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Abstract Direct numerical simulations of a turbulent channel flow at low Reynolds number (Reτ = 180,
based on the driving pressure gradient and channel half width) are performed. Some results are also presented
for Reτ = 400. In this work we apply an idealized spanwise Lorentz force near the lower wall of the channel
and compare the results for the applied force and no-force cases in both the upper half and the lower half of the
channel.Wehave studied two-point correlations to explain the effect of theLorentz force on streamwise vortices
and streaky structures. Despite the observation of clear stabilization of the streaky structures in the vicinity
of the wall, the existence of the streamwise vortices is explained by the well-known turbulence regeneration
cycle, which improves the understanding of streaky and streamwise vortex structure formation on turbulence
generation. Spanwise oscillating Lorentz force effects on the Rankine vortex structures are investigated. Our
results lead us to establish an explanation on the effect of sweep and ejection events on the mean vortex
structures in the flow field. A mean vortex structure is defined by the time-averaged location of the local
minimum and maximum of the streamwise r.m.s. vorticity. We also depict turbulence production rates for both
cases and compared the lower and upper half of the channel.

1 Introduction

Flow control has become increasingly important both in terms of environmental health and economic benefits.1

One of the methods used to study the flow control in wall-bounded flows is to apply an oscillating Lorentz
force. In this method, magnets and electrodes are introduced to obtain the Lorentz force in the desired direction.
Flow control using the Lorentz force was put forward for the first time to delay the transition of a laminar
boundary layer by Gailitis and Lielausis [14]. An experimental study was later performed by Henoch and Stace
[17] in which the polarity of the electrodes was arranged to direct the electromagnetic (EM) body force axially
downstream and axially upstream. In these experiments a turbulence suppression up to 30% was achieved
for the former case with the interaction parameter St ∼ O(1) (St is the ratio of the Lorentz force to the
inertial force). However, with the body force axially upstream these researchers found an augmentation of the
turbulence. In a numerical study a channel geometry was investigated by Crawford and Karniadakis [9] with
the bottom wall subject to streamwise Lorentz forcing in the same way as in Henoch and Stace [17] and they
found a similar increase in turbulence.

1 This paper is an extended version of an accepted talk proceeding paper that appeared as [3].
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Nosenchuck and Brown [31] designed an array of EM tiles to control the boundary layer which produces
a three-dimensional Lorentz force and reported a large amount of drag reduction. However O’Sullivan and
Biringen [32] studied a comparable numerical study based on the design of Bandyopadhyay [4] and reported
onlyweak drag reductions. Later onRossi and Thibault [35] studied similar two-dimensional design ofmagnets
and electrodes and reported similar results with O’Sullivan and Biringen [32]. They both reported that the
EM actuator design they used gives strong wall-normal forces, (both wall-ward or opposite depending on the
arrangement of magnets and electrodes) outward-directed wall jets, and a vortical structure development above
the actuator.

A comprehensive DNS study of a turbulent channel flow performed at different low Reynolds numbers
(Reτ = 100, 200, 400) was presented by Berger et al. [5]. They applied an idealized Lorentz force for both
open-loop and closed-loop configurations. In an idealized open-loop case using spanwise forcing, they achieved
up to 40% drag reduction. They provided a value of St for the best drag reduction for a given Reynolds number.
Du and Karniadakis [11] and Du et al. [12] studied the spanwise traveling Lorentz force, varied continuously
both spatially and temporally, where they reported about 30% drag reduction. They noted that in traveling
wave excitation, a wide ribbon of low-speed fluid is observed. Breuer et al. [6] applied a similar experiment
with Henoch and Stace [17], but the differences in their experiment was the direction of the Lorentz force in
spanwise direction. They generated both a uniform spanwise oscillating Lorentz force, similar to Berger et al.
[5] simulation, and a spanwise traveling wave. Their results are in good agreement with both Berger et al. [5]
and Du et al. [12] results which indicates that drag reduction by Lorentz force is reliable and as predicted by
theory.

Beside these studies, an experimental work reported a 47% drag reduction with Lorentz forcing in the
spanwise direction by Xu and Choi [38]. Recently Huang et al. [18] applied a spanwise oscillating Lorentz
force at the lower wall of a turbulent channel flow and achieved a drag reduction. They noted that a negative
spanwise vorticity is generated which makes the streaks tilt and oscillate.

Recently Albrecht et al. [2] performed a numerical study of a flat-plate boundary layer in which a peri-
odic array of flush-mounted, streamwise aligned magnets and electrodes were used. They obtained magnetic
induction by using the analytic solution of Akoun and Yonnet [1] and generated a three-dimensional Lorentz
force. They made both two-dimensional and three-dimensional studies and reported that two-dimensional cal-
culations using a spanwise-averaged Lorentz force reasonably correspond to three-dimensional simulations.

It is well known that the dominant structures of the near-wall region are the streamwise velocity streaks
and the quasi-streamwise vortices [5,21,24,26]. Furthermore, it was shown by Jiménez and Pinelli [21] that a
turbulence regeneration cycle exists which does not depend on the outer flow but depends on the local near-wall
region. They also proved that the turbulence regeneration cycle depends on two near-wall turbulent structures,
the quasi-streamwise vortices, and the streamwise velocity streaks.

There are other explanations of the turbulence generation mechanism in which ring-like vortices are cre-
ating strong sweep and ejection events. Also in these studies vortex structures and streak formations are
related. Horseshoe vortices which generate ring-like vortices are responsible for the appearance of streamwise-
elongated streaks [15]. Kim [23] showed that the near-wall streamwise vortices are the single most important
turbulent structure when studying drag reduction. This is also supported by the observation that streamwise
vortices have been found to be responsible for both ejection and sweep events of the bursting process [34].
These near-wall vortical structures are associated with local high-skin friction regions [7,27,37] which are
created by the inrush of high-speed fluid induced by the streamwise vortices. Thus weakening or modifying
the streamwise vortices are general approaches in near-wall turbulent control studies, not only in Lorentz force
control studies.

In this study, we shed some light on the modification of the near-wall turbulent structures, especially the
streamwise vortices and the streamwise velocity streaks, under the influence of the spanwise oscillating Lorentz
force. The results presented in this study is important for better understanding the physics of wall turbulence
phenomenon and development of improved models of the turbulent production mechanisms and new ways of
controlling the wall turbulence. The DNS simulations are performed for a turbulent channel flow (Reynolds
number of 180 and 400) in which Lorentz force excitation is applied along the spanwise direction in order to
investigate the potential for drag reduction. We performed a detailed analysis of both instantaneous flow fields
and various statistical characteristics for both the applied force and the no-force cases.

The paper is organized as follows. First, the methodology and equations are presented, followed by a brief
description of the numerical method. In the following section, the results are presented and discussed, and
some concluding remarks are given in the final section.
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2 Methodology

2.1 Governing equations

The governing equations for an electrically conducting, magnetically permeable, incompressible Newtonian
fluid are

∂u
∂t

+ u · ∇u = ê1 · Ĩ − 1

ρ
∇ p + ν∇2u + 1

ρ
(J × B), (1)

∇ · u = 0, (2)

∇ × E = −∂B
∂t

, (3)

∇ × B = μ0Js, (4)

J = σ(E + u × B), (5)

∇ · B = 0, (6)

∇ · J = 0. (7)

Here, u, p, ρ, ν, B, J, Js , E, μ0 and σ are the velocity vector, the pressure, the fluid density, the kinematic
viscosity, themagnetic fluxdensity vector, the current density vector, the electrode source current density vector,
the electric field vector, the magnetic permeability, and the electrical conductivity of the fluid, respectively.
The first term on the righthand side of Eq. (1) is the driving pressure gradient in the streamwise direction. The
first two equations are the Navier–Stokes equations and the remaining five are the Maxwell equations. With
the assumption of a low conductivity fluid such as seawater (for seawater μ0 ∼ O(10−7) and σ ∼ 2.5 − 5
Siemens (Ampere/V m)), neglecting the time variation of the magnetic field, and assuming that the induced
magnetic field is small compared to the applied magnetic field, we have a potential function φ for the electric
field. The governing equation for φ is a Laplace equation

∇2φ = 0 (8)

and the governing equation for the magnetic flux density reads

∇2B = 0. (9)

With appropriate boundary conditions and by taking the vector product of the current density and the
magnetic flux density, the resulting force distribution acts only in the spanwise direction (see [5] for further
details). The resulting force can be estimated as a body force in the Navier–Stokes equations. Thus, the
governing equations take the following non-dimensional form:

∂u
∂t

+ u · ∇u = ê1 · Ĩ − ∇ p + 1

Reτ

∇2u + St (J × B), (10)

∇ · u = 0, (11)

where Reτ is the Reynolds number based on uτ (friction velocity) and δ (half channel height). The friction
velocity, uτ , is based on the driving pressure gradient. St = J0B0δ/(ρu2τ ) is the Stuart number, that represents
the relative strength of the Lorentz force with respect to the inertia force, where J0 and B0 are the current
density and the magnetic flux density values at the wall, respectively.

2.2 Force

The spanwise force oscillates in time and decays exponentially in the wall-normal direction,

f +
z = St exp

(
−πy+

a+

)
sin

(
2π t+

T+

)
. (12)

The optimal St value for different Reynolds numbers and T+ values is given as [5]

Stopt = 20

(
Reτ π

T+

)
. (13)
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Fig. 1 Arrangement of magnets and electrodes for generating a Lorentz force along the spanwise direction [5]

0 20 40 60 80 100
0

1

2

3

4

5

6 10-6

y+

F
or
ce

Fig. 2 Force profile

The T+ parameter is the period of oscillation, and a+ (themagnet and electrodewidths, which here are assumed
to be the same) sets the distance the force penetrates into the flow, see Fig. 1; it is here taken as a+ = 10π .
Lorentz force excitation is applied along the spanwise direction in order to force the flow to oscillate at a
certain frequency. We performed simulations for Reτ = 180 and Reτ = 400. For T+ = 100, Eq. (13) gives
St = 36π and 80π for Reτ = 180 and Reτ = 400, respectively. We performed simulations not only for these
optimal St numbers, but also for 2Stopt and Stopt/2. The largest drag reductions are obtained with the optimal
St number which is in agreement with Berger et al. [5].

The required Lorentz force can be created by placing electrodes andmagnets side by side, in the streamwise
direction parallel to one another, as shown in Fig. 1. This configuration generates Lorentz force in the spanwise
direction, which decays exponentially in the wall-normal direction (Fig. 2). We apply the force in the lower
half of the channel, but, because of the exponential function, it decays to zero at y+ � 60.

2.3 Direct numerical simulations

An implicit, two-step time-advancement finite volume methods is used [10]. Central differencing is used in
space and the Crank–Nicolson scheme is used in the time domain. When the Navier–Stokes equation (1) for
ui is discretized it can be written as

un+1
i = uni + 
t H

(
uni , u

n+1
i

)
− 1

ρ
α
t

∂pn+1

∂xi
− 1

ρ
(1 − α)
t

∂pn

∂xi
, (14)

where H(uni , u
n+1
i ) includes convection, the viscous and the source terms, and α = 0.5 (Crank–Nicolson).

Equation 14 is solved and gives un+1
i , which does not satisfy continuity. An intermediate velocity field is
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computed by subtracting the implicit part of the pressure gradient, i.e.,

u∗
i = un+1

i + 1

ρ
α
t

∂pn+1

∂xi
. (15)

Taking the divergence of Eq. (15) requiring that continuity (for the face velocities which are obtained by linear
interpolation) should be satisfied on level n + 1, i.e., ∂un+1

i, f /∂xi = 0, we obtain

∂2 pn+1

∂xi∂xi
= ρ


tα

∂u∗
i, f

∂xi
. (16)

The numerical procedure at each time step can be summarized as follows [30]:

1. Solve the discretized filtered Navier–Stokes equation for u, v and w.
2. Create an intermediate velocity field u∗

i from Eq. (15).
3. The Poisson equation (16) is solved with an efficient multigrid method [13].
4. Compute the face velocities (which satisfy continuity) from the pressure and the intermediate velocity as

un+1
i, f = u∗

i, f − 1

ρ
α
t

(
∂pn+1

∂xi

)
f
. (17)

5. Steps 1–4 are performed until convergence (normally two or three iterations) is reached. The convergence
for the velocities is 10−7 and 10−5 for pressure. The residuals are computed using L1 norm and they are
scaled with the integrated streamwise volume flux (continuity equation) and momentum flux (momentum
equations).

6. Next time step.

Note that although no explicit dissipation is added to prevent odd-even decoupling, an implicit dissipation
is present. The intermediate velocity field is computed at the cell centers (see Eq. (15)) subtracting a pressure
gradient. When, after having solved the pressure Poisson equation, the face velocity field is computed, the
pressure gradient at the faces (see Eq. (17)) is added. This is very similar to the Rhie–Chow dissipation [33].

A constant volumetric driving force is used in the streamwise momentum equation by which the frictional
Reynolds number, Reτ = 180 and 400, is prescribed. Periodic boundary conditions are used in the streamwise
and spanwise directions, while the usual no-slip boundary conditions are enforced at the walls. The domain
size is 4πδ × 2δ × πδ and 2πδ × 2δ × πδ with grid sizes 148 × 98 × 98, 98 × 98 × 98, in the streamwise,
wall-normal and spanwise directions. The grid resolution is
x+ = 15,
z+ = 6, and
x+ = 25,
z+ = 13,
for Reτ = 180 and 400 case, respectively. A stretching of 1.065 is used in the wall-normal direction. The grid
resolution used by Berger et al. [5] was 
x+ = 20,
z+ = 6.5 for Reτ = 200. They tested different box
sizes and resolutions for Reτ = 400, and they reported the same drag reduction trend when they used a grid
resolution of 
x+ = 20,
z+ = 13.

We employed different box sizes and resolutions for the no-force Reτ = 400 cases. The box sizes were
1.5πδ × 2δ × 0.5πδ and πδ × 2δ × 0.5πδ with grid sizes of 188× 98× 98 and 128× 98× 98, respectively.
Small differences were found in the velocity r.m.s. values (less than 5%).

The non-dimensional time step was kept smaller than 
t+ = 
tu2τ /ν = 0.6. The variables u, v, w
represent the streamwise, wall-normal, and spanwise velocities, respectively. Before applying any control, all
simulations are allowed to reach a fully developed turbulent flow state. The results are, unless otherwise stated,
averaged in all homogeneous directions (i.e., x1, x3 and t); the average is denoted by an overbar (·̄).

3 Results and discussion

DNS results are presented to analyze the Lorentz force effect. Unless otherwise stated, the results are given
for Reτ = 180 and Reτ = 400 for optimum St number (36π and 80π , respectively). Figures 3 and 4
present the mean velocity and resolved turbulent fluctuations for applied force and no-force; the latter case
is also compared with DNS data [28]. For the no-force case we observe a larger intercept for the log law for
Reτ = 180, compared to the Reτ = 400 case (Fig. 3) and the urms profile exhibits a peak at y+ = 14 (Fig. 4),
which is in agreement with Moser et al. [28]. They observed that these peak values are larger for higher Re
number which is in agreement with our results (Fig. 4).
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Fig. 3 Mean velocity, U+ profile. a Reτ = 180, b Reτ = 400
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Fig. 4 Root-mean-square velocity fluctuations [3]. a Reτ = 180. St = 36π , b Reτ = 400. St = 80π

In Fig. 3, for the applied force case, the viscous sublayer region intercepts with the log-law further away
from the wall compared to the no-force case; this is the result of an increased viscous sublayer thickness [8].
In the lower half of the channel smaller urms and vrms are obtained in the applied force case compared to the
no-force case; the spanwise r.m.s. velocity (Fig. 4) exhibits a peak near the lower wall (Fig. 5). Lower Reynolds
shear stress compared to the no-force case shows that the Lorentz forcing gives a turbulence drag reduction
(Fig. 6). This is also seen by the fact that the bulk velocity increases with forcing by 18% (St = 36π) compared
to the no-force case. Figure 6 clearly shows that St = 36π is the frequency which is most efficient in reducing
the shear stress (and hence the drag). For the applied force case, we observe a maximum of approximately 40
and 24% drag reduction for Reτ = 180 and Reτ = 400 cases, respectively, which is in agreement with the
findings of Berger et al. [5]. For both Reynolds numbers, the spanwise r.m.s. velocity peak values coincide
for corresponding St numbers (Fig. 5a, b). However, when we compare Fig. 6a, b, while Stopt/2 provides the
second best reduction for the Reynolds shear stress for Reτ = 180, it is 2Stopt for Reτ = 400. This result is
expected since the second largest mean velocity values are obtained for Stopt/2 for the Reτ = 180 case, while
it is 2Stopt for the Reτ = 400 case, see Fig. 3a, b.

Two-point correlations are very effective for understanding the structure of the flow. Pick two points along
the x1 axis, say x A

1 and xC1 , and sample the fluctuating velocity in the x1 direction. Then the correlation of the
velocity u′

1 is given by

Buu(x̂1) = u′
1(x1)u

′
1(x1 − x̂1), (18)

where x̂1 = x A
1 − xC1 . Figures 7, 8 and 9 present these correlations in the spanwise direction for both the upper

and the lower half of the channel. Since the force is applied only in the lower half of the channel, the two-point
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Fig. 5 Spanwise r.m.s. fluctuations. a Reτ = 180, b Reτ = 400
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Fig. 6 Reynolds shear stress. a Reτ = 180, b Reτ = 400
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Fig. 7 Streamwise two-point velocity correlations. Reτ = 180. St = 36π . a Lower wall [3], b upper wall
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Fig. 8 Spanwise two-point velocity correlations. Reτ = 180, St = 36π . (The legend of b also apply for the a). a Lower wall, b
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Fig. 9 Wall-normal two-point velocity correlations. Reτ = 180, St = 36π . a Lower wall, b upper wall

correlations in the upper half are very similar for the applied force and the no-force cases (Figs. 7b, 8b, 9b). In
the area in which the force is effective, the applied force correlation values are very different from the no-force
case for the streamwise and spanwise correlations (Figs. 7a, 8a), except for y+ > 62, where the force is close
to zero, see Fig. 2. However, the wall-normal correlations are very similar for both applied force and no-force
cases (Fig. 9a). The cause of this result is investigated below.

Streamwise velocity two-point correlation carries information about the mean spacing between the streaks.
In Fig. 7a, the no-force correlation values become negative and reach a minimum at approximately z+ = 54
for y+ = 10 and 20, which provides an estimate of the mean separation between the high- and the low-speed
fluid; the mean spacing between the streaks of high- and low-speed fluid should be roughly twice that of the
mean separation [25].

The regeneration cycle of low-speed streaks and streamwise vortices which is called the “streak cycle” is
investigated by Hamilton et al. [16] and Jiménez and Pinelli [21]. In their study they showed that the cycle is
governed by the streak instability which generates tilted streamwise vortices. The streamwise vortices in turn
assemble low-speed fluid and generates low-speed streaks. These streaks undergo wavy motions, i.e., streak
instability occur. For the applied force case, the Ruu(z) profiles do not exhibit any minimum for y+ = 10 and
only a weak minimum for y+ = 20, which may indicate the absence of streaky structures [8] or more stable
or weak streaky structures compared to the no-force case [21]. The absence of a minimum may also indicate
an enlargement of the streaks in the spanwise direction [8,29]. This means that, however, the change in the
Ruu(z) profiles show that forcing modifies the wall streaks, we have not yet sufficient information to determine
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the way in which this modification occurs. The discussion below gives further insight into modification of the
streaky structures.

The presence of a minimum in the Rww(z) profiles (Fig. 8) was originally believed to be related to the
separation of two streamwise vortices [29]. Later on, the cause of this minimum in Rww(z) was found to be
impingement of high-speed fluid at the wall (splatting) [22,25]. Figure 10a, b, which are generated by Eq. (19),
show that the oscillating Lorentz force gives a smoother streamwise velocity in the spanwise direction near the
wall, which can also be seen in the plots of the r.m.s. streamwise velocity fluctuations, see Fig. 4 (this figure
also shows that the wall-normal r.m.s. velocity fluctuations are smaller in the applied force case). Hence, the
lower urms and vrms in the applied force case compared to the no-force case may explain why the splattings
are not visible in the former case (Fig. 8a).

The presence of the minimum in the Rvv(z) profiles is consistent with the existence of streamwise vortical
structures in the wall region [25] (a mean vortex structure is defined by the time-averaged location of the
local minimum and maximum of the streamwise r.m.s. vorticity). The minimum in Rvv(z) is related to the
mean spanwise distance across a vortex. The larger separation in the z-direction for increasing wall distance
indicates larger diameters of the vortices away from the wall [29]. The Rvv(z) values are very similar for the
applied force and the no-force cases (Fig. 9a), which suggests that the spanwise oscillating Lorentz force does
not affect the mean distance between the streamwise vortices.

To better understand the force effect on the streaky structures, we investigated the streamwise fluctuation
velocities in the spanwise direction for different y+ values (Eq. (19)),

u′(x, y, z, t) = u(x, y, z, t) − ū(y). (19)

The results are given in Fig. 10, where the applied force and the no-force cases are compared. It is clearly seen
that, for y+ = 10 and y+ = 20, the streamwise fluctuating velocity is smaller in the applied force case, which
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means that although the streaky structures exist at these y+ levels, they are more stable than in the no-force
case.

The streamwise fluctuations vary around 1−9 for the no-force case compared to around 4−7 for the applied
force case for y+ = 10 (Fig. 10a), while the fluctuation velocity is around 7− 22 and 8− 18 for the no-force
and applied force cases, respectively, for y+ = 20 (Fig. 10b). The situation is reversed further away from the
wall (Fig. 10c), and for y+ = 60 the high-speed velocity fluctuations in the applied force case are larger than
those in the no-force case (Fig. 10d). Figures 11, 12, 13 and 14 present the contour plots of the streamwise
velocity, u, at y+ = 10, 20, 30 and 62 for the applied force case for the upper and lower walls for the same
instantaneous flow field. For y+ = 10, it is clear that for the applied force case, the high-velocity streaks near
the lower wall, are suppressed and the low-velocity streaks dominate unlike for the upper wall (Figs. 11, 12).
There is also an inclination of the wall streaks with respect to the flow direction due to the spanwise flow
component for the lower wall. A similar inclination was also observed by Du et al. [12]. Further away from
the wall, the high-velocity streaks dominate, the fundamental characteristics of the streaky structures remain
the same, and no inclination is observed for y+ > 30 (Figs. 13, 14).

Here arises a question: why is there a clear stabilization of the streaky structures near the wall, but no
visible change in the existence of the streamwise vortices (see Fig. 9a)? This question is answered by Jiménez
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Fig. 15 Reynolds shear stress from each quadrant normalized by the local mean Reynolds shear stress. Subscript i denotes the
quadrant number, Qi . a No-force case, Reτ = 180. St = 36π , b applied force case, Reτ = 180. St = 36π , c no-force case,
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and Pinelli [21]. These authors studied the turbulence production mechanism in the near-wall region. They
first proved that the streak cycle is the key regeneration mechanism of turbulence. They damped the streak
component of the wall-normal vorticity completely by multiplying it by a filter function near the lower wall,
while the upper wall remained unchanged. In this way they laminarized the turbulence at the lower wall.
However, the most important experiment they carried out was to define the region in which the instabilities of
the streaks give rise to streamwise vortices. Surprisingly, they found that filtering applied for 0 < y+ < 20
was not effective, but the flow laminarized completely when the filtering was applied for y+ � 60. In short,
the regeneration cycle depends on the flow region 20 ≤ y+ ≤ 60.

In our study we find that while the streaks for the applied force case are more stable at y+ < 20, their
fundamental structure further away from the wall remains the same as in the no-force case, which means that
the streak cycle is hardly affected; streamwise vortices are present in both cases (see Figs. 13, 14).

A quadrant analysis of the Reynolds shear stresses was performed to better compare the flowfield structures
for the applied force and the no-force cases. To achieve accurate results, 400 data sets were used for each y+, see
Fig. 15. Very similar results are obtained in the no-force case (Fig. 15a) compared with Kim et al. [25], where
they also see dominant sweep events up to a level of y+ ≈ 12. In the applied force case, the fourth quadrant
events (sweep) dominate over second quadrant events (ejection) up to approximately y+ = 20 (Fig. 15b).
Similar results are observed for Reτ = 400 (Fig. 15c, d).

Figure 16 presents the Reynolds shear stress contribution from the second and fourth quadrants, normalized
by the wall shear stress. It is obvious that in the applied force case there is a shift of the sweep and ejection
events away from the wall which proves that, in the applied force case, the vortex structures are moved away
from the wall. As a result of the turbulence suppression, second and fourth quadrant events, which are the
cause of turbulence, are lower in the applied force case compared to the no-force case. It is also seen that
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the forcing reduces the ejection events much more than the sweep events. Similar quadrant analysis results
were reported in a study in which turbulent flow relaminarization was obtained at a low Reynolds number by
reducing the Reynolds number [19]. They also got lower sweep and ejection events compared to the higher
Reynolds number, and the sweep events moved away from the wall.

Berger et al. [5] noticed that the key to drag reduction is to perturb the near-wall streamwise vortices, and
postulated that an effective way to achieve this goal is to introduce Lorentz force perturbations perpendicular
to the axes of the near-wall streamwise vortices. At the very beginning of their study, before determining the
optimum parameters for spanwise oscillated Lorentz force, they chose the penetration depth as a+ = 10π
which they expected would give the greatest effect on the streamwise vortices based on the mean vortex model
defined by Kim et al. [25]. They used the Rankine vortex model of Kim et al. [25] to approximate the effective
penetration depth, and they did not further investigate the modification of this model based on the spanwise
oscillated Lorentz force. However, defining the modification of the mean streamwise vortices geometrically
could be important to improve the existing flow control methods and/or may lead to new control approaches.
In order to define the modification of the mean streamwise vortices, we consider the streamwise r.m.s. vorticity
which gives information about the streamwise vortex structures; the minimum point of the streamwise r.m.s.
vorticity gives the edge of the mean Rankine vortex structure [25,29], and the maximum point gives the center
of the mean Rankine vortex [25]. If we consider the two terms, ∂w′/∂y and ∂v′/∂z of ω′

x separately, we find
that its minimum and maximum locations are defined by ∂w′/∂y, see Fig. 17. In other words, this indicates
that the streamwise vorticity defines the radius of the mean Rankine vortex in the wall-normal direction. The
forcing gradient, d f/dy (see Eq. (12)), gives rise to an increase of ∂w′/∂y, which explains why ω′

xrms
is larger

at the wall in the applied force case as compared to the no-force case, see Fig. 18. This figure also shows that
the minimum and maximum points in the applied force case are closer to each other than in the no-force case
(for the no-force case: y+

min ≈ 5, y+
max ≈ 18, for the applied force case: y+

min ≈ 6, y+
max ≈ 10). This means
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that we have a smaller radius of the mean streamwise vortex in the wall-normal direction in the applied force
case than in the no-force case. However, the Rvv(z) profile (see Fig. 9a) suggests that there is no change in the
Rankine vortex radius in the spanwise direction. This analysis leads us to suggest that the spanwise Lorentz
force modifies the mean Rankine vortex into a shape that is elliptic and has a smaller extent in the wall-normal
direction than in the spanwise direction, see Fig. 19.

According to the Schoppa and Hussain [36], the normal vorticity ω′
y is a key indicator of formation of new

streamwise vortices near the wall by streak instability. The growth rate of the streaks’ sinus instability mode
grows with the magnitude ofω′

y , and if it falls below a threshold no such instability occurs. Figure 20a presents
ω′
yrms

which shows that the vorticity fluctuations in the applied force case are reduced compared to the no-force
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Fig. 21 Streamwise vorticity for applied force and no-force cases. Reτ = 180, St = 36π . a No-force, b force

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3
(a) (b)

(c) (d)

y+

−u
v

+
∂
U ∂
y

+

no-force

force St 18π
force St 36π

force St 72π
DNS [28]

200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

y+

− u
v

+
∂
U ∂
y

+

no-force

force St 18π
force St 36π

force St 72π

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

y+

−u
v

+
∂
U ∂
y

+

no-force

force St 40π
force St 80π

force St 160π
DNS [28]

600 650 700 750 800
0

0.05

0.1

0.15

0.2

0.25

y+

−u
v

+
∂
U ∂
y

+

no-force

force St 40π
force St 80π

force St 160π

Fig. 22 Turbulence production. a Lower wall, Reτ = 180, b upper wall, Reτ = 180, c lower wall, Reτ = 400, d upper wall,
Reτ = 400

case about a factor of 1.4. At the upper wall, ω′
yrms

is a factor of 1.2 smaller in the applied force case. Kim [24]

defines the term, ∂U
∂y

∂v′
∂z , as a source term for wall-normal vorticity and relates it with the regeneration cycle

as a first leg of the streak formation mechanism. Figure 20b exhibits lower ∂U
∂y ( ∂v′

∂z )rms values for the applied
force case compared to the no-force case, and the peak is in the former case shifted away from the wall. In
addition, Kim [24] pointed out that interaction of wall-normal and spanwise velocities, which is independent
of the streamwise direction, with the mean shear, ∂U

∂y , creates streaks. Another significant evidence of the
stabilization of the streaky structures for the applied force case compared to the no-force case is the lower
spanwise fluctuation vorticity, ω′

zrms
, in the vicinity of the applied force wall (Fig. 20c) which indicates the

presence of low- and high-speed streaks [20]. We presented u′ in Fig. 10 which indicates that the streaky
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Fig. 23 Mean velocity gradient. a Lower wall, Reτ = 180, b upper wall, Reτ = 180, c lower wall, Reτ = 400, d upper wall,
Reτ = 400

structures are more stable in the applied force case in the vicinity of the wall (Fig. 10a, b). The more stable
streaky structures are also in agreement with Figs. 11a, 12a and 7a, where it is shown how the streaks are
modified in the applied force case. The reduction in the magnitude of ω′

yrms
indicates reduced sinus instability

in the streaks which reduces formation of new streamwise vortices.
Figure 21b compared to Fig. 21a suggests that in the applied force case the vortex structures near the

lower wall are suppressed and/or weakened while the streamwise vorticity increases. This is in agreement
with Figs. 18c and 20a which together suggest that while the streamwise vorticity is enhanced the streamwise
structures are suppressed or weakened. Note that the streamwise vortices are not completely suppressed, nor
are the streaks totally stabilized, otherwise the turbulence regeneration cycle could not be sustained [21]. This
is in agreement with Fig. 9a (there is a distinct minimum) which shows that the streamwise vortex structures
still exist near the lower wall in the applied force case. A similar figure as Fig. 21 has been reported by Berger
et al. [5], where they—in agreement with our finding—suggest that the vortex structures are suppressed by the
spanwise oscillating Lorentz force.

Figure 22 presents the predicted turbulence production compared with DNS data [28]. The turbulence
production near the lower wall is lower in the applied force case (Fig. 22a, c) than it is near the upper wall
(Fig. 22b, d). There are two components in the turbulence production term, the shear stress and the mean
velocity gradient. An illustration of these two components separately reveals that the largest reason for the low
turbulence production is the Reynolds shear stresses, see Figs. 23 and 24.

The lower shear stress at the vicinity of the wall contributes to lower turbulence production for the applied
force case compared to the no-force case (Fig. 24a, c), while it is vice-versa for the upper half of the channel
(Fig. 24b, d). The location of maximum turbulence production exhibits a shift away from the wall for the
applied force case compared to the no-force case (Fig. 22a, c), which corresponds to the locations of the
maximum Reynolds shear stresses (Fig. 24a, c). In Figs. 23a and 24c it is shown that for both Reτ = 180 and
Reτ = 400 cases the Stopt gives the largest contribution to the reduction in turbulent production. Although
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Fig. 24 Reynolds shear stress. a Lower wall, Reτ = 180, b upper wall, Reτ = 180, c lower wall, Reτ = 400, d upper wall,
Reτ = 400

Stopt/2 gives the second largest contribution for Reτ = 180 case, it is 2Stopt for Reτ = 400 case. This is
coherent with the results given by Berger et al. [5], where they reported that the required forcing increases
with Reynolds number.

The drag reduction for the applied force case results in lower viscous effects near the lower wall and, in
order to maintain the force balance in the streamwise direction, the drag force enhances at the upper wall.
Thus, the upperwall statistics exhibits a corresponding enhancement to compensate for the lowerwall reduction
(Figs. 23b, d and 24b, d).

4 Conclusion

ADNS study of a fully developed turbulent channel flow was carried out by introducing a spanwise oscillating
Lorentz force near the lower wall. We investigated the effect of the oscillating Lorentz force on wall structures.
The results are examined in detail, not only for the applied force lower wall but also for the upper wall.

We found that in the applied force case the Ruu(z) profile does not exhibit any minima for y+ < 20
(Fig. 7a). The variation of the streamwise fluctuation velocities in the spanwise direction (Fig. 10) and the
instantaneous velocity contours (Figs. 11, 12, 13, 14) lead us to suggest that the reason is more stable streaky
structures in the applied force case.

We also observed that in the applied force case wall splattings are suppressed close to the wall (y+ � 20)
(Fig. 8a), which we suggest is related to smaller streamwise fluctuations near the wall (Figs. 4, 10a, b).

Although we observed for the applied force case a significant stabilization of the near-wall streaks below
y+ ≈ 20 (Fig. 7a), the existence of streamwise vortices is obviously not affected by this stabilization (Fig. 9a).
The streaks and the streamwise vortices are related to each other by the turbulence regeneration. It is shown
by Jiménez and Pinelli [21] that the turbulence generation cycle is dependent on the area below y+ ≈ 60
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and above y+ ≈ 20. In our study, we observed that, for y+ � 30, the fundamental structure of the streaks
remains the same (Figs. 13, 14). It has been reported in the literature that spanwise Lorentz forcing causes an
inclination of the streaky structures [9]. Our results support these findings (Figs. 11, 12), but we found that
this inclination is not observable for y+ � 30 (Figs. 13, 14).

We observed that the region in which the sweeps dominate over the ejections extends further away from
the wall in the applied force case (Fig. 15) than in the no-force case. In the fully turbulent region, it is found
that the sweeps and ejections move away from the wall when forcing is applied (Fig. 16).

We showed that the ∂v′/∂z part of the streamwise vorticity, ω′
x , is negligible compare to ∂w′/∂y. Hence

the latter component should be used to define the locations of the minima and maxima which also defines the
radius of the mean Rankine vortex structures (Fig. 17). This suggests that the streamwise vorticity defines the
radius of the mean Rankine vortex structures only in the wall-normal direction, not in the spanwise direction.
The closer distance between the streamwise r.m.s. vorticity minima locations (Fig. 18) and unchanged Rvv(z)
profiles (Fig. 9a) in the applied force case lead us to claim that the spanwise oscillating Lorentz force creates
an elliptic shape of the mean Rankine vortex structures (Fig. 19).

Finally, we analyzed the turbulence production and its components. We observed a lower turbulence
production near the lower wall in the applied force case as compared with the no-force case, while the situation
is reversed near the upper wall (Fig. 22).We observed that themain contribution to this difference in production
is due to the magnitude of the Reynolds shear stress (Fig. 24) rather than the mean velocity gradient (Fig. 23).
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