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Abstract8

Very Long Baseline Interferometry (VLBI) is a space-geodetic technique that9

is uniquely capable of direct observation of the angle of the Earth’s rotation10

about the Celestial Intermediate Pole (CIP) axis, namely UT1. The daily11

estimates of the difference between UT1 and Coordinated Universal Time12

(UTC) provided by the 1-hour long VLBI Intensive sessions are essential in13

providing timely UT1 estimates for satellite navigation systems and orbit14

determination. In order to produce timely UT1 estimates, efforts have been15

made to completely automate the analysis of VLBI Intensive sessions. This16

involves the automatic processing of X- and S-band group delays. These data17

contain an unknown number of integer ambiguities in the observed group18

delays. They are introduced as a side-effect of the bandwidth synthesis tech-19

nique, which is used to combine correlator results from the narrow channels20

that span the individual bands. In an automated analysis with the c5++21

software the standard approach in resolving the ambiguities is to perform a22

simplified parameter estimation using a least-squares adjustment (L2-norm23

minimisation). We implement L1-norm as an alternative estimation method24
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in c5++. The implemented method is used to automatically estimate the25

ambiguities in VLBI Intensive sessions on the Kokee–Wettzell baseline. The26

results are compared to an analysis set-up where the ambiguity estimation27

is computed using the L2-norm. For both methods three different weighting28

strategies for the ambiguity estimation are assessed. The results show that29

the L1-norm is better at automatically resolving the ambiguities than the30

L2-norm. The use of the L1-norm leads to a significantly higher number of31

good quality UT1-UTC estimates with each of the three weighting strate-32

gies. The increase in the number of sessions is approximately 5 % for each33

weighting strategy. This is accompanied by smaller post-fit residuals in the34

final UT1-UTC estimation step.35

Keywords: Earth rotation, UT1, VLBI, automated analysis, robust36

estimation37

1. Introduction38

Very Long Baseline Interferometry (VLBI) is a unique technique among39

space-geodetic techniques due to its capability to determine all Earth Ori-40

entation Parameters (EOP) simultaneously. These parameters provide the41

orientation of the Earth in an inertial reference system. One of the parame-42

ters is the Earth’s rotation about the Celestial Intermediate Pole (CIP) axis,43

which is described as Universal Time (UT1). VLBI measures the difference44

between the UT1 and Universal Coordinated Time (UTC), UT1-UTC, from45

which the UT1 can subsequently be estimated.46

By monitoring Earth rotation it is possible to gather information about47

the underlying geodynamical behaviour of the Earth system. Thus, also UT148
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as a parameter is connected to various geophysical phenomena, in particular49

via the exchange of angular momentum between the atmosphere, geophysical50

fluids, and the solid earth (Barnes et al., 1983). Thus, high-frequency signals51

in UT1 can be used to study these geophysical excitations and the under-52

lying geodynamical phenomena (Brzeziński, 2012). Moreover, the impact of53

earthquakes with large magnitude, such as the Denali earthquake in 2002,54

has also been verified by EOP parameters (Titov and Tregoning, 2005), and55

therefore stresses the need for real-time EOP monitoring.56

Furthermore, timely UT1 estimates from VLBI are crucial for space-57

geodetic techniques such as Global Satellite Navigation Systems (GNSS).58

GNSS are only capable of accessing UT1 via its time derivative, usually de-59

noted as the change in Length-of-Day (LOD), and rely on UT1 input from60

VLBI.61

The International VLBI Service for Geodesy and Astrometry (IVS)62

(Behrend, 2013) organises daily 1-hour long VLBI observing sessions called63

the Intensive sessions (INT). Characteristic to these sessions is that they are64

observed on extended East–West-baselines using a network of 2 to 3 antennas.65

Currently three types of INT sessions are conducted regularly. INT1 are66

observed on the Kokee (Hawaii) – Wettzell (Germany) baseline from Monday67

to Friday at 18:30 UTC. INT2 are observed on the Tsukuba (Japan) –68

Wettzell (Germany) baseline on Saturday and Sunday at 7:30 UTC. Finally,69

to fill in the gap between the last INT2 of the week and the first INT1, INT370

are observed with a network consisting of Wettzell, Tsukuba, and Ny-Ålesund71

on Monday mornings at 7:00 UTC. The short duration of the sessions and72

the baseline geometry leads to a relatively low number of approximately 20–73
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40 observations per baseline. The aim of the INT sessions is to produce74

daily UT1 estimates in a timely fashion. The turnaround time of the results75

depends on the VLBI processing chain. Namely, the time it takes to correlate76

the observed data to produce databases, which are subsequently analysed77

by various VLBI analysis packages in order to obtain the UT1 estimates.78

One way to streamline this analysis chain is to automatically process the79

correlated data. Automated near-real time analysis of INT sessions has been80

investigated in e.g. Hobiger et al. (2010) and Kareinen et al. (2015).81

Geodetic VLBI sessions are typically observed on two frequency bands82

centred around 8.4 GHz (X-band) and 2.3 GHz (S-band). A linear combina-83

tion of the observed delays on the two bands can be used to derive a delay84

observable that is almost completely free of ionospheric effects. The two85

bands consist of individual channels, which are in the post-correlation proce-86

dure combined with a bandwidth synthesis technique (Rogers, 1970) to span87

the whole bandwidth. A side-effect of this procedure is that an unknown88

number of integer ambiguities are introduced into the observed group delays.89

The ambiguities are proportional to the channel spacing within the individ-90

ual bands. For a typical channel set-up in an INT session these ambiguities91

are 50 ns for X-band and 200 ns for S-band. For comparison, the formal er-92

rors for the observed delays in the correlator output for the INT sessions are93

approximately three orders of magnitude smaller. Before the ionospheric cal-94

ibration can be computed, the ambiguities have to be resolved on each band.95

Any unresolved ambiguities in the observed group delays will propagate into96

the UT1 estimates.97

There are multiple available VLBI software packages which can be used98
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to estimate geodetic parameters from VLBI observations. These include e.g.99

c5++ (Hobiger et al., 2010), CALC/SOLVE (Ma et al., 1990), Vienna VLBI100

Software (VieVS) (Böhm et al., 2012), GEOSAT (Andersen, 2000), OCCAM101

(Titov et al., 2004), and OCCAM/GROSS (Malkin and Skurikhina, 2005).102

A recent modernisation for the SOLVE part in CALC/SOLVE is νSolve103

(Bolotin et al., 2014). Out of these software packages, c5++, CALC/SOLVE,104

and νSolve are the only ones that allow to resolve the group delay am-105

biguities to produce ambiguity- and ionosphere-free X-band databases. The106

databases produced by the correlator contain group delays which include am-107

biguities and ionospheric effects. These databases are referred to as Version-1108

databases.109

The standard approach for parameter estimation in all software packages110

mentioned above is the method of least-squares adjustment (Koch, 1999)111

(i.e. L2-norm minimisation). In this paper, as an alternative approach to112

the L2-norm, we implement parameter estimation based on the L1-norm and113

apply it to the analysis of the INT sessions in the ambiguity resolving step.114

Furthermore, we evaluate alternative weighting strategies for both the L1-115

and L2-norm ambiguity estimation. Compared to the L2-norm, the L1-norm116

should be more robust in the presence of outliers. We investigate whether117

this robust estimator helps to correctly detect the ambiguities in the initial118

stages of the analysis process. Starting from Version-1 databases we use the119

modified c5++ to automatically analyse INT1 sessions from 2001 to 2015 to120

estimate UT1.121
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2. Formulation of the minimisation conditions122

The objective functions for both the L1- and L2-norm minimisations can123

be derived from the general expression for a p-norm, which is given by124

||x||p =

(
p∑
i=1

|xi|p
)1
p

. (1)125

The L1-norm and L2-norms correspond to Equation 1 with p-values of126

p=1 and p=2, respectively. In both cases the norms to be minimized are127

functions of the residuals vi between the functional model and the observa-128

tions, as well as possible weighting terms. The weight terms are included as129

multiplicative factors in the summands of the norms. Thus for, L1 and L2130

the objective functions to be minimised are given respectively by131

L1 : min(pᵀ|v|), (2)
132

L2 : min(vᵀPv), (3)133

where v is a vector containing the residuals for n observations, p is a134

vector containing the associated weights for the observations, and P is an135

nobs × nobs matrix in which the diagonal contains the weights for the obser-136

vations and the off-diagonal elements the possible correlation terms.137

In the following subsections, first the standard L2-norm minimisation138

procedure is described. Then the derivations of the equations needed to139

solve the L1-norm minimisation problem are discussed.140

2.1. L2-norm minimisation141

A detailed description of the L2-norm minimisation can be found in e.g.142

Koch (1999). Generally, the L2-norm minimisation is done according to the143
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condition given by Equation 3. A linear functional model in matrix form is144

given by145

v = Ax− y, (4)146

where v is the residual vector, A is the design matrix, x is the vector147

containing the unknown parameters of the model, and y is the observation148

vector. The design matrix A contains information on how the unknown149

variables relate to the observations in the functional model. Often the initial150

functional model of the system in question is not linear. In this case the151

system needs to be linearised. In a linearised system the design matrix will152

contain the partial derivatives of the model with respect to the unknown153

parameters. Using the expression for the residuals given by Equation 4 in154

Equation 3, we can write the weighted sum of the residuals as155

vᵀPv = (Ax− y)ᵀP(Ax− y) (5)156

Differentiating the expression in Equation 5 with respect to x and setting157

it to equal 0 we obtain158

x̂ = (AᵀPA)−1AᵀPy. (6)159

From Equation 6 we obtain the vector of unknowns, which will minimise160

the squared sum of the weighted residuals. An important property of the161

L2-norm is that the absolute value term in the sum is squared, and thus162

the absolute value function can be omitted. This enables us to differentiate163

the expression given in Equation 5. Thus, the L2-norm is computationally164

straightforward, with the most costly operation being the matrix inversion165
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in Equation 6. In the case of the L1-norm the differentiability is an issue166

and requires an alternative approach. The standard parameter estimation167

in the c5++ analysis software is based on iterative least-squares (L2-norm)168

minimisation.169

2.2. L1-norm minimisation170

The L1-norm minimisation, which is discussed in detail in e.g. Koch171

(1999), starts from the same functional model set-up used in Equation 4.172

However, now the residual vector v remains inside the absolute value func-173

tion. Consequently, it is not differentiable at 0, and we are unable to derive174

the value for the vector of unknowns x that will minimise the sum of the175

weighted absolute values of the residuals. The formulation for a L1-norm176

minimisation has been described in e.g. Amiri-Simkooei (2003). Following177

this general formulation, in order to deal with absolute value function in the178

Equation 2, we re-write the vectors v and x with the help of slack variables.179

This will reduce the problem to that of a linear programming. These vectors180

are now given by181

v = u−w, u,w ≥ 0, (7a)182

x = ααα− βββ, ααα,βββ ≥ 0, (7b)183
184

where a condition ui or wi = 0 holds for the residual vector components.185

Now given the conditions in Equation 7a, Equation 2 can be written as186

pᵀ|v| = pᵀ|u−w| = pᵀ(u + w), (8)187

subject to the conditions in Equation 7b,188
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u−w = A(ααα− βββ)− y. (9)189

The objective function can now be written as190

min


[
0T 0T pT pT

]

ααα

βββ

w

u



 , (10)191

subject to192

[
A −A I −I

]

ααα

βββ

w

u

 = y, (11)193

given the same conditions as earlier. Denoting the objective function with194

z this form is equivalent to195

z = cᵀx, (12)196

subject to197

Ax = b, x ≥ 0. (13)198

The L1-norm minimisation was implemented in c5++ as an external199

python script. The corresponding linear programming problem was solved200

using a Simplex-method (Murty, 1983) implemented in the linprog function201

of the optimisation module in SciPy (Walt et al., 2011).202

9



2.3. Theoretical comparison of L1- and L2-norm203

Generally, the advantage of the L2-norm is that it is computationally204

simple. The L2-norm is intrinsically stable and it has a unique solution. Fur-205

thermore, if the measurement errors are assumed to be normally distributed206

around 0 with a variance of σ2, the L2-norm is the maximum likelihood es-207

timator (MLE) for the unknowns. Thus, for normally distributed errors, the208

L2-norm will give the optimal estimates for the unknowns. However, as-209

suming normality might not always be justified, and it can be hard to infer210

from the results whether the assumption was in fact correct. The sampling211

variance of the L2-norm is proportional to σ2/n, where n is the sample size.212

Even though the L2-norm is efficient, its disadvantage is its sensitivity to213

outliers. Because the sum deals with squared residuals, large deviations in214

the residuals tend to have high impact on the overall sum. This in turn will215

propagate into the unknowns.216

Compared to the L2-norm, the main advantage of the L1-norm is its217

increased robustness against outliers. Since the L1-norm sums absolute devi-218

ations instead of squared values, large residuals do not influence the solution219

to the same degree as with the L2-norm. Consequently, the L1-norm will220

more likely correctly detect the magnitude of the large outliers, instead of221

propagating the error into the unknowns through the adjustment. The L2-222

norm tends to overcompensate the influence of large deviations. For example,223

in case of a simple linear regression, by shifting the regression line towards224

the outliers, making the individual residual smaller but consequently provid-225

ing a worse fit for the good observations. With the L1-norm large deviations226

do not dominate the sum to a same degree, and thus in case of e.g. linear227
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regression, the fit is not shifted towards the erroneous observation as much,228

keeping the residuals of the good observations smaller and correctly detecting229

the magnitude of the bad one.230

However, the L1-norm has some clear disadvantages compared to the231

L2-norm, as well. Firstly, the solution is not always stable and there is232

no guarantee of a unique solution. In contrast to the MLE condition of233

the L2-norm, the L1-norm is the MLE when the errors follow a Laplace234

distribution with µ and b as the location and scale parameters. In case of235

normally distributed errors e ∼ N(0, σ2) the sampling variance for L1-norm236

is proportional to (π/2)(σ2/n) (Andersen, 2008). Thus, if the errors are in237

general normally distributed, the L1-norm will likely produce larger variance238

compared to the L2-norm.239

Keeping these considerations in mind, the L1-norm has the potential to240

be very effective in detecting outlier of large magnitude. This corresponds241

well to the case of the ambiguity resolution problem in geodetic VLBI where242

the ambiguities have far greater magnitude than the overall noise-floor of the243

observations.244

3. Automated ambiguity estimation for Intensive sessions245

To investigate the performance of the L1-norm in the ambiguity estima-246

tion we analysed a total of 1835 INT1 sessions observed in the period of247

2001–2015, starting from Version-1 databases. The sessions were analysed248

in automated mode by resolving the ambiguities with both the L1- and L2-249

norm approach. The ambiguity-resolved databases were then subsequently250

processed to estimate the UT1-UTC with respect to the EOP product of251
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International Earth Rotation and Reference Frame Service (IERS), namely252

EOP C04 08 (Bizouard and Gambis, 2011). This latter estimation was car-253

ried out using the standard L2-norm method for both ambiguity resolving254

methods. Thus, the only differences to the analysis due to the L1- and L2-255

norms are introduced in the ambiguity estimation step.256

3.1. Ambiguity estimation in c5++257

The general ambiguity estimation process in c5++ is iterative. The X-258

and S-band group delays are processed as independent observations, which259

retains the integer-nature of the ambiguities. In contrast, the software pack-260

age SOLVE (Ma et al., 1990), which has long been used operatively for the261

IVS data products, combines the X- and S-band group delays in the ini-262

tial stage of the automated ambiguity estimation. The modern replacement263

for Solve, νSolve (Bolotin et al., 2014), implements similar concepts in its264

automated group delay ambiguity estimation.265

The functional model used for the ambiguity resolution in c5++ is de-266

scribed in Hobiger et al. (2010). In general, the model includes a quadratic267

polynomial for the station clock behaviour, an offset term between X- and268

S-band to consider inter-band instrumental delays, and the troposphere de-269

lays at each station. One of the stations is always chosen as the reference,270

for which the clock and inter-band offsets are not estimated. Thus, in the271

case of INT1 and one baseline we estimate in total three clock coefficients272

and the band offset term for the non-reference station. In this analysis the273

troposphere parameters were also estimated. The troposphere parameters at274

the stations are estimated to the zenith-direction and mapped to the source275

elevation using a mapping function. There are multiple mapping functions276
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available. In this analysis we used the Global Mapping Functions (GMF2)277

together with Global Pressure and Temperature Model (GPT2) (Lagler et al.,278

2013).279

In each iteration step the residuals are computed and if they are larger280

than 50 % of the ambiguity spacing on that band, the corresponding ob-281

servations are shifted by one ambiguity spacing towards 0. This process of282

ambiguity shifting is iterated until the ratio of the WRMS values of the resid-283

uals from subsequent iterations reaches a pre-specified level. This level was284

set to 0.999 in all our analyses which are discussed hereafter. The maximum285

number of iterations was set to 60. During the estimation process, different286

weighting schemes can be applied. The effect of the choice of weighting was287

investigated using three different approaches, which are described in Table 1.288

Table 1: The three different weighting approaches used in the ambiguity estimation.

Weighting

mode

Description Weighting

W1 Unit weighting 1

W2 Formal errors 1
σ2
τ

W3 Formal errors multiplied by

wet mapping functions val-

ues (elevation dependent)

1
σ2
τ (mf(e)2wet,1 + mf(e)2wet,2)

Once the ambiguities are resolved, the X- and S-band data are combined289

to produce an ionosphere free X-band database. This database is then sub-290
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sequently used as an input in the UT1-UTC estimation step. In this step the291

observations were weighted according to the elevation dependent approach,292

W3. The schematics in Figure 1 illustrate the ambiguity and UT1-UTC293

estimation process in c5++.294

S/X ionosphere calibration

Ionosphere- and
ambiguity-free

X-band group delays

Internal data storage

Compute o-c

c5++

L1-norm
Ambiguity estimation
W1, W3, W3

Python L2-norm
Ambiguity estimation
W1, W2, W3

X-band group delays
Version-1 database

S-band group delays
Version-1 database

L2-norm
UT1-UTC estimation
W3

Figure 1: Schematics of the automated ambiguity and UT1-UTC estimation in c5++.

3.2. Indicators for successfully resolved ambiguities295

In order to assess whether the ambiguities have indeed been successfully296

resolved, we need to define criteria, that capture the effect of the ambiguity297

estimation.298

Since any unresolved ambiguities will propagate into the estimated pa-299

rameters, a straightforward method is to investigate the UT1-UTC estimates300

obtained from the two ambiguity estimation approaches. In this estimation301
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step the station coordinates were kept fixed to their a priori ITRF2008 (Al-302

tamimi et al., 2011) values. Except UT1-UTC, all EOP were fixed to their303

EOP C04 08 values. The UT1-UTC were estimated with respect to the a pri-304

ori C04 08 values. From now on these values will be referenced simply as305

the UT1-UTC estimates. In addition to UT1-UTC, a quadratic clock for the306

non-reference stations and the wet troposphere for both stations were esti-307

mated. This set-up is typical for INT sessions, since due to the combination308

of short session duration and baseline geometry, the only EOP that can be309

viably determined is UT1-UTC.310

Furthermore, we can directly compare the Root Mean Square (RMS) and311

Weighted RMS (WRMS) values for the post-fit residuals from the ambiguity312

resolution runs. In the ambiguity resolution step no outlier elimination is313

performed, because in the presence of ambiguities every observation has the314

potential to be interpreted as an outlier. Thus, any unresolved ambiguities315

will be reflected as higher RMS and WRMS values. In the UT1-UTC esti-316

mation step in c5++, 3-σ outliers are detected at iteration step i following317

an empirically derived condition (Hobiger et al., 2010)318

|o− c|i > WRMSi−1
3√
2

√
mf(e)2wet,1 + mf(e)2wet,2 ⇒ outlier, (14)319

where the o − c is the difference between the observed and computed320

value at the ith iteration, WRMSi−1 is the WRMS value from the previous321

iteration, and mf2wet,1 and mf2wet,2 are the wet mapping function values for322

the stations 1 and 2, respectively. This outlier detection algorithm implies323

that if the WRMS from the previous iteration is high, the solution is more324

tolerant to large residuals.325
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4. Results326

The impact of using the L1-norm in the ambiguity estimation was exam-327

ined by investigating the criteria described in Section 3.2. In order to focus328

on the sessions which produced meaningful UT1-UTC estimates w.r.t C04329

and to eliminate gross errors that would distort the derived statistics of the330

UT1-UTC, the estimates, meaning the adjustments to the a priori values,331

were filtered with a condition where the absolute values of the estimates are332

larger than 1000 µs and/or the formal errors are larger than 50 µs. After333

this initial outlier elimination was applied, we obtained a set of sessions for334

each ambiguity estimation method–weighting mode pair, for which RMS and335

WRMS of the UT1-UTC values were computed. These values are listed in336

Table 2. The largest number of good sessions is highlighted for each weight-337

ing strategy. The RMS and WRMS values for the post-fit residuals from the338

ambiguity estimation for both norms and all weighting strategies are listed339

in Table 3.340

The results in Table 2 show that the RMS and WRMS values of the341

UT1-UTC estimates for both approaches are very close. The differences342

in all categories are below 0.2 µs. These values reflect the general level of343

UT1-UTC accuracy obtainable from INT sessions (Kareinen et al., 2015).344

The noteworthy conclusion is that the L1-norm gives a larger number of345

good sessions compared to the L2-norm, and this is true for all weighting346

strategies. The largest difference is seen with weighting W1, where the L1-347

norm approach to resolve ambiguities produces 84 more good sessions. The348

L1-norm resulted in an increase of 5.4 %, 4.4 %, and 4.6 % for the number349

of good sessions using the W1, W2, and W3 weightings, respectively.350
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Table 2: Impact of the weighting strategies for ambiguity estimation on final UT1-UTC re-

sults. Presented are the number of sessions and corresponding RMS/WRMS of UT1-UTC

values w.r.t. C04 for the sessions, which pass the |UT1-UTC| < 1000 µs and σUT1−UTC

< 50 µs criteria. For each weighting strategy the highest number of sessions between the

L1- and L2-norm approaches are highlighted in boldface.

L1 L2

#Sessions RMS [µs] WRMS [µs] #Sessions RMS [µs] WRMS [µs]

W1 1649 22.58 18.39 1565 22.58 18.37

W2 1469 22.32 18.43 1407 22.50 18.53

W3 1493 22.25 18.43 1428 22.42 18.37

Table 3: Mean RMS and WRMS of the post-fit residuals from the ambiguity estimation

for L1- and L2-norms for all weighting strategies.

L1 L2

RMS [m] WRMS [m] RMS [m] WRMS [m]

W1 1.08 1.08 1.25 1.25

W2 1.87 0.42 1.86 0.51

W3 1.83 0.37 1.87 0.43
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The mean RMS and WRMS of the post-fit residuals presented in Table 3351

show that the L1-norm gives on average a better fit after the ambiguity352

estimation. The only exception is weighting W2 where the RMS of the L2-353

norm is smaller by 30 ps.354

The number of iterations that it takes for the ambiguity estimation to355

converge may reflect both the initial quality of the data, the impact of the356

weighting method, as well as the stability of the estimation method. The357

number of iterations for the L1- and L2-norms approaches and weightings358

W1, W2, and W3 are presented in Figure 2.359

The success of the ambiguity estimation is reflected in the post-fit group360

delay residuals from the UT1-UTC estimation. The errors from the unre-361

solved ambiguities propagate to the estimated parameters during the first362

iteration of the UT1-UTC estimation. The outlier elimination algorithm in363

c5++ given in Equation 14 depends on the WRMS of the previous iteration.364

Parameters estimated in the first iteration bear the risk to absorb outliers365

and thus subsequent iterations are not able discern between good observa-366

tions and outliers.367

Shown in Figure 3 are the residuals for the both L1- and L2-norm ap-368

proaches and all three weighting strategies. It becomes clear that the residu-369

als from the L1-norm approach are smaller in general. This can be confirmed370

both with more L1-residuals located closer to zero and less L1-residuals with371

large magnitudes.372

The overlap of the sets of good sessions obtained with the L1- and L2-373

norm approaches are illustrated by Venn-diagrams in Figure 4. These dia-374

grams show the number of good sessions which are found in both L1 and L2,375
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Figure 2: Session distribution by the number of iterations for the L1- and L2-norm ap-

proaches for each weighting strategy W1, W2, and W3. The histograms separate between

the sessions passing the 1000 µs/50 µs criterion with a different pair of colours for both

norms.

only L1, or only L2 results.376

To investigate the sessions that fail with either the L1- or L2-norm ap-377
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Figure 3: The distribution of the post-fit residuals from UT1-UTC estimation for the L2-

(left, blue) and L1-norm (right, green) approaches and weighting strategies W1, W2, and

W3.

proaches, we consider subsets from all the sessions that resulted in good378

UT1-UTC estimate with either approach. In particular, we concentrate on379

subsets with the sessions that succeeded with the L1-norm approach. The380

following subsets of Figure 4 are considered for all weighting strategies:381

• Subset-1: select all sessions that are good with the L1-norm approach,382

select the same sessions from the L2-norm solutions.383
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(a) Weighting: W1 (b) Weighting: W2 (c) Weighting: W3

Figure 4: Venn-diagrams for the weighting strategies W1, W2, and W3 illustrating the

overlap between the sets of sessions obtained with the L1- and L2-norm ambiguity esti-

mation, that pass the |UT1-UTC| < 1000 µs and σUT1−UTC < 50 µs criteria.

– W1: 1564 + 85 = 1649 sessions384

– W2: 1403 + 66 = 1469 sessions385

– W3: 1426 + 67 = 1493 sessions386

• Subset-2: select all sessions that are exclusively good with the L1-norm387

approach, select the same sessions from the L2-norm solutions.388

– W1: 85 sessions389

– W2: 66 sessions390

– W3: 56 sessions391

• Subset-3: select all sessions that are exclusively good in the L2-norm392

approach, select the same sessions from the L1-norm solutions.393

– W1: 1 session394

– W2: 4 sessions395

– W3: 2 sessions396
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The average number of observations (X- or S-band) in the whole set of397

1835 sessions is 20.5. For the Subset-1 and weighting strategies W1, W2,398

and W3, the average number of observations are 20.7, 20.8, and 20.8. These399

values are slightly higher the average number observations of all sessions.400

This shows that on average sessions with a higher number of observations401

lead to better UT1-UTC estimate.402

Similarly, for the Subset-2 the average number of observations are 18.8,403

20.6, and 20.4. For weighting W2 and W3 the average number of observations404

between Subset 2 and all sessions are very close to one another. For the405

weighting W1 the larger number of extra sessions between L1- and L2-norm406

compared to weightings W2 and W3 correspond to including sessions that407

have less than average number of observations when compared to the average408

of all sessions. Thus, with weighting W1 the L2-norm approach fails more409

often than the L1-norm approach with sessions that had slightly less than410

average number of observations.411

The Subset-3 has very few observations in all the weighting strategies412

W1, W2, and W3. The average number of observations in Subset-3 and413

weightings W1, W2, and W3, are 16.0, 20.3, and 20.5, respectively. These414

values are similar to the corresponding Subset-2 results. This indicates that415

the failure of the L1-norm approach in Subset-3 is not related to the number416

of observations in these sessions. Furthermore, weighting W1 again has lower417

than average number of observations. Based on the number of observations418

in Subset-2 and Subset-3 with weighting W1 the low number of observations419

cause instability, which the L1-norm approach is able to handle better.420

Next, we investigate the extent to which the added sessions obtained421
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with the L1-norm approach influences the UT1-UTC accuracy by selecting422

the sessions in Subset-1. The results from this comparison are presented423

in Table 4. The counterpart to the Subset-1 would be a subset, where we424

select the good L2-norm sessions and the same sessions processed with the425

L1-norm. However, since there are only a few sessions that have a good426

UT1-UTC solution exclusively with the L2-norm, their relative number with427

respect to the total number of good sessions is very low. Thus it is not428

meaningful to consider the RMS/WRMS of the UT1-UTC estimates based429

on these sessions. This is also the case for the Subset-3. In the following we430

focus only on Subset-1 and Subset-2.431

Table 4: Number of sessions and corresponding RMS/WRMS of UT1-UTC values w.r.t.

C04 for the sessions included in Subset-1.

L1 L2

#Sessions RMS [µs] WRMS [µs] RMS [µs] WRMS [µs]

W1 1649 22.58 18.39 938.09 18.70

W2 1469 22.32 18.43 805.21 18.82

W3 1493 22.25 18.43 1096.07 18.74

The number of extra sessions obtained with the L1-norm is approximately432

5 % compared to the L2-norm. The large increase in the RMS values com-433

pared to the WRMS values in the L2-norm indicate that the sessions previ-434

ously discarded due to high UT1-UTC estimate have correspondingly large435

23



Table 5: Number of sessions and corresponding RMS/WRMS of UT1-UTC values w.r.t.

C04 for the sessions included in Subset-2.

L1 L2

#Sessions RMS [µs] WRMS [µs] RMS [µs] WRMS [µs]

W1 85 18.83 22.54 3934.66 4130.73

W2 66 17.11 19.38 3280.11 3797.42

W3 67 19.48 19.55 2646.68 5173.04

formal errors. Thus, they are heavily downweighted in the WRMS of the436

UT1-UTC for all three weighting strategies. Comparing the results from the437

L2-norm approach presented in Tables 4 and 2 one can see that the WRMS438

values for the L2-norm in Subset-1 are slightly larger.439

Overall, the greatest contribution of the L1-norm approach is the number440

of added sessions, which increase the time resolution of the UT1-UTC series,441

rather than the overall accuracy.442

When we investigate the set of sessions, which pass the outlier filtering443

only in the L1-norm approach (see Figure 4), we see a clear difference both444

in RMS and WRMS values between the two norms. These values are listed445

in Table 5. Now the L2-norm approach produces large values in both RMS446

and WRMS values. These WRMS values indicate, that the formal errors of447

the UT1-UTC estimates for the extra sessions in the L2-norm have similar448

magnitude.449
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5. Conclusions450

The increased number of sessions that produce good quality UT1-UTC451

estimates indicate that the L1-norm clearly improves the automated ambi-452

guity estimation for the INT1 sessions. The improvement provided by the453

L1-norm is also supported by the generally smaller RMS and WRMS values454

of the post-fit residuals from the ambiguity estimation. In general the L1-455

norm approach yields an improvement of 15–20 % in WRMS of the post-fit456

residuals. The subset of added sessions with respect to the L2-norm approach457

generally represent an average sample of INT1 sessions. The average number458

of observations in the sessions which benefited from the L1-norm ambiguity459

estimation is almost identical to the average number of observations over the460

whole set of analysed INT1 sessions. This implies that the improvement in461

ambiguity resolution with the L1-norm is not correlated with particularly462

high or low number of observations in the sessions.463

The number of sessions that are improved by the L1-norm approach464

greatly outnumber the ones where the issues of stability result in a failed465

ambiguity estimation. Quantitatively, the increase in number of sessions by466

using the L1-norm is approximately 5 %.467

The computational complexity of solving the linear programming prob-468

lem compared to inverting the normal equations does not generally cause469

significant overhead in the processing time for an individual session. The con-470

vergence of the L1-norm varied between the different weighting approaches.471

For the L2-norm the different weighting options behaved more uniformly.472

However, slow convergence does not necessarily lead to bad quality of the473

results. Using the W1 weighting, the L1-norm iteration counts were signif-474
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icantly larger compared to those of the L2-norm. However, the L1-norm475

using the W1 weighting (i.e. equally weighted) produced the biggest increase476

in good quality UT1-UTC estimates.477
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Titov, O., Tesmer, V., Böhm, J., 2004. ’OCCAM v. 6.0 software for VLBI533

data analysis’. In: Vanderberg, N. R., Baver, K. D. (Eds.), IVS 2004534

General Meeting Proceedings. NASA/CP-2004-212255, pp. 267–271.535

Titov, O., Tregoning, P., 2005. Effect of post-seismic deformation on earth536

orientation parameter estimates from VLBI observations: a case study at537

Gilcreek, Alaska. J. Geod. 79, 196–202.538

Walt, S., Colbert, S. C., Varoquaux, G., 2011. The NumPy Array: A Struc-539

ture for Efficient Numerical Computation. Comput. Sci. Eng. 13 (2), 22–30.540

28


