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Abstract
Massive MIMO is a crucial technology that will drive the data capacity in wireless
communication systems by implementing a large number of antenna elements. This
new type of system creates new challenges that have to be solved. One of them is
the considerable energy consumption that arises from the RF-chain that will consist
of potentially more than one hundred parallel channels. If the Analog-to-Digital
Converters (ADCs) will need to work at very high sample rates then there will be
an enormous amount of data that will be quantised and transported at a very high
speed from the many antennas to the CPU.
The main objective with this thesis is to reduce the number of data streams from

the RF-chains to the CPU. This problem was approached by first experimenting with
a lossy compression algorithm that apply Fast Fourier Transform (FFT) and Discrete
Cosine Transform (DCT) transforms to the received signals and then it discards low
power frequency coefficients. Then a more effective model was implemented that can
fully recover the compressed signal with the pseudo inverse. One of the challenges
of this system is that the antenna array has to be divided into many groups and the
processing has to be applied separately to each of them.
The compression algorithm takes the received signal as an input after the ADC

blocks and then it is multiplied by the FFT matrix. The next step is to compress the
data by selecting a certain ratio out of the output coefficients after the FFT block
that will be sent to the CPU side. In total four selection strategies are explored in
the thesis.
The performance of the system when compression is applied is evaluated in terms

of performance loss of the recovered symbols. The selection strategies are analysed
by the energy efficiency and the condition number.
The system was tested for different amount of users, antennas, compression level

and group sizes and the results show that the performance loss gets reduced for
higher energy efficiency and lower condition number.
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Acronym List

4G Fourth Generation.
5G Fifth Generation.

ADC Analog-to-Digital Converter.
AoA Angle-of-Arrival.
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SVD Singular Value Decomposition.

UE User Equipment.
UL Uplink.

Wi-Fi Wireless Fidelity.
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Symbol List

C the field of complex numbers.
Q the field of rational numbers.

a the path gain.

C the compression level.
c the speed of light.

dmk the distance between the m-th receive antenna and the k-th User Equipment
(UE).

η the energy efficiency.

fc the carrier frequency.

G the group size.

H the channel matrix.

κ̃ the condition number.
K the number of UE.

L the number of groups.
λ the wavelength.

M the number of antennas at the Base Station (BS).

Ptot the total power.

T the Transform Matrix.
θ the angle-of-arrival.
T the number of time instances.
t a time instance.
ts the time symbol.

V a vector space.

w the noise vector.
W the transmission bandwidth.

x the transmitted symbols.

y the received signal vector by the BS.
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1
Introduction

1.1 Background and motivation
It is estimated that the wireless data traffic will increase by a thousand fold over
the next decade. This will be driven by higher user demand and the estimated 50
billion connected devices [1].
Today most of the data traffic is generated by smartphones, tablets and video

streaming, but even the applications that are associated with these devices will be
used more progressively which will add to the wireless data volume in the future
network such as e-banking, e-health and on demand entertainment. These human
centric devices will be largely complemented by a massive amount of communicating
machines forming the Internet of Things (IoT) which will widen the range of wireless
applications to include the automotive industry, security, health care, among others
[1, 2].
The fulfilment of these new demands will require adequate technological advance-

ments that will create a paradigm shift in comparison to the existing Fourth Gen-
eration (4G) system. Some of the key technologies will be to move to mm-wave fre-
quencies, ultra-densification and massive Multiple-Input Multiple-Output (MIMO)
that will be part of the new Fifth Generation (5G) standard that is expected to be
rolled out around 2020 [2].
It is expected that 5G will have to serve a data volume that is 1000 times higher

compared to 4G, partly due to the IoT consisting of an enormous amount of Machine-
Type-Communication (MTC) low rate devices such as actuators and sensors. The
mobile devices will have data rates down to 100 Mbps at the edge of the network
which is 100 times higher than for 4G. The latency in 5G will be reduced in the
order of one magnitude (to 1 ms or less) compared to 4G. 5G is also prospected to
provide ultra-high service reliability including a guaranteed availability with a min-
imum success packet delivery of 99.9999%. Furthermore, the system should be as
energy-efficient as possible, including devices, the base stations and the whole com-
munications involved between stations and data centres which will be handled by the
telecom operators, in order to achieve low operations costs and energy sustainability
[2, 3].

1.1.1 Massive MIMO
Massive MIMO systems have an excessive number of antennas at the BS compared
to the number of active UEs and can thus improve the spectral efficiency enormously
compared with current Long Term Evolution (LTE) standard that supports up to
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1. Introduction

four antennas. This is accomplished by exploiting the spatial domain which enables
all of the UEs to use the same time-frequency slot under the condition that accurate
channel estimation can be done and that the channel is sufficiently well conditioned
[2, 9].
Massive MIMO has the potential for a multitude of improvements such as better

link reliability, coverage and energy efficiency. However, one of the challenging
aspects is channel estimation in the Downlink (DL). Especially important is the
potential to reduce the latency thanks to the possibility to use beamforming in
massive MIMO in order to overcome fading dips [1, 4].
Another positive impact of Massive MIMO is that it can be built on less expensive

components since the hardware, noise and fading deficits can be averaged out due
to the combined effect of the signals from many antennas [2]. However, there are
also new challenges that need to be considered that are mainly based on the energy
consumption and hardware complexity of building a system of this scale [5].

1.1.2 Digital backbone of massive MIMO
5G will utilise more antennas and larger bandwidths over communication links which
will significantly increase the amount of internal data traffic that has to be quantised,
transported and sent over the digital backbone to the central node.
Thus, a modern communication link might consist of hundreds of parallel RF-

chains with ADCs that operate in the Gsample/s region which produce several
terabits of data that have to be transported to the central node. This will shift
the balance of cost and power consumption in communication networks from power
amplifiers, that consume most of the power today, towards the digital backbone [5].

1.2 Aim and outline
This thesis is focused on the digital backbone which transports the bits from the
RF-chains to the CPU. By principle, each antenna generates one data stream which
in total becomes power consuming. Then, the idea is to reduce this number of data
streams such that the loss of quality of the signal is minimised. The ideal case would
occur when the number of streams can be reduced without any loss of quality caused
by noise and/or interference.
Specifically, it will be analysed in the Uplink (UL) channel, from UE to BS. This

will be done by dividing the antennas into groups and then apply transform coding
with FFT and DCT. Two models will be studied, one where lossy compression is
applied and one where lossless compression is applied.
The purpose of the lossy compression method is to study the problem of compres-

sion and try to assess the most effective way to handle the problem. The next part
is to study the lossless compression method which is more efficient and the aim is
to minimise the loss of the signal quality.
The system performance will be evaluated in terms of MSE where it is desired to

reduce this number as much as possible.

2



1. Introduction

1.3 Previous work
There are a few studies about ways to reduce the number of antennas minimising
the loss of performance. The techniques are based on selection of antennas or chan-
nels according the received power at the antennas or the channel gain between the
transmit and receive antennas. It can be done by adding a simple switch to the
system, where the antennas can be turned off and turned on, but it can be done
as well, by doing a combination with different weights of different antennas [6, 7].
Another technique is based on grouping a set of highly correlated antennas [8].

3
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2
Massive MIMO

2.1 Deterministic MIMO channel
The MIMO channel has multiple receive and transmit antennas, the receive antennas
are at the BS and the transmit antennas are referred as UEs. The difference between
conventional MIMO and massive MIMO is that massive MIMO uses an excessive
number of antennas at the BS compared to the number of active UEs.
If there is more than one active UE it will constitute a multiuser channel that can

have both an uplink channel and a downlink channel. Figure 2.1 illustrates a MIMO
channel.

Figure 2.1: M BS antennas and K UEs are placed in a two dimensional Cartesian
coordinate system.

5



2. Massive MIMO

The time-invariant channel at a symbol time can be expressed as:

y = Hx + w =


h11 h12 · · · h1K
h21 h22 · · · h2K
... ... ...

hM1 hM2 · · · hMK



x1
x2
...
xK

+


w1
w2
...
wM

 (2.1)

where x ∈ CK×1 is the transmitted signal, y ∈ CM×1 is the received signal and
w ∼ CN (0, N0IM) is Independent and Identically Distributed (IID) Additive White
Gaussian Noise (AWGN) with power spectral density N0.
The channel H ∈ CM×K is assumed to be deterministic and known at the receiver

where hmk is the channel gain from m-th receive antenna to the k-th UE. The
transmitted signal x corresponds to the symbols that are sent at time instances
t ∈ 0, ..., (T − 1)ts , where T is the number of time instances and ts is the symbol
time which can be expressed as the inverse of the transmission bandwidth W :

ts = 1
W

(2.2)

2.1.1 Spatial multiplexing
Multiple transmit and receive antennas form a MIMO channel that has the ability
to increase the capacity due to the added degrees-of -freedom that arises in the
spatial dimension. This is done by spatially multiplexing several data streams onto
the MIMO channel [9].
The channel matrix H can by divided into several independent sub-channels with

the Singular Value Decomposition (SVD):

H = UΛV∗ (2.3)

where U ∈ CM×M and V ∈ CK×K are unitary matrices whereas Λ ∈ CM×K is a
diagonal matrix [9]. The diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λnmin

are the ordered
singular values of H where nmin = min(M,K). The number of nonzero singular
values correspond to the rank of H. Since

HH∗ = UΛΛtU∗ (2.4)

the squared singular values λ2
i are the eigenvalues of the matrix HH∗. The SVD

can be rewritten as:

H =
nmin∑
i=1

λiuiv∗i (2.5)

which is the sum of rank-one matrices. A parallel decomposition can be done with
transmit precoding and receiver shaping [9]:

6



2. Massive MIMO

x̃ = V∗x (2.6)

ỹ = U∗y (2.7)

w̃ = U∗w (2.8)

so that the channel in eq.(2.1) can be rewritten as:

ỹ = Λx̃ + w̃ (2.9)

where w̃ has the same distribution as w. The energy is thus preserved and the
parallel decomposed channel can be expressed as:

ỹi = λix̃i + w̃i (2.10)

Now, the capacity of the time-invariant MIMO channel can be expressed as:

C =
nmin∑
i=1

log(1 + P ∗i λ
2
i

N0
) bits/s/Hz (2.11)

where P ∗i are the waterfilling power allocations:

P ∗i = (µ− N0

λ2
i

)+ (2.12)

where µ is chosen to satisfy the total power constraint. Every singular value λi
corresponds to a eigenmode of the channel and can support one data stream, since
the MIMO channel can have several eigenmodes it can enable spatial multiplexing
of several data streams.
The number of non-zero singular values is the number of spatial degrees-of-freedom,

with full rank the MIMO channel will have nmin spatial degrees-of-freedom [9].

2.1.2 Channel modelling
For a line-of-sight channel there are no obstructions between each antenna pair, thus
forming a direct signal path. The continuous time response hmk(τ) from k-th UE
to the m-th receive antenna is given by [9]:

hmk(τ) = a δ(τ − dmk/c), m = 1, ...,M and k = 1, ..., K (2.13)

where dmk is the distance between the k-th transmit antenna and the m-th receive
antenna, c is speed of light and a is the attenuation of the path. Considering
dmk/c << 1/W , where W is the transmission bandwidth, the baseband Line-of-
Sight (LoS) channel gain is given by [9]:

hmk = a exp
(
−j2πfcdmk

c

)
= a exp

(
−j2πdmk

λc

)
(2.14)

where fc is the carrier frequency. The received signal at each antenna can be ex-
pressed relative to the first antenna which is set as a reference such that the re-
maining antennas receive a time-shifted version of the signal relative to the signal

7



2. Massive MIMO

received at the reference antenna, see Figure 2.1. The distance between k-th UE
and the m-th receive antenna is given by:

dmk = d1k + (dmk − d1k) = d1k + ∆dmk (2.15)

Now, the channel hk ∈ CM×1 vector of the k-th UEs is represented in the following
form:

hk = a exp
(
−j2πd1k

λc

)
1

exp(−j2π∆d2k/c)
...

exp(−j2π∆dMk/c)

 (2.16)

The channel matrix H is then:

H =
[
h1 h2 · · · hK

]
(2.17)

2.1.3 Receiver
When the signal is received by the BS, the signal vector y is formed by a sum of
different symbols that were sent through the channel H. So, the received signal y
needs to be separated. So, multiplying the vector y by a matrix J , such that:

x̂ = Jy = J(Hx + w) = JHx + Jw (2.18)

and assuming the channel is known, the Zero-Forcing (ZF) receiver can be used,
which means that the matrix J is equal to the pseudo inverse (Moore-Penrose in-
verse) of H:

H+ = (HHH)−1HH (2.19)

Then, (2.18) can be written as:

x̂ = H+Hx + H+w (2.20)

And since H+H is the identity matrix I, the reconstructed signal is given by:

x̂ = x + H+w (2.21)
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3
Transform Coding

3.1 Introduction
The basic idea of transform coding is to represent a sequence in a different form, such
that the output sequence contains the information in a reduced number of coefficients
and then, these coefficients can be transmitted [10]. Later in the receiver, the inverse
transform of the reduced number of coefficients is taken and and reconstructed
sequence of is obtained [10]. This should originate a sequence similar to the original
sequence. If a sequence given by {xn} is assumed and {θn} is its transformed with
n = 1, 2, ..., N , the amount of errors is equal in both sequences:

N∑
i=1

(xi − x̂i)2 =
N∑
i=1

(θi − θ̂i)2 (3.1)

Since xn should be different than x̂n, this is a form of lossy compression. Linear
transforms are one of the most popular type of transforms. These generate the
sequence {θi} from {xi} through the following expression:

θn =
N∑
i=1

xian,i (3.2)

And to obtain the sequence {xi} again, the inverse transform is applied as:

xn =
N∑
i=1

θibn,i (3.3)

Then, this expression can be represented in matrix form:

θ = Ax (3.4)

x = Bθ (3.5)
And the elements in position (i,j) are given by

[A]i,j = ai,j (3.6)

[B]i,j = bi,j (3.7)
where A and B are N × N matrices and A and B are the inverse of each other,
such that, AB = BA = I, where I is the identity matrix.

9



3. Transform Coding

If the transform is orthonormal, the inverse transform corresponds to the inverse
of the transform matrix, which also corresponds to the transpose of the transform
matrix, as in

B = A−1 = AT (3.8)

Moreover, orthonormal transforms preserves the energy. In other words, the sum of
the squares of the transformed sequence is equal to the sum of the squares of the
original sequence

N∑
i=1

θ2
i = θTθ

= (Ax)T (Ax)
= xTATAx

(3.9)

If A is orthonormal, AT = A−1 = I, so

xTATAx = xTx

=
N∑
n=1

x2
n

(3.10)

then

N∑
n=1

x2
n =

N∑
n=1

θ2
n (3.11)

In summary, the orthonormal transform preserves the energy of the original signal
as the Parseval’s Theorem.

3.2 Transforms

3.2.1 Fast Fourier Transform
The FFT is a linear and orthonormal transform that converts a sequence from its
original domain to a representation in the frequency domain. Consider y with N
elements:

y =


y1
y2
...
yN

 (3.12)

The matrix TFFT is the FFT matrix with size N × N and the vector z is the
transform of vector y and it is applied such that

10



3. Transform Coding

z = TFFTy =


ω(1, 1) ω(2, 1) · · · ω(N, 1)
ω(1, 2) ω(2, 2) · · · ω(N, 2)

... ... ...
ω(1, N) ω(2, N) · · · ω(N,N)



y1
y2
...
yN

 =


z1
z2
...
zN

 (3.13)

where

ω(n, k) = e−2πj(k−1)(n−1)/N , n = 1, ..., N and k = 1, ..., N (3.14)

In order to recover the original sequence, it has to be inverse transformed by the
Inverse Fast Fourier Transform (IFFT) which is given by:

y = TIFFTz

= 1
N


ω−1(1, 1) ω−1(1, 2) · · · ω−1(1, N)
ω−1(2, 1) ω−1(2, 2) · · · ω−1(2, N)

... ... ...
ω−1(N, 1) ω−1(N, 2) · · · ω−1(N,N)



z1
z2
...
zN

 =


y1
y2
...
yN


(3.15)

3.2.2 Discrete Cosine Transform
As the FFT, the DCT is a linear and orthonormal transform that converts a sequence
to a representation in the frequency domain. If TDCT is the DCT matrix and the
vector z is the transform of y:

z = TDCTy =


ω(1, 1) ω(2, 1) · · · ω(N, 1)
ω(1, 2) ω(2, 2) · · · ω(N, 2)

... ... ...
ω(1, N) ω(2, N) · · · ω(N,N)



y1
y2
...
yN

 (3.16)

where

ω(n, k) = r(k) cos
(
π

2N (2n− 1)(k − 1)
)
,

n = 1, ..., N and k = 1, ..., N.
(3.17)

and

r(k) =


1√
N
, k=1√

2
N
, 2 6 k 6 N

The vector y is obtained through the Inverse Discrete Cosine Transform (IDCT):

y = TIDCTz =


ω(1, 1) ω(1, 2) · · · ω(1, N)
ω(2, 1) ω(2, 2) · · · ω(2, N)

... ... ...
ω(N, 1) ω(N, 2) · · · ω(N,N)



z1
z2
...
zN

 =


y1
y2
...
yN

 (3.18)
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4
Compression Techniques

4.1 Correlated channels in massive MIMO
Equation (2.1) refers that the received signal y is a linear combination of H and x
with AWGN noise added to it, thus the matrix H is the element in this equation
which is going to determine the amount of correlation in the channel.
In the case of the LoS channel, H adds a phase shift to the incoming signal at

each receive antenna and scales it by a factor a that is the path loss, but this factor
is neglected since it is assumed that the path loss is same for all receive antennas.
So the channel matrix H is just adding a phase shift to the receive antennas that
correspond to the distance to the transmit antenna.

Figure 4.1: SIMO model with user placed at an AoA of θ

As can be seen from Figure 4.1 the user can be placed at different angles relative to
the antenna array. For certain channel realisations there will be strong correlation
between the channel vectors. This implies in turn that the system is sparse and
that lossless compression may be applied. A frequently used tool for this purpose is
transform coding, where transforms like FFT and DCT can transform the receive

13



4. Compression Techniques

signal vector y at the instant t and then discard low power coefficients in order to
compress the signal, because they will not cause large errors in the decompressed
signal and most of the power will be concentrated to a few coefficients if the receive
signal vector y is correlated. One of the reasons for using the FFT and DCT is that
they have relatively low computational complexity.

4.2 Lossy compression algorithm
The signal vector y will be transformed into the frequency domain and then low
power frequency coefficients will be discarded which means that it applies lossy
compression and throws away part of the information in the original signal. The
receive signal vector y will not be compressed directly since this would require a
complex hardware implementation.
The vector y will instead be divided into several smaller groups that are connected

to integrated Radio Frequency (RF)-chains in the system and compression will be
applied to each group independently. Specifically, if the receive signal vector y is
divided into L number of groups, it can be written as:

y =


y1
y2
...
yL

 (4.1)

where each group is given by yl ∈ CG×1 in which G = M
L

is referred as the group
size.
The next step is to apply the transform to each of these groups. The transform

matrix is denoted by T ∈ CG×G and the transformation of the received signal is
then:

z =


z1
z2
...
zL

 =


T1y1
T2y2
...

TLyL

 (4.2)

where zl ∈ CG×1. zl will thus have M
L

= G coefficients. Compression is done by only
sending a fraction of the elements to the CPU, specifically the compression level C
is defined as:

C = G′

G
, G′ ≤ G (4.3)

Since each element in the zl is sent over one data stream to the CPU, it will have
G′ elements zl ∈ CG′×1. A scheme over the system is illustrated in Figure 4.2. At
the CPU side the zl is taken as an input to the inverse transformation matrix (T−1

l )
and zeros are added for the elements that were not sent, then, the output signal is
decompressed into the ŷl vector with M

L
elements as:

ŷl = T−1
l zl (4.4)

14
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The last step is to take the decompressed ŷ as an input to the pseudo inverse of the
channel H+ as in (2.19) to decode the transmitted symbols as:

x̂ = H+ŷ (4.5)

T−1
1 T1

ADC

ADC

ADC

ADC

T−1
L

TL

ADC

ADC

ADC

ADC

H+

CPU RF-chain

0

0

0

0

y1

yL

ŷ1

ŷL

z1

zL

x̂

Figure 4.2: The lossy compression model with L number of groups. Each block
takes four input elements of the received signal y. The Tl blocks implement a com-
pression level of C = 2

4 and thus reduce the number of streams to two that are sent
to the CPU side for decompression. Note that the inverse transformation block T−1

l ,
adds zeros to the corresponding elements that were discarded (not transmitted).

There is also a trade-off between the size of the groups and the concentration of
the power among the frequency coefficients, thus smaller groups will yield more
uniformly distributed power over the coefficients and it will be increasingly difficult
compress the data without losing large a amount of signal power. A group size of 4
or 8 antennas is considered realistic because this can fit on one single Printed Circuit
Board (PCB).
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4.3 Lossless compression algorithm
It is possible to implement a compression matrix T and reconstruct a signal with
the same power. This can be achieved if the transformed signals zl are decoded with
respect to the product of (TH)+ instead of H+. Consider the received signal:

y = Hx + w (4.6)

where y is the receive signal vector as before. The next step is to multiply this
matrix by the compression matrix T in order to compress the data.

z = Ty

= T(Hx + w)

= THx + Tw

(4.7)

In order to recover the transmitted symbols x, z is multiplied by the factor (TH)+:

x̂ = (TH)+z

= (TH)+(TH)x + (TH)+Tw

= Ix + (TH)+Tw

= x + (TH)+Tw

(4.8)

The recovered symbols x̂ of this compression method will according to (4.8) be
degraded by noise that is scaled by the factor (TH)+T. This is also true even
without implementing the T matrix, in that case the noise w would just be scaled
by H+. By adding T in the system and thus scaling the noise by (TH)+T, it could
potentially degrade the system performance even further.

4.3.1 Implementation of lossless compression algorithm
The received signal will be divided in groups in order to enable a simple hardware
implementation (see section 4.3). This receive signal vector will then be multiplied
with Tl in order to compress the data. If the antenna group size is G = 4 and the
compression level is C = 2

4 then the Tl matrix will have only two rows! Consider
the example below with C = 2

4 :

zl = Tlyl =
[
t1 t2 t3 t4
t5 t6 t7 t8

] 
y1
y2
y3
y4

 =
[
z1
z2

]
(4.9)

where zl is the compressed signal with two elements: z1 and z2, that will be trans-
mitted over two data streams. Without the Tl the entire yl would have to be
transmitted to the CPU that has four elements: y1, y2, y3 and y4. This implies that
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the compression matrix Tl enables 50% compression, since the number of elements
is reduced by half. The C that the Tl matrix introduces, is solely determined by
the number of rows it has, on the other hand it has to have the same number of
columns as the antenna group size in order to match with the yl matrix. Thus by
varying the number of rows of the Tl matrix, an arbitrary C can be chosen.
This process is applied to each antenna group individually, where each Tl ma-

trix can be either the same for each group, or adaptively chosen for every group
independently. In order to decode the decompressed data correctly, all of the Tl

matrices have to be appended into a total T matrix that contains information of
the whole system. Each Tl will be appended diagonally into a big matrix and all
other elements will be set to zero.

z = Ty =



t1 t2 t3 t4 0 0 0 0 · · · · · ·
t5 t6 t7 t8 0 0 0 0 · · · · · ·
0 0 0 0 t9 t10 t11 t12
0 0 0 0 t13 t14 t15 t16

... ... . . .

... ... . . .





y1
y2
y3
y4
...

 =


z1
z2
...

 (4.10)

Each group of 4 antennas will be multiplied by a group Tl matrix corresponding to
the l-th antenna group. The first group y1 (antennas y1-y4) will be multiplied by
T1 and the second group y2 (antennas y5-y8) will be multiplied by T2 and so on.

z = Ty =


T1 0 · · ·
0 T2
... . . .

TL



y1
y2
...
yL

 =


z1
z2
...
zL

 (4.11)

The system model can be seen in the figure below:

4.3.2 Compression matrix selection
In order to reduce the number of data streams only a fraction of the elements in zl
will be sent to the CPU. By selection a fraction of the elements in zl is the same
thing as removing rows in the Tl matrix so the choice can be seen as which rows
to chose from the G×G Tl matrix that will produce a new transformation matrix
with the size G′×G where G′ ≤ G.
But before the rows are removed, it has to be established first, which rows should

be kept and which ones should be removed. Consider an example system with a
group size G = 4 where it is desired to reduce 2 streams for each group, such that
C = 2

4 . In this case 2 out of 4 rows will be chosen in order to obtain a compression
matrix as in (4.9).
The rows have to be chosen such that the resulting MSE of the recovered symbols is

minimised. There are basically two factors that have to be taken into consideration,
one is the amount of power that is kept after compression (power efficiency) and the
other is the resulting correlation in the TH matrix.
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T1

ADC

ADC

ADC

ADC

TL

ADC

ADC

ADC

ADC

(TH)
+

CPU RF-chain

y1

yL

z1

zL

x̂

Figure 4.3: The lossless compression model with L number of groups. Each block
takes four input elements of the received signal y and implements C = 2

4 , reducing
the number of streams to two that are sent to the CPU side for decompression.

So, with selection based on power, each Tl matrix has to keep the rows that keep
most of the power. With selection based on correlation, each Tl matrix has to select
the rows so that the total TH has as low correlation as possible. Four different
selection strategies are described in further detail below.

4.3.2.1 Power Selection algorithm

The basic idea of power selection is to choose the rows in theTl matrix that produces
the zl coefficients with highest power and then send these to the CPU. This is done
calculating the power of the elements in zl according to (5.1) and then, a sorting
by power is done. The C determines how many of these coefficients will be sent
to the CPU. If compression level C = 2

4 is desired, then this means that the 2
sorted coefficients with highest power are selected out of 4 rows (remember that the
denominator in C specifies the group size).
This method will keep most of the energy rich coefficients and thus it will have

the highest possible power efficiency η. Keep in mind that this method does not
do anything about the amount of correlation in the system. If the received signals
are highly correlated, then the power distribution might be similar among the an-
tenna groups after the transformation matrix. The power selection algorithm will
then choose the same rows for each group which might introduce correlation to the
system.
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Table 4.1: List of steps of power selection algorithm

Step 1 Send Q known symbols
Step 2 Every group applies the transform
Step 3 Every group measures the average power of each element of zl
Step 4 Select the G′ rows of Tl that correspond to

the zl elements with the highest average power.
Step 5 Reduce the Tl to a G′ ×G according to the selection in step 4

4.3.2.2 Random Selection algorithm

A random selection method is set up to choose the rows in each Tl matrix randomly.
The advantage of this is that, it will not induce correlation in the TH matrix since
the same each row will appear as often as any other on average.
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4.3.2.3 Correlation Selection algorithm

This selection algorithm is very similar to the random selection, however it is im-
posed that each row in Tl has to be selected the same number of times in the whole
system and each two groups cannot select the same combination of rows. Evidently,
if the number of combinations is lower than the number of groups, which is the case
where there is a high number of antennas, the combination of rows is going to repeat
itself.
Therefore, the same rows and/or combinations should be repeated a few times as

possible to reduce correlation. Another important aspect can be the order of the
combinations to avoid periodic sequences of chosen rows.

The number of possible combinations of different rows is given by:(
G

G′

)
= G!
G′!(G−G′)! (4.12)

When G=2, considering a system where M= 128, there are only 2 combinations
{1; 2} . That implies that there are not many choices to obtain Tl, so an alterna-
tive is to find a sequence of these group that is random. The assumed sequence is
reported in Table 4.2.

Table 4.2: Sequence of the chosen rows with G = 2 and C=0.5

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
Rows 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 1 ...

where after the sixteenth group, the sequence repeats until the last group, L.
When G=4, there are 6 possible combinations {1 2; 1 3; 1 4; 2 3; 2 4; 3 4} , so the

first six groups have the sequence shown in Table 4.3.

Table 4.3: Sequence of the chosen rows with G = 4 and C = 0.5.

Group 1 2 3 4 5 6 ...
Rows 1 2 3 4 1 3 2 4 1 4 2 3 ...

where the sequence repeats after the sixth group, until the last group, L. When
G=8, there are 70 possible combinations and only 16 groups, so in this case, the
number of possible combinations is bigger than the number of groups and it will not
be necessary to have repeated sequences. However, the system is limited to select
each line the same number of times. The assumed selection is given by Table 4.4:

With G = 16, the number of possible combinations is 12870, so much higher than
L=8. The same condition should be imposed as explained for G = 8, as shown in
Table 4.5 :
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Table 4.4: Sequence of the chosen rows with G = 8

Group 1 2 3 4 5 6 7 8
Rows 1 2 3 4 5 6 7 8 1 2 3 5 4 6 7 8 1 2 3 6 4 5 7 8 1 2 3 7 4 5 6 8
Group 9 10 11 12 13 14 15 16
Rows 1 2 3 8 4 5 6 7 1 2 4 5 3 6 7 8 1 2 4 6 3 5 7 8 1 2 4 7 3 5 6 8

Table 4.5: Sequence of the chosen rows with G = 16

Group Rows
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 2 3 4 5 6 7 9
4 8 10 11 12 13 14 15 16
5 1 2 3 4 5 6 7 10
6 8 9 11 12 13 14 15 16
7 1 2 3 4 5 6 7 11
8 8 9 10 12 13 14 15 16

Table 4.6: Sequence of the chosen rows with G = 32

Group Rows
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
4 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Analogous to the the last two situations, when G=32, the combination of rows for
this case is on Table 4.6.

This exact combinations occur for the system with M= 128 and C = 0.5, but it
is achievable to find the sequences with different M and C in a similar manner
according to the same conditions.

21



4. Compression Techniques

4.3.2.4 Hybrid Selection algorithm

Since both energy and correlation are factors that can affect the system performance,
a new selection algorithm has been designed that chooses rows according to both
criteria, which will be referred as Hybrid selection. Rather than achieving the best
results in terms of power efficiency or correlation, this selection strategy aims to
combine the benefits of both criteria.
The Hybrid selection algorithm calculates first the average power efficiency of all

groups and then applies power selection to a certain ratio of the groups whereas the
remaining groups will be selected according to the correlation selection algorithm.
In this way the power efficiency and amount of correlation will be balanced with
regard to each other. The Hybrid algorithm is described in detail in Table 4.7.

Table 4.7: List of steps of power selection algorithm

Step 1 Send 100 known symbols
Step 2 Every group applies the transform
Step 3 Every group measures the average power of each element of zl
Step 4 Select the G′ rows of Tl that correspond to

the zl elements with the highest average power.
Step 5 Reduce the Tl to a G′ ×G according to the selection in step 4
Step 6 Every group calculates the sum of the average power of

the elements of zl
Step 7 The half of the groups with the highest average power keeps

the Power selection algorithm
Step 8 The rest of the groups uses the Correlation selection algorithm

It is also possible to choose a different trade-off for the Hybrid selection. Two
additional Hybrid algorithms will be tested where one chooses 25% of the rows
according to power and the remaining 75% according to correlation, which will be
called Hybrid-25. The other algorithm will choose 75% of the rows according to
power and the remaining 25% according to correlation, which will be called Hybrid-
75.
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5
Simulation Results

5.1 Massive MIMO model
Starting with the transmitter, the symbols x are generated according to a 16-
Quadrature Amplitude Modulation (QAM) constellation with in-phase and quadra-
ture components: (-3, -1, 1, 3). The channel is assumed to be in LoS conditions
without multipath, which means there is a single LoS path between each UE k and
each receive antenna at the BS.
Moreover, the receive antennas form an array with a linear configuration and a

uniform separation of λ/2 (half-wavelength). An operating frequency fc = 30 GHz
is assumed, yielding a wavelength in the order of one centimetre, so the UEs, with
a single antenna, are located at a distance from the BS in the order of meters which
is much larger than the antenna separation at the BS. The noise w ∈ CM×1 denotes
AWGN, whose elements are IID zero-mean Gaussian random variables with unit
variance and channel independent.
The positions of the UEs were generated randomly and the signal attenuation a

was assumed to be equal for all antenna paths. This sysem model was simulated in
MATLAB for at least 100 channel realisations in order to obtain a good mean for
the measurements.

5.2 Metrics

5.2.1 Energy efficiency
Since some coefficients that were set to zero may have been nonzero from the be-
ginning, it will lead to a reduced amount of power in the decompressed signal and
it will cause distortion compared to the original receive signal y. This will degrade
the performance of the system at the cost of simplifying the hardware by reducing
the number of data streams to the CPU.
The amount of lost energy will consequently be the key factor that determines

the efficiency of compression and this value is desired to be as small as possible.
It is therefore important to calculate the power ratio of the received signal and
the compressed signal so that it can be determined how much power is lost after
compression. The total power of the received signal y can be computed with regard
to the frequency coefficients z(k) [11]:
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M∑
m=1
|y(m)|2 = 1

M

M∑
k=1
|z(k)|2 (5.1)

which is Parseval’s Theorem that says that the sum of the squared signal is the sum
of the square of its transform. Applied to the received signal it becomes:

Ptotal =
T−1∑
t=0

L∑
l=1

(
1
M

M∑
k=1
|z(k, l, t)|2

)
(5.2)

The sum of Ptotal is taken over M coefficients for each group repeated over l groups
and t time epochs. The power ratio relative to the compressed and uncompressed
signals will be defined as the energy efficiency:

η = Ptotal after compression

Ptotal
(5.3)

where Ptotal after compression ≤ Ptotal. If η = 1, it means that no energy has been lost.

5.2.2 Mean squared error
Another important metric that can serve as an tool to evaluate the system perfor-
mance is the Mean Squared Error (MSE) of the decoded signal which is intimately
connected with the power loss due to compression because lost power will lead to
increased error in the received signal. The MSE is expressed below:

MSE =

T∑
t=1

(x − x̂)T (x − x̂)

TK
(5.4)

∆MSE is a metric that is relative to the upper and lower bound. MSE of the lower
bound will always correspond to a system withM BS antennas without compression
and the upper bound will correspond to the same system, but with a reduced number
of antennas. The antennas for the upper bound will be decreased according to the
compression level. If C = 0.5, the number of antennas will be reduced by half.
This is an important comparison with the case when compression is done because

the reduced number of data streams sent to the CPU will correspond the the reduced
number of antennas for the system without compression.The bounds are expressed
below:

MSElower bound → N BS antennas (5.5)
and

MSEupper bound → (N · C) ≤ N BS antennas (5.6)
Thus the ∆MSE can be expressed as:

∆MSEcompression = MSEcompression −MSElower bound (5.7)

where MSEcompression is the mean square error of the recovered signals after compres-
sion, the upper bound has also to be expressed in an analogous way:

∆MSEupper bound = MSEupper bound −MSElower bound (5.8)
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If compression is to be effective then ∆MSEcompression should be lower than ∆MSElower bound.
∆MSE = 0 means that the system does not introduce higher errors with compression
applied to it (∆MSEcompression = ∆MSElower bound).
The upper bound serves as a reference to evaluate the performance loss of the

system that applies compression. This means that if the ∆MSE is above the upper
bound then it is considered that the system introduces too much degradation. The
optimal goal is to keep the ∆MSE close to the lower bound.

5.2.3 Condition number
The condition number evaluates the condition of the matrix and it is given by:

κ̃(TH) = ||(TH)+|| · ||TH|| (5.9)

and it satisfies that

κ̃(TH) = ||(TH)+|| · ||TH|| ≥ ||(TH)+ ·TH|| = 1 (5.10)

When the condition number tends to 1, the changes due to condition of the matrix
tends to reduce.
In a Massive MIMO system, one of the things that affects the performance is the

correlation ofH, take into account that in LoS conditions,H is given by the distance
to the antennas. Then, it is easy to understand that two UEs, k1 and k2, in the
same position generate two columns in H, such that hk1 = hk2 , which makes H
non-invertible. However, in the scenario where two UEs are not in the same place,
but close to each other, hk1 ≈ hk2 , then H becomes invertible, but ill-conditioned.
In that case, a small change (like the noise added in the channel) in y can cause
a large change in the recovered symbols. The problem appears, for example, when
the symbols are recovered where the ZF Receiver, according to (2.20), requires the
pseudo inverse of H. The same is going to happen when T is added to the system.
If the TH is ill-conditioned, the changes in the recovered symbols will increase in
presence of noise, in other words, the errors and MSE will be bigger.
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5.3 Lossy compression of massive MIMO uplink
In this section, the results for the LoS massive MIMO model are presented with
lossy compression by the implementation of FFT and DCT.

5.3.1 One UE
The model was tested first with the case of only one UE that transmits its signal
to the BS antenna array consisting of 128 antennas. The energy efficiency of the
decompressed signal is plotted for AoA in the interval [0◦, 90◦] with respect to dif-
ferent group size at the base station. The group sizes that were tested for were 2,
4, 8, 16 and 32. The angle is between the UE and a parallel line to the horizontal
x-axis placed in the center of the antenna array (as in Figure 4.1). Therefore, at 0◦
the UE is placed in front of the antenna array adjacent to its centre point and at
90◦ the UE is positioned along the vertical line of the antenna array that is aligned
with the y-axis as well.
It can be seen in Figure 5.1 how the energy efficiency depends with the AoA for

different group sizes for a compression level of C = 0.5. Notice the difference in
shape between Figure 5.1a and Figure 5.1b. The FFT yields a more regular depen-
dence on the AoA unlike the DCT. For a group size of two, 50% of the energy is
lost at an angle of 30◦ which means that there is no compression gain.
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Figure 5.1: Energy efficiency of the compressed signal for different AoA with
C = 0.5 and 128 antennas. Left shows results for FFT compression and the right
shows for DCT compression.
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5.3.2 Multiple UEs with varying group size
The following system setup consists of a variable number of UEs that are positioned
randomly around the antenna array of 128 antennas. The number of UEs are set
to vary from 1 to 10. The results are presented as energy efficiency with regard to
group size and the number of UEs. The frequency coefficients are also presented
with respect to group size and the number of UEs.
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Figure 5.2: Energy efficiency of the compressed signal for increasing number of
UEs with compression level C = 0.5 and 128 antennas. Left shows results for FFT
compression and the right shows for DCT compression

The results of the energy efficiency with multiple UEs can be seen in Figure 5.2.
Systems with larger antenna grouping yields higher energy efficiency and thus bet-
ter performance. FFT compression produces slightly better results than for DCT
compression, a few percent.
In Figure 5.3, the frequency coefficients are depicted in average power for antenna

group size of 8 and 128. With 128 group size there are many coefficients with power
close to zero unlike the coefficients for 8 in group size.
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DCT coefficients
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(b) 8 group size and K = 10
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(d) 8 group size and K = 10

Figure 5.3: Average power for DCT and FFT coefficients for antenna group size
128 and 8 with K = 10 UEs. Notice that 128 group size has many coefficients close
to zero whereas 8 group size has a more uniform shape.

In Figures 5.4 and 5.5 the frequency coefficients are shown for a group size of 8
antennas with 1,2,5 and 10 UEs. The difference is most clearly observed in Figure
5.5 for the FFT coefficients where the case of one UE yields only 1 nonzero coefficient
and for more UEs the energy is spread more evenly among the coefficients. If these
plots are compared with Figure 5.2, it can be seen that a higher number of UEs
leads to reduced energy efficiency for both transforms.
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DCT coefficients
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(a) 8 group size and K = 1
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(b) 8 group size and K = 2
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(c) 8 group size and K = 5
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(d) 8 group size and K = 10

Figure 5.4: Average power for DCT coefficients for antenna group size 8 for 1, 2, 5
and 10 UEs. More UEs yield a higher spread of the power in the DCT coefficients.
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FFT coefficients
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(d) 8 group size and K = 10

Figure 5.5: Average power for FFT coefficients for antenna group size 8 for 1,2,5
and 10 UEs. More UEs yield a higher spread of the power in the FFT coefficients.
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5.4 Lossless compression of massive MIMO up-
link

The metrics that were evaluated here are: ∆MSE, energy efficiency (η) and average
condition number (κ̃). While the number of UEs (K) and number of antennas
(M) at the BS, the group size (G) and the compression level (C) are the studied
parameters.
The condition number, κ, is taken with regard to the TH matrix and an average

is formed based on the simulation of at least 100 channel realisations.

5.4.1 Group size analysis
The ∆MSE is plotted versus the group size in Figure 5.6. The subfigures represent
the result for the the different selection strategies. The power selection algorithm
has large ∆MSE for group sizes 2,4 and 8 but for sizes 16 and 32 it is very small
compared to the rest of the selection algorithms. The random selection algorithm
has the opposite behaviour compared to power selection.
Correlation selection manages to have ∆MSE under the upper bound for all groups
whereas the hybrid selection algorithm has even smaller ∆MSE. Table 5.1 illustrates
the average condition number of the TH matrix in terms of selection for each group
size and selection algorithm. Furthermore, both the ∆MSE and average condition
number decreases or increases together with the group size. This holds for all selec-
tion algorithms except for hybrid selection since the condition number increases for
group size 16 and 32 while the ∆MSE decreases.

31



5. Simulation Results

Group size

2 4 8 16 32

∆
M

S
E

 [
d
B

]

0

2

4

6

8

10

12

64 Antennas

(a) Power selection
Group size

2 4 8 16 32

∆
M

S
E

 [
d
B

]

0

2

4

6

8

10

12

64 Antennas

(b) Random selection

Group size

2 4 8 16 32

∆
M

S
E

 [
d
B

]

0

2

4

6

8

10

12

64 Antennas

(c) Correlation selection
Group size

2 4 8 16 32

∆
M

S
E

 [
d
B

]

0

2

4

6

8

10

12

64 Antennas

(d) Hybrid selection

Figure 5.6: ∆MSE versus group size for different selection methods for 128 anten-
nas. The number of UEs is K=10 at C = 0.5. The red curve is the upper bound
with 64 antennas.The group sizes are G = 2, 4, 8, 16 and 32

Table 5.1: Average condition number κ̃ for different selection algorithms and group
sizes of G = 2, 4, 8, 16 and 32.

Group κ̃(TH) vs selection
Power Random Correlation Hybrid

2 27.9 2.3 2.61 2.92
4 9.1 2.4 2.69 2.82
8 4.6 2.6 2.80 2.70
16 2.1 3.2 3.07 2.74
32 1.8 11.4 3.37 2.77

The energy efficiency, η, of the selection algorithms can be seen in Figure 5.7. The
power selection algorithm has the highest power efficiency whereas random and
correlation selection algorithms have an efficiency of η ≈ 0.5. Note also that the
hybrid selection algorithm as a better power efficiency compared to random and
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correlation selection.
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Figure 5.7: Energy efficiency η versus group size is plotted for different selection
methods. Number of UEs is K=10 and is C = 0.5 and the number of antennas is 128.
The power selection algorithm has clearly the best energy efficiency compared to the
others. Hybrid selection yields a gain in energy efficiency compared to random and
correlation selection algorithms.

5.4.2 Number of UEs analysis
∆MSE is depicted in Figure 5.8 versus number of UEs ranging from 1-20. The
number of antennas is 128 and C = 0.5. Note that the ∆MSE of the upper bound
is increasing non-linearly with number of users.
In Figure 5.8a it can be seen that the error is large for small group size and then it

decreases rapidly with growing group size. The selection algorithms of random and
correlation selection in Figure 5.8b-c have an opposite effect. The error increases
instead with larger group size (groups of 8, 16 and 32). The group sizes of 2 and 4
are not included since they behave in similar way as for the case with group size of
8.
The error of the correlation selection algorithm is clearly better than the random

selection algorithm since the ∆MSE is within the bounds. The hybrid selection
algorithm is even better than correlation selection since the error is even smaller,
especially for a smaller amount of UEs. But one other advantage with this algorithm
is that the error does not increase with the group size.
Also, the ∆MSE of the upper bound is increasing non-linearly with number of

users.
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(a) Power selection 128 antennas
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Figure 5.8: ∆MSE vs number of UEs for 128 antennas at C = 0.5. Power selection
tends to have higher ∆MSE for small group sizes and the opposite holds for the
other selection methods. The ∆MSE with hybrid selection has least dependence on
group size.

5.4.3 Number of antennas analysis
The ∆MSE is depicted in Figure 5.9 versus the number of antennas for different
selection algorithms. In Figure 5.9a with power selection, the ∆MSE is the highest
for the smallest group size of 2 and then it is decreasing with higher group size. This
method has very small errors for group sizes of 16 and 32 compared to the other
algorithms.
For random and correlation selection in Figure 5.9b-c the errors are converging with
high number of antennas for group sizes of 2-32. On the other hand, the errors are
diverging with small number of antennas. The divergence is much higher for random
selection since the error with group of 32 is ∆MSEg=32(100) ≈ 10 dB whereas for
correlation selection ∆MSEg=32(100) ≈ 5.5 dB.
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(c) Correlation selection 128 antennas
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Figure 5.9: ∆MSE vs number of antennas 100 ≤ N ≤ 500 at C = 0.5 and K =
10 UE. Power selection has the highest dependence on group size.In subfigures b-c
only groups of 2 and 32 are plotted since the errors are converging with high number
of antennas. With hybrid selection (d) all of the group sizes give errors below the
upper bound with the largest group size having the smallest error.

The hybrid selection algorithm in Figure 5.9d the errors are 1.5 dB ≤ ∆MSE ≤
3.5 dB for group size from 2-32.

5.4.4 Compression level analysis
Figure 5.10 shows the ∆MSE according to the compression level C for G=4 and 16.
In most of the cases, the Hybrid Selection is the method which has smallest ∆MSE.
Also, as shown in the previous sections, power selection behaves better when the G
is higher.
In Figure 5.11, the energy efficiency is shown with group size of 4 and 8 for the
different selection algorithms. Power selection leads to higher energy efficiency,
while correlation selection has energy efficiency equivalent to the compression level.
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Figure 5.10: ∆MSE vs C for 128 antennas with 10 UEs. Power selection tends
to have higher ∆MSE for small group sizes, however when the compression level is
close to one, the ∆MSE of power selection is better than the other types of selection.
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Figure 5.11: η vs the compression level with 128 antennas and 10 UEs. Power
selection has the capacity to keep a higher percentage of the energy in the original
signal. On the other side, the random and correlation selection have a percentage
of energy similar to the compression level.

5.4.5 Hybrid-25 and Hybrid-75 algorithm
The hybrid algorithm has already been analysed for the case where it chooses half
of the groups according to highest power and the rest according to the row selection
combinations that minimises that reuse of each row. Here, the same algorithm will
be studied but with different ratio of the selection with regard to power. In Figure
5.12 the ratio of 25% and 75% power selection cases are presented.
The main difference is that when more of the groups are chosen according to power

as in Figure 5.12b, then the ∆MSE will be much lower for larger groups, whereas
for the case when fewer groups are chosen to power then the ∆MSE will be higher.
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However, the ∆MSE is largely reduced for small group sizes in both cases, specif-
ically group sizes of 4 and 8 compared to the case of the Power selection algorithm
in Figure 5.8a.
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(b) 75% power selection 128 antennas

Figure 5.12: ∆MSE with respect to the number of UE for different hybrid algo-
rithms. The subfigure on the left shows the case when only 25% of the groups are
selected with regard to power and the right subfigure shows the case when 75% of
the groups are selected according to power.
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Antenna group size

The optimum selection algorithm is the one that minimises the ∆MSE. It should
be observed that the power selection algorithm has the smallest ∆MSE for antenna
group sizes of 16 and 32 (see Figure 5.6a). This is because it has a low condition
number (κ̃g=16 = 2.1), but also because it has higher energy efficiency for these
group sizes as it is seen in Figure 5.7. For groups of 16 antennas, energy efficiency
is close to 0.9 while for groups of 8 antennas is energy efficiency around 0.8, which
does not seem to be a huge difference. It leads to the idea that power has a large
impact on the ∆MSE, specially when η is closer to 1.
However, for small groups the power selection algorithm produced very large con-

dition number (κ̃g=4 = 9.1) compared to the random selection algorithm (κ̃g=4 =
2.4), which in turn managed to obtain smaller ∆MSE despite of having even lower
energy efficiency which proves that the higher correlation can degrade the ∆MSE.
For the hybrid selection algorithm (see Figure 5.6d) it is observable that the ∆MSE

decreases with higher antenna group size compared to the correlation selection al-
gorithm. One of the reasons for this is that it has lower condition number but also
because it has higher energy efficiency. Since the energy efficiency is not as high
as for the power selection algorithm it did not manage to get as low ∆MSE which
again indicates the importance of the energy efficiency.

Number of UEs

From Figure 5.8 the ∆MSE can be analyzed with regard to the number of UEs. The
∆MSE tends to increase with the number of UEs. For smaller antenna group sizes,
power selection has higher ∆MSE, because, similarly to the previous discussion for
different group sizes, the power selection algorithm introduces a lot of correlation
since it tends to select the same rows and thus increase the correlation of the sys-
tem. Keep in mind that the receive antennas are uniformly spaced and it generates
correlated received signals. Then the power distribution among the rows for each
group will be similar and so the power selection algorithm will tend to select the
same rows which in turn increases the correlation.
Moreover, when the number of UE is increased, correlation of the systems in-

creases, but also each received signal is a sum of different signals sent by the UEs
which makes the power distribution less compacted in the frequency components.
For example, with power selection of groups of 4 antennas, with up to 4 UEs, the
∆MSE is below 3 dB and the upper bound, but with more than 4 UEs the upper
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bound of 64 antennas is crossed.
The remaining selection techniques (random, correlation and hybrid selection)

reduce the correlation of the system and power assumes reduced importance (in
correlation and random methods no importance at all), thus are less sensitive to the
increase of the number of UEs. This is observed in Figure 5.8b-d where it is clear
that the ∆MSE increases much slower with number of UEs.
However, these algorithms are much closer to the upper bound than for power

selection (small group sizes) which again indicates that the correlation of the system
is not the only factor that affects the ∆MSE. This can be verified by comparing the
hybrid selection algorithm with the correlation selection algorithm (see 5.8c-d), both
of them have very similar condition number when the number of UEs is 10 but the
hybrid technique offers a smaller ∆MSE by approximately 2 dB for the case of
group size of 32. This can be explained by the higher energy efficiency of the hybrid
technique (see Figure 5.7).
When the groups contain higher number of antennas, energy selection tends to

achieve very good performance, as seen in Figure 5.8 with groups of 32 antennas,
where the ∆MSE is smaller than 1 dB even with 20 UEs.

Degree of Compression

According to the Figure 5.10, the Hybrid selection is the method which in most of
the cases minimizes more the ∆MSE. It occurs with group size of 4 antennas and 16
antennas (when the compression level is below C=0.25). Again, a first look would
lead to conclude that energy selection should have better performance, however the
correlation is increased and it conduces to poorer performance.
Also, energy selection tends to have higher ∆MSE than any other selection al-

gorithms when compression level goes to 0, specially for small groups, and when
compression level is close to 1, energy selection tends to be the best option. Since
the channel is correlated, every group tends to select the same coefficients, specially
those with the highest energy, while the lower power coefficients tend to be differ-
ent group to group. The hybrid selection reduces the amount of correlation when
compared to energy selection and then, it has generally better performance than the
energy selection.

Hybrid selection algorithm

The hybrid selection algorithm uses power selection for half of the groups and the
remaining groups use correlation selection. This is a very a simple strategy and has
some parameters that could be more studied, so it is likely that there is a margin to
improve the algorithm. One potential point of improvement is to adjust the weight
of the groups that selects the rows according to power and correlation, in this way
the ∆MSE may reduce since the hybrid selection has proven to produce smaller
errors compared to selection purely based on correlation.
Moreover, this study was based on average, so it is possible that the ideal T and

its selection is dependent on the channel matrix H, where the ideal weight of energy
and correlation can change as well. In summary, it is assumed that there is a trade-
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off between energy and correlation that should be a case study to understand better
the role of each one on system’s performance.
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7
Conclusions

Compression in the LoS massive MIMO UL channel was conducted in order to
reduce the number of data streams that are sent from the RF-chains to the CPU. A
maximum compression level of C = 0.125 was conducted. The performance of the
system was evaluated in terms of ∆MSE of the recovered symbols, energy efficiency
η and the condition number κ̃.
The compression was done through four different algorithms which are referred as:

power, random, correlation and hybrid selection. It was shown that lower condition
number and higher energy efficiency lead to lower values of ∆MSE.
The results showed that there are different solution depending on the hardware

limitations. Power was the first option to be studied and it is clear that for larger
groups, power is the best criterion to minimise the loss of signal quality. On the
other hand, larger groups are more difficult to realise due to hardware complexity,
which in turn forced the system design to implement smaller groups that lead to a
poor performance.
Then, through the condition number of TH it was noticed that power selection

suffered from a high amount of correlation. Most of the groups selected the exact
same lines, which led to an increase of the condition number and consequently, worse
performance. A solution to this problem was to test and design an algorithm based
on correlation which proved to have improved performance compared with power
selection for smaller groups, but this algorithm had a new drawback which was that
it had worse results for bigger groups when compared with power selection.
At this point it was clear that both power and correlation could affect the system.

So the hybrid selection was designed in order to have half of the groups select the
rows according to power and the remaining ones avoid correlation between groups
with correlation selection. This method achieved smaller losses than the other algo-
rithms for small group sizes which made it evident that both power and correlation
affect the performance of the system.
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Appendix 1

Table A.1: Combinations for G=4 and C=0.25

Group 1 2 3 4 ...
Rows 4 1 3 2 ...

Table A.2: Combinations for G=4 and C=0.75

Group 1 2 3 4 ...
Rows 2 3 4 1 2 3 1 3 4 1 2 4 ...

Table A.3: Combinations for G=16 and C=0.125

Group 1 2 3 4 5 6 7 8 ...
Rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

I



A. Appendix 1

Table A.4: Combinations for G=16 and C=0.25

Group Rows
1 1 2 3 4
2 13 14 15 16
3 5 6 7 8
4 9 10 11 12
5 1 2 5 6
6 3 4 7 8
7 9 10 13 14
8 11 12 15 16

Table A.5: Combinations for G=16 and C=0.75

Group Rows
1 1 2 3 4 5 6 7 8 9 10 11 12
2 5 6 7 8 9 10 11 12 13 14 15 16
3 1 2 3 4 9 10 11 12 13 14 15 16
4 1 2 3 4 5 6 7 8 13 14 15 16
5 3 4 7 8 9 10 11 12 13 14 15 16
6 1 2 5 6 9 10 11 12 13 14 15 16
7 1 2 3 4 5 6 7 8 11 12 15 16
8 1 2 3 4 5 6 7 8 9 10 13 14

Table A.6: Combinations for G=16 and C=0.875

Group Rows
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 1 2 5 6 7 8 9 10 11 12 13 14 15 16
4 1 2 3 4 7 8 9 10 11 12 13 14 15 16
5 1 2 3 4 5 6 9 10 11 12 13 14 15 16
6 1 2 3 4 5 6 7 8 11 12 13 14 15 16
7 1 2 3 4 5 6 7 8 9 10 13 14 15 16
8 1 2 3 4 5 6 7 8 9 10 11 12 15 16
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