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Abstract  

The V-model can be described as the conceptual and graphical illustration of a software development 

lifecycle. The left and right side of the V represent the steps in software lifecycle development, from the 

requirement decomposition phase until the function verification phase. This V-shaped model is a widely 

accepted strategy in developing electrical modules in automotive industry. A single loop in V-model starts 

with development and completes with verification. After several loops, the software will be mature enough 

for final verifications.  

This thesis addresses the issues that come with V-model on developing a system with one master node and 

multiple slaves. Master-Slave is a standard of communication in which one part has unidirectional control 

over the other part. This thesis suggests a verification routine with MATLAB-CANoe interface on 

CAN/LIN modules. This study presents how this method can minimize the functional defects and signalling 

problems. On this study, a Simulink model for the CAN node is done. The Simulink model is verified on 

the test environment with the physical slave node. The result of the study is presented as an approach to 

improve the quality process at Volvo Cars. 
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Abbreviation 
 

 

DUT device under test 

PSM Power Seat Module 

SCM Seat Comfort Module  

HWIL Hardware in loop 

API Application Programming Interface 

AUTOSAR Automotive Open System Architecture 

BSW Basic Software 

CAN Controller Area Network 

LIN Local Interconnect Network 

ECU Electronic Control Unit 

ISR Interrupt Service Routine 

OS Operating System 

RTE Run-Time Environment 

VCC Volvo Car Company 

SDU Service Data Unit 

SWC Software Component 

LC logical component  

MOST Media Oriented Systems Transport 

TDMA Time Division Multiple Access 

SOP Start of production 

RC resistors and capacitors  

IL Interaction layer 

TP transport protocol 

NM network management 

CAPL CAN Access Programming Language 
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1. Introduction  

 
utomotive industry has faced rapid convergence of telecommunication and infotainment and 

multimedia in which brings vast variety of functions and services to the user. This flow of 

information imposes inevitable complication to the electrical modules. A full functional car comes 

with more than a hundred electrical modules in which the majority of them communicate through LIN/CAN 

(Local Interconnect Network) (Controller Area Network) protocol while the major modules using flexray 

and Ethernet. V-shape plan is predominantly used to develop and verify the LIN/CAN modules. ON V-

shape plan one wing represents the development and other wing represents the verification phase. The focus 

of this thesis is to optimize the verification time for LIN/CAN modules, this is done by simulation based 

verification for LIN /CAN application layer.  

 

 

1.1. Aim and objectives 
 

This thesis aims to propose a solution to shorten the integration and validation phase when one the nodes 

is not physically available. The proposed solution is especially helpful when dealing with LIN/CAN 

modules with different SW maturity levels. Maturity level is a critical issue since if two components in a 

system has different software maturity levels then components cannot communicate with each other and 

therefore the system cannot be verified as a whole. The proposed solution is using integrated MATLAB 

Simulink shell model in CANoe simulation environment.  The section Theory in this thesis is to describe 

this model. The suggested solution is started by developing the shell model for the DUT (device under test). 

In the next step, the C-code is generated from the shell model and imported in the CANoe environment to 

perform the integration test along with the physical slave node. The DUT in this study is PSM (Power Seat 

Module) and is used in the latest Volvo car, XC90. This module is a CAN master node and has a slave 

module called SCM (Seat Comfort Module).  
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2. Background  

 
Volvo Group’s Vision 202020 is about higher quality, leaner production and less cost with transformation. 

Vision 202020 in the new Volvo’s guiding principle to which VCC had a new objective to reach a 20-

month project time by the year 2020. A shorter development time provides higher product quality and a 

better process, also less re-planning and internal costs [1]. For most of the OEMs in the car industry, due to 

increasing complexity in electrical modules, in-house development of all components in vehicle is not an 

option.  

In Volvo cars external suppliers develop the software and signaling solution for the whole or part of the 

systems. In fact, the majority of the systems are partly developed by one supplier, and partly in-house or by 

another supplier. Timing issues, syncing the maturity levels and verification of such systems are some of 

the challenges during the system lifecycle [1] . 
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3. Method 

 
This chapter contains the methods used to gather the information and to understand the problem and also 

how the proposed solution is developed.   

3.1. LIN & CAN protocol studies  
 

In order to get the necessary background information about the nodes, an initial study about the LIN and 

CAN protocol is done. Initial information is gathered about the slave nodes LIN protocol [2] and also how 

the signaling has defined. Afterwards, a study is done about the details of transmission with master node. 

This information is gathered from the LIN Specification Package document [2], and also through the 

discussions with the VCC’s LIN experts and from the LIN description files released by the VCC’s signal 

database group .  

3.2. Network topology and verification method analysis  
 

In order to further development of the study, an assessment of the process flow and the verification methods 

for the LIN-CAN network is conducted. Result of this part of the study provides background to identify the 

limitations of the traditional verification methods. Finally and for further analysis, the optimization of 

verification methods is used for implementation.  

3.3. Implementation 
 

Focus of this part is on the setup using the LIN slave and the CAN master node. The Slave node is Seat 

Comfort Module and the master node is Power Seat Module. Power Seat Module is the standard module 

for all Volvo cars on the SPA platform. This is a comfort module to adjust the height, length, depth, and 

width of the seats. The low variant components are available on cheaper price but only provide basic 

functionalities. For the SPA platform on VCC, this module has been implemented by the supplier, through 

sending requirements and defining signaling and functionality by VCC. Development process started from 

the beginning of the SPA sourcing and did not finalized until the SOP (Start of production) which is 

significantly more than 20 months that is the VCC goal for leaner development time. One important point 

discovered in this phase of the study is that verification of the software issues and functionalities is a 

blocking factor that takes significant part of the development time.  

In this phase of the study, the review over the PSM functionalities is conducted. Then a method to verify 

the CAN-LIN module is presented. This method uses the CANoe panels along with the Simulink shell 

models. CANoe is the major verification tool that is used in the VCC. This is a powerful tool that gives 

possibilities to tweak the signal values in real-time and observe the results on physical node. All or part of 

the network can be simulated by the CANoe. In this environment a simulated node can communicate with 

a physical node. Another node in this study is the Seat Comfort Module. Seat Comfort Module provides 
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massage on high variant and lumbar adjustment on low variants. This module is an Off-the-shelf node that 

has been ready for system verification a year before PSM’s ready date. 

The major purpose of this study is to evaluate system verification of SCM, an Off-the-shelf node, using 

simulated PSM. This approach can theoretically circumvents the timing gap that is caused by PSM 

development. In the last part, a number of test cases is verified using the proposed solution. Advantages 

and disadvantages of this solution is also presented in the last part.   
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4. Problem description 

 
This chapter describes the motivation behind the study and how the proposed solution can increase the 

verification quality.  

4.1. LIN/CAN system development  

 

As it is described, a system solution based on the V model’s lifecycle starts from the requirement 

decomposition. During this phase the complexity of the requirements can cause discrepancy between the 

developed functionality in different modules on the same system. These discrepancies can get escalated to 

Functional defects in the next phase of the development.  

Message errors and synchronization problems are the common issues towards the development of the 

CAN/LIN application layer.  

Since in the both protocoles, the signal datatypes shall have the same properties on the both sender and the 

receiver parts [3].  As these two modules are developed by two separate teams, signal property discrepancies 

occurs and can get detected not sooner than very late phase of system verification.  A simple issue from 

this sort can be prevented during the development phase but will be extremely complicated to resolve during 

the mass production. Therefore, complex testing setups have now became an important part in the 

development of such communication systems. In order to meet the criteria of qualitative verification, 

different methodologies of systematic verifications is developed. Common goal of all testing methods is to 

verify the defects on earliest development stage. This thesis is also aimed to introduce a solution to 

accelerate the verification phase for the LIN/CAN system when the master node is not physically available 

[4]. In the conventional verification methods, the verification starts not before all nodes are physically 

available and can communicate with each other.  

 

4.2. V-Model 

The V-shape model for development and verification of CAN/LIN nodes is used for many years in the 

automotive industry. The main concern in this model is on the dramatic increase of cost and 

complexities when problems occur on the latest parts of the verification phase [5]. 
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Figure 1. Original V-Model [6] 

As can be seen in Figure 1 , the V/model starts from upper left in the requirement decomposition level (sent 

to supplier) and will be validated by the acceptance test in the right wing.  These requirements creates the 

system requirement model and is verified on the integration system in the left wing. When basic 

functionality is implemented on architectural model, then the verification phase continues on subsystem 

model. The last phase is component design level that is verified by the HW-SW integration. If the 

verification lead to successful integration unit then design model can get started [5]. 

The motioned V-shape model describes the single component development apart from other affiliated and 

subordinated ECUs (Electronic Control Unit). In reality, SW development for ECUs on the automotive 

industry, a single component is always dependent upon the functionality of the master or slave node.  

Without comparative validation it would not be possible to have an up-and-running system. As Figure 2 

shows, when two or more components (single master-multiple slaves) are on the model at the same time, 

this model repeats itself in ECU level and builds one system in the end.  
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Figure 2 . Dual V-Model 

Practically, applying dual or triple V-model for LIN/CAN system comes with delaying factor. System 

model verification shall be done on presence of all dependent components. Especially for the LIN/CAN 

systems the HW-SW integration cannot cover all layers of functionality when either master or slave is not 

involved. 

 

4.3. Sync problems with V-Model for HWIL (Hardware in loop) 

 

Realization in the first wing of the V model is done according to SW plans. SW plans are generically consist 

of different SW gates in which maturity level increases over time. As dealing with a standard LIN/CAN 

system consist of single master node and multiple slaves, full synchronization on SW maturity level 

between Masters and slaves is necessary.  If the master node has 90% design intent and is ready to test on 

the unit design model while slave node is not even as nearly mature, then the dual/triple V-model fails to 

cover the integration test. SW maturity synchronization between two or more components in a LIN/CAN 

system is a usual problem when components are developed by different suppliers and has different 

complexity level [7] [8] . 
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 It’s also usual that either of the nodes (master or slave) are bought from supplier in an early stage of the 

project as an Off-the-shelf solution. While the other node under development and following the SW plan. 

In that case a gap in the SW maturity synchronization grows future more. Integration and HIL (Hardware-

in-the-loop) test can be delayed for months until both master and slave reach the same maturity level. 
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5. Theory 

 
This chapter contains the theory behind the proposed solution. Starting by a comparison between LIN and 

CAN protocol, and also network topology used in the LIN and CAN nodes. In the next parts, Layer structure 

and Schematic layers of the CAN and LIN nodes and also detailed information regarding memory handling 

and actuators of the PSM along with a description for the MATLAB Simulink model and CANoe panel is 

presented 

 

5.1. LIN vs CAN protocol 
 

LIN is a serial communication protocol made for the connection of low to medium cost components with 

the non-complex sensor-actuator functionalities. Ideas over the LIN communication protocol is initiated by 

the LIN consortium, which is the collaboration between major car manufacturers. LIN consortium is the 

major entity to define the rule and regulation regarding the LIN protocol standards. This set of standards 

are getting frequently released on the LIN Specification Package (current version 2.1). LIN spec package 

covers the specification on the physical layer, transport layer, application layer and also the detailed 

information regarding tools and interfaces [2].  

 

 

Figure 3.A LIN network [9] 

As Figure 3 shows, LIN is a mono master network that supports up to 16 slaves using single wire bus. This 

protocol supports up to 20 Kbits/s transmission rate. LIN is self-synced by the master node and can detect 

errors using an 8 bits checksum and two parity bits. LIN can be used to build a serial communication, since 

master node syncs the clock therefore the slave does not need highly accurate clock and can use cheaper 

RC (resistors and capacitors) cell instead. Drivers that run with LIN are easy to use, non-complex and also 

available in the market [9].  These drivers require less harness usage and more reliable for the mid-range 

modules. The mentioned LIN network simplicities facilitate the development of extensions for 

functionalities on the components [9]. In the systems that require high-bitrate, robust transmission reliability 

and also has signalling with higher safety integrity level, the LIN protocol cannot afford the high fault rate 

[9]. Consequently, in such systems LIN protocols is not reliable enough and other protocols has to be 

employed. The following chart shows the speed comparison between LIN and other protocols.  
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Figure 4. Speed comparison between LIN and other protocols. [9] 

 

Despite the all advantages with the LIN protocol, the most well-known multiplex system used in the 

automotive industry is CAN protocol. The CAN bus has developed by BOSCH Company. This protocol is 

a multi-master, message broadcast transmission protocols. As shows in Figure 4, the maximum Bit-rate in 

this protocol is significantly higher than the LIN protocol and is up to 1 Mbps [10]. The most significant 

difference between the CAN and the LIN protocol is the transmission strategy. CAN unlike LIN does not 

use the master-supervised point to point transition. In CAN network all the nodes can broadcast their 

messages throughout the entire network and each node connected to the CAN network is able to receive 

any propagated signal [11] [12].  

 

5.2. Network topology  
 

Figure 5 depicts a LIN network made of several LIN slaves and one CAN master. The CAN master 

gateways the LIN signals to the other networks. The signals can get received by other CAN master and 

gateways back to their LIN slave. In this way, two LIN modules in two different networks can communicate 

with each other.  
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Figure 5. Signal broadcasting between two LIN networks 

LIN protocol is not made to be used instead of CAN but rather a supplementary service to be used alongside 

the CAN. Nodes with strict fault-tolerance and high bandwidth transmission (>10 Mbit/s) will use other 

protocols such as flexray and MOST (Media Oriented Systems Transport). Flexray provides the time-event 

triggered functionality. This functionality is the main Flexray advantage towards the CAN. The CAN 

protocol is merely an event-triggered protocol and nodes can get access based on their priority. On flexray, 

the transmission time and frequency is defined in detail, using TDMA (Time Division Multiple Access) 

solution. In this solution, a message receives a specific time to communicate and the messages have timing 

hierarchy to get the access [7] [13] . 

 

5.2.1 AUTOSAR Layer structure 

 

AUTOSAR stands for AUTomotive Open System Architecture. AUTOSAR is the standard software 

architecture made by automotive suppliers/developer and OEMs for the automotive industry. AUTOSAR 

provides the common ground for different functions and platform and makes possible the integration from 

different OEM and supplier [14]. AUTOSAR architecture offers the modularity and gives OEMs the choice 

to specify the software based on the requirements. This standard also prevents the software redundancy 

when the same software is used on different platforms. In order to achieve flexibility that is mentioned, 

AUTOSAR architecture requires different layers of the program. Each part interacts with the inner layer or 

the outer hardware.  

 

Figure 6. AUTOSAR software stack layers 
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As Figure 6 shows, AUTOSAR software stack has three different layers: Application Layer, RTE (Run-

Time Environment), and Basic Software.  

Application is the front layer of software which handles the functionality expected from the module. Inter 

module communication and also Intra module communication is managed by RTE. According to this setup, 

RTE get adjusted to fit the different types of microcontroller and ECU, while application layer shall be 

intact to be used in different modules. Basic software is made of different layers, such as: 

 Abstraction layer, makes application layer even more modular. 

 Service layer, contributes to memory handling, diagnostic services.  

 Microcontroller abstraction layer 

 Complex derivers 

  

 

5.2.2 AUTOSAR software stack for the simulation ECU 

 

The layers of AUTOSAR software stack can get further divided to the functional model. Based on the 

AUTOSAR guideline, the application layer is made of SWCs (software component). Each SWC represents 

a functionality provided by the ECU.  

 

Figure 7. LC Ports on application layer of the ECU 

A. AL (Application layer) 

 

Application layer is the layer representing the external functionality of the component. These functionalities 

are defined by the system designer and the behavior in this case is described by the Simulink models and 

the state-flow. Each LC (logical component) represents a logical component and carries the signaling and 

the requirements from system point of view. LCs can get allocated in multiple ECUs and vice versa 
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(multiple ECUs realize functionality that is required from a single LC). As seen in Figure 7, each LC has a 

number of signals (external ports). In order to provide the functionality these ports shall get connected to 

another LC. If these LCs represent the different functionalities then these shall get delegated in the different 

SWCs. Therefore these ports get propagated out of the SWCs and get connected through so-called 

delegation ports.  

B. IL (Interaction layer), TP (transport protocol) NM (network management) 

 

Different software layers can be identified in a LIN node. These layers can generally be specified as the 

Interaction layer (responsible for the data transmission functionality), the transport protocol (handles 

diagnostic) and the network management. The interaction between these two layers get defined via 

signaling. This means that the network management is not a concern in the application layer or on the 

Simulink models.  

 

Conventional System verification 

Product lifecycle management (PLM) is the administration process for lifecycle of a module from the 

requirement phase until the manufacturing. As Figure 8 shows, this concept is the basis of the system 

architecture used in PLM development program. This concept gives flexibility to function or system 

designers to allocate the logical components on the appropriate ECU and also to verify implementation on 

the system level [15]. Requirement documents can be generated in each level and verification starts from 

the LCs and completes in the function level.  

 

Figure 8. System architecture blocks from logical component to function 
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5.3. DUT description -Power Seat Module  
 

PSMD is the module tailored to deliver the solution for the seat positioning on the driver and passenger 

seats for Volvo cars on SPA platform. This module handles the maneuvering of headrest, backrest and 

cushion extension. Handling of mentioned functionalities requires extensive signaling interface and also 

interaction with three motors and actuators. For this reason, Power Seat Module is designed to communicate 

using CAN protocoles. Seat functionalities such as lumbar and massage can either get handled by PSM or 

with pneumatic or electronic massage -comfort node which is derived by the LIN slave of PSM. In order 

to keep the modularity of system solution, these two functionalities are preferred to be handled in two 

different nodes. Figure 9 shows the drivers and interfaces of PSM. High side driver is the connection 

between the load and the power supply. Load is connected between the driver output and the ground. HSD 

(High Side Driver) gets activated when the output voltage is equal to the power supply. Apposite to the low 

side driver that gets activated as the output voltage is equal to the ground. MD (Motor Driver) is the driver 

that is responsible to activate the motors. This driver specifies how each of the motors get derived by the 

hall sensors. Pause setting to start the motors are also defined in the MD.  The signaling shows where the 

system solution is defined on the application layer. The Comm layer redirects the signaling through 

controller and motor drivers. Transceivers sync the timing of bits and regulate the output voltage of the LIN 

and the CAN network to the level that is defined on the module [16]. 

 

Figure 9. PSM motors and drivers interface 
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5.3.1 Switches and Commands 

 

Seat commands can either get transmitted from the seat switches on the door module or remotely from other 

nodes like the HMI or the CEM. In the first case a block called Switch Interpreter filters the received signal 

commands. If two switch commands get received by the module then the whole movement shall get stopped 

immediately.  

 

5.3.2 Motor actuators  

 

If component is low or high variant, this module provides sets of motors. Each motor shall handle the 

movement in following angles: 

Height up and downs 

Front up and down  

Slide forward and backward 

Back inclination forward and backward  

Lumbar Extend forward and backward 

Lumbar height up and down 

Seat cushion extension and shorten  

Figure 10 shows the commands for the movement process where the sensors constantly return the actual 

position to the application level and the switches or the remote commands is processed by the application 

software and forwarded to the actuators. New position is written over the actual position on a loop-like 

process and movement continues to the block-position.  
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Figure 10. Command for movement process 

 

 

As mentioned before, actuators can get activated through the resistor coded switches. The specified voltage 

range for hysteresis is done in parameterization or with remote CAN commands by the ECUs connected to 

the network. 

5.4. Functional Mode of DUT 
Figure 11 shows the logic and defines the transitions between four states using in Seat Module. These states 

characterize the different functional modes provided by the module.  

1. Normal State: Which the only single-handed command communicated to the ECU, this mode is 

considered by the application level as an idle state.  

 

2. Stopping state: Application software has the logic to prioritize the movement and to deactivate the 

actuator if simultaneous commands get received by the ECU.  

 

3. Manual state: Application level can also move to this state as the remote commands are receiving 

from the other ECUs.  

 

4. Setting state: Handles the memory functionality and the adjustment properties that is saved by the 

user.  
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Transition between the different modes is done consistently if the trigger condition 1-6 is true, 

otherwise the ECU will stays on the current mode.  

Condition 1:  IF Actuator_activatied =0 

Condition 2:  IF Button_Pressed ≠ 0 

Condition 3:  IF S1 =default: Actuator_activatied =off 

Condition 4: IF S-requested=S4  

 

Condition 5:   IF number of incoming switch commands = X, X>1 

  IF Button_Pressed ≠ 0  

  IF Actuator_Antinpinch_flag ≠ 0  

Condition 6:  IF Actuator_activatied = 0 

 

Condition 7:  IF number of incoming switch commands = X, X>1 

  IF Actuator_Antinpinch_flag ≠ 0  

 

Figure 11. Transition between different states of PSM 
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5.4.1 Non-Volatile Memory handling 

 

As Figure 12 shows, recalling and storing seat position can be performed by the user through HMI 

(Human Machine Interface) or seat switches. In order to store/restore the position, the current 

position shall be written over the selected profiled and then get stored on the corresponding part 

of the NV_RAM. Restoring operation is done using the same logic but in the opposite direction, 

from NV_RAM to the actuators while the ECU is set to setting mode requested by the user.  

 

  

Figure 12. Recalling and storing seat position 

5.4.2 User profile identification handling 

 

The stored position can get allocated to the Profile IDs. The profile IDs can be activated when the user 

unlock the car using key no1-13. Each potential key can get delegated to a profile ID.  According to this 

logic the active profile is the current profile and the requested adjustments is automatically set just after the 

driver entrance. 

Hex value: 0x00 – 0x0F   User ID: 1-13 

 

After unlocking, the transition between states gets triggered and also seat position adjustment starts.  
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5.5. SCM as Slave node and its transmission Structure 
 

The setup studied in this thesis is a simple CAN master-LIN slave system. As mentioned, Power Seat 

Module is the CAN node and the master ECU for the Seat Comfort Module (SCM). In a master-slave LIN 

communication, SCM receives the configurable frame that are defined on LIN Description File. Data is 

transmitted and received between two nodes with fix structure. Data-frame has a break field to show an 

incoming frame. Data filed has the transmission information which is supported by a checksum and counter. 

Data-path is sent by both of the nodes. Transmit frames are sent from the PSM to the SCM (master to slave) 

and response frames in opposite direction, where the header is always coming from the PSM. Messages are 

communicated on a specific tic-time which depends on the LIN speed (version) and message length. A LIN 

node can also be in control of another LIN slave. In this setup the number of LIN slaves are limited to 4 or 

5 ECUs. Figure 13 shows the frame structure transmitted between the PSM and the SCM node. As can be 

seen, there are unconditional frames containing application level signaling and transmitted during default 

session. Diagnostic frames are transmitted on the programming session.  

  

Figure 13. Unconditional frames, diagnostic frames and event triggered frames.  
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5.6. MATLAB shell model for PSM module 
 

In order to build a shell model for the application layer the following subsystems and blocks are prepared. 

Block 1-4 are the main simulation blocks taking the input values from the switch pack and other nodes on 

the network. In order to keep the modularity and also to have an error-free logic, each block is supported 

by a subsystem (sub-blocks).   

Following is brief description for the blocks and the subsystem:  

 

1. Power Seat Module driver  

 

a. Switch interpreter 

 

i. Switch status filtered decoder: Since switch input is coded, it needs to get decoded 

using this block.  

 

b. Functional Mode controller 

 

Functional mode controller: Handles toggling between different modes using the 

anti-pinch flag and the profile positions and the mode management signals as input. 

The sensors values and positions are used in order to control the transition between 

different modes upon the request signals. These values return the functional mode 

as block output.  

 

i. Motor Controller :Handles the motor priority during movement , using the blocks 

of actuator groups which is fed by the movement offset (the difference between 

actual and requested position  )  

1. Seat actuator Control output for angle 1: If switches are pressed to 

move actuator, and actual movement flag is on Idle, then send control 

signal to actuator 1.  

 

2. Seat actuator Control output for angle 2: If switches are pressed to 

move actuator, and actual movement flag is on Idle, then send control 

signal to actuator 2.  

 

3. Seat actuator Control output for angle N: If switches are pressed to 

move actuator, and actual movement flag is on Idle, then send control 

signal to actuator N.  

 

c. Seat axis controller: This is the block is to evaluate if the movement is possible to perform 

or not. This matter is done using the movement command signals. If this set of signals 

allows the movement then the switch signal (from switchback or multifunction ) decides 

which motor (motors) to be activated 
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i. Pause on crank: This block changes the seat movement command signal 

and deactivates the movement, under the situation that seat movement is 

not desirable such as engine crank. 

  

ii. Preset position control: To decide if the auto-movement is valid to start. 

Also to decide when to start the auto movement and when the movement 

is finished and the flag can be set to idle. 

 

iii. Multifunction switch Control: To decide the lumbar and headrest 

position based on multifunction switch controller input and also the 

specified usage mode (if the movement is allowed).  

 

iv. Signal conversion: Takes the input of multifunction switch which is in 

enum type and decode it and convert it to the driver seat enum type with 

idle as the default value.  

 

d. Memory bank: As mentioned before on profile personalization chapter, based on key 

profiles that unlocks the car door, a personalized profiled gets loaded and preset adjustment 

is restored. This block simulates the functionality by the active-profile using a flag that 

shows what to read or write on active profile. 

 

i. Write to memory: Using the active profile as input, this block decides to store a 

position on NV-RAM based on the requested position. 

  

ii. Read from memory:  Returns the requested position using active profile 

information.  

e. User profile id determination: To check the range of user profile id, it shall not exceed 

the maximum number of memories.  

 

 

 

2. PSMD seat and actuator plant model: This plant model is necessary to increment the position 

value if conditions are met. Positions can be incremented based on the request on each actuator.  

 

3. Power Seat Module passenger: In case of having the PSMP (passenger seat module), driver 

module shall control the passenger node. PSMP implements the same functionalities as PSMD 

except differences in memory handlings and automatic adjustments.  

 

4. PSM Passenger seat and actuator plant model: Handles the position incrimination in passenger 

module on the same way as driver module.  
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5.7. PSMD-SCMD set up  
 

This part it to elaborate the setup to build a system that runs with simulated PSMD and physical SCMD 

that comes with air-bladders pumps and actuators. In this setup SCMD is connected to the LIN network as 

a slave to the CAN master, Power Seat Module. Signaling between SCMD and PSMD is defined on LDF 

(LIN description files) files dedicated for the respective LIN network. Figure 14 shows the general setup 

and also the connection between the developed CANoe panel and the MATLAB shell model. 

 

  

Figure 14.  suggested setup , where the orange colored blocks are in CANoe and Blue colors in MATLAB Simulink 

 

5.8. CANoe-MATLAB integration: 
 

In CANoe there are different application areas these areas are analysis, simulation, test, diagnosis. 

MATLAB-CANoe supports the areas of analysis and simulation. In order to integrate the Simulink model 

in CANoe simulation environment, C-code shall be generated from shell models in CANoe. Microsoft 

visual studio is needed in order to generate the C code and the C code can be generated from MATLAB 

version of 2007a or newer. As the layer structure of Simulink node described on previous chapter, the 

exchange between application and interaction layer, is already facilitated by singling. Therefore, no network 

information needs to get defined in application layer. CANoe-MATLAB interface (Figure 15) installs a 

block-set in MATLAB Simulink blocks. This block-set contains the input-output, the signals and the system 

variables. Using this block-set, the subsystems in MATLAB can get triggered and also CAPL (CAN Access 

Programming Language) programs can be called.  
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Figure 15. Vector CANoe block-set in SIMULINK library.  

 

5.9. Simulation mode 
 

Figure 16 shows how to switch between the offline and the synchronized mode in CANoe.  

Simulation mode is to define how CANoe and MATLAB get synced. Simulation mode can be set 

and adjusted in CANoe and has three different modes: 

 

Figure 16. Simulation mode setup in CANoe 

1. Offline mode: There is no access to physical hardware in offline mode. The system configuration is 

completely simulated.  

2. Synchronized mode: The Physical hardware can be operated in synchronize mode. Simulation is done in 

real-time in this mode.  

3. HIL mode (hardware in the loop mode): 

Figure 17 shows how to generate the C code from the shell model using CANoe as the target in the HIL 

mode. Parameterization gets activated to let the parameters get tuned in real-time.  
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Figure 17. Select C code and use CANoe as target.  

 

5.10. Link the shell models to CANoe 
 

Figure 18 shows how to assign the generated code. In order to assign the DLL file to the simulation node 

in CANoe where operator integrate the model file and other generated files.  

 

Figure 18. Link the code to simulated node 

After measurement start, the target component is operated in real-time. An advantage of the HIL mode is 

that the system parameters can get adjusted during component operation in real-time and also that models 

or state flow charts can be displayed accordingly. 

 

5.11. DUT CANoe panel  
 

Using CANoe, user can assign a symbol to adjust the system signal values without any panel or CAPL 

(CAN Access Programming Language) program. This can be done in symbol panel from the shortcut menu. 

Panel automatically configures and receives the symbol selected values. To simulate the whole process and 
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functionality user shall build a test-panel or script that calls the series of symbols successively. Panel 

designer is been used for this matter. This is a powerful tool in CANoe in order to tune the values and also 

on-demand adjustment in parameters and bus signals. CANoe panel can be adjusted as a source to send the 

data to the other controllers, and also to observe, log and analyze the traffic on the CAN/LIN bus. In order 

to drive the physical SCM node from simulated PSM, the following CANoe panel shown in Figure 19 is 

prepared. It contains the basic seat positions that are called through symbols from the graphical interface. 

Symbols in the panel are linked to the CAN bus values to configure the signal data-elements on simulated 

PSM. These symbols can also send commands to imitate the massage pumps on physical SCM node.  

 

Figure 19 PSM CANoe panel  

As figure 19 shows, the memory bank buttons request one of the 13 predefined saved position. These 

buttons send the command signal to the simulated PSM and SCM as the slave node can react upon the 

request.  
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6. Verification method   
 

Following is the test cases to verify the physical SCM’s functionality using the CANoe panel connected 

to simulate the PSM. Test case steps describe how to operate the test scenario. Test description gives idea 

about the aim and the target of the test.  The test result can be seen at the end of the test cases, and it 

contains the observed result after performing the test case.  

 

 

 

 

TEST-CASE1, TEST-CASE5.manual adjustment of bolster  

Expected result: Back bolster shall start moving.  

Test steps  
1- Start CANoe, CAN/LIN 

2- Usage mode => active 

3- Power supply SCM 

4- On CANoe panel : use adjustment button up-down-in-out for SCM 

bolster   
 

Test description: 

Sending the bolster movement command using CANoe panel and through the simulated PSM  

 

Test result:  

Physical SCM receives the commands and starts changing pressure on the bolsters. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

 

 

 

 

 

 

TEST-CASE2, Memory bank 

Expected result: Back bolster pressure shall change  

Test steps:  
1- Start CANoe, CAN/LIN 

2- Usage mode => active 

3- Power supply SCM 

4- On CANoe panel : Profile personalization signal is set between 1-13 

Note : 

If Memseatcntrl=0 -> use the membank1-13 (profile id) 

If Memseatcntrl=1-3 -> use personal setting (door switches memory 

bank 1-3 ) 

5- On CANoe panel :Seatbackposnstor=store  

Note :Store vs restore (Boolean signal) to show is we want to write or 

read (in out easy = false )  

 

6- Set the position status on Power Seat Module on CANoe penal.  

7- set the request signal on CANoe panel  

8- PSM sends the request to physical SCM 

9- Physical SCM bolster is adjusted according to memsearctrl no X 

  
 

Test description: 

After setting the status signals of the seats. Request signal is sent by Power Seat Module to SCM. 

P.S. it’s a “simulated” PSM that sends the request to the “real” SCM.  

 

Test result: 

The predefined lumbar/bolster/motor positions are stored in memory no #1 and adjusted accordingly on 

physical Seat Comfort Module. Bolsters are adjusted to predefined pressure and the pressure change is 

observable.  
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TEST-CASE3, EmgyStop 

Expected result: back bolster adjustment shall stop immediately after emergency stop  

Test steps:  
1- Start CANoe, CAN/LIN 

2- Usage mode => active 

3 Emergency stop signal on CANoe panel is set as true.  

4 its shall freeze the bolster on physical SCM  

5 as long as the Emergency stop signal is true, the bolster shall not activate.  

 
 

Test description: 

Emergency stop function is to prevent sending the double commands to a single motor. When higher 

priority command has sent to either PSM or SCM the current movement shall be stopped immediately  

 

Test result : 

After PSM sends the position command signals to SCM, all the back bolster movement on physical 

SCM is immediately frozen. After the emgstop signal changes value to dative the previous bolster 

movement continue to reach the requested pressure.  

 

 

 

TEST-CASE4, TEST-CASE5.Easy Ingress:  In-out-easy signal 

Expected result: Back bolster pressure shall change to zero in order to make easy entrance for user 

Test steps:  
1- Start CANoe, CAN/LIN 

2- Usage mode => active 

3- Power supply SCM 

4- Profile personalization signal is set between 1-13 

On Canoe panel : Memseatcntrl=1-3 -> use personal setting (door 

switches memory bank 1-3 ) 

5- On CANoe panel Seatbackposnstor=store (Boolean signal) to show is 

we want to write or read (in out easy = false). 

 

6- on CANoe panel : set in-out-easy button = true 

7- SCM releases all the air from bolster and air cells.  

 
 

Test description: 

Door opening status signal shall sent to PSM by CANoe panel, after receiving this signal PSM and 

SCM shall reaches the minimum position/pressure so the driver can get in the car comfortingly .  

 

Test result: 

Easy entry signal is chosen to positive in the panel.  

Simulated PSM has modified its position to minimum value of the motion range and also physical 

SCM has deflated its bolster to minimize the pressure.  
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7. Conclusion 

 
Verification of a LIN slaves using the simulated master node is a good solution, as physical verification 

method using both master and slave node is impossible to perform because of unavailability of physical 

master node.  

The proposed solution is a good alternative in case: 

1. Master nodes is not physically available  

2. The logical solution for master node is available since the beginning of development phase and just 

after the concept phase. 

The suggested solution gives independence to start verification and not waiting for the master node to reach 

the same SW maturity level as slave node. Using the test feedback in earlier development phase, system 

constructors can modify the design to build a reliable system. In reality, simulated module can present part 

of systematic problems and mismatches between functionalities of master and slave node using physical 

nodes. Not all systematic and function issues can be simulated through CANoe environment.  

Simulation based verification is helpful to find functional problems when either of nodes is not present to 

build a physical test setup. Fault cases such as switch stuck, cable problems, overheating and anti-trap 

system (anti pinch) failures and all mechanical limitations can only be analyzed using physical hardware. 

Tunings on motor range of motion need calibration of whole system in presence of the physical actuators. 

Simulation based verification cannot be the only testing strategy and shall ideally be the backup plan. It 

shall start on the initial phases of development. Feedbacks from simulation based verification shall be used 

to correct the system design as early as possible in order to avoid drastic expenses on second wing of V-

shape development strategy.  
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8. Future research 

 
As discussed in previous section, it would be interesting to further analyse the overheating effect, and to 

study how the anti-trap system failure could affect the system functionality as a whole, when using the 

simulated master node and physical slave.  

As it described on verification section, latencies between the expected manoeuvring time and the physical 

manoeuvring time result in further malfunction of the whole system and can lead to hardware damage. The 

question is that if approximate operation period using the measure component parameters can get 

simultaneously corrected, and get adjusted automatically? 

 

This thesis is focused entirely on shortening the verification time when slave node can’t get verified as a 

stand-alone unit. It would be interesting to see how both simulated components can verify the physical 

system and even how to minimize the simulation time. Since the time to complete the Simulink model can 

even exceed the development time of physical hardware.  
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