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Abstract
Traffic sign classification is an important task in autonomous driving and assistant
driving systems. In this thesis we do automatic learning of features and classifica-
tion on traffic signs from images. First, we study several publicly available libraries
for deep learning. Several CNN architectures are then tested under different pa-
rameter settings and scenarios, such as network depth, filter size, dropout rate and
preprocessing by using original images and segmented images. The German Traffic
Sign Recognition Benchmark was used to train in a supervised way the CNN model.
Preprocessing and segmentation are tested to make the training more robust and
the network able to generate more independent features. The results obtained are
good for all study cases and all 43 traffic sign classes. We reached test accuracies
above 98% that are comparable to state of the art performances.

Keywords: Convolutional Neural Networks, Traffic Sign Classification, Supervised
Learning, German Traffic Sign Recognition Benchmark
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1
Introduction

Traffic signs have been designed to be easily readable for humans, who perform very
well at this task. For computer systems, however, classifying traffic signs still seems
a challenging task [37]. Checking the road ahead, what is behind and the traffic,
all while trying to maintain the speed may sometimes become quite difficult. Car
firms are constantly looking to introduce new technologies to make this task easier
and the development of Traffic Sign Recognition (TSR) systems can be considered
a challenging real-world problem of high industrial relevance nowadays. Its pur-
pose is to support the driver so that the chances of not noticing a change in speed
limit or the warning of a potential hazard ahead shall be vastly reduced. TSR is
also one of the foremost important integral parts of autonomous vehicles and Ad-
vanced Driver Assistance Systems (ADAS) [2], [35]. Earlier work on TSR employed
Bayesian classifiers [42] or boosting [43]. Other works focus on ensemble classifiers,
such as one-to-all strategy with support vector machines (SVMs) as base classifiers
[38], [39], [40] and random forests with K-d trees as weak classifiers [41]. However,
due to their underlying mechanism of binary classification, these methods have to
face the unbalance between the number of positive and negative training samples.
As a result, these methods are likely to achieve a local optimum or an over-fitting
solution. In recent work, convolutional neural networks (CNNs) [33], [?], have been
used to automatically learn feature representations of traffic signs. These DNN al-
gorithms combine feature extraction and classification into a unified neural network.
CNN methods are frequently considered using hand-crafted features such as a circle
detector [42], a Haar wavelet [43], and a histogram of oriented gradient (HOG) [44]
or scale-invariant feature transform (SIFT) in [43], [3]. However, designing such
features requires a good deal of time and it is hard to know what feature is robust
to a specific task. Traffic signs may be divided into different categories according
to function, and in each category they may be further divided into subclasses with
similar generic shape and appearance but different details. This suggests traffic-sign
recognition should be carried out as a two-phase task: detection followed by clas-
sification. The detection step uses shared information to suggest bounding boxes
that may contain traffic-signs in a specific category, while the classification step
uses differences to determine which specific kind of sign is present. Since the launch
of the German traffic-sign detection and classification benchmark data [36], [37],
various research groups have made progress in both the detection (GTSDB) [37]
task and classification (GTSRB) [36] task. Current methods achieve near perfect
results for both tasks, with 100% recall and precision for detection and 99.65% [46]
precision for classification. Jin et al. [46] in particular train an ensemble of CNNs
and do classification by averaging the decisions of the ensemble. Recently Haloi
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1. Introduction

[47] has reached 99.81% accuracy by using a spatial transformer network capable of
generating automatic transformation of the input images.
In this work the objective is threefold:

1. to gain knowledge and understanding deep learning, in particular, convolu-
tional Neural Networks (CNNs);

2. use deep learning to automatically classifying traffic signs. In particular, in this
work we use the standard German Traffic Sign Benchmark Dataset (GTSRB)
for training and testing.

3. compare classification results obtained with CNNs on raw GTSRB images and
those obtained with CNNs on enhanced images.

1.0.1 Outline
This Thesis report is organized as follows: Section 2 describes the theoretical back-
ground on deep learning architectures and their training and the tools that allow
for a fast and optimized implementation of neural networks. Section 3 describes
the implementation of the neural network architecture and training and the differ-
ent settings on which the GTSRB training was carried out. Section 4 shows the
experimental results and their evaluation. At last future work is discussed.

Figure 1.1: Samples from the German Traffic Sign Recognition Benchmark. Image
from [44].
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2
Background theories and methods

This section reviews some existing theories and methods related to this thesis work.
First we provide a short background on the evolution of deep learning until now.
Second, the main libraries for deep learning and the advantages each one provides
are investigated. After that, we describe the most relevant architectures for deep
learning and their suitability for Traffic Sign Classification. The following section
is about the general backpropagation and the last one talks about the training in
convolutional networks.

2.1 From Neural Networks to Deep Learning
The core of an AI program for feature extraction and classification is the mapping
of a set of virtual neurons and the assignment of numerical values or “weights”
to the connections between them. Neural networks employ an iterative learning
process in which data vectors are presented to the network one at a time, and
the weights associated to the input values are adjusted each time. During the
learning phase, the network learns by adjusting the weights in order to be able to
predict the correct class label of input samples. The most popular neural network
(NN) training algorithm is the back-propagation algorithm that was proposed in
the 1980’s, and it was in the 80s that the concept of Deep Neural Networks was
born as well. The first true, practical application of backpropagation came about
through the work of LeCun in 1989 at Bell Labs. He used convolutional networks in
combination with backpropagation to classify handwritten digits (MNIST). Despite
the expectations on NNs, funding for research was still scarce. Another important
advance that was made in this time is the long short-term memory (LSTM) for
Recurrent Neural Networks (RNN) by Hochreiter and Schmidhuber in 1997, but
these advances went mostly unnoticed until later as they were overshadowed by the
Support Vector Machine (SVM) developed by Cortes and Vapnik in 1995.
A big shift occurred as computers grew faster and later thanks to the introduction
of graphics processing units (GPUs). Neural networks can be slow when compared
to SVMs, but they reach much better results with the same amount of data. As
the speed of GPUs increased, it was possible to train deep networks such as convo-
lutional networks without the help of pretraining as demonstrated by Ciresan and
colleagues in 2011 and 2012 in works such as [33]. They managed to win character
recognition, traffic sign, and medical imaging competitions with their convolutional
network architecture. Krizhevsky, Sutskever, and Hinton used a similar architec-
tures in 2012 (like AlexNet) that also features rectified linear activation functions
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2. Background theories and methods

and dropout for regularization. They received outstanding results in the ILSVRC-
2012 ImageNet competition, which marked the abandonment of feature engineering
and the adoption of feature learning in the form of deep learning. Google, Facebook,
and Microsoft noticed this trend and made major acquisitions of deep learning star-
tups and research teams between 2012 and 2014. In June 2015 Google demonstrated
one of the largest neural networks yet, with more than a billion connections. A team
led by Stanford computer science professor Andrew Ng and Jeff Dean showed to the
system images from 10 million randomly selected YouTube videos. The simulated
neurons in the software model were fixed on images such as of human faces, dogs,
cats, yellow flowers and other objects. Thanks to the power of deep learning, the
system identified these discrete objects even though no humans had ever defined or
labeled them. Currently, research in deep learning is still rapidly growing.

2.1.1 Advantages of deep learning
The human brain does not interpret an image by pixel but it decomposes a problem
into sub-problems through multiple levels of interpretations. As shown in [1], the
human brains processes visual signals through a structure of multiple layers, well
represented by Neural Networks. One of the promises of deep learning is replac-
ing handcrafted features with unsupervised or semi-supervised feature learning and
hierarchical feature extraction. Research in this area attempts to make better rep-
resentations and create models to learn these representations from large-scale data.
One of the most striking facts about neural networks is that they can compute any
function at all. No matter what the function, it is guaranteed there is a neural net-
work so that for every possible input x, the value f(x) or some close approximation
is output from the network. Theoretical results (works such as [34]) show that an
architecture with an insufficient depth can require many more computational ele-
ments and the growth in the number of these is exponential with respect to input
size. This also causes a slower learning. Architectures with multiple levels facili-
tate the sharing and re-use of components. As pointed out in [4], the meaning of
filters in deep learning roots in the principle of shared weights and biases. It means
that all the neurons in the first hidden layer detect different features at different
locations in the input image. For this reason, sometimes the map from the input
layer to the hidden layer is called a feature map. The weights defining the feature
map are called shared weights and the bias shared bias. The shared weights and bias
are often said to define a kernel or filter on a convolutional layer. A big advantage
of sharing weights and biases is that it greatly reduces the number of parameters
in the network. While on one side kernels allow to make use of the convolution
operation, on the other networks take advantage of the pooling layers. A pooling
layer is a layer that takes each feature map output from a convolutional layer and
prepares a condensed feature map, which contributes to the successful hierarchical
representation of a CNN.

4



2. Background theories and methods

2.2 Deep learning tools and libraries
There is a number of open-source tools on the internet that supports deep learning.
In the next section we discuss the most promising of them in terms of reliability,
performances and usability in order to select one of them for the final implementation
for this project.

2.2.1 Theano and Theano wrappers
Theano and its high level wrappers form a sort of family of libraries that share
similar characteristics. Since Theano is not actually a machine learning library but
rather a low level optimization library for computational graphs, there are many
other libraries that envelop it.

Theano: Theano is a Python library that has been developed at the University of
Montreal since 2008. It is an optimized tensor manipulation library that is thought
to serve as “backend engine” of high-level Theano wrappers. Theano is centered
around the idea of computational graphs: it knows how to take a computational
graph structure and turn it into very efficient code that uses SciPy-NumPy, native
libraries like BLAS and native C++ code to run as fast as possible on CPUs or
GPUs. Theano offers speed and stability optimisations since it internally reorga-
nizes and optimises the computations. One of its perks is automatic differentiation:
it only takes to implement the forward (prediction) part of the model, and Theano
will automatically figure out how to calculate the gradients at various points, al-
lowing users to perform gradient descent for model training. Another key aspect of
Theano is the use of GPU for computations. The use of GPU in Theano is actually
transparent, in the sense that users can write the same code and run it either on
CPU or GPU. More specifically, Theano figures out which parts of the computation
should be moved to the GPU. Theano is not actually a machine learning library,
as it does not provide the user with pre-built models that may be trained on the
dataset. Instead, it is a mathematical library that provides tools to build custom
machine learning models. Using Theano makes it easy to implement backpropaga-
tion for convolutional networks and Recurrent Networks in general, as it is thought
to model the NN as a computational graph. For this reason it provides the “ifelse”
or “switch” functions to allow for conditional control flow in the graph. Loops are
made easy with a “scan” function (which favors RNN implementation).

Lasagne: Lasagne is a Python lightweight library built on top of Theano, basically
an high level wrapper for Theano. While another Theano wrapper such as Keras can
be used without ever "knowing" about Theano sitting underneath it, this is not true
for Lasagne, which is designed to be used side by side with Theano and to interface
with it. Lasagne has been implemented with a special focus on transparency: it
does not hide Theano behind abstractions because it directly processes and returns
Theano expressions or Python numpy data types. Lasagne allows architectures of
multiple inputs and multiple outputs and provides optimization methods including
stochastic gradient descent, Nesterov momentum, Adagrad, Adadelta and Adam.
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2. Background theories and methods

The cost function is easy to define and there is no need to derive gradients due to
Theano’s symbolic differentiation. Another useful characteristic of Lasagne is its
modularity: it allows all parts (layers, weights, filters...) to be used independently
of Lasagne, being saved and easily exported for re-use.

Other Theano wrappers: Other Theano wrappers include Pylearn2, Bloaks and
Keras. Pylearn2 algorithms can be written using Theano expressions and Theano
optimizes and stabilizes the expressions. It includes all the things needed for mul-
tilayer perceptrons, RBMs and CNNs. Blocks is a framework that introduces the
concept of “bricks” to build models. Bricks are parametrized Theano operations.
Blocks includes interesting features such as the monitoring and analysis of values
during training progress and automatic saving and resuming of the training. Keras
is a highly modular neural networks library, written in Python and capable of run-
ning on top of either TensorFlow or Theano (supports the Theano backend and
the TensorFlow backend as well). It was developed with the focus on enabling fast
experimentation, since being able to move easily from idea to result is key to doing
efficient research.

Figure 2.1: Overview on Theano and its wrappers. The Linux installation is the
preferable choice.

2.2.2 TensorFlow, Caffe, Torch
The number of available libraries for Deep Learning is constantly growing. Tensor-
Flow, Caffe and Torch are arguably the other three major libraries when it comes
to interface, optimization, training speed, scalability and readability of the code.

TensorFlow: TensorFlow is an open source software library for numerical com-
putation developed by the Google Brain Team within Google’s Machine Intelligence
research organization. In a way it is very similar to Theano, for its central idea
of data flow graphs. Nodes in the graph represent mathematical operations and
the graph edges represent the multidimensional data arrays (tensors) propagated
between them. TensorFlow can be used from C, C++ and Python programs. Ten-
sorFlow also allows a graphical visualization of the graph (“TensorBoard” tool) and
to scope on sub-levels of computations for debugging purposes.

Caffe: Caffe is a deep learning framework that was developed by the Berkeley
Vision and Learning Center (BVLC) mostly for vision tasks. Caffe takes its first
steps from the AlexNet implementation and it is implemented mostly in C++; it
was originally intended for CNNs and provides easy implementation of feedforward
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2. Background theories and methods

NN. It is notoriously good for finetuning exixting models, although it is not as well
as good for RNNs. It requires a number of software packages such as SciPy-NumPy,
BLAS, Intel MKL, OpenBLAS. Caffe has some level of abstraction, which is higher
than Cuda-Convnet and lower than others such as Pylearn and Torch. Caffe includes
the so called “Model Zoo” providing lots of pre-trained models.

Torch: Torch is heavily used by Facebook AI Research Labs and Google’s Deep-
Mind Lab. Instead of following the Python trend, Torch is C and Lua-based. Lua is
a high level scripting language intended for embedded devices. Torch allows to build
arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in
an efficient manner. Torch has a large ecosystem of community-driven packages
in machine learning, computer vision, signal processing, parallel processing, image
and video. Torch gravitates around the “Tensor” class with great analogies to the
Numpy arrays with the same role as tensors in Theano. It allows to define a deep
network in a sequential way as a stack of layers, similarly to Theano and Caffe, and
to cast the types and computation on a GPU. In the end Torch has less Plug and
Play functionalities than Caffe, as it results in more self coding work which on the
other side also allows for more flexibility. It has a lot of modular pieces that can be
combined and also offers lots of pre-trained models.

Figure 2.2: Overview on major libraries for Deep Learning. Image taken from the
course CS231: Convolutional Neural Networks for Visual Recognition from Stanford
University.

2.3 Deep learning models
Once the choice on the software is made, it is necessary to figure out which archi-
tecture is the best for Traffic Sign Classification. We consider the following options.
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2. Background theories and methods

2.3.1 Convolutional Neural Network (CNN)
CNN is one of the neural network models for deep learning, which can be described
by three specific characteristics, namely locally connected neurons, shared weights
and spatial or temporal sub-sampling. The architecture of a CNN is designed to take
advantage of the 2D structure of an input image (or other 2D input such as a speech
signal). This is achieved with local connections and tied weights followed by some
form of pooling which results in translation invariant features. A benefit of CNNs is
that they are easier to train and have many fewer parameters than fully connected
networks with the same number of hidden units. To provide an overview on the
architecture characteristics, CNNs are composed of convolutional and subsampling
layers optionally followed by fully connected layers. The input to a convolutional
layer is an m x m x r image where m is the height and width of the image and r is
the number of channels, e.g. an RGB image has r = 3. The convolutional layer will
have k filters of size n x n x q where n is smaller than the dimension of the image
and q can either be the same as the number of channels r or smaller and may vary
for each kernel. The size of the filters gives rise to the locally connected structure
where each element is convolved with the image to produce k feature maps of size
mn+ 1. In convolutional layer, each neuron is connected locally to its inputs of the
previous layer, which functions like a 2D convolution with a certain filter, then its
activation could be computed as the result of a nonlinear transformation:

αi,j = ρ(f ∗ x) = ρ(
n∑

i′=1

n∑
j′=1

fi′,j′xi+i′,j+j′ + b) (2.1)

where f is an n x n weight matrix of the convolutional filter, x refers to the acti-
vations of the input neurons connected to the neurons (i,j) in the following convo-
lutional layer. ρ() is a nonlinear activation function (usually sigmoid or hyperbolic
tangent), b is the bias, ∗ is the convolution operator. After the convolution each
map may be subsampled typically with mean or max pooling over pxp contiguous
regions where p ranges between 2 for small images (e.g. MNIST) and is usually
not more than 5 for larger inputs. As pointed out in [10] CNNs have won several
competitions in:

1. handwriting recognition (MNIST, Arabic HWX - ISDIA);
2. OCR in the wild (2011), Streetview house numbers(NYU);
3. Traffic sign recognition (2011), GTSRB competition (IDSIA, NYU);
4. Pedestrian detection (2013), INRIA datasets and others (NYU);
5. Object recognition (2012), ImageNet competition;
6. Human Action Recognition (2011), Hollywood II dataset(Stanford);

and many more.

8
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Figure 2.3: On the left: an example of zero-padding with 1-pixel border. Mid-
dle and right: areas superimposed on subsequent multiplications during stride-1
convolution. Images from [24].

One aspect of CNNs to pay attention to is to preserve the size of the data throughout
the network which would otherwise decrease without zero padding. Without zero-
padding the size of the output Nout is:

Nout = Nin − F
Stride

+ 1 (2.2)

For this reason, having stride 1, to preserve the size of the input data past the
convolutional layer, zero-pad P is set according to:

P = F − 1
2 (2.3)

For the maximum pooling we choose 2x2 kernels at stride 2 in order to avoid over-
lapping.

2.3.2 Residual Neural Network (ResNet)
A variation of standard CNNs are Deep Residual Neural Networks. A description
and a model for ResNets can be found in [17]. ResNets take a standard feed-forward
ConvNet and add skip connections that bypass (or shortcut) a few convolution layers
at a time. Each bypass gives rise to a residual block in which the convolution layers
predict a residual that is added to the following block’s input. [17] proves that these
networks can gain accuracy from considerably increased depth. A residual network
8 times deeper than VGG net [22] but still having lower complexity compared to it
has won the first place in ILSVRC 2015.

Figure 2.4: A building block for residual learning. Image from [17].
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2. Background theories and methods

Residual layers address a problem of degradation that occurs as the depth increases
and this problem is not due to overfitting [17]. The accuracy saturates first and
then degrades rapidly. When extra-layers turn out to be unnecessary or even cause
of degradation, an identity mapping between layers is the most effective solution. A
residual connection allows to push the residual to zero and propagate along the stack
an identity mapping, thus “hiding” the presence of extra (unnecessary) layers. To
the extreme, if an identity mapping were optimal to a specific training propagation,
it would be easier to push the residual to zero than to fit an identity mapping by a
stack of nonlinear layers. Along with the depth degradation, the internal covariate
shift issue has been considered with ResNets. A thorough explanation is given in [27].
The internal covariate shift is caused by the fact that the distribution of each layer’s
inputs changes during training along with the change in the network parameter’s
values. As a consequence the training is a slower because it forces lower learning
rates and makes it hard to train networks with saturating nonlinearities [27]. Batch
normalization fixes the distribution of the layer inputs as the training progresses.
[27] explains that the whitening of the input (linearly transformed to have zero mean
and unit variance) makes the network training converge faster. Since mini-batches
are used in stochastic gradient training, each mini batch produces estimates of the
mean and variance of each activation. The statistics used in normalization then can
be thought as fully partecipating to the gradient backpropagation. [17] uses in fact,
the batch normalization from [27]. On top of that, a scale and shift transformation
of type:

yk+1 = yk ∗ norm(x) + βk (2.4)

is being added to every residual learning block. The reason is that since full whiten-
ing of each input layer is costly, the semplification of normalizing each feature in-
dependently is made. This will though alter what a layer represents. Scaling and
shifting trasformations allow the network to be able to represent the identity trans-
formation.

2.3.3 Recurrent Neural Network (RNN)
As explained in [11], the idea behind RNNs is to make use of sequential information.
In a traditional neural network we assume that all inputs (and outputs) are inde-
pendent of each other. But for many tasks that may be a bad idea. To predict the
next word in a sentence it is better to know which words came before it. RNNs are
called recurrent because they perform the same task for every element of a sequence,
with the output made dependent on the previous computations. Another way to
think about RNNs is that they have a “memory” which captures information about
what has been calculated so far. In theory RNNs can make use of information in
arbitrarily long sequences, but in practice they are limited to looking back only a
few steps. In Figure 2.5 can be seen the basic structure of a RNN:

10
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Figure 2.5: Basic RNN structure. Image from [11].

xt is the input at time step t. For example, x1 could be a vector corresponding
to the second frame of a video. st is the hidden state at time step t. It is the
“memory” of the network. st is calculated based on the previous hidden state and
the input at the current step: st = f(Uxt + Wst−1) . The function f usually is a
nonlinearity such as tanh or a rectifier. st−1, ..st−n, which are required to calculate
the first hidden state, are typically initialized to all zeroes. ot is the output at step t.
For example, to make prediction on the next frame in a video it would be a vector
of probabilities across all possible pixels (the descriptors of the frame) in use in
the given system. The literature around RNN is very wide. In Bi-directional RNN
[16], training is accomplished by forwarding the data simultaneously in positive
and negative time direction. Multi-dimensional RNN, introduced in [17], extend
RNNs one-dimensional input data to multi-dimensional data, thereby extending
the potential applicability of RNNs to vision, video processing, medical imaging
and many other areas. Gated Feedback Recurrent Neural Networks (GFRNN) [18]
extends the existing approach of stacking multiple recurrent layers by allowing and
controlling signals flowing from upper recurrent layers to lower layers.

2.3.4 Long Short-Term Memory (LSTM)
One of the appeals of RNNs is the idea that they might be able to connect previous
information to the present task, such as using previous video frames might inform
the understanding of the present frame. RNNs can basically learn to use the past
information. But there are also cases where more context is needed. Considering
to try to predict the last word in the text “I grew up in Sweden. . . I speak fluent
. . . ”. Recent information suggests that an upcoming word is probably the name of a
language, but to narrow down which language, we need the context of Sweden, from
further back. It is entirely possible for the gap between the relevant information and
the point where it is needed to become very large. LSTMs are explicitly designed
to avoid the long-term dependency problem. As explained in [20], in a traditional
recurrent neural network, during gradient back-propagation step, the gradient values
can end up being multiplied a large number of times by the weight matrix associated
with the connections between the neurons of the recurrent hidden layer. This means
that the magnitude of weights in the transition matrix can have a strong impact
on the learning process. If the weights in this matrix are small (or, more formally,
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if the leading eigenvalue of the weight matrix is smaller than 1.0), it can lead to a
situation called vanishing gradients where the gradient signal becomes so small that
learning either becomes very slow or stops working altogether. It can also make
more difficult the task of learning long-term dependencies in the data. Conversely,
if the weights in this matrix are large (or the leading eigenvalue of the weight matrix
is larger than 1.0), this can lead to a situation where the gradient signal is so large
that it can cause learning to diverge. This event is often referred to as exploding
gradients.

Figure 2.6: Basic RNN structure. Image from wildml.com.

These issues are the main motivation behind the LSTM model, introduced in [2] in
1997. This model makes use of a new structure called a memory cell. A memory cell
is composed of four main elements: an input gate, an output gate, a neuron with
a connection to itself and a forget gate. The self-recurrent connection has a weight
of 1.0 and ensures that, barring any outside interference, the state of a memory cell
can remain constant from one time step to another. The gates serve to modulate the
interactions between the memory cell itself and the environment. The input gate
can allow incoming signal to alter the state of the memory cell or block it. On the
other hand, the output gate can allow the state of the memory cell to have an effect
on other neurons or prevent it. And last, the forget gate can modulate the memory
cell’s self-recurrent connection, allowing the cell to remember or forget its previous
state, as needed.

2.4 Training a neural network
In the following section the backpropagation algorithm and other training and net-
work parameters are discussed. We also focus mostly on specific parameters that
are favored in this thesis. For example, we speak about weights initialization and in
particular the Glorot initialization. We discuss the use of sigmoid activation func-
tion in order to compute the errors at the output of the network. An expression that
returns a measure of the error that is commonly used is the categorical crossentropy
function. Backpropagation explains how from the errors the updates are obtained.
Specifically, Nesterov momentum is eventually applied to the updates to obtain the
new values for the weights.

12
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2.4.1 Backpropagation
Backpropagation is a common method for training a neural network. Its goal is to
compute the partial derivatives ∂w and ∂C/∂b of a cost function C with respect
to any weight w or bias b in the network. For backpropagation to work two main
assumptions about the form of the cost function must be made:

1. the cost function can be written as an average J = 1
n

∑
x Jx over cost functions

Jx for individual training examples, x;
2. the second assumption is that the cost shall be written as a function of the

outputs from the neural network.

Figure 2.7: An example model of neural connections.

The reason for the first assumption is that what backpropagation actually allows
to do is compute the partial derivatives ∂Jx/∂w and ∂Jx/∂b for a single training
example. Afterwards it is possible to recover ∂Jx/∂w and ∂Jx/∂b of an entire epoch
by averaging over training examples (batch training, Section 2.5.3). By the second
assumption, the cost shall be formulated as a function of the network output y(L),
L being the (last) output layer. A typical function that is adopted for this role is
the quadratic cost function:

J = 1
2

∑
i

(li − y(L)i)2 (2.5)

In general, the online algorithm is the following:
Backpropagation is about understanding how changing the weights and biases in a
network changes the cost function. This means computing the partial derivatives
∂Jx/∂w(l)j i and ∂Jx/∂b(l)j. But to compute those, an intermediate quantity δ(l)j
is introduced. This corresponds to the “error” in the i-th neuron in the L-th layer.
Backpropagation gives the procedure to compute the error δerrj by means of the
chain rule:

∂J(wj i)
∂wj i

= ∂J(wj i)
∂y(l)j i

∂y(l)j i
∂x(l)j i

∂x(l)j i
∂wj i

(2.6)
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Algorithm 1 Backpropagation.
function Initialize network weights(WL, bL)
//typically small random values
for each training example x do

//forward pass
prediction = function Neural net output(network, x)
for each output neuron t do

//compute δ(l)L on output neurons
function Compute error(predictiont)

end
for for index m from 1 to L do

for each hidden neuron in layer L – m do
//backward pass to compute δ(l)err
function Compute error(predictiont,WL−m,L, bL−m,L)

end
end

end
function Update network weights(WL, bL,δ(l)L)

where:
∂J(wj i)
∂y(l)j i

∂y(l)j i)
∂x(l)j i

= δ(l)i = ∂J(wj i)
∂y(l)j i

f ′(x(l)j) (2.7)

and:
∂x(l)j i
∂wj i

= y(l)j i (2.8)

which can be easily computed at the output layer. For the inner layers the deltas
are propagated “backwards”:

δj =
∑
i

wj iδ(l)if ′(x(l)j) (2.9)

And for the bias:
∂J(bi)
∂bi

= δ(l)i (2.10)

Without losing in generality, the previous values can be computed for any generic
layer l during backpropagation and for this reason it is now referred to any generic
weight for any layer l. The new values for w(l)j i and the bias (after the backpropaga-
tion for sample x) can be computed using the Stochastic Gradient Descent method
(SGD) to yield:

w(l)xji = w(l)jx−1
i − α∂J(w(l)jx−1

i )
∂w(l)jx−1

i

= w(l)jx−1
i − αδ(l)jy(l)j i (2.11)

b(l)xj = b(l)x−1
j − αδ(l)j (2.12)
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2.4.2 Initialization of the weights and Glorot Initialization
The most common ways to initialize the weights is by sampling randomly the values
from a uniform or a normal distribution. This serves for the purpose of symmetry
breaking. For the bias, it can be simply initialized to zero. Another popular ini-
tialization is the Glorot initialization, also known as Xavier initialization [30]. It is
intended to help the signals reach deep into the network. In fact, if the weights in
a network start too small, then the signal shrinks as it passes through each layer
until it is too tiny to be useful. If the weights in a network are too large when
training begins, then the signal grows as it passes through each layer until it is too
massive to be useful. Xavier initialization keeps the signal in a reasonable range of
values through many layers. In [30] the intuition is that preserving the variance of
the backpropagated gradients throughout the network prevents the gradients from
fading. Assuming to have an input X with n components and a linear neuron with
random weights W that spits out a number Y, Y is:

Y = W1X1 +W2X2 + ...+WiXi (2.13)

Assuming Wi and Xi to be independent and identically distributed, the variance of
Y is:

V ar(Y ) = V ar(W1X1 +W2X2 + ...+WiXi) = nV ar(Wi)V ar(Xi) (2.14)

the variance of the output is the variance of the input, but scaled by nV ar(Wi). So
to have the variance of the input and output to be the same, that means nV ar(Wi)
should be 1. This means the variance of the weights should be

V ar(Wi) = 1/n = 1/nin (2.15)

By going through the same steps for the backpropagated signal, from [30] it is
possible to elaborate that to keep the variance of the input gradient and the output
gradient the same:

V ar(Wi) = 1/n = 1/nout (2.16)
The two constraints can only be satisfied simultaneously if nin = nout but given that
this is most likely not always the case, it is recommended to use an average of the
two as a compromise [30]:

V ar(Wi) = 2/(nin + nout) (2.17)

For this reason Xavier initialization draws values from a distribution with zero mean
and a specific variance.

2.4.3 Sigmoid and rectified linear activation function
Non-linear activation functions introduce non-linearity in the network. Without
a non-linear activation function, the network can only learn functions which are
linear combinations of its inputs. Using the sigmoid function in the output layer as
activation function is very common practice. Its expression is:

f(x) = 1
(1 + e−x) (2.18)
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The reason why it is a good practice to use a sigmoid as opposed to something else is
that it is continuous and differentiable and its derivative is very fast to compute (as
opposed to the derivative of tanh, which has similar properties). It also mantains a
limited range (from 0 to 1, exclusive).

Figure 2.8: On the left: sigmoid activation function. On the right: rectified linear
function.

The rectified linear function is frequently used for hidden layers [18]. It is a simple
non-linearity: It evaluates to 0 for negative inputs, and positive values remain un-
touched (f(x) = max(0,x)). The gradient of the rectified linear function is 1 for all
positive values and 0 for negative values. This means that during backpropagation,
negative gradients will not be used to update the weights of the outgoing rectified
linear unit. However, because the network has a gradient of 1 for any positive value
it has much better training speed when compared to other non-linear functions due
to the good gradient flow. According to [18], deep convolutional neural networks
with ReLUs train several times faster than their equivalents with tanh units. For
example, the logistic sigmoid function has very tiny gradients for large positive and
negative values so that learning nearly stops in these regions (this behavior is similar
to a saddle point). The ReLUs also have the desirable property that they do not
require input normalization to prevent them from saturating [18]. In fact, despite
the fact that negative gradients do not propagate with rectified linear functions
(the gradient is zero here), large gradients for positive values are very powerful and
ensure fast training regardless of the size of the gradient.

2.4.4 Cross-entropy cost function
Considering that a neuron learns by changing the weight and bias at a rate deter-
mined by the partial derivatives of the cost function, the expressions ∂C/∂w and
∂C/∂b suggest that a "slow learning" is quite the same as saying that those partial
derivatives are small. From the graph of image 2.1 it is possible to see that when
the neuron’s output is close to 1, the curve gets very flat, and so (z) gets very small.
It also implies that ∂C/∂w and ∂C/∂b get very small. This is cause to a learning
slowdown. It turns out that the issue can be solved by replacing the quadratic cost
with a different cost function, known as the cross-entropy, whose expression is:

C = − 1
n

∑
x

lxj ln(yxj )) + (1− lxj )ln(1− yxj ) (2.19)
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where n is the total number of items of training data, the sum is over all training in-
puts, x, and l is the corresponding desired output label. Two properties in particular
make it reasonable to interpret the cross-entropy as a cost function:

1. first, it is non-negative. That is: J > 0 because all the individual terms in the
sum are negative and logarithms are of numbers in the range 0 to 1;

2. second, if the neuron’s actual output is close to the desired output for all
training inputs x, then the cross-entropy will be close to zero.

To see this, suppose for example that l = 0 and y 0 for some input x. This is a
case when the neuron is doing a good job on that input. It is easy to see that the
first term in the expression for the cost vanishes, since l = 0, while the second term
is also approximately 0. A similar analysis holds when l = 1 and y 1. Hence the
contribution to the cost will be low provided the actual output is close to the desired
output. On top of that, the cross-entropy cost function has the benefit that, unlike
the quadratic cost, it avoids the problem of learning slowing down. It provides that
the larger the error, the faster the neuron will learn. To show that, it just takes
to substitute (z) to the y in the cross-entropy expression and compute its partial
derivative:
∂J(w))
∂w(l)j)

= − 1
n

∑
x

( l

σ(z)−
1− l

1− σ(z)) ∂σ(z)
∂w(l)j

= − 1
n

∑
x

( l

σ(z)−
1− l

1− σ(z))σ′(z) (2.20)

∂J(w))
∂w(l)j)

= 1
n

∑
x

( σ′(z)xj
σ(z)(1− σ′(z)))(σ(z)− l)) (2.21)

Using the definition of the sigmoid function:

σ(z) = 1
1 + e−z

(2.22)

it is possible to show that:

σ′(z) = σ(z)(1− σ′(z)) (2.23)

It is now easy to see that the σ′(z) and σ(z)(1 − σ′(z)) terms cancel out in the
equation 2.16, and it simplifies to become:

∂J(w))
∂w(l)j)

= 1
n

∑
x

xj(σ(z)− l) (2.24)

This expression tells that the rate at which the weight learns is controlled by σ(z)l,
i.e., by the error in the output. Hence, as stated before, the larger the error, the
faster the neuron will learn. When the cross-entropy is used, the ω′(z) term gets
canceled out, and it is no longer needed to worry about it being small.

2.4.5 Update criterions
Nesterov Momentum: Nesterov momentum is a slightly different version of
the momentum update (used in Nesterov accelerated gradient - NAG) that grants
stronger theoretical converge for convex functions and in practice works slightly bet-
ter than standard momentum. The Nesterov momentum can be used in combination
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with the backpropagation algorithm to provide the new values to the weights of the
network.

Figure 2.9: On the left: classical momentum update. On the right: Nesterov
momentum update.

The difference between classical momentum and the Nesterov version is that while
in the first one the velocity is updated first and afterwards a big step according to
that velocity is made, in Nesterov momentum first a step into the velocity direction
is made, followed by a correction to a velocity vector based on new location. The
utility of Nesterov momentum is discussed in [31]. While NAG is not typically
thought of as a type of momentum, it indeed turns out to be closely related to
classical momentum and differs only in the update of the velocity vector v. As a
comparison, Nesterov momentum update is compared to the equations for classical
momentum that follow:

V (t+ 1) = m ∗ V (t)− α ∗ grad(W (t)) (2.25)

W (t+ 1) = W (t) + V (t+ 1) (2.26)

Being α the learning rate. Nesterov momentum update equations:

V (t+ 1) = m ∗ V (t)− α ∗ grad(W (t) +m ∗ V (t)) (2.27)

W (t+ 1) = W (t) + V (t+ 1) (2.28)

Where m is the momentum. An alternative implementation that is quite similar
to the original is presented. It is in the same form as regular momentum in the
sense that both velocity and parameter updates depend only on the gradient at the
current value of the parameters. The equations for the alternate formulation for
Nesterov momentum are:

V (t) = µ ∗ V (t)− α ∗ grad(W (t)) (2.29)

W (t+ 1) = W (t) +m2 ∗ V (t)− α(1 +m ∗ V (t)) ∗ grad(W (t)) (2.30)

In this case W(t) represents the new value of the weight from 2.5. Using the notations
from Section 2.4:

v(l)x+1
ij = µ ∗ v(l)xij − α ∗ δ(l)jy(l)j i (2.31)

w(l)ix+1
j = w(l)ixj +m2 ∗ v(l)ix+1

j
−α(1 +m ∗ v(l)ixj ) ∗ δ(l)jy(l)ji (2.32)
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Adaptive gradient (AdaGrad): AdaGrad is an optimization method that al-
lows different step sizes for different features. It increases the influence of rare but
informative features. This method modifies the general learning rate at each itera-
tion for every parameter w(l)ixj based on the past gradients that have been computed
for w(l)ixj :

v(l)x+1
ji = v(l)ixj + (δ(l)jy(l)ji)2 (2.33)

w(l)ix+1
j = w(l)ixj −

η√
v(l)ix+1

j + e
∗ δ(l)jy(l)ji (2.34)

Where e is a smoothing term that avoids division by zero, is the learning rate.
One of Adagrad’s main benefits is that it eliminates the need to manually tune
the learning rate. Adagrad’s main weakness is its accumulation of the squared
gradients in the denominator: Since every added term is positive, the accumulated
sum keeps growing during training. This in turn causes the learning rate to shrink
and eventually become infinitesimally small, at which point the algorithm is no
longer able to acquire additional knowledge.

Adaptive delta (AdaDelta): Adadelta is an extension of Adagrad that seeks to
reduce its aggressive, monotonically decreasing learning rate. Instead of accumulat-
ing all past squared gradients, Adadelta restricts the window of accumulated past
gradients to some fixed size d. Instead of inefficiently storing d previous squared
gradients, the sum of gradients is recursively defined as a decaying average of all past
squared gradients. Now the running average v(l)ix+1

j corresponding to the iteration
of sample x+1 depends only on the previous average and the current gradient.

v(l)ix+1
j = ρ ∗ v(l)ixj + (1− ρ) ∗ (δ(l)jy(l)j i)2 (2.35)

2.5 Training a Convolutional Network
The backpropagation algorithm formulation can be adapted to convolutional and
pooling layers in CNNs. In this case the different sets of connections must be taken
into account. For last, the concepts of dropout and batch training as opposed to
online training are considered.

2.5.1 Backpropagation algorithm for CNNs
The backpropagation in convolutional neural networks is similar to the one used in
fully connected neural networks. The only difference is that the partial derivative
of the loss with respect to a weight element is the sum of chain-rule expressions
for all the neurons that are affected by that weight. This is because of the weight
sharing. The error (Cem) will be used to compute for the previous layers the partial
derivative of the cost function with respect to each neuron output by applying the
chain rule:

∂J(w))
∂w(l)ab

=
p−q∑
i=0

p−q∑
j=0

∂J(w)
∂x(l)j i

∂x(l)j i
∂w(l)ab

=
p−q∑
i=0

p−q∑
j=0

∂J(w)
∂x(l)j i

y(l)(i+a)(i+b) (2.36)
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Figure 2.10: Two simplified convolutional layers followed by a fully connected
layer. In yellow: the kernel made up by a set of weights (w1, . . . wp). f() is the
activation function (not shown for output yn(l− 1) ). The outputs yn(l− 2) are the
features for the corresponding layer l-2.

P is the input data size (typically a PxP square image) and q the filter size; a and b
are the coordinates of a specific coefficient in the filter. The sum is computed over
all x(l)j i expressions from which wab is originated (this is the weight-sharing in the
neural network!). y(l − 1)(i+a),(j+b) is already known from the forward propagation
equations.

∂J(w)
∂x(l)j i

= ∂J(w)
∂y(l)j i

∂y(l)j i
∂x(l)j i

= ∂J(w)
∂y(l)j i

∂

∂x(l)j i
(f(x(l)j i)) (2.37)

Being f the activation function. The activation function in this case corresponds to
the non-linearity ReLu that is applied to each convolutional layer. Its derivative is
the unit constant and can be skipped in this case. Since the errors at the current
layer are known, everything that is needed to compute the gradient with respect to
the weights used by the convolutional layers is provided. In addition to compute
the weights for this convolutional layer, it is necessary to propagate the errors back
to the previous layer. Again the chain rule can be used for this purpose:

∂J(w)
∂y(l)j i

=
p−q∑
i=0

p−q∑
j=0

∂J(w)
∂x(l)j i

∂x(l)(i−a)(j−b)))

∂y(l − 1)j i
=

p−q∑
i=0

p−q∑
j=0

∂J(w)
∂x(l)j i

wab (2.38)

The new value for each weight is given by the same equation as :

w(l)kj = w(l)kj − α
∂J(wj i)
∂w(l)j i

= w(l)kj − αδ(l)errk = w(l)kj − αδ(l)y(l)kj (2.39)

On top of that the new values for the weights w(l)kj may be optionally fed to the
equations to compute the Nesterov momentum (2.29, 2.30), AdaGrad (2.33, 2.34)
or Adadelta (2.35): Regarding the max-pooling layers, these do not actually do any
learning themselves. Instead, then reduce the size of the problem by introducing
sparseness. In forward propagation, kxk blocks are reduced to a single value. Then,
this single value acquires an error computed by backwards propagation from the
previous layer. This error is then just forwarded to the place (the specific coefficent)
where it came from. Since it only came from one place in the kxk block, the back-
propagated errors from max-pooling layers are rather sparse. Once all minibatches
have been exhausted on the last iteration, the training process is completed.
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2.5.2 Using dropout
Since the fully connected layers include most of the parameters of the network, it
is prone to overfitting. The dropout method is introduced to prevent overfitting.
At each training stage, individual nodes are either "dropped out" of the net with a
given probability “p” or kept with probability 1-p.

Figure 2.11: On the left: standard neural network; on the right same neural
network after applying dropout. Image from [26].

Only the “reduced” network is trained on the data in that specific stage. The re-
moved nodes are then reinserted into the network with their original weights on
the following stage. References on the improvements of generalization brought by
dropout can be found in [25] and [26]. As explained in [25], dropout prevents co-
adaptation of feature detectors for which a feature is only helpful in the presence
of other specific features. The training should instead learn to provide the correct
features in any combinatorial set of detected features. In [25] 50% dropout was
applied to all hidden layers and 20% dropout to input and output layers in different
architectures for MNIST classification to cut the number of errors in the test dataset
by about 30 (originally 160 samples were misclassified). [25] shows improved per-
formances on a variety of datasets: for the MNIST dataset the error rate is reduced
by about 0.25% (from an original 1.60% error rate).

2.5.3 Online and batch training
Neural networks are often trained using algorithms that approximate gradient de-
scent. Gradient descent learning (also called “steepest descent”) can be done using
either a batch method or an on-line method. In batch training, weight changes are
accumulated over an entire presentation of the training data (an epoch) before being
averaged and applied, while on-line training updates weights after the presentation
of each training element (instance). Another alternative is sometimes called mini-
batch, in which weight changes are accumulated over some number u of instances
before actually updating the weights. Using an update frequency (or batch size) of
“u” equals to 1 results in on-line training, while an u equals to N results in batch
training, where N is the number of instances in the training set.
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2. Background theories and methods

Figure 2.12: Batch training in a simplified scenario. When the number of processed
training items stored in an “Accumulation” reaches the batch size, all weights and
biases are updated using the accumulated gradients, and the Accumulation is reset
to 0.

2.5.4 Using normalization
The addition of normalization to CNNs is beneficial to training convergence. Nor-
malization layers perform pixelwise normalization as follows:

xj = xi
k + (α∑

j x
2
j)β

(2.40)

In other words, given the feature “k”, the normalization for k is computed including
the values from the n neighbours (from k-n/2 to k+n/2). The ordering of the kernel
maps (the channels) is arbitrary and determined before training begins. The reason
to use NORM layers is due to the concept of “lateral inhibition”. This concept
refers to the capacity of an excited neuron to subdue its neighbors. The desire is
to have a significant peak in order to obtain a form of local maxima. Cross-channel
normalization serves this purpose as it tends to amplify a prominent feature while
dampening the surrounding ones. Response normalization reduces error rates up to
1.4% on [18] on the CIFAR-10 dataset.

2.6 Growcut segmentation preprocessing
To improve the traffic sign classification accuracy this simple growcut segmentation
is tested. The purpose is to crop the pixels belonging to the actual sign out of
the background pixels (sky, vegetation or other misleading details). The algorithm
is very simple and can be thought of as using image pixels as “cells” of a certain
type. These cells can be foreground or background. As the algorithm proceeds,
these cells compete to dominate over the image domain. The ability of the cells to
spread is related to the image pixel’s attack strength. The code that was used is an
implementation that follows [28] and summarized in algorithm 2.
The attack force function that was used is:

g(x) = 1− x

max||Cq − Cq||2
(2.41)

being C the feature vector of the pixel. Index p lists all pixels in the image on the for
loops and q indexes all pixels belonging to a pixel p’s neighborhood. Neighborhood
of choice is the Moore neighborhood, consisting of pixels such that:

N(p) = q ∈ Zn : ||p− q||∞ := max||pi − qi||, i ∈ [1, n] (2.42)
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Algorithm 2 Growcut segmentation.
Ii=functionResizeto[64, 64](Ii)
//labels(32,32) = 1;
//labels(1,1), (1,64), (64,64), (64,1) ,(1,32),(64,32),(32,64), (32,1) = -1;
while below n. iterations do

for each label in image Ii do
//copy previous state
labels-new = labels;
strength-new = strength;
// all neighbors q of p attack
for all neighbors q do

if attack-force*strength(q)>strength-new(p) then
labels-new(p) = labels(q)
strength(p) = strength-new(q)

end
end

end
binary-maski = labels
//binary mask from region grown from labels(32,32);
function Median filter(binary-maski)
function Dilate(binary-maski)
Si = binary-maski ∗ Ii
return segmented image Si

end
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3
Work performed in this thesis

In this thesis we use deep learning for Traffic Sign Classification from images. The
standard German Traffic Sign Benchmark Dataset (GTSRB) is used for training and
testing. Given the objective of this thesis, we focus entirely on the Classification of
the GTSRB dataset for the sake of obtaining high accuracy and comparing different
preprocessing techniques, network architectures and parameters. We then compare
the performance by applying CNNs on raw GTSRB images and on enhanced images.
For the first activity the tasks that were carried out in this project are the following:

1. Implementation of a basic CNN architecture.
2. Training CNN classifier.
3. Tests on the separate dataset using trained CNNs.
4. Preprocessing the training and testing data.
5. Tests on different settings and their impact on the performance.
6. Collecting the results and drawing conclusions.

Deep learning using CNNs with Theano and Lasagne The first important
decisions that were made are the basic type of architecture to implement and the
software library to be used for the implementation.
The models that were used are CNNs.
In this thesis the number of layers is limited due to hardware resources and relatively
simple problems. We chose to use the Linux installation of the Theano and Lasagne
libraries.

3.0.1 Hyperparameters
Training a CNN takes several hours or even days depending on the complexity of
the network and the data. Designing an architecture to provide good accuracy
while keeping the training time bounded requires to tune the multiple parameters
involved one by one while constantly checking training and testing accuracy. The set
of relevant hyperparameters that are initially considered and progressively tuned-up
during this project are the following.
Related to the training images:

• image size,
• preprocessing parameters,
• size of the dataset.

Related to the training:
• number of epochs,
• learning rate,
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3. Work performed in this thesis

• weight update criterion,
• training loss expression,
• weight initialization criterion,
• batch size.

Related to the architecture:
• number of layers,
• type of layers,
• number of filters,
• non-linearities,
• strides,
• dropout,
• zero padding.

Initial setup and tests: to begin with, we do not do any particular preprocessing
on the training data except for a simple rescaling (on rectangular images) and resiz-
ing (bilinear interpolation method) to 32x32 pixels. Although it is possible to train
with data of different sizes, this makes it more complicated to control the features
size throughout the network and make the training convergent. The new model can
be seen in Figure 3.1. We provide the following considerations about the layers we
used:

• The input in this network is defined a priori. This means that this model
cannot input images of shapes that are different from the 32x32 rgb setting.
The batch size though is flexible so that the last batch can have less elements
if needed.

• Convolutional 2D layers (CONV), are the layers that perform the convolution
with a given set of filters. We set them in order to preserve the input feature
size. Each one of the CONV layers we use is followed by a ReLu nonlinearity.

• Maximum pooling 2D layers (MAXPOOL), that allow to subsample the input
data. These are actually the only layers that we use to reduce the input
feature size. Halving the data at layer 4 and 7 is essential for convergence and
to contain the training time.

• Normalization layers (NORM). The normalization we use here follows Section
2.5.4. where the summation is computed over this position up to 5 neighboring
channels.

• Dropout layers (DOL), that iteratively inhibit random weights. Dropout is
only used during training (not testing) and when it is used we rescale the
input as:

xout,l = xin,l
1− p (3.1)

where p is the probability of dropout and it is equal to 0.5.
• Fully connected layers (FCC) with all-to-all type of connections. These layers

are placed at the end of the network. The second FCC closes the network and
contains a number of neurons equal to the number of classes in the training
data. In this case they are 43.
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Figure 3.1: Convolutional architecture for GTSRB (CNN for GTSRB).

26



3. Work performed in this thesis

3.0.2 Training the model
To train the model we use the Nesterov momentum (paragraph 2.4.5 set to 0.9) for
the updates, categorical crossentropy (section 2.4.4) for the training loss and a batch
training by setting the batch size to 128 (section 2.5.3). The weights are initialized
using Glorot initialization method (section 2.4.2). In this work we also do not use
any pre-training. Every time the network is trained all weights are reinitialized. To
summarize:

Parameter type
Weight init.: Glorot initialization method
Training loss: Categorical crossentropy
Updates: SGD and Nesterov momentum
Momentum 0.9
Batch size: 128
Dropout: 50%

Given this relatively small number of images in GTSRB, 214 iterations with batch
size 128 are needed to cover one full epoch on the entire training dataset. We train
the network in each study case until convergence and stop when overfitting occurs.

Learning rate The most significant parameter at this point is the learning rate.
We notice that if α is just “too high” at values close to 0.02 the result is bad. In
fact above a certain value of α the network does not converge at all and the training
loss explodes. This is a hint to try a lower learning rate. When the learning rate α
is around 0.01, we typically observe constant oscillation in the error rate but this is
a good starting value to begin with. The larger a learning rate, the easier is to miss
the minimum in the error by "jumping" too far but we tackle this issue by adjusting
the learning rate after a few iterations.

3.1 Case studies
We take into consideration three specific study cases to train the proposed network
and classify the test data. Different preprocessing is applied to each one of the cases
while using the same network across the different cases. The training parameters
are those described in Section 3.0.2 and are shared between the cases All the listed
preprocessing normalizations need to be applied on both the training and testing
data. On the fifth case study we change instead the number and the size of the
filters as we are interested in studying the effectiveness of our supervised training
on shaping the filters to extract the best features for TSR. The dataset is divided
between 2/3 of the data for training and 1/3 for testing. We use the same subsets
across the study cases.

3.1.1 Case study 1 (CS1): raw images
The standard normalizations are the resizing with bilinear interpolation and the im-
age adjustment (rescale_intensity, exposure module, scikit-image) to increase image
contrast by mapping pixel intensities to new values such the minimum and maximum
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intensities of the input image are stretched to the limits. This allows the darkest
and brightest pixels of the image to get saturated at low and high intensities.

Figure 3.2: Block diagram for CS1.

3.1.2 Case study 2 (CS2): clipped images
Following raw image training we try to increase the performances with cropped data.
The data is first resized to 64x64. Central cropping is then used to clip the 32x32
image patch centered on the original image’s center. Even though a few images may
not be perfectly centered on the traffic sign (offsets of no more than a few pixels
[36]), the approximation still allows to cut most of the background while preserving
the digits or the stylized drawing on the sign. The information of the actual shape
of the board on which the sign is printed is generally lost.

Figure 3.3: Block diagram for CS2.

3.1.3 Case study 3 (CS3): segmentation
In the segmented GTSRB dataset the actual symbol on the sign is very visible in
most cases while the shape of the sign is frequently lost in the segmentation. Hence
the tradeoff is removing the background while losing the shape of the sign. The
segmentation we use is explained in Section 2.6.

Figure 3.4: Block diagram for CS3.
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Figure 3.5: Examples of segmented images from GTSRB. From left to right and
top to bottom: samples from classes “0”, “3”, “16”; “35”, “42”, “17”; “19”, “15”,
“22”.
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4
Results

4.1 Dataset description

Figure 4.1: All 43 benchmark classes in GTSRB.

The German Traffic Sign Recognition Benchmark (GTSRB) [23], [36] was the object
of analysis at the classification challenge held at the International Joint Conference
on Neural Networks (IJCNN) 2011. This dataset satisfies two important require-
ments.

1. it is sufficiently big for training a CNN,
2. it is a good representation of its own classes.
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4. Results

Figure 4.2: Relative class frequencies in the dataset. The class ID results from
enumeration of the classes in Fig. 3 from top-left to bottom-right. Image from [36].

In fact, this dataset includes a total of 43 classes (Figure ??) and more than 50000
images total. Traffic sign recognition (TSR) is typically a multi-class classification
challenge which requires to cope with unbalanced class frequencies. For instance,
it is easy to realize that a 50 km/h speed limit is more frequent than a 120 km/h
one. Also, a TSR dataset should account for situations of different illumination
changes, partial occlusions, rotations, weather conditions etc. It consists of highly
uneven classes in terms of number of samples for each class. The images reflect
the strong variations in visual appearance of signs due to distance, illumination,
weather, partial occlusions, and rotations [36]. Images are stored in PPM format
(Portable Pixmap, P6) in separate locations for each class. On Figure 4.3 it is
possible to see the histograms of the heights and widths of all GTSRB images.

Figure 4.3: On the left: histogram of heights of GTSRB. On the right: histogram
of widths of GTSRB.

Their sizes vary between 15x15 to 250x250 pixels (not necessarily squared). The
actual traffic sign is also not necessarily centered within the image. Averaging the
size of the dataset (computed over shapes of the images) forces the resizing method
to make use of different scaling factors. Given that training and testing images are
32x32 their size is roughly halved on average, although some of the smallest are
almost unchanged. Most images contain a border of about 10% around the actual
traffic sign (5 pixels or more on average) that allow for edge-based segmentation
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approaches. The samples of each class have been randomly split into training and
testing data, to mantain a proportion of roughy 70% of images as training data and
30% as testing data. The exact number of samples in each category is reported in
table 4.1.

4.2 Experimental setup
For the tests we use a CPU Intel Core2 Duo T6500 at 2.10GHz with 2GB DDR3
RAM (used for 16x16 data) and a CPU Intel Core(TM)2 Duo E8400 at 3.0GHz with
4GB DDR3 RAM (32x32 data). It is no secret that this type of hardware does not
guarantee high processing speed. We must stress the fact that the purpose of this
thesis is in fact not to reach top classification performances and neither to run the
training for a very high number of epochs. We focus on comparing performances
of different study cases with the same network model and training parameters. We
are satisfied with the results once the training is converged. Then we compare the
study cases and draw conclusions.

Dataset organization. As mentioned in Section 4.1 the GTSRB is composed of
highly unbalanced data. Some of the classes only have 200 images, which is quite
a limitation for deep learning. We use the same subset of images for validation
and testing (there is no update of hyperparameters during the training to justify
validation-only data). We still keep track of both training and validation accuracy to
avoid overfitting. The data is sorted out randomly as shown in Figure 4.4: roughly
one third of images are used for training and two thirds for testing.
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Figure 4.4: All 43 benchmark classes in GTSRB.
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4.3 Experimental results

Results, Case Study 1

Case Study 1 using the raw 32x32 rescaled images reaches 98.98% accuracy on the
test data in about 30 iterations. Below in the table the classification rate and the
false alarm rate obtained by averaging class rates. The confusion matrix is shown
as well. The empty cells in the matrix are zeros.

Figure 4.5: Test accuracy of CS1 (raw images).

N. of signs Avg. classification rate [%] Avg. false alarm rate [%]
11763 99.40 0.63

Figure 4.6: The classification errors in CS1.
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Class
Number Test samples False neg. Classif. rate [%] False pos. F. a. rate [%]
0 70 1 98.57 0 0.00
1 740 15 97.97 19 2.53
2 750 10 98.66 20 1.33
3 470 4 99.14 6 0.85
4 660 4 99.39 5 0.61
5 620 32 94.83 21 5.16
6 140 0 100.00 0 0.00
7 480 15 96.87 16 3.12
8 470 21 95.53 8 4.47
9 490 4 99.18 6 0.82
10 670 1 99.85 0 0.15
11 440 0 100.00 1 0.00
12 700 1 99.86 1 0.14
13 720 0 100.00 2 1.39
14 260 1 99.61 0 0.00
15 210 1 99.52 1 0.48
16 140 0 100.00 1 0.71
17 370 2 99.46 1 0.27
18 400 0 100.0 0 0.00
19 70 1 98.57 1 1.43
20 120 0 100.00 0 0.0
21 110 0 100.00 0 0.00
22 130 0 100.00 0 0.00
23 170 0 100.00 1 0.59
24 90 0 100.0 0 0.00
25 500 0 100.00 0 0.00
26 200 1 99.50 0 0.00
27 80 0 100.00 0 0.00
28 180 0 100.00 2 1.11
29 90 1 98.89 0 0.00
30 150 0 100.00 0 0.00
31 260 1 99.61 1 0.38
32 80 0 100.00 1 1.25
33 229 0 100.00 0 0.00
34 140 0 100.00 0 0.00
35 400 0 100.00 0 0.00
36 130 0 100.00 0 0.00
37 70 0 100.00 0 0.00
38 690 0 100.00 3 0.43
39 100 0 100.00 0 0.00
40 120 0 100.00 0 0.00
41 80 0 100.00 0 0.00
42 80 0 100.00 0 0.00
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Figure 4.7: Confusion matrix(1) obtained from CNN in CS1.
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Figure 4.8: Confusion matrix(2) obtained from CNN in CS1.
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Results, Case Study 2

Case Study 2 uses the 32x32 central patches and reaches 99.28% accuracy. Below in
the table the classification rate and the false alarm rate obtained by averaging class
rates.

Figure 4.9: Test accuracy of CS2 (central patches).

N. of signs Avg. classification rate [%] Avg. false alarm rate [%]
11763 99.17 0.58

Figure 4.10: The classification errors in CS2.
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Class
Number Test samples False neg. Classif. rate [%] False pos. F. a. rate [%]
0 70 2 97.14 0 0.00
1 740 8 98.91 4 0.54
2 750 4 99.47 10 1.33
3 470 4 99.46 2 0.43
4 660 0 100.00 3 0.46
5 620 16 97.42 3 0.49
6 140 0 100.00 0 0.00
7 480 8 98.33 9 1.88
8 470 6 98.72 15 3.19
9 490 2 99.59 17 3.47
10 670 11 98.36 2 0.29
11 440 4 99.09 1 0.23
12 700 1 99.86 0 0.00
13 720 0 100.00 1 0.14
14 260 0 100.00 1 0.38
15 210 1 99.52 1 0.48
16 140 0 100.00 0 0.00
17 370 0 100.00 0 0.00
18 400 0 100.00 1 0.25
19 70 4 94.29 0 0.00
20 120 2 98.33 1 0.83
21 110 4 96.36 0 0.00
22 130 0 100.00 1 0.77
23 170 3 98.24 1 0.59
24 90 0 100.00 0 0.00
25 500 1 99.80 1 0.20
26 200 1 99.50 2 1.00
27 80 1 98.75 0 0.00
28 180 1 99.44 0 0.00
29 90 2 97.78 1 1.11
30 150 1 99.33 1 0.67
31 260 0 100.00 4 1.54
32 80 0 100.00 0 0.00
33 229 0 100.00 0 0.00
34 140 1 99.29 1 0.71
35 400 0 100.00 0 0.00
36 130 0 100.00 0 0.00
37 70 1 98.57 0 0.00
38 690 0 100.0 0 0.00
39 100 1 99.00 0 0.00
40 120 0 100.00 2 1.67
41 80 0 100.00 1 1.25
42 80 0 100.00 1 1.25
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Figure 4.11: Confusion matrix(1) obtained from CNN in CS2.
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Figure 4.12: Confusion matrix(2) obtained from CNN in CS2.
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Results, Case Study 3

Case Study 2 uses the segmented images and reaches 98.95% accuracy. Below in
the table the classification rate and the false alarm rate obtained by averaging class
rates.

Figure 4.13: Test accuracy of CS3 (central patches).

N. of signs Avg. classification rate [%] Avg. false alarm rate [%]
11763 98.93 0.77

Figure 4.14: The classification errors in CS3.
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Class
Number Test samples False neg. Classif. rate [%] False pos. F. a. rate [%]
0 70 9 87.14 0 0.00
1 740 18 97.57 12 1.62
2 750 15 98.00 18 2.40
3 470 12 97.45 5 1.06
4 660 1 99.85 6 0.90
5 620 22 96.45 15 2.42
6 140 0 100.00 1 0.71
7 480 1 99.79 12 2.50
8 470 5 98.94 7 1.49
9 490 4 99.18 10 2.04
10 670 8 98.80 0 0.00
11 440 4 99.09 3 0.68
12 700 0 100.00 1 0.14
13 720 0 100.00 3 0.42
14 260 1 99.61 0 0.00
15 210 1 99.52 3 1.43
16 140 0 100.00 0 0.00
17 370 2 99.46 1 0.27
18 400 4 99.00 0 0.00
19 70 2 97.14 1 0.14
20 120 0 100.00 1 0.83
21 110 2 98.18 0 0.00
22 130 0 100.00 1 0.77
23 170 1 99.41 2 1.18
24 90 0 100.00 0 0.00
25 500 0 100.00 2 0.40
26 200 1 99.50 5 2.50
27 80 0 100.00 0 0.00
28 180 0 100.00 0 0.00
29 90 0 100.00 0 0.00
30 150 3 98.00 2 1.33
31 260 0 100.00 2 0.77
32 80 0 100.00 1 1.25
33 229 1 99.56 0 0.00
34 140 1 99.29 3 2.14
35 400 0 100.00 2 0.50
36 130 0 100.00 0 0.00
37 70 1 98.57 0 0.00
38 690 0 100.00 2 0.29
39 100 0 100.00 1 1.00
40 120 2 98.33 1 0.83
41 80 2 97.50 1 1.25
42 80 1 98.75 0 0.00
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Figure 4.15: Confusion matrix(1) obtained from CNN in CS3.
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Figure 4.16: Confusion matrix(2) obtained from CNN in CS3.
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Figure 4.17: An example of the data volume in intermediate levels of the CNN.
In the image the output of CONV 1, CONV2, CONV3 and CONV4, case study 2,
test sample from “20 Speed Limit”.
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Conclusions

This thesis proposes a deep convolutional network with a fewer number of parameters
and memory requirements in comparisons to existing models.

5.1 Observations on the model and training
In this project several convolutional networks with different depth and type of layers
were trained and compared. One model was chosen and used to explore in more
details the impact of different preprocessing normalizations.

5.1.1 The model
Feature layers. The part of the network highlighted in red in Figure 3.1 generates
features. In its CONV layers we make use of 3x3 size filters because they are “large
enough” to capture the variations on images initially resized to 32x32. Larger filters
(11x11) were popular in 2012 with AlexNet (input data 227x227) and in [18] on
the ImageNet dataset (input images 224x224). In this case the images are smaller
and we consider a valid choice in the filter size to be between 3x3 or 5x5. This
model that has been put into test is inspired by the VGGNet described in [22],
where in fact they choose 3x3 filters and a deeper network in place of a shorter one
with larger filters. Obviously in this thesis we cannot afford to use as many layers
and filters as they do, but we follow the basic guidelines. To simplify the network
and reduce the computational burden the number of filters has been reduced and
especially on the fully connected layers we limit the number of weights. Each weight
in a FCC in fact requires a full set of connections to the upper and lower layer.
On the number of filters, we chose an increasing number of filters as a power of
2 (common setting, as explained in [24]) as moving down the layers. We make
use of the ReLu nonlinearity past the first FCC and softmax nonlinearity on the
output FCC. Krizhevsky et al. [18] shows that a rectified linear neuron gives no
worse performance than sigmoid or tanh but makes training about 6 times faster.
Networks such as VGGNet [29], [39], AlexNet (2012) and ZFNet (2013) use at least
three MAXPOOL2 or even MAXPOOL3 layers to subsample the features and reduce
them to 6x6 or 7x7. Having already small images we preferred not to subsample the
data any further than the current setting.

Classification layers. The stack of the last four layers (DOL1 - FC1 - DOL2 -
FC2), highlighted in blue in Figure 3.1 is a common setting, also seen for instance
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in AlexNet, ZFNet, GoogLeNet and many more. With this part of the network we
do not produce features any more and use it entirely for classification. The number
of connections in these layers was chosen to be lower than VGGNet but still higher
than the number of output classes (as in VGG). In this relatively small network
the number of connections just on the first fully connected layer is 4194304. As a
comparison, the deepest architecture in [29] has more than 130 million weights in
their first FCC. The second FCC though only carries 11008 connections. In this
context dropout work as regularizers that randomly set input values to zero and not
only helps with generalization but also saves a lot of time in the training.

5.1.2 The training.
We find an optimal learning rate to be the largest learning rate that does not cause
divergence of the training criterion. This learning rate speeds up the learning almost
always guaranteeing a validation accuracy above 85% on the first two or three epochs
(214 iterations with batch size 128). We notice though that the boundary between
values for the learning rate that provide fast convergence and training loss explosion
is quite narrow. An initial value set to 0.01 seems to be optimal.
Regarding the update method, the reason we favor Nesterov momentum over Ada-
grad update is quite arbitrary, since the slightly better performances on CNN2 tests
do not fully guarantee the superiority of the first over the second. AdaDelta may
yield better local minima in some cases but is much slower and we find its con-
vergence speed to be much dependent on the initial learning rate. The reason is
probably that a bad choice in the learning rate takes too much time to stabilize.
We use a softmax nonlinearity in the output layer, and cross entropy works generally
very well with it because the derivative of the logarithmic term provides mathemat-
ical semplifications that speed up the learning. Cross entropy cost is appropriate to
this classification problem where the goal is to minimize the number of misclassified
training samples. With softmax we basically impose an exponentially increasing
error the closer an output comes to being “1” when it should be “0”, and vice versa.

5.2 Discussion
CS1. The classification accuracy obtained, although not as high as [48], [33] and
[46] is still above human performance 98.84% ([36]). The class average accuracy is
99.40% thanks to many classes reaching 100% accuracy. The average false alarm rate
by class is 0.63%. [33] and [46] use ensemble of classifiers trained on slightly different
versions of the dataset thanks to random distorsions including translation, scaling
and rotation. This is frequently called data augmentation and allows to increase
the size of the training dataset. We think that the network used in this thesis could
potentially reach higher accuracies with an ensemble method. By observing in detail
the distribution of the errors we notice them to be distributed mostly within the
speed limit group. Categories such as 30, 50, 70 and 80 speed limit are among the
largest categories and it is to be expected an higher probability of having outlayer
samples that are particularly difficult to classify. These categories not only have
lower accuracies but also higher false alarm rates. We found the blue signs to be
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very easy to classify. The winners of IJCNN 2011 [33] have also obtained a blue
classes accuracy (99.89%) higher than the average on the blue signs.

CS2. The number of errors from CS2 is lower than CS1 and its highest test ac-
curacy reaches 99.28%. The average classification rate by class is 99.17% and the
average false alarm rate by class is 0.58%. This could be assumed as a "lucky" case
as the vast majority of the images are already well centered on the sign, and the
central patch excludes the background, which can be regarded as misleading infor-
mation. Central patches have been used also in [18] on the ImageNet dataset. In
this Case Study the cropping is even more impactful as it cuts off an even larger
percentage of the original image.

CS3. CS3 performances are comparable to those of CS1. Training on the seg-
mented images still allows a stable convergence up to just 0.03% classification accu-
racy from the raw images. CS3 fails mostly on speed signs which are also among the
most frequent signs in the dataset and in real environments as well. It seems worth
to consider the possibility of an improvement in accuracy with segmented datasets
in future works.

Figure 5.1: Comparison of classification accuracies by class groups used in IJCNN
2011 [23].

CS1 vs CS2 vs CS3. The accuracy obtained from CS2 suggests that TSR can in
fact gain benefit from central patches and it is a hint to further explore other forms of
preprocessing. This is though a particular fortunate case, since most traffic signs are
centered in the image but it shows nonetheless that the network learns better from
data that carries more information, such as the central patch. Despite CS1 having
lower classification accuracy in some classes, we notice the average classification
accuracy by class being higher than CS2, as in CS1 the majority of errors come
from few classes. By looking at the errors we notice on CS1 many of the wrongly
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classified samples being characterized by either very high or low illumination. Errors
from CS2 show more strong distortions that may be reasonably the cause of the
misclassification. From Figure 5.1 we notice CS1 and CS2 performing better in
different class groups and may benefit from an ensemble (similar to the one proposed
in [33]) of the two of them. CS3 accuracies by groups instead are similar to CS1
but slightly lower. Overall the results are nonetheless quite competitive in all three
case studies and on average comparable to human performances.

50



Bibliography

[1] Li Deng, “Three Classes of Deep Learning Architectures and Their Applica-
tions: A Tutorial Survey”, 2012.

[2] Braunagel, C., Kasneci, E., Stolzmann, W., Rosenstiel, W. “Driver-activity
recognition in the context of conditionally autonomous driving.” In 2015 IEEE
18th International Conference on Intelligent Transportation Systems (pp. 1652-
1657) IEEE, 2015.

[3] Smolensky Paul, 1986. "Chapter 6: Information Processing in Dynamical Sys-
tems: Foundations of Harmony Theory".

[4] Michael Nielsen, Online book “Neural Networks and Deep Learning”.
[5] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N.

Bouchard, D. Warde-Farley and Y. Bengio, NIPS 2012 deep learning workshop.
(BibTex) “Theano: new features and speed improvements”.

[6] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.
Turian, D. Warde-Farley and Y. Bengio. June 30 - July 3, Austin, TX (BibTeX).
“Theano: A CPU and GPU Math Expression Compiler”.

[7] www.journal.frontiersin.org/article/10.3389/frobt.2015.00028/fullh4.
[8] Y. LeCun and M.A. Ranzato, ICML 2013 tutorial.
[9] www.cs.utexas.edu
[10] G.E. Hinton and R.R. Salakhutdinov, "Reducing the Dimensionality of Data

with Neural Networks", Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507.
[11] www.wildml.com
[12] http://deeplearning4j.org/restrictedboltzmannmachine.html
[13] Kyung Hee University, Yong-In, Korea, 4 th World Conference on Applied

Sciences, Engineering Technology 24-26 October 2015, Kumamoto University,
Japan , “A Single Depth Sensor Based Human Activity Recognition via Deep
Belief Network”.

[14] Mike Schuster and Kuldip K. Paliwal, Bidirectional Recurrent Neural Networks,
Trans. on Signal Processing 1997.

[15] Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber, “Multi-
Dimensional Recurrent Neural Networks”, ICANN 2007.

[16] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, “Gated
Feedback Recurrent Neural Networks”, arXiv:1502.02367,2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, 2015, "Deep Residual
Learning for Image Recognition".

[18] A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet classification with deep
convolutional neural networks”. NIPS, 2012.

51



Bibliography

[19] Ballas et al., “Delving Deeper into Convolutional Networks for Learning Video
Representations”, 2016.

[20] http://deeplearning.net/tutorial/lstm.html.
[21] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,

Subhashini Venugopalan, Kate Saenko, Trevor Darrell, 2015, “Long-term Re-
current Convolutional Networks for Visual Recognition and Description”.

[22] K.Symonian, A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, 2015.

[23] http://benchmark.ini.rub.de/?section=homesubsection=news
[24] CS231, Stanford University Winter 2016: http://cs231n.stanford.edu/syllabus.html
[25] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.

R. (2012): “Improving neural networks by preventing co-adaptation of feature
detectors”. arXiv preprint arXiv:1207.0580.

[26] Srivastava Nitish, Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. R. (2014): “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. Journal of Machine Learning Research, 5(Jun)(2), 1929-1958.

[27] S. Ioffe, C. Szegedy: “Batch normalization: accelerating deep network training
by reducing internal covariate shift”, 2015.

[28] Vezhnevets, Konouchine , “GrowCut” - Interactive Multi-Label N-D Image Seg-
mentation By Cellular Automata, 2005.

[29] IOffe, Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”, 2015

[30] Xavier Glorot, Yoshua Bengio, "Understanding the difficulty of training deep
feedforward neural networks".

[31] Sutskever, Martens et al. , “On the importance of initialization and momentum
in deep learning”, 2013.

[32] https://searchcode.com/codesearch/view/15851013/
[33] Dan Ciresan, Ueli Meier, Jonathan Masci and Jurgen Schmidhuber, “Multi-

Column Deep Neural Network for Traffic Sign Classification”, January 2012.
[34] Delalleau, Bengio, “Shallow vs. Deep Sum-Product Network”, 2011.
[35] Le, T. T., Tran, S. T., Mita, S., Nguyen, T. D. “Real time traffic sign detection

using color and shape-based features.” In Intelligent Information and Database
Systems (pp. 268-278). Springer Berlin Heidelberg, 2010.

[36] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign
Recognition Benchmark: a Multi-Class Classification Competition. In Neu-
ral Networks (IJCNN), The 2011 International Joint Conference on, pages
1453–1460. IEEE, 2011.

[37] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. “Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition”, 2012.

[38] J. Greenhalgh and M. Mirmehdi, “Real-time detection and recognition of road
traffic signs,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1498–1506,
Dec. 2012.

[39] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno,
and F. Lopez-Ferreras, “Road-sign detection and recognition based on support
vector machines”, IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 264–278,
Jun. 2007.

52



Bibliography

[40] S. Maldonado-Bascón, J. Acevedo-Rodríguez, S. Lafuente-Arroyo, A. Fernndez-
Caballero, and F. López-Ferreras, “An optimization on pictogram identification
for the road-sign recognition task using SVMs,” Comput. Vis. Image Under-
stand., vol. 114, no. 3, pp. 373–383, 2010.

[41] F. Zaklouta, B. Stanciulescu, and O. Hamdoun, “Traffic sign classification using
K-d trees and random forests,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
San Diego, CA, USA, 2011, pp. 2151–2155.

[42] M. Meuter, C. Nunny, S. M. Gormer, S. Muller-Schneiders, and A. Kummert,
“A decision fusion and reasoning module for a traffic sign recognition system,”
IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1126–1134, Dec. 2011

[43] A. Ruta, Y. Li, and X. Liu, “Robust class similarity measure for traffic sign
recognition,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 4, pp. 846–855, Dec.
2010.

[44] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proc. IEEE Comput. Soc. Conf. CVPR, 2005, vol. 1, pp. 886–893.

[45] J. Greenhalgh and M. Mirmehdi, “Real-time detection and recognition of road
traffic signs,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1498–1506,
Dec. 2012.

[46] J. Jin, K. Fu, and C. Zhang, "Traffic Sign Recognition With Hinge Loss Trained
Convolutional Neural Networks", IEEE Transactions on Intelligent Transporta-
tion Systems, VOL. 15, NO. 5, October 2014.

[47] Mrinal Haloi, "Traffic Sign Classification Using Deep Inception Based Convo-
lutional Networks",arXiv.org > cs > arXiv:1503.06643, 2015.

[48] Pierre Sermanet, Yann LeCun, “Trafc Sign Recognition with Multi-Scale Con-
volutional Networks”, Neural Networks (IJCNN) conference, 2011.

53


	List of Figures
	Introduction
	Outline

	Background theories and methods
	From Neural Networks to Deep Learning
	Advantages of deep learning

	Deep learning tools and libraries
	Theano and Theano wrappers
	TensorFlow, Caffe, Torch

	Deep learning models
	Convolutional Neural Network (CNN)
	Residual Neural Network (ResNet)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)

	Training a neural network
	Backpropagation
	Initialization of the weights and Glorot Initialization
	Sigmoid and rectified linear activation function
	Cross-entropy cost function
	Update criterions

	Training a Convolutional Network
	Backpropagation algorithm for CNNs
	Using dropout
	Online and batch training
	Using normalization

	Growcut segmentation preprocessing

	Work performed in this thesis
	Hyperparameters
	Training the model

	Case studies
	Case study 1 (CS1): raw images
	Case study 2 (CS2): clipped images
	Case study 3 (CS3): segmentation


	Results
	Dataset description
	Experimental setup 
	Experimental results

	Conclusions
	Observations on the model and training
	The model
	The training.

	Discussion

	Bibliography

