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ABSTRACT

Current mm/submm interferometers, like the Atacama Large mm/submm Array (ALMA), use receivers that register the sky signal in
a linear polarization basis. In the case of observations performed in full-polarization mode (where the cross-correlations are computed
among all the polarization channels) it is possible to reconstruct the full-polarization brightness distribution of the observed sources,
as long as a proper calibration of delay offsets and leakage among polarization channels can be performed. Observations of calibrators,
preferably with some linear polarization, with a good parallactic angle coverage are usually needed for such a calibration. In principle,
dual-polarization observations only allow us to recover the Stokes I intensity distribution of the sources, regardless of the parallactic
angle coverage of the observations. In this paper, we present a novel technique of dual differential polarimetry that makes it possible to
obtain information related to the full-polarization brightness distribution of the observed sources from dual-polarization observations.
This technique is inspired in the Earth-rotation polarization synthesis and can be applied even to sources with complex structures.
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1. Introduction

Polarization is an essential source of information in the study
of astronomical objects. Polarization can be recorded in two
different ways, using receivers with either circular- or linear-
polarization feeds. At mm/submm wavelengths, new-generation
interferometers like ALMA are being equipped with linear po-
larization feeds, which decouple the sky signal into two streams
of linear polarization, one horizontal (with respect to either the
antenna axis or the frame of the receiver feed), called X, and one
vertical, called Y . These receivers have a high polarization pu-
rity, which does not degrade for wide bandwidths. This is not
the case for circular-polarization receivers.

There are, however, some disadvantages of linear-
polarization receivers used in interferometric observations, such
as a more complex parallactic-angle correction when the base-
lines involved are very long, or some degeneracies in the
calibration when the calibrators are linearly polarized and the
parallactic-angle coverage is not good enough (this limitation is
also present in circular-polarization feeds, although to a lower
extent).

A common calibration and analysis of interferometric ob-
servations on a linear-polarization basis only provides full-
polarization information of the source structure when the obser-
vations are performed in the so-called full-polarization mode. In
this mode, cross-correlations of all the polarization channels of
the antennas are performed: XX, XY , YX, and YY . In principle,
dual-polarization observations (where only the cross-products
XX and YY are performed) would not be sufficient to extract
polarization information of the observed sources as long as we
use an ordinary data reduction approach.

Nevertheless, it is still possible to obtain some polarime-
try information from dual-polarization data. This information is
subtly encoded in the relative values of the visibilities in XX and

YY , and in the time dependence of the parallactic angle, ψ, of
the antennas. The Earth rotation changes ψ and allows us to syn-
thesize the source polarization distribution, through the chang-
ing projection of the source polarization angle, φ on the receiver
axes, X and Y .

The use of the Earth rotation to derive polarimetry infor-
mation of unresolved (i.e., point-like) sources has been used
in single-dish observations (e.g., Trippe et al. 2010). In this pa-
per, we present the new dual differential polarization technique,
which makes use of the ψ dependence of the XX and YY in-
terferometric observations, to derive polarimetry information of
sources with a resolved structure. The performance of the tech-
nique on simulations and real observations is also discussed.

2. Dual differential polarimetry technique

The Stokes parameters I, Q, U, and V encode all the informa-
tion about the polarization state of light. I is the total intensity
(polarized plus unpolarized), Q and U encode the information
about the linear polarization, and V is related to the circular po-
larization. Full-polarization interferometric observations allow
us to reconstruct the sky brightness distribution of each of the
four Stokes parameters, from which we can derive all the po-
larimetric information about the observed sources. When linear-
polarization feeds are used, the cross-correlations XX, XY , YX,
and YY are related to non-redundant linear combinations of I, Q,
U, and V , where XX and YY are only affected by I, Q, and U. In
particular, the XX visibilities are related to the Fourier transform
of the brightness distribution of the sum of Stokes parameters
I + Q (see, e.g. Smirnov 2011a). In a similar way, the YY vis-
ibilities are related to the brightness distribution of I − Q. The
Stokes parameter Q in these expressions is given in the frame
of the receiver (i.e., horizontal and vertical with respect to the
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receiver frame), which is not to be confused with the equatorial
sky frame (i.e., referring to the celestial meridian that crosses
over the source). As a consequence, we must apply a parallactic
angle correction to the visibility matrix (Smirnov 2011a) to ob-
tain the correct relationship between visibilities and brightness
distribution of the Stokes parameters. If the baselines of our in-
terferometer are not very long (so that we can assume the same
parallactic angle, ψ, for all antennas), we can write(
Vxx Vxy
Vyx Vyy

)
= P

(
Vc

xx Vc
xy

Vc
yx Vc

yy

)
PH, (1)

where P is the parallactic-angle matrix (e.g. Smirnov 2011a),

P =

(
cosψ sinψ
− sinψ cosψ

)
, (2)

PH is the Hermitian of P, Vkl are the visibility products between
polarizations k and l, and Vc

kl are the visibilities properly cor-
rected for parallactic angle. For the brightness matrix, we have

(
I + Q U + iV

U − iV I − Q

)
= P

(
I + Q′ U′ + iV

U′ − iV I − Q′

)
PH, (3)

where the Stokes parameters Q′ and U′ are measured in the
frame of the sky (i.e., corrected for parallactic angle), whereas
Q and U are given in the frame of the antenna receivers. When
there are no direction-dependent calibration effects in the data
(this is especially true at mm/submm wavelengths), we also have
(Smirnov 2011a)(
Vc

xx Vc
xy

Vc
yx Vc

yy

)
=

∫
σ

(
I + Q′ U′ + iV

U′ − iV I − Q′

)
exp

(
−2π

B⊥σ
λ

)
dσ, (4)

where σ is a unit vector that runs over the source brightness dis-
tribution (i.e., I, Q, U, and V are functions of σ) and B⊥ is the
projection of the baseline vector into the uv-plane (i.e., the plane
perpendicular to the source direction). We assume that the visi-
bilities are already calibrated for bandpass and amplitude/phase
gains (the effect of polarization leakage is studied in Sect. 2.7).

From the equations above, it is straightforward to show that

Vxx =

∫
σ

(I + Qψ) exp
(
−2π

B⊥σ
λ

)
dσ (5)

and

Vyy =

∫
σ

(I − Qψ) exp
(
−2π

B⊥σ
λ

)
dσ, (6)

where Qψ = Q′ cos (2ψ) − U′sin (2ψ) = Q. According to these
equations, and for small fields of view, the Fourier transform of
Vxx for a constant parallactic angle, ψ, is related to the brightness
distribution of I + Q, where Q is defined in the frame of the
antenna receiver. In a similar way, the Fourier transform of Vyy

is related to the brightness distribution of I − Q.

2.1. Case 1. Perfect amplitude calibration

We now assume that we have a set of interferometric observa-
tions in dual-polarization mode for which the parallactic angles
of all antennas, ψ, are equal and constant. We can reconstruct
the brightness distribution of I + Qψ and I − Qψ by solving the
inverse Fourier equation for Vxx and Vyy, respectively. We call
Iψxx and Iψyy the sky brightness distributions corresponding to Vxx

and Vyy. When φ is the position angle of the polarization vec-
tor (in the frame of the sky) and p is the fractional polarization
(both quantities are assumed to vary throughout the extent of the
source), we have

Iψxx

Iψyy
=

1 + p cos (2(φ − ψ))
1 − p cos (2(φ − ψ))

, (7)

since Qψ = I p cos (2(φ − ψ)). In this equation, I is the bright-
ness distribution of the Stokes I parameter. If the visibility am-
plitudes are perfectly calibrated, the brightness distribution I can
be obtained by inverting the Fourier equation for the sum of vis-
ibilities Vxx + Vyy. Then, the ratio in Eq. (7), together with I, will
provide information on the sky distribution of p and φ through-
out the source. In principle, this is an underdetermined problem
because we have one constraint (Eq. (7)) and two parameters
(p and φ) for each source component in I. However, if we have
observations of the same source under different parallactic an-
gles, we can apply Eq. (7) to different values of ψ. Hence, we
can recover the p and φ distribution by means of a least-squares
minimization applied to each individual component of the source
brightness distribution.

2.2. Case 2. Amplitude bias between Vxx and Vyy

A more realistic case is an imperfect calibration of the absolute
flux scale and/or bandpass for X and Y signals. As a conse-
quence, frequency-dependent global amplitude offsets may ap-
pear between the XX and YY visibilities. This is especially true
for dual-polarization observations, since all the amplitude cal-
ibration is performed in a completely independent way for the
X and Y polarization channels. In these cases, we can still use
Eq. (7), but without computing I from the mere sum of visibili-
ties in XX and YY .

We select a fiducial component in the source brightness dis-
tribution (for instance, the phase center, or the peak intensity).
We call this source component our “fiducial source element”,
FSE. We compute the total flux density of the FSE in the XX
and YY images (we call these values Iψxx0 and Iψyy0, respectively)

and divide the Iψxx and Iψyy brightness distributions by these values.
It is obvious that the ratios Iψxx/I

ψ
xx0 and Iψyy/I

ψ
yy0 are independent

of the absolute flux calibration (and also of the amplitude band-
pass), since they are related to relative changes in the brightness
distribution of the source. These quantities are indeed very ro-
bust against calibration artifacts, since their values are mainly
encoded in the phase and amplitude closures, which are inde-
pendent of the antenna gains. The intensity ratios are related to
the brightness distribution of Stokes parameters in the following
way:

Iψxx

Iψxx0

=
I + Qψ

I0 + Qψ
0

(8)

and

Iψyy
Iψyy0

=
I − Qψ

I0 − Qψ
0

, (9)

where I0 and Qψ
0 are referred to the FSE. We can now construct

a ratio of ratios that depends on ψ, which we call polarization
ratio, Rψ

pol, in the form

Rψ
pol =

1
2

 Iψxx/I
ψ
xx0

Iψyy/I
ψ
yy0

− 1

 . (10)
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Using Eqs. (8) and (9), we obtain

2Rψ
pol + 1 =

I + Qψ

I − Qψ
×

I0 − Qψ
0

I0 + Qψ
0

· (11)

If the polarization percentage is small (i.e., Q � I) we can sim-
plify Eq. (11) and write

Rψ
pol ∼ p cos (2(φ − ψ)) − p0 cos (2(φ0 − ψ)). (12)

In this case, Rψ
pol encodes information related to the difference

between the polarization of any component in the source struc-
ture and the polarization in the fiducial source element, FSE.

2.3. Dual differential polarimetry based on Earth rotation
synthesis

Equation (12) (or Eq. (11), if Q is not much smaller than I) is the
heart of our dual differential polarimetry technique. Given a set
of interferometric observations with baselines short enough to
assume that ψ is the same for all antennas, we can split the data
into snapshots of constant ψ. For each snapshot, we reconstruct
images of the observed source using the Vxx and Vyy visibilities.
Then, we can compute the sky distribution of Rψ

pol for each par-

allactic angle, using Eq. (10). From Eq. (12), the value of Rψ
pol

follows the expression

Rψ
pol = pdif cos (2(φ − α − ψ)), (13)

with

α =
1
2

arctan
(

p0 sin ∆

p − p0 cos ∆

)
, (14)

pdif =

√
p2 + p2

0 − 2p0 p cos ∆, (15)

and

∆ = 2(φ0 − φ). (16)

From Eq. (13), we see that Rψ
pol is a sinusoidal function of the

parallactic angle ψ. The amplitude of the sinusoid is related to
the parameter pdif and the argument is related to the parallac-
tic angle and to the source-dependent quantity φ − α. All these
parameters depend on the difference of the source polarization
between any source component and the FSE. We can derive the
sky distribution of differential polarization in a source (i.e., the
distribution of pdif and φ − α) by means of a least-squares mini-
mization of Rψ

pol as a function of ψ, applied individually to each
component of the source structure.

The fitted values of pdif and φ − α at each source component
can then be compared to model predictions of the source, as is
usually done in the case of full-polarization observations.

2.3.1. Implementation of differential polarimetry in Fourier
space

In the previous section, we have formulated the equations of dif-
ferential polarimetry based on the relative intensity values of dif-
ferent source components in the image plane. We note, however,
that the limited coverage of Fourier space by the interferometer
baselines at each snapshot (which determines the shape of the
point-spread function, PSF, at each parallactic angle ψ), as well

as the shorter (snapshot) integration time, may substantially limit
the dynamic range (and fidelity) in the images.

There is, however, the possibility of using the complete base-
line coverage of the observations (i.e., the PSF corresponding to
the full set of observations) in the differential polarimetry analy-
sis, by means of image parametrization techniques. The Stokes I
image of the source can be reconstructed using all the available
visibilities (i.e., taking advantage of the best possible PSF from
the observations). Then, the differential polarization of the com-
ponents of the (deconvolved) Stokes I source structure can be
performed by means of least-squares visibility fitting.

This is the strategy that we have followed in the tests re-
ported in this paper (Sect. 3): we deconvolved the source struc-
tures (applying the CLEAN algorithm) using the complete set of
observations. Then, we estimated the flux density of each source
component, at each parallactic angle, using the visibility-fitting
software uvmultifit (Martí-Vidal et al. 2014). This strategy is
similar to performing a compressed sensing analysis at each par-
allactic angle (see, e.g., Li et al. 2011), but with a null norm-1
normalization Lagrange parameter (since the sparsity in the im-
age model has already been provided by the CLEAN deconvolu-
tion of Stokes I).

This strategy optimizes the fidelity of the source structure
being analyzed (given the optimum PSF used in the CLEAN de-
convolution) and gives us a reliable estimate of the differential
polarimetry signal, because only the flux densities of the source
components are fitted at each snapshot (so that the fitted source
model is fully linear in visibility space).

2.4. Effects of Faraday rotation

When the rotation measure, RM, varies across the source, it is
possible to measure these variations using Rψ

pol, provided that the
observed fractional bandwidth is wide enough1. This strategy
was used by Martí-Vidal et al. (2015) to determine the RM in
the jet base of a distant active galactic nucleus, AGN, at submm
wavelengths using ALMA observations.

If the rotation measures are different between any pixel of the
image and the fiducial source element, Eq. (16) takes the form

∆ = 2(φ0 − φ) + 2(RM0 − RM)λ2, (17)

(see appendix of Martí-Vidal et al. 2015) and Eq. (13) becomes

Rψ
pol = pdif cos

(
2(φ + λ2 RM − α − ψ)

)
, (18)

where λ is the wavelength and RM0 is the rotation measure at
the fiducial source element. We note that, in this case, the “syn-
thesis” of Rψ

pol is not only performed by the different parallac-
tic angles, but also by the different wavelengths of observation.
However, it is still required to have a minimum coverage of par-
allactic angles, regardless of the observed fractional bandwidth,
to obtain reliable fits of Rψ

pol using Eq. (18). Martí-Vidal et al.
(2015) observed each epoch under different parallactic angles.
This was crucial for them to recover the sinusoidal behavior of
Rψ

pol as a function of λ2 and ψ.
When RM0 is similar to RM, or λ2 |RM0 − RM| � |φ0 − φ|,

or the fiducial source element is unpolarized (i.e., p0 = 0),
then ∆, α, and pdif will be roughly independent of RM0, RM,
and λ2. Thus, Eq. (18) will only depend on RM. This was the
assumption used in Martí-Vidal et al. (2015) to estimate the RM

1 The actual value would depend on the signal-to-noise ratio of the
data.
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in PKS 1830−211. Given that this source is a gravitational lens,
it is plausible to assume that the RM of the lensed images is
similar (being one image the fiducial source element), so that
RM ∼ RM0.

However, in a more general case, RM and RM0 may differ
substantially across the source, so that assuming of a constant
pdif and α in Eq. (18) will bias the estimate of RM. Such a bias
will depend on the difference between φ and φ0 and on the frac-
tional bandwidth of the observations. In Appendix A we discuss
the effects of this bias.

2.5. Effect of feed rotation at the antennas

In some cases the X and Y axis of the receivers rotate with re-
spect to the antenna frame. Then, Eq. (13) (and all the equations
that follow in the next sections) is still valid by adding the feed
rotation angle (we call it β) to the parallactic angle ψ. That is,
ψ→ ψ + β. Then, Eq. (13) becomes

Rψ
pol = pdif cos (2(φ − α − ψ − β)), (19)

where the effect of β is that of a constant angle added to the
cosine. Hence, the dependence of Rpol on the intrinsic source po-
larization (given by both α and pdif) is unaffected by β. In Sect. 4
we discuss the effect of the feed rotation in the ALMA antennas
on the results recently reported in Martí-Vidal et al. (2015).

2.6. Effect of an off-axis receiver

When the receiver horns are not aligned with the axis of the an-
tenna mounts, each polarization channel will have a slightly dif-
ferent beam pattern on the sky. This is related to the well-known
beam squint effect and is present in all the ALMA antennas.
Hence, for the observations of extended sources, the off-axis re-
ceivers of ALMA could introduce a fake differential polarimetry
signal accross the source structure.

We note that the beam squint effect is partially smeared out
during the image reconstruction from the visibilities as long as
the observations cover different parallactic angles. The reason
for this smearing is that the beam squint rotates with the antenna
mounts (being thus a function of the parallactic angle). How-
ever, the feed rotation with the parallactic angle may imprint a
spurious signal in the differential polarimetry analysis. We note,
however, that given the finite pointing accuracy of the antennas, a
fraction of the beam squint effect (over the whole interferometer)
will also be averaged out at each integration time, since each an-
tenna will see a slightly different DDE pattern across the source.
For the ALMA antennas (and according to the ALMA technical
handbook2), the pointing accuracy is about 0.6′′. On the other
hand, estimates of the beam squint (although in a circular polar-
ization basis) are given in Lamb et al. (2001) (Table 6), and are
of the order of a few % of the beam size (2.5% at most).

Even if the ALMA antennas had an infinite pointing accu-
racy, the effects of beam squint (using the values in Lamb et al.
2001) would map into a maximum instrumental Rpol up to 1%
at a distance of one-third of the FWHM from the beam center
(i.e., from ∼20′′ in band 3 to ∼3′′ in band 9). In the observations
of PKS 1830−211 reported in Martí-Vidal et al. (2015), this ef-
fect (given the small separation among the two lensed images)
would fall below 0.15%, which is several times lower than the
signal detected from the source.

2 https://almascience.eso.org/proposing/
call-for-proposals/technical-handbook

We must also note that if there is a time evolution in the
polarized source structure, the value of Rpol at a given paral-
lactic angle evolves in time. However, if the beam squint ef-
fects were to dominate the Rpol signal, all the Rpol measurements
would only depend on the parallactic angle. Martí-Vidal et al.
(2015) reported a time evolution in the differential polarization
of PKS 1830−211 based on comparing Rpol values at similar par-
allactic angles and different epochs. Such a time evolution would
be impossible to explain in terms of effects related to the mere
antenna/receiver geometry.

Another effect related to beam squint would be a spurious ro-
tation measure that is due to the frequency-dependent beam pat-
tern. However, this effect is negligible at high frequencies. For
the observations reported in Martí-Vidal et al. (2015) at bands 6
and 7, the spurious frequency dependence in Rpol for any given
tuning would be below 0.05%, whereas the frequency depen-
dence of Rpol reported in Martí-Vidal et al. (2015) was, in some
epochs, about 100%.

2.7. Effects of polarization leakage

The estimate of Rψ
pol is, by construction, insensitive to bandpass

and/or gain differences of the X and Y signals. The only cali-
bration effect that can change the value of Rpol is the polarization
leakage in the antenna receivers and any cross-polarization delay
or phase. However, the effect of polarization leakage and cross-
delays on the XX and YY products is very small (second-order
corrections) compared to the effect on the XY and YX products
(first-order corrections). Smirnov (2011a) reported that the Jones
matrix for the correction of leakage and cross-phase (or cross-
delay) of the X and Y signals in an antenna is

J =

[
1 0
0 K

]
×

[
1 Dx

Dy 1

]
=

[
1 Dx

DyK K

]
, (20)

where K is a phase-like factor and Dx and Dy are the com-
plex D-terms that model the polarization leakage in the antenna
receivers. Since we do not have cross-polarization products in
dual-polarization observations, it is not possible to solve for K
in the calibration (i.e., to separate it from the phase gains), but,
in any case, its effects on the dual-polarization visibilities will
not be different from a phase added to the YY product. The ob-
served XX and YY visibilities for the baseline formed by a pair
of antennas A and B will be

Vobs
xx = (DA

x Vyy + Vxy)(D∗)B
y + DA

x Vyx + Vxx (21)

and

Vobs
yy =

(
(DA

yVxx + Vyx)(D∗)B
x + DA

yVxy + Vyy

)
KA(K∗)B. (22)

It is clearly seen that Eqs. (21) and (22) are basically symmetric
to each other, with the exception of a global phase-like factor,
KA(K∗)B (i.e., the difference of X–Y cross-delays of antennas
A and B) that will be fully absorbed in the ordinary phase-gain
calibration of the YY visibilities.

We have simulated ALMA observations of two compact po-
larized sources located in the same field of view and checked
the reliability of Rψ

pol against polarization leakage in the antenna
receivers. The two sources were separated by two synthesized
beams, their intensity ratio was set to 1.4, and their linear polar-
izations were 1% (with a position angle, φ1, of either 0 or 45 deg)
and 1.7% (with a position angle, φ2, from 0 to 90 deg, in steps
of 10 deg), respectively. No Faraday rotation was introduced in
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Fig. 1. Simulated Rψ

pol, taking into account effects from polarization
leakage in the antenna receivers. Top panel: fitted Rpol values (circles)
and the model predictions computed from Eq. (11) (solid lines). Bot-
tom panel: difference in Rψ

pol between the fitted values and the model
predictions.

the sources. We simulated ten antennas with leakages of simi-
lar amplitudes and random phases. The amplitude leakage used
was 1% (for ALMA, the leakage level in the antenna receivers
is about 1%, according to the ALMA technical handbook). All
simulated results are shown in Fig. 1. All measured values of
Rψ

pol follow the prediction of Eq. (11). It is also clear that Rψ
pol

is quite insensitive to the antenna leakage. All errors are below
5×10−4. The maximum errors are obtained when the Stokes U
signal is strongest in both sources (i.e., the polarization angles
of both sources are close to 45 deg). This is an expected result
because the leakage from Vxy and Vyx into Vxx and Vyy is larger
for a stronger signal in Stokes U.

In these simulations, we used a random phase distribution
for the D-terms, between 0 and 45 deg, also adding a correlation
between phases of Dx and Dy for each antenna. It is expected
that the phase of one should be 180 deg shifted with respect to
that of the other. We note that even lower errors in Rψ

pol would be
obtained if the phase distribution of D-terms were wider and/or
there were no correlations between Dx and Dy in each antenna.

3. Testing the techique

3.1. Simulations

We tested the performance of our dual differential polarimetry
technique using synthetic data with realistic noise and potential
calibration artifacts. In all our simulations, we used the Common
Astronomy Software Applications (CASA) package of the Na-
tional Radio Astronomy Observatory (NRAO)3. The synthetic
data were generated with an in-house modified version of the
CASA task simobserve. In this version, full-polarization syn-
thetic datasets can be created for sources with a generic po-
larization structure. The parallactic angle correction and effects
of polarization leakage in the antenna receivers are taken into
account.

Our simulation is based on the ALMA full array configura-
tion “alma.out04.cfg”, given in the CASA database. The observ-
ing frequency was set to 100 GHz, with a bandwidth of 10 GHz.

3 http://casa.nrao.edu

An arbitrary source, located at a declination of −21 deg, was
observed from an hour angle of −0.84 h to 0.84 h, resulting in a
parallactic angle coverage of between 100 and 260 deg. The syn-
thesized beam (using natural weighting) was 2.86 × 2.50 arcsec,
with a position angle, PA, of 89 deg. The largest rcoverable scale
(LRS) is estimated to be ∼60′′. In these simulations, we ac-
counted for thermal noise at the receivers, random amplitude er-
rors of up to 5% in each antenna (and independent for X and
Y), random phase offsets of up to 10 deg between X and Y , and
random leakage of up to 2% with random phases of up to 20 deg.

We simulated two cases: (1) an extended unpolarized bright-
ness distribution with an added compact polarized component;
and (2) an extended polarized structure. We discuss these two
simulations in the next subsections.

3.1.1. Extended unpolarized plus compact polarized
emission

In this case, the dual differential polarimetry was performed on
the compact polarized component, and we used the whole unpo-
larized brightness distribution as our fiducial source element. To
simulate the unpolarized extended emission, we used the FITS
image of galaxy M 51 called “M51ha.fits”, which is commonly
used in CASA-related simulations4. The brightness peak of the
model was set to 1 mJy/pixel, which maps into a peak intensity
of 1.35 Jy/beam in the convolved image. The overall size of the
source was set to ∼20′′×30′′. The compact polarized component
was located at about 6′′ south of the galaxy center, with a flux
density of 1 Jy, a fractional polarization of 8%, and a polarization
angle of −80 deg.

A full-polarization image, shown in Fig. 2, was obtained us-
ing an standard CLEAN deconvolution with no self-calibration.
The polarized source is clearly detected, together with a weak
spurious polarization signal close to the galaxy center, likely due
to the polarization leakage.

As we explained in Sect. 2.3.1, we made use of the
uvmultifit program for CASA, a tool for fitting source models
to interferometric visibilities (Martí-Vidal et al. 2014). We fit a
source consisting of two model components to the data. One
of the components corresponds to the complete set of CLEAN
points found in the deconvolution, but removing those within
1′′ from the compact polarized source. The second component
consists of the set of CLEAN points removed from the first
component.

In our modeling, we left the positions of all the CLEAN
points fixed, and only fit the total flux density of each model
component (i.e., the overall unpolarized flux for the first compo-
nent, and the overall polarized flux for the second component)
in both XX and YY . We separated the data into scans of constant
parallactic angle. From the fit flux densities at each parallactic
angle, we computed Rpol as a function of time throughout the
experiment. We show the resulting Rpol measurements in Fig. 3
together with the prediction using Eq. (13). The agreement is ex-
cellent. Given that the extended structure is unpolarized, we can
recover the full polarization state of the compact source from our
measured Rpol. In this case, p0 in Eq. (12) is exactly zero, so that
Rpol vs. ψ encodes the information about the absolute (i.e., not
differential) polarization, p and φ.

4 http://casaguides.nrao.edu/
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Fig. 2. CLEANed full-polarization image of our M51 simulation. Vec-
tor lines are parallel to the electric field. Note the compact polarized
component at the center of the relative coordinates in the image. Owing
to leakage effects, there is also a marginal spurious polarization close to
the center of the galaxy.

3.1.2. Extended polarized emission

An extended polarized source was generated using four elliptical
Gaussian intensity distributions. One, with a full width at half
maximum (FWHM) of 25′′ × 8′′, accounted for the unpolarized
emission. Another with a FWHM 20′′ × 6.5′′, accounted for the
Stokes U emission, and the other two, with a FWHM of 20′′ ×
6.5′′, accounted for Stokes Q (we note that the LRS is ∼60′′). All
the position angles were set to 90 deg (i.e., major axis in the east-
west direction). The Gaussians for Stokes I and U were centered
on the same position and the Gaussians for Stokes Q were offset
by 5 arcsec, one to the east and the other to the west.

We applied an ordinary deconvolution to the whole full-
polarization dataset and obtained the image shown in Fig. 4
(top). The polarization angle clearly swings by ∼90 deg in the
east-west direction, with a minimum of polarized intensity corre-
sponding to the peak intensity of Stokes I. At the peak intensity,
the polarization angle is about 45 deg.

The analysis of dual differential polarimetry for this source
was also performed with the uvmultifit program. We
CLEANed Stokes I (with no polarization calibration applied)
and took each CLEAN delta component as an independent
model component for the fit. The positions of all the components
were fixed, and we only fit the flux densities. All the CLEAN
components were simultaneously fit at each scan (i.e., for each
parallactic angle). The fits were performed separately for the XX
and YY visibilities. The initial flux-density values used in the fit
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Fig. 3. Rpol between the total unpolarized intensity and the compact po-
larized source in our modified model of M51. The points are measure-
ments obtained with our software uvmultifit. The line is the model
prediction of Rpol for this source.

were set to those obtained by CLEAN in the deconvolution of
Stokes I.

The fit provided a set of flux densities for each CLEAN com-
ponent, polarization product (XX and YY), and parallactic an-
gle. Then, for each parallactic angle, we convolved the best-fit
models for XX and YY with the CLEAN restoring beam, and
scaled the resulting images to their values at the peak intensity of
Stokes I (i.e., Iψxx0 and Iψyy0 in Eq. (10)). Thus, the peak intensity

is our FSE. Then, we computed Rψ
pol pixel by pixel for each par-

allactic angle and fit the results at each pixel to the model given
in Eq. (13). We show some example results of these fits in Fig. 5.
From these fits, we obtained the value of pdif and φ − α for each
pixel. These results are shown in Fig. 4 (bottom right). Using the
model Gaussians for Stokes I, Q, and U, we can also compute
the true dual differential polarimetry of the source (Fig. 4, bot-
tom left), and compare it to our image reconstruction. The swing
in the polarization angle is clearly seen in the image reconstruc-
tion and the true model. The fractional polarization (gray scale)
in our reconstruction is also very similar to the model, demon-
strating the reliability of our differential polarization method.

3.2. Test with ALMA Science Verification data

The first released Science Verification (SV) full-polarization
ALMA dataset consists of observations of source 3C 286 in band
6 (hereafter, we just refer to the central frequency in the obser-
vations, 225 GHz). The full description of the data and the cali-
bration procedure can be found in the CASA Guides database5

and in Nagai et al. (2016). We used these SV observations to test
our technique, by comparing our results to those published in the
CASA Guide.

Given that source 3C 286 is only barely resolved with
ALMA, a first impression is that it is probably not possible to test
the differential polarization algorithm with this dataset. How-
ever, we can still use this technique to derive the absolute source
polarization if we use one additional assumption, which we de-
scribe below.

5 https://casaguides.nrao.edu/index.php/3C286_
Polarization
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Fig. 4. Top panel: full-polarization CLEANed image from our simulated dataset of a source with extended polarization. Bottom left panel: distri-
bution of the differential polarization, computed from the source model used in the simulation convolved with the CLEAN restoring beam. Bottom
right panel: reconstruction of the differential polarization from the dual-polarization data, using our fitting approach (see text).

Instead of using a given portion of the target source as the
fiducial source element, FSE, we used the absolute flux calibra-
tor (Ceres). Assigning the role of the FSE to a different source
requires that either the parallactic angles of both sources (refer-
ence and target) are the same throughout the observations (which
is unlikely to happen for any pair of sources on the sky) or that
the reference source is unpolarized (so that the XX and YY visi-
bilities are always the same, regardless of the parallactic angle).

The absolute flux calibrator was used to scale the XX and YY
visibilities to their correct amplitude values. Thus, if we assume
that the overall ratio of gain amplitudes in the array does not
change significantly throughout the observations, we can derive
the Rpol of the target from a simple visibility fitting of the target
flux densities in XX and YY (as a function of the parallactic an-
gle). The details of this analysis are given in the next paragraph.

We performed the bandpass and gain calibration as described
in the CASA Guide of this SV dataset, with the exception that
we applied the same amplitude solution to the two polariza-
tions, thus ensuring that any polarization signal from the phase
calibrator is not transferred to the target (gain type “T” in the
CASA task gaincal). When the absolute flux calibrator (Ceres)
was used to scale the amplitude gains to their respective values,
our calibration strategy diverged from what is described in the
Guide. We applied the phase and amplitude gains of the phase
calibrator to the target and split the data for imaging. Obviously,
no parallactic angle correction was applied in the calibration.

We note that at this stage, no polarization-related calibration
was applied to the data (neither X − Y cross-phase nor leakage).
Two iterations of phase self-calibration and one iteration of am-
plitude self-calibration (in “T” gain type mode) were applied
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Fig. 5. Rpol as a function of parallactic angle for three selected pixels
in the source image with extended polarization. Each color corresponds
to a different pixel. The numbers given in the legend are the X and Y
pixel coordinates in the image. The Rpol values were obtained with our
software uvmultifit. Lines are fits using Eq. (13).

to the target, using Stokes I for the imaging. Finally, we used
uvmultifit to estimate the flux density of the source for each
scan and polarization product (XX and YY), using a point source
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Fig. 6. Rpol of 3C 286 at 225 GHz, from ALMA SV observations. The
error bars are smaller than the symbol sizes.

(fixed at the field center) as fitting model. The resulting Rpol val-
ues together with the fit to a cosine function are shown in Fig. 6.

Our best-fit fractional polarization is p = 0.189 ± 0.001,
which is similar to the one reported in the CASA Guide (p =
0.1645±0.0002). We note that our true uncertainty may be larger
than the uvmultifit estimate because we assumed a constant
overall gain amplitude ratio throughout the observations, and
there might be systematics related to the uncertainty in the abso-
lute flux density calibration over the two polarization products.

In regard to the polarization angle, we must note that the
band 6 feeds at ALMA are rotated −45 deg with respect to the
antenna axes (this information is provided in the metadata of
the observations). Adding this feed rotation to our angle bud-
get (see Eq. (19)), we obtain a source polarization angle of
φ = 37.04±0.12 deg, which is consistent with the value reported
in the CASA Guide (38.30 ± 0.02 deg).

We have thus shown that our method can be used even on
compact sources, as long as an unpolarized source is also ob-
served and the overall amplitude ratio of the antenna gains does
not change significantly throughout the observations (or between
consecutive observations of an unpolarized source).

4. Reanalysis of Martí-Vidal et al. (2015)

Martí-Vidal et al. (2015) reported the first practical application
of the dual differential polarimetry technique. Their analysis was
performed on the lensed images of the gravitationally lensed
blazar PKS 1830−211 (with a separation of 1′′). Using one of the
lensed images as the polarization reference, the authors found
clear signatures of a frequency dependence on Rpol for each
epoch and parallactic angle. For a subset of epochs close by in
time (at most, a difference of two days was allowed) where the
spectral coverage was wide enough, we successfully fit Eq. (18)
to the data at bands 6 and 7, finding high values of RM (∼107

in the observer frame). These values were indicative of strong
magnetic fields in the region close to the jet base.

At the time of the observations reported in Martí-Vidal et al.
(2015), the corresponding metadata provided by the ALMA ob-
servatory did not contain correct information about the feed rota-
tion of each ALMA receiver. In addition to this, the true rotation
angle of the band 7 receivers, currently provided by the observa-
tory, contradicts the information that can be extracted from the

currently available documentation related to the antenna optics
(ALMA Memo #362). In the former, a value of −53.5 deg is ob-
tained, while in the latter a value of 0 deg is expected.

The fact that the feed angles are different between
bands 6 and 7 might introduce a bias in the RM reported
in Martí-Vidal et al. (2015). Fortunately, this bias is rather
small and does not affect the main scientific results. In Fig. 7
we show the results of a reanalysis of the data reported in
Martí-Vidal et al. (2015), but using the correct feed angles. We
note that the large RMs found by Martí-Vidal et al. (2015) imply
a lower effect of the parallactic angle ψ (and hence the feed an-
gle β), compared to that of the spectral coverage λ2. The effect of
the RM on the observations of PKS 1830−211 is strong enough
to be observable even within the spectral windows of each indi-
vidual ALMA tuning.

The new RMs determined for epochs 10 April 2012 and 23
May 2012 are (2.0±1.0)×106 rad/m2 and (3.7±0.5)×106 rad/m2

(observer’s frame), respectively. These are 4.5 and 2.5 times
lower than those reported in Martí-Vidal et al. (2015), although
these new results do not affect the main scientific conclusions of
that paper. Regarding the epoch on 5 May 2014, all the observa-
tions were performed in band 7, so that the different feed rota-
tion between the two bands does not affect the result reported in
Martí-Vidal et al. (2015).

5. Conclusions

We presented the technique of dual differential polarime-
try, which is suitable for interferometers whose antennas are
equipped with linear-polarization receivers. This technique
allowed us to obtain polarimetric information from dual-
polarization observations, where only the XX and YY cross-
products of antennas are computed. The limitations due to the
lack of cross-polarization data, XY and YX, can be partially over-
come thanks to the Earth rotation synthesis, as long as the base-
lines of the interferometer are short enough to ensure that all
telescopes observe under the same parallactic angle at any time.

Using Earth rotation, we showed that the polarization ratio
observable, Rpol, defined for each pixel in the source image, is a
sinusoidal function of the parallactic angle. The amplitude and
phase of this sinusoid encodes information about the difference
in polarization states between any point in the source and what
we call a fiducial source element, FSE (i.e., a reference in the
source structure). If the FSE is unpolarized, Rpol encodes infor-
mation about the absolute polarization state of all other regions
in the image. If the FSE is polarized, then Rpol gives only dif-
ferential polarization information. For observations with wide
fractional bandwidths, Rpol also encodes information about the
rotation measure across the image. In this case, Rpol is also a
sinusoidal function of the observing wavelength squared, λ2.

We tested our technique with realistic simulations of ALMA
observations for two case studies: 1) an extended unpolarized
source with a compact polarized feature, and 2) an extended po-
larized source. In both simulations, we were able to reconstruct
the sky distribution of differential polarization using the dual-
polarization data.

We also tested our technique using real Science Verifica-
tion ALMA observations (source 3C 286 at 225 GHz) in full-
polarization mode. In this case, our technique was also shown to
be useful for compact sources, as long as an unpolarized source
(or an absolute flux calibrator) has been observed and the overall
ratio of gain the amplitudes for all the antennas remains stable
throughout the observations.
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Fig. 7. Rpol between the lensed images of PKS 1830−211. Data taken from Martí-Vidal et al. (2015), but applying the feed rotation angles of the
ALMA receivers, as currently provided by the observatory in the ALMA metadata.

In the future, this technique will be useful to retrieve polar-
ization information, for instance, from the growing amount of
ALMA archival observations that were not designed a priori for
polarization purposes.
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Appendix A: Bias in the RM differential imaging

In Fig. A.1 we show an estimate of the bias in RM, as estimated
from the fit of the sinusoid given in Eq. (18) to the Rpol generated
accounting for the varying α, ∆, and pdif as functions of RM,
RM0, and λ. We computed Rpol for 100 different values of λ. The
range of λ was set from 0 to ∆λ2 = θmax/RM, where θmax is the
fractional squared-wavelength coverage, normalized to the RM
(i.e., θmax is an angle). In each fit, we assumed a constant pdif
and α to introduce the bias in the RM estimate.

To avoid the singularity for RM = RM0 (only when φ = φ0),
we set φ − φ0 = 45◦. We also simulated possible depolarization
effects by setting p = p0

(
RM0
RM

)γ
. We let γ vary from 0.1 (i.e.,

almost no depolarization) to 1 (i.e., strong depolarization). The
resulting biases in RM are qualitatively similar for the different
values of γ.

Figure A.1 (left) shows that the bias in RM is smaller when
RM and RM0 are very similar (i.e., upper part in the figure). This
is an expected result. The largest biases in RM are related to fits

using relatively narrow fractional bandwidths (i.e., left part in the
figure). In these cases, the biases also depend quite strongly on
φ−φ0 (i.e., the intrinsic angle difference). However, for relatively
large fractional bandwidths, where the frequency dependence of
Rpol covers a good fraction of a 2π cycle, the biases are smaller
(right part of figure).

The values of Rpol as a function of λ2 are shown in
Fig. A.1 (right) for three different cases of RM0/RM. For
RM0/RM ∼ 1, a sinusoid is roughly recovered, whereas strong
departures of the sinusoidal shape are seen for larger differences
between RM0 and RM.

In any case, the bias can be as large as ∼30%, even with wide
fractional bandwidths. It is thus desirable that the differential RM
imaging is performed either using an unpolarized fiducial source
element (i.e., p0 = 0, so there is no bias) or by fitting Eq. (18)
exactly (i.e., accounting for the λ dependence in pdif and α). In
the latter case, the parameter RM0 would be common in all the
fits to the source components, so that a combined fit of the whole
source structure would be needed.
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Fig. A.1. Left panel: relative error in the fit rotation measure as a function of the fractional bandwidth (horizontal axis) and the fractional difference
(vertical axis) between RM and RM0 (where RM0 is the rotation measure of the fiducial source element). Right panel: some example values of Rpol
as a function of λ2 for different values of RM0/RM. A value of φ − φ0 = 45◦ has been used.
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