools and allows a visual insight into

joint contact forces, joint torques, movement trajectories and muscular activation. It consists of 36 skeletal segments

and 666 locomotor muscle units. As there is not only one way to use muscles the load distribution is optimized using

sequential quadratic programming. Moreover angles, forces, torques, muscle properties or balancing actions can be

displayed in videos, graphes or lists (Fig.2). The program runs in Matlab and has a simple GUI for parameter insertion

and selection of input files [18,19].

Fig. 2. (a) BoB model with highlighted joint torques; (b) Different colours depicting different muscular activity; (c) various graphes can be selected,

e.g. joint angles throughout the movement.

The inverse dynamics calculator requires four input files (motion, forces, skeleton properties, muscles properties)

and the user defines the duration and time increments of the simulation.

• To define the motion of the model a motion file has to be added (.txt, .csv, .c3d). Each file format requires a

certain naming of the anatomical landmarks and a certain number of them, e.g. a .c3d file needs to come with a
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30 markers arrangement (Vicon naming). BoB will run with missing markers but if it cannot find the necessary

markers to define the segments on either side of the joint, the joint will not articulate. In case an investigation

is lacking markers, the user can create virtual markers by off-setting from real markers (e.g. left front head is

100mm to the left of the right front head) [20].

• External forces or groud reaction forces have to be known and manually inserted into a .txt file (amplitude,

speed/frequency, timing, point of application). In case the user does not know the forces the program can

approximate the forces to a certain extend.

• The skeleton model (.txt file) can be adjusted to height/weight of the subject that produced the motion file.

Possible missalignments of limbs/bones can be modelled as well.

• Information about all considered muscles are stored in a .mat file which can be accessed via the BoB interface

and different muscles can be added/edited/excluded. The insertion of a newmuscle requires all-encompassing

knowledge about its geometry, insertion points, force, fibre length, etc.

After inserting the four input files BoB will calculate the postures of the model and solve the inverse dynamics

problem to determine the loads within the muscles, joints and bones. When the inverse dynamics solver has finished

the play button will animate the motion and will allow the observation of the varying muscle activation. The results

can be displayed in movies, images, tables or graphs using the output drop down menu.

3.3. AnyBody Modeling System

This software tool is the most sophisticated muscular and skeletal model currently available but has to be purchased.

It analyzes musculoskeletal systems as rigid-body systems which allows standard calculation methods of multibody

dynamics. The default human model can easily adapted to the users needs (height, weight, segment lengths, strength,

bone geometries) and beyond that objects, loads and motion conditions can complement the conditions of the task in

question (Fig.3). If the full body model is used 458 muscles are taken into account [21,22].

The environment in the simulation can be modelled (STL format can be imported) e.g. by adding a bike or a

gymmachine to the modelling set-up. EMG can only be used as a validation tool, not as an input to drive the model.

Interfaces to other software like SolidWorks, Ansys, Abaqus, etc. exist and open up new possibilities. The model itself

can be driven by the following inputs:

• motion input can be supplied from .c3d or .bvh files. It is valuable to use a minimum of three markers per body

segment. The model requires input from a 3D motion tracking system.

• force inputs

• environmental input (attaching the skeleton to a moving surface)

• synthetic motion by GUI (moving the skeleton by hand)

Fig. 3. (a) converting the marker positions into a stick model; (b) scaling the model to the properties of the stick model; (c) combining both models;

(d) the Glasgow-Maastricht foot model (Source: Anybodytech) illustrates the level of detail that can be achieved in AnyBody
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Modelling is conducted in the AnyScript language which is a declarative, object-oriented language. Each model is split

into two main sections: the model section (mechanical system, motion, environment) and the study section containing

(operations like kinematical or kinetic analysis). AnyBody makes use of the inverse dynamics approach and resolves

the redundancy problem of muscle recruitment by refering to the central nervous system (CNS). All muscle and joint

forces can be determined as a solution to an optimization problem stating that the CNS wants to minimize the load on

the muscles. AnyBody offers seven different scaling methods where the most advanced one also takes fat percentages

into account [23]. Possible ways of using the software are either changing simple parameters (e.g. load, posture)

in order to compute the muscular reactions during that task or adjusting one of the existing musculoskeletal motion

capture models to a new lab setup by redefining the marker protocol, the availability of force platforms and the lab

coordinate system or completely designing a body model and its environment from scratch. This can be beneficial

when analyzing animals or unstudied joints or postures.

3.4. SWUM - Swimming human model

The model SWUM has been developed to facilitate the musculoskeletal analysis of swimming movements by

solving the six degrees-of freedom absolute movement of the whole swimmers body. It allows the calculation of fluid

forces and buoyancy. An investigation like this allows the determination of the ideal swimstroke by maximizing the

swimming speed and propulsive efficiency [5,24,25].

Fig. 4. (a) SWUM model illustrating inefficient swimming with a dropped elbow; (b) with excessive kicking; (c) with a straight arm during the

catch phase; (d) importing SWUM data into AnyBody then shows a muskuloskeltal model with varying muscle activity levels (Source: SWUM)

The user can change the parameter manually in the different scripts. Currently there is no interface to motion

capture systems to import motion data. The user has to change the positions of each segment for each frame of the

video by changing the abolute angles in the joint motion.dat file. The model is divided up into 21 body segments and

each of these segments is again split up into thin elliptic plates. Fluid force are then calculated for each plate from

its location, velocity and acceleration. Buoyancy is determined for each quadrangle of an elliptic plate by judging

whether it is above or under water. The user can influence the investigation by two means: manual scaling by changing

the body geometry.dat file and specification of the analysis parameters in the analysis settings.dat file. Thereafter an

analysis can be conducted and an animation can be displayed (Fig.4a,b,c) and different graphs (speed, input power,

output power, power efficiency, velocity, etc.) can be shown for the whole body or each segment separately. If desired

AnyBody files can be generated for musculoskeletal modelling in AnyBody (Fig.4d). However, the use of these files in

AnyBody has only been possible for earlier versions of AnyBody.

It has been proven that the results of the SWUM simulation were in good agreement with measured EMG activa-

tions. However, some muscle activations were unreasonably high and the motion data and EMG data have not been

obtained from the same swimmer [26].

4. Discussion

All three observed tools have their advantages and disadvantages, but they are all appropriate for detailed muscu-

loskeletal movement analysis and modelling in the academic environment. The input data and the time available as

well as the focus of a project individually determine the best tool.
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OpenSim provides different already existing models which can take up any desired posture and motion. Inverse

and forward kinematics and dynamics can be realized and the model can also be driven by the CMC tool (computed

muscle control). It is freely available and a large community shares experiences, developed code, extended model

templates and papers with everyone. However, the data input from motion capture systems has to be converted into

the .trc formate and for this procedure no software exists. One has to use the scripts of other OpenSim users and

amend it to taylor it to their application. Additionally the model should be scaled to the body of the analyzed subject

in different scaling files (.xml formate). BoB is a simple tool with a smaller audience which only needs the input of

marker positions from a motion capture system and the manual adjustment of some model parameters in a .txt file.

Even though the model is valuable for basic analysis of motion (e.g. in sports or ergonomics) it is not advanced and

flexible enough for evaluating sensitive medical conditions. The AnyBody modeling system is the most sophisticated

modelling tool. Many interfaces to other software packages exist and thereby open up further opportunities. A

musculoskeletal analysis can be performed under various conditions and with great detail. In order to do so the

user has to learn the facilitated modelling language AnyScript. In AnyBody and OpenSim also animal models can

be constructed an analyzed which extends the scope of their application. The user has to know the necessary bone

geometry (e.g. from medical imaging) and muscular properties for such an application.

It turned out that for all tools a high number of markers as well as an accurate marker placement are vital for an

error-free, smoothly moving model. Furthermore in all cases the marker naming during the motion capture should

correspond with the naming used in the software used for the successive analysis, otherwise later amendments have

to be accepted. Moreover a method for correcting missing or erroneous markers should be kept at hand if a detailed

and precise analysis is sought. In addition to the motion capture data the use of force plates is favorable as for

many operations ground reaction forces are needed and have to be estimated if not available. It has to be noted

that for instance BoB does not conduct any filtering of the recorded motion capture coordinates meaning the user

has to conduct suitable data pre-processing before using the motion capture data for analysis. Furthermore one can

only model the swim start as there is no option for calculating for instance buoyancy. In addition the option of

loading measured muscle activity voltage values - besides motion and force data - into one of the tools to drive the

musculoskeletal models is not yet available. For that purpose other less visual tools have to be used [17,27].

The modelling tool SWUM is quickly understood but it is not possible to import motion capture data. Therefore

the user has to define body geometry and the changing position of all body segments manually, which is a lengthy

procedure and only an approximation of the actual body motion of a certain swimmer. In addition the model lacks

motion constraints which allow impossible movements to be accepted by the simulation. However, the software is

capable of visually demonstrating beneficial or faulty swimming techniques as, for instance, arm angles can quickly

be changed and their effect analysed.

5. Conclusion

OpenSim is a reasonable tool for academic projects as it is a freeware with many users and papers available to

support the user. BoB is the most straight-forward tool being most appropriate for biomechanical teaching and general

motion analysis. AnyBody is the most versatile application which can be adjusted to the users needs in great detail

and is favourable for investigations with focus on the interaction between the human and the environment or surgery

planning. All three tools are complex and time-consuming which emphazises that simulations are still mainly made

for engineering problems and medical decison making and not for an application during time-limited swim training

sessions [28]. Nevertheless, promising potential lies in the use of SWUM as it is a plain software with the unique

feature of modelling fluid forces. Allowing the import of motion capture data to SWUM would be a favourable

advancement. Renewing its connection to the AnyBody Modeling System or even extending its export functions

to freeware tools like OpenSim would enable swimming professionals with limited software knowledge and small

budget to improve their training methods and to facilitate the identification of potentially harmful movement patterns.

However, one has to keep in mind that not all muscular properties including muscle length, contraction velocity,

fiber length, contraction history (e.g. fatigue), pennation angle, tendon elasticity and stiffness can be modelled and

therefore basic assumptions have to be made (e.g. under all working conditions constant muscle strength). Addition-

ally approximations and errors may occur when connecting motion tracking markers and the computer models. With

this knowledge in mind one can apply the discussed software tools and evaluate the outcome of the created models.
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