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ABSTRACT 
Intuitive control based on myoelectric pattern recognition (MPR) can be used 
in clinical applications such as prosthetic limbs and Phantom Limb Pain 
treatment. Electromyography (EMG) patterns representing limb movements 
are learned by a pattern recognition algorithm to enable classification of future 
EMG observations. These EMG patterns are commonly constituted by 
descriptive features extracted from raw EMG. The complexity of the 
classification task is highly influenced by both the selection of such features and 
the differentiation between movements in the raw EMG. A reliable estimation 
of classification complexity would facilitate selection of features and 
elimination of detrimental EMG patterns. Two such algorithms, Separability 
Index and Nearest Neighbor Separability, were found to be highly correlated 
with classification accuracy and enable efficient feature selection for three 
classifiers commonly used for MPR (Linear Discriminant Analysis, Multi-Layer 
Perception and Support Vector Machine). 
The algorithms were implemented in the data analysis and feature selection 
modules of BioPatRec, an open source tool developed at Chalmers University 
of Technology for development and benchmarking of algorithms in MPR. The 
implementation included dedicated graphical user interfaces to ease 
visualization. This thesis deepens the understanding of the complexity of MPR 
and provides tools for prediction of classification performance and analysis of 
MPR applications. 
Key words:  Classification Complexity, Myoelectric Pattern Recognition, 
Electromyography, Feature Selection, Feature Space  
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1 Introduction 
Afflictions caused by amputation, such as function loss and Phantom Limb 
Pain (PLP), instantly decrease the quality of life, and many everyday tasks that 
use to come naturally become demanding challenges. Function loss is most 
commonly treated with prosthetic limbs, while PLP treatment is based on 
medication and rehabilitation [1]. Prostheses has historically been mechanical 
and passive, but in recent decades electrically controlled and powered 
prostheses are available [2]. Complex control algorithms using machine 
learning for motor volition decoding had been extensively studied [3] and 
shown to be useful for both prosthetic control and in PLP treatment [4]. This 
thesis aims to study the complexity of motor volition decoding. 

1.1 Context and Motivation 
Machine learning for motor volition decoding uses Pattern Recognition 
Algorithms (PRAs), or classifiers, that are fed with data constituted by input 
signals and corresponding expected outputs. The algorithms learn to recognize 
patterns in the data and response to the inputs according to the expected 
outputs.  
A classifier can, after a successful learning (or training) process, be used for 
reliable classification of inputs earlier unseen by the algorithm. Figure 1 shows 
a simple illustration of the learning process of a PRA. 

 
Figure	1:	Simple	illustration	of	the	learning	process	of	a	Pattern	Recognition	Algorithm	

Training data for Myoelectric Pattern Recognition (MPR) are electromyography 
(EMG) recordings representing limb movements [5]–[7]. The adequacy for 
classifier learning of such training data is influenced by factors that are 
irreversible, such as lost muscle tissue, but also factors possible to eliminate, 
e.g. dry skin. Both kinds influence the complexity of the pattern recognition 
task. 
PRAs are rarely designed for raw EMG. Instead they are fed with descriptive 
features extracted from raw EMG with the aim to reduce redundant 
information, while maintaining useful information. Such features are 
differently efficient, and the selection of features highly influence the 
complexity of the pattern recognition.  



CHALMERS, Biomedical Engineering, Master’s Thesis EX078/2016 2 

MPR has been extensively studied, but few studies has been done on its 
complexity, i.e. the level of influence on the classification performance caused 
by limiting factors in the application that makes the patterns less separable. A 
reliable estimation of the classification complexity could contribute to both 
feature selection and elimination of detrimental influence of EMG.  

1.2 Scope and Contribution 
This study aimed to find Classification Complexity Estimating Algorithms 
(CCEAs) that provide information on MPR complexity enabling reliable 
estimations of classification performance. The CCEAs found to be reliable and 
computationally sufficient were implemented as part of data analysis and 
feature selection in BioPatRec, an open source tool developed at Chalmers 
University of Technology for development and benchmarking of algorithms in 
MPR. 
This thesis work resulted in two papers, one conference paper that was 
accepted for publication and one journal paper still being processed. 
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2 Background 
This chapter describes machine learning as a control strategy for treatment of 
amputees. The first section is a short literature review on the history of 
prosthesis control. The acquisition of EMG and its attributes are described in 
section 2.2. Section 2.3 explains the extraction of features and the resulting 
feature space. Finally, in section 2.4 the concept of machine learning and a 
number of classifiers commonly used for MPR are described in more detail. 

2.1 Prosthesis control 
The history of prosthetic devices goes back to 2100 B.C. [8] and the technology 
has gradually developed ever since. However, the use of myoelectric prosthesis 
control, which is now extensively studied [9], was first documented in the 
beginning of the 1940’s [10]. A simple and commonly used implementation of 
myoelectric control is the so called on/off control [9]. An EMG amplitude 
threshold distinguishes between muscle contraction and surrounding noise. 
An excess of the threshold indicated the start of a contraction and the exceeding 
EMG amplitude is used for dynamic control. A common setup has two EMG 
channels recording opposing muscle groups (e.g. flexor and extendor) for 
control of one degree of freedom (e.g. open and close hand) as illustrated in 
Figure 2 inset A. There are controls that additionally use contraction sequences 
and co-contraction to change between state of the control to enable more 
degrees of freedom, e.g. going from open and close hand to thumb and index 
finger pinch control. The robustness of the on/off strategy has made it the state 
of the art in myoelectric prosthesis control today. Even though the on/off 
control can be considered a simple form of MPR, it is limited compared to more 
sophisticated MPR algorithms that classifies the input based on patterns built 
up by all channels combined.  
Such algorithms enables seamless transition between the aforementioned states 
and even supports mixed prediction of simultaneous movement [11]. A simple 
illustration of myoelectric classification applied to forearm movements is 
shown in Figure 2 inset B. 
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Figure	2:	Inset	A	illustrates	a	on/off	control	strategy	for	prostheses.	The	doted	line	is	the	threshold	for	start	of	
control	and	the	marked	area	shows	the	level	of	contraction	used	for	dynamic	control.	Inset	B	illustrates	the	
structure	of	a	myoelectric	classification	application.	

MPR can be divided into three parts; EMG acquisition, Feature Extraction and 
Pattern Recognition. The three parts are described in more detail in section 2.2-
4. In order to achieve natural control there is need of an additional part deciding 
how to act on the predicted motor volition. This part is not trivial, but outside 
the scope of this thesis.  

2.2 Electromyography acquisition 
EMG is considered to be a key component in natural control of prosthetic 
devices [3], but is also used within management and rehabilitation of motor 
disability among other things [12]. EMG measures the biopotential that 
activates muscle contraction. Figure 3 shows four EMG channels recorded on 
the forearm using surface electrodes, while the subject is closing and relaxing 
the hand repeatedly. 
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Figure	3:	Four	EMG	channels	recorded	with	surfaces	electrodes	on	a	for	arm	while	the	subject	was	closing	and	
relaxing	the	hand	repeatedly.	

An acquired EMG signal is always contaminated. Ambient noise from 
surrounding power lines, motion artifacts from the interface at the skin, and 
EMG from unrelated muscle tissue close to the target muscle area are examples 
of unwanted components of the acquired signal. A more complete summary of 
contaminating factors was given by Raez et al. [12]. 
EMG is acquired through an electrode interface transforming the biopotential 
from the muscle contraction to electrical signal [13]. Surface electrodes 
constitute the most commonly  used electrodes for MPR because of its non-
invasiveness. It creates the interface at the skin and generates EMG with a 
frequency range between 0-500 Hz and an amplitude of 10 mV (-5 to +5) [14]. 
Surface electrodes are usually used in a bipolar configuration with 10-20 mm 
apart and placed along the target muscle fibers to detect its biopotential 
gradient [15]. An alternative to surface electrodes are implanted electrodes that 
creates the same interface but on the surface of the muscle tissue or inside the 
muscle fiber [16]. Implanted electrodes was shown by Ortiz-Catalan et al. to 
improve MPR compared to surface electrode [17].  
A bipolar electrode configuration is naturally used in combination with a 
differential amplifier. Differential amplifiers are consequently a common 
amplifier configuration for EMG acquisition [15]. A high-quality amplifier for 
EMG have adjustable amplification between 100 and 10,000 to handle the 
variance in EMG amplitude. 
Before used in any specific application, EMG is typically filtered with high- and 
low-pass filters with cut-off frequencies of 10-20 Hz and 400-450 Hz 
respectively [15]. High-pass filters to avoid motion artifacts and low-pass filters 
to remove high frequency noise not being components of the EMG.  
The signal is finally digitized with an Analog to Digital Converter (ADC). A 
sampling frequency of 2 kHz is considered a sufficient sampling rate for most 
related applications. The complete acquisition setup is illustrated in Figure 4. 
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Figure	4:	Electromyography	aquacition	including	the	electrode	interface,	amplification,	filtering	and	analog	to	
digital	conversion.	

2.3 Feature Extraction, Feature Space and Feature 
Selection 

The use of raw EMG for MPR applications is rare and can be considered an 
exception, even though it has been done [18]. As briefly explained in the 
introduction, the general method is to extract features from time windows of 
EMG to reduce redundant information, while maintaining the useful 
information in the signal. The features can be statistical descriptors such as 
variance or other signal attributes e.g. the number of zero crossings or the 
waveform length [19]. The length of the time windows changes the 
performance of the MPR implementation. Long windows leads to more stable 
feature extraction, i.e. lower feature variance, but will increase the response 
delay of the MPR, which will ultimately affect the control performance [3]. 
Time windows can be extracted with or without overlap as illustrated in Figure 
5.  

 
Figure	5:	Time	windows	extracted	from	electromyography	with	and	without	overlap.	

The aforementioned features are usually used for all EMG channels, making 
the number of features for one time window the number of channels times the 
number of features. See Figure 6 
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Figure	6:	Feature	vectors	constructed	by	features	extracted	from	three	time	windows	(W1-3)	in	a	two	channel	
electromyography	recording.	

Features extracted from all the time window constitutes the distribution of the 
recording in feature space. One point in feature space is a representation of a 
time window with coordinates according to the features vector. Figure 7 inset 
A shows one point in a two dimensional feature space, while inset B shows how 
training data forms clusters representing different recorded movements. These 
clusters are the patterns which the classifier learns so that future observations 
can be classified and labeled correctly.  

 
Figure	7:	Feature	vectors	extracted	from	time	windows	of	a	two	channel	electromyography	recording	using	the	
feature	cardinality	[20].	The	feature	vectors	are	illustrated	as	points	in	the	feature	space	corresponding	to	the	
feature	vector	structure.	Inset	A	show	one	such	feature	vector,	while	Inset	B	shows	clusters	of	feature	vectors	
representing	10	movements	differentiated	by	color	and	marker.	

Figure 7 inset B shows how clusters representing 10 movements are distributed 
when using the feature “cardinality” [20]. Comparing Figure 7 inset B with 
Figure 8, where “slope sign change” was used instead of “cardinality”, 
emphasizes the importance of carefully considered feature selection.  
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 A commonly used feature set is 
the so called Hudgins set, first 
introduced by Hudgins et. al. 
based on there high performance 
in extensive experiments [21]. 
Similar studies of features general 
performance have suggested other 
sets of features [19], [20], [22], [23], 
while other studies focus on 
algorithms automatically selecting 
features based on the data 
acquired for classifier training 
[24]–[27]. Such feature selecting 
algorithms evaluates the data on 
its separation and redundancy.  
The separabillity of data is 
determined by the conflicts 
between the classes in feature 
space, while redundancy points 
out the amount of repeated 
information in the data. E.g. two 
instances in a set of features that 

are highly correlated. These attributes of the data are highly influencing the 
complexity of the classification, making the algorithms used for feature 
selection highly relevant to this thesis work. Such algorithms are described in 
more detail and are used for classification complexity estimation in the 
appended papers. 
 

2.4 Classification and Pattern Recognition Algorithms 
MPR is a part of the supervised machine learning family. Supervised machine 
learning can be further divided into classification and regression. Classification 
aims to correctly label a given input, e.g. tell if an image contains a dog or a 
horse, while regression responds with a continuous output, e.g. the resulting 
torque output from an engine model [28]. Even though some classifiers used 
for MPR gives a continuous output corresponding to the probability that the 
input is representing a specific class, the aim is to provide the class label, which 
makes MPR a classification task.  
Classifiers are evaluated on their ability to correctly label observations as the 
class that they originate from, but also on attributes more related to control 
performance, such as response time. Offline tests, where the classifiers are used 
on pre-recorded data, clearly reveals the former performance attributes, while 
real-time tests, e.g. the Motion Test introduced by Kuiken et al. where 
classification is done as data is acquired [29], reveals a more over-all 
performance of the classifier. Classification accuracy is a commonly used 
measurement of classifier performance and is the ratio between correctly 
classified observations and the total number of observation. 
A wide range of classifiers have been used and evaluated for MPR [30]. The 
following sections describes and motivates the selection of the PRAs used in 
this thesis. 
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Figure	8:	Clusters	of	feature	vectors	representing	10	
movements	differentiated	by	color	and	marker.	The	feature	
vectors	were	extracted	from	time	windows	of	a	two	channel	
electromyography	recording	using	the	feature	“slope	sign	
change”.	The	feature	vectors	are	illustrated	as	points	in	the	
feature	space	corresponding	to	the	feature	vector	structure.	
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2.4.1 Linear Discriminant Analysis 
Linear Discriminant Analysis (LDA) was selected to be used in this thesis 
because of its simplicity, robustness [31] and because it has been extensively 
used in studies of MPR [3], [11], [19], [20], [31]. LDA is special case of Fisher 
Discriminant Analysis, which is a measurement of separation in class labeled 
data defined as the ratio between the class variance, i.e. variance of the class 
means, and the within class variance [32]. LDA however, is simplified by the 
assumption of normality and common within class variance, i.e. ∑" 	= 	∑% 	=
	… 	= ∑' 	= 	∑	where ∑' is the covariance of class c and c is the number of classes 
in the classification task. 
When LDA is used for classification the resulting classifier is built up by 
statistical models of the classes derived under the aforementioned assumption 
of LDA, i.e. normal distribution models according to ('~* +,, ∑  for c = 1, 
2,…,C were C is the number of movements, +, is a vector of mean values for all 
dimensions of the feature space.  [33]. The models are illustrated together with 
the corresponding clusters in Figure 9. 

 
Figure	9:	The	clusters	of	Figure	7	representing	10	movements	plotted	together	with	the	models	used	by	LDA	to	
classify	new	observations.	The	models	are	presented	as	ellipsoids	blotted	around	the	center	of	the	clusters	
(mean	values	for	the	two	dimensions)	and	constructed	according	to	the	assumed	common	covariance.	

A new observation is classified based on the models, but the exact use differs 
between implementations. A common way is by so called discriminant 
functions, which describes decision boundaries derived from the models [34], 
Figure 10 illustrates a classification problem with movement 1, 3 and 6 from 
Figure 9 including the decision boundaries and the resulting decision regions. 
A new observation is classified according to the decision region in which is it 
occurs.  
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Figure	10:	A	classification	problem	with	movement	1,	3	and	6	from	Figure	9.	The	movements	are	represented	
by	the	original	data	cluster,	the	model	of	the	data	and	the	decision	region.	A	new	observation	is	classified	
according	to	the	region	in	which	it	occurs.	

2.4.2 Support vector machine 
Support vector machine (SVM) was selected for this thesis because of the 
general interest in the algorithm within and outside of the MPR field. SVM is 
based on decision boundaries similar to those derived using LDA described in 
the previous section. SVM however, uses a different approach.  
First of SVM is based on so called kernel functions. The basic idea behind kernel 
functions is to map an original feature space, where clusters of training data are 
not linearly separable, into one were they are. Figure 11 illustrates the 
transformation of a two dimensional feature space using a mapping function 
Φ ·  [34].  

 
Figure	11:	Illustration	of	the	idea	behind	kernel	functions.	The	original	space	to	the	left	is	transformed	by	the	
function	0(·)	to	the	kernel	space	to	the	right	with	the	aim	to	enable	linear	separation.	

A simple mapping function Φ 1 = 	1, where 1 is a feature vector from the 
training data, is introduced for explanatory reasons. The corresponding kernel 
function, called the linear kernel, is defined as  
23 1, 1

4 = 	Φ 1 5Φ 14 = 1514 
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where 1′ is an interacting vector with the size of 1. Note that the linear kernel 
does not transform the original feature space [34]. 
For algorithms where the input vector 1 is only used in a scalar product, as for 
the linear kernel function, that scalar product can be replaced with some other 
choice of kernel function with the aim to increase the class separability. SVM is 
such an algorithm. Other examples of kernel functions are 

- Polynomial	kernel,	28 1, 14 = (1:1′)< 		
- Radial	basis	function	kernel,	2= 1, 14 = >?@(− 1 − 1′ )%/2D%	

SVM is, in its original form, a two-way 
classifier, i.e. classifies inputs as one out of 
two classes. Regardless the selection of 
kernel function, SVM classifies new 
observations using so called support 
vectors. A decision boundary is chosen to 
maximize the margin to the closest data 
points of both classes, see Figure 12.  
These points are saved to be used as 
support vectors. The decision boundary is 
not needed for classification as new 

observations are evaluated on there relation to the support vectors in the 
transformed feature space [34]. 
When SVM is used for classification of 
multiple classes, the decision is commonly 

based on a majority voting of multiple classifiers. Either one for ever pair of 
classes or one for every class, where a target class is compared with a class 
representing all other classes.  
2.4.3 Multi-Layer Perceptron 
Multi-Layer Perceptron (MLP) was shown to yield high classification accuracy 
in a number of studies of MPR [4], [11], [20], [31], [35], and is therefor a natural 
PRA for this thesis. 
MLP is a common implementation of a so called artificial neural network, that 
originates from an attempt at describing the data processing of biological 
system. The concept is a network built up by units representing the neurons in 
a biological neural network. The units are connected to receives and provide 
information. A MLP network consists of layers of units were all units of one 
layer is connected to receive input from all units in the previous layer. This 
results in a directional flow of information, making MLP a feed-forward neural 
network [34]. There are three subgroups of layers; the input layer, providing 
the network with initial input; hidden layers, where the inputs are processed; 
and output layer, were the interpretation of the input is provided. Figure 13 
inset A illustrates a network with one hidden layer. The functionality of one 
unit is illustrated in Figure 13 inset B, where the inputs are received from either 
the input layer or a previous hidden layer. The sum of the weighted inputs is 
fed to an activation function, which vary depending on the desired attribute of 
the network.  

Figure	12:	A	decision	boundary	that	maximizes	
the	margin	to	the	closest	data	point	of	both	
classes.	
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Figure	13:	Inset	A	illustrates	a	feed-forward	neural	network	with	four	inputs,	one	hidden	layer	with	six	units	
and	4	outputs.	Inset	B	explains	the	structure	of	one	unit	of	a	feed-forward	neural	network.	

The following equation describes the computation of the output of unit k. 

EF = ℎ ?HIH

J

HKL

 

where ?H is the output of the M:th unit of the previous layer, IH is the weight for 
the corresponding input, N is the number of units in the previous layer and ℎ ∙  
is the activation function. Note that M starts at 0. Adding an input ?L = 1 enables 
the activation function to operate around a fixed value, usually 0 and can 
consequently be equal for all units.  

Examples of activation functions are illustrated 
in Figure 14.  
An MLP network is trained by applying 
something called Error Backpropagation. An 
error function, providing the error in the actual 
output with respect to the expected output of 
the network, is used to derive the gradient of 
the error as a function of the weights. The 
weights are adapted in the direction of the 
gradient to ultimately decrease the error. The 
process is repeated for all the training data and 
until the error reaches a desired level. 
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Figure	14:	Plot	of	three	activation	function	
for	Multi-Layer	Perception	networks,	
namely	logistic	sigmoid	function,	Tanh	
[34]	and	rectifier	function	[38].	
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3 Implemention in BioPatRec 
BioPatRec is a modular software tool for benchmarking and development of 
algorithms within the MPR field that was made freely available online [7], [36]. 
It includes all steps needed from EMG acquisition for PRA training to control 
of a virtual arm and is structured as shown in Figure 15.  

 
Figure	15:	The	modular	structure	of	BioPatRec	.	The	modules	are	connected	through	data	arraws,	which	can	be	
saved	and	loaded	between	the	different	modules.	

Three CCEAs that were found relevant for MPR through the experiments of 
Paper II were implemented in BioPatRec as part of introduced data analysis 
and feature selection modules. The three CCEAs were the following; 
Separability Index based on Modified Mahalanobis and Bhattacharyyas Distance as 
well as Nearest Neighbor Separability. These three algorithms will be referred to 
as the usefull algorithms in the continuation of this section. [37] 

3.1 Data Analysis 
The aim for the data analysis module is to visualize the complexity yielded by 
an EMG recording acquired for PRA training and predict the resulting offline 
classification accuracy. It receives a recSession, which includes the recorded 
EMG, and can be used to edit the recSession for better separation, hence it is a 
part of the Signal Recordings module, see Figure 15 [7]. A more detailed 
description with references to the screen shot of the graphical used interface 
(GUI) in Figure 16 follows bellow. 

 
Figure	16:	A	screenshot	of	the	data	analysis	tool	of	BioPatRec.	Showing	a	recording	of	a	hand	performing	10	
movement	plus	rest.	
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3.1.1 Analysis Setting 
This part allows the user to select the algorithm for classification complexity 
estimation in the pop-up menu under “Methods”. The algorithms available are 
the three usefull algorithms. A prediction of offline classification accuracy is 
presented in the small predictions plot in the lower part of the section. The 
predicted result is for the classifier selected in the pop-up menu under 
“Classifier”. LDA used in single classifier and “One-Vs-One” topologies are 
together with MLP used in a “All-Movements-as-Individual” configuration 
available for selection. For more details on the topologies and configurations, 
se appended Paper II. The red line represents the predicted accuracy as a 
function of the Classification Complexity Estimate (CCE) of the selected useful 
algorithm. The function was derived from data collected during the experiment 
of the appended papers. The collected data is plotted as grey dots in the 
prediction plot. A desired offline accuracy limit is selected by the user, under 
“Accuracy limit”, and plotted together with the corresponding CCE limit in the 
prediction plot as “— · —“ lines. The CCE for the movement selected in the 
“Distances” section is plotted as a clear red “— —“ line. The content of the 
prediction plot is copied to a separate window with explanatory legends by 
mouse control. 1 
3.1.2 Distances 
The “Distances” section illustrates the classification complexity for each 
movement by plotting the training data for the movement considered and for 
its most conflicting neighbor in the different instances of the plot matrix. The 
two dimensions are selected as the most separating of the two movement. The 
separation evaluation and the selection of most conflicting neighbor are both 
done by the selected usefull algorithm. A selection of an instance in the plot 
matrix is done by mouse control and copies the content of the selected plot to 
the larger window next of the matrix, allowing closer analysis with explanatory 
legends. The CCE of the movement corresponding to the selected instance is 
shown in the legend as well as in the prediction plot of the ”Analysis Setting” 
section. Instances resulting in a offline accuracy prediction lower than the limit 
selected in the “Analysis Setting” section are highlighted with red color. 
3.1.3 Feature Extraction Settings 
This section controls the extraction of features from the recorded EMG. The 
features and channels to be used are selected in the two listboxes. The pop-up 
menu under “freq. filter” allows selection of frequency based filter to be used 
and the “WDF” checkbox activates a wavelet denoising filter. The filters are 
adapted from the Feature Extraction module of BioPatRec [7]. Contraction time 
percentage [7] is selected in the pop-up menu under “cTp”. The button “Extract 
Features” activates a feature extraction according to the settings followed by an 
analysis according to the settings in “Analysis Settings”. 
3.1.4 Movement Conflict 
The table in the “Movement Conflict” section shows the number of times the 
movements are selected as the most conflicting neighbor to emphasize how 
detrimental the movements are to the classification task. It also contains all 
CCEs.  
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3.1.5 Edit Recording 
This section lists the movements found in the recSession and allows the user to 
edit it and save a new more separable version. Pressing the “Delete” or 
“Replace” button removes or initializes the replacement of the movements 
selected in the listbox. The replacement of movements is done by a repeated 
recording of the selected movements and is only allowed if the analysis tool is 
started from the recording session (Signal Recording in Figure 15). If movement 
have been deleted from the list, the classification task constituted by the new 
set of movement can be analyzed by simple clicking the “Extract Feature” 
button in the feature extraction section. The list is restored to the original set of 
movements by use of the “Undo” button. The “Save” button saves the edited 
version of the recSession in a new file. 

3.2 Feature selection 
The selection of features in BioPatRec is access by the Pattern Recognition 
module in Figure 15 [7]. The original methods are manual selection or selection 
of predefined sets of 2, 3 or 4 features commonly used for MPR. The method 

contributed by this thesis is an 
automatic selection made based on 
the training data and the selected 
useful algorithm. An additional GUI 
appears when the automatic feature 
selection is activated from the Pattern 
Recognition module, see Figure 17. 

A feature selecting algorithm is selected in the pop-up menus under “Selecting 
Algorithm”. The available algorithms are the brute-force search used for the 
appended Paper II and a sequential selection adding the most contributing 
feature repeatedly till the desired number of features are selected. The 
evaluations of the feature sets are done by the useful algorithm selected under 
“Algorithm Setting”. If f is the numbers of features to select from and n is the 
desired number features in the feature set, the sequential selecting algorithm 
will run the selected useful algorithm Q ∗ S times. The brute-force search 
however, will evaluate every combination of n features, resulting in T!

V! TWV !
 

computations. That leads to 85 and 6188 computations for the sequential and 
brute-force selection algorithm respectively, given that Q = 17 and S = 5. A 
comparison of sequential and the brute-force selection is shown in Figure 18. 
The sequential selection of features is, compared to brute-force selection, little 
detrimental for Nearest Neighbor Separability and Separability index used with 
Modified Mahalanobis actually benefit from it. Considering the significantly 
reduced computation complexity and the results presented in Figure 18, the 
sequential selecting algorithm should be the preferred selecting algorithm of 
the two.  
  

Figure	 17:	 Graphical	 User	 Interface	 for	 automatic	
feature	 selection	 in	 the	Patter	Recognition	module	 of	
BioPatRec.	
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Figure	18:	Yielded	offline	classification	accuracy	for	brute-force	search	(BF)	and	sequential	selection	(Seq)	of	
features	sets.	The	markers	are	plotted	at	the	means	and	the	bars	represent	the	standard	error.	The	results	are	
computed	using	the	data	referred	to	as	IM	data	in	the	appended	Paper	II.	
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4 Summary of Papers 
4.1 Paper I - Estimates of Classification Complexity for 

Myoelectric Pattern Recognition 
N. Nilsson and M. Ortiz-Catalan, "Estimates of Classification Complexity for 

Myoelectric Pattern Recognition," Pattern Recognition (ICPR), 2016 23nd 
International Conference on, Cancun, 2016 

In Paper I, different Classification Complexity Estimating Algorithms (CCEAs) 
were evaluated based on there correlation with classification accuracy using a 
number of commonly used classifiers for prosthesis control based on 
myoelectric pattern recognition (MPR). Two algorithms, namely Separability 
Index and Nearest Neighbor Separability, were found to yield high correlation 
and were further evaluated on the performance of feature sets selected based 
on the outcome of the algorithms.  
The data set used in the experiments was limited to individual movements, i.e. 
the execution of one movement at the time, and the results presented were 
exclusively from offline tests.  
Paper I contributes by deepening the understanding of the complexity of offline 
MPR of individual movements (classes). 

4.2 Paper II - Electromyography Data Analysis for 
Myoelectric Pattern Recognition 

N. Nilsson and M. Ortiz-Catalan, "Electromyography Data Analysis for 
Myoelectric Pattern Recognition," In manuscript 

Paper II continues the evaluation of the algorithms found useful in paper I. An 
additional data set including simultaneous movement, e.g flexing and closing 
a hand simultaneously, was introduced together with two additional CCEAs. 
The additional algorithms, Purity and Repeatability Index, were found 
insufficient compare to the previously evaluated algorithms. 
Paper II also deepened the analysis of the algorithms by further evaluating their 
different settings and attributes. The CCEAs dependency on correlation 
between features/channels and on the dimensionality of the classification task 
was in that way revealed.  
In addition to offline tests done in Paper I, Paper II also evaluated the CCEAs 
relevance for real-time performance prediction. 
Paper II further deepens the understanding of the complexity of MPR and 
provides tools to analyze MPR applications. 
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Abstract—Myoelectric pattern recognition (MPR) can be used

for intuitive control of virtual and robotic effectors in clinical ap-

plications such as prosthetic limbs and the treatment of phantom

limb pain. The conventional approach is to feed classifiers with

descriptive electromyographic (EMG) features that represent the

aimed movements. The complexity and consequently classification

accuracy of MPR is highly affected by the separability of such fea-

tures. In this study, classification complexity estimating algorithms

were investigated as a potential tool to estimate MPR performance.

An early prediction of MPR accuracy could inform the user

of faulty data acquisition, as well as suggest the repetition or

elimination of detrimental movements in the repository of classes.

Two such algorithms, Nearest Neighbor Separability (NNS) and

Separability Index (SI), were found to be highly correlated with

classification accuracy in three commonly used classifiers for

MPR (Linear Discriminant Analysis, Multi-Layer Perceptron,

and Support Vector Machine). These Classification Complexity

Estimating Algorithms (CCEAs) were implemented in the open

source software BioPatRec and are available freely online. This

work deepens the understanding of the complexity of MPR for

the prediction of motor volition.

I. INTRODUCTION

Myoelectric Pattern Recognition (MPR) has been shown to
have great potential as part of the control strategy for a number
of clinical applications, such as upper-limb prostheses control
[1], phantom limb pain treatment [2] and rehabilitation after
stroke [3]. Electromyography (EMG) is commonly acquired
using surface electrodes (SEs) that are sensitive to changes
in environmental conditions and motion artifacts [4], which
makes frequent calibration or training of the applied pattern
recognition algorithm (PRA) necessary. In order to acquire the
data needed for such calibration or training, EMG is recorded
while the patient performs muscle contractions relevant to
the desired movements. Such recordings might be affected
by errors due to the surface electrodes instability but also by
human factors.
Reaz et al. suggested the analysis of important EMG attributes,
such as the signal to noise ratio, in order to enable high
MPR accuracy [5]. However, analyzing data based on these

attributes requires experience and time. The literature on auto-
mated data analysis methods is limited despite the well-known
consequences of using low quality recordings.
Apart from a few exceptions most studies on MPR use features
that are extracted from raw EMG [6]. PRAs classification
accuracy is highly dependent on the feature sets used as input,
and therefore studies have been conducted on the performance
of a variety of EMG features, as well as on the selection of
such features [7], [8]. Liu et al. applied two feature selecting
algorithms, Minimum Redundancy and Maximum Relevance
(mRMR) and Markov Random Fields (MRF), to an electrode
array setup [9]. The Kullback-Leibler Divergence was used
in mRMR to rate relevance and redundancy of features and
channels, which were ranked and selected into sets according
to these ratings [10]. MRF was employed similarly to mRMR,
but the features and channels were rated based on inter and
intra class scatters, as well as total data scatter [11]. Bunderson
et al. defined three data quality indices, namely Repeatability
Index (RI), Mean Semi-principal Axis (MSA) and Separability
Index (SI). These indices were used to rate the subjects ability
to increase data quality when EMG was recorded repeatedly
over several days [12]. Even though none of the studies above
aimed to estimate classification complexity, they suggested
useful ways to draw information from EMG when predicting
classification accuracy.
Studies on Classification Complexity Estimates (CCEs) are
more common outside the MPR field. Two nonparametric
multiresolution complexity measures, Nearest Neighbor Sepa-
rability (NNS) and Purity, were defined by Singh in 2003 [13].
These CCEs showed promising results but were not evaluated
using EMG. Singh compared his results with a number of
statistical similarity measures which were also potentially ade-
quate CCEs. Among them were Kullback-Leibler Divergence,
Bhattacharyya distance [14] and Mahalanobis distance [15]. In
the present study these algorithms were used to describe the
complexity of MPR to decode motor volition.
The aforementioned Classification Complexity Estimating Al-



gorithms (CCEAs) were implemented in BioPatRec, which is
an open source tool for the development and benchmarking
of algorithms for advanced bioelectric control [16]. BioPatRec
enables recording, preprocessing, feature extraction, pattern
recognition and real-time control of artificial limbs using
bioelectric signals. In the work presented here we evaluated
the outcome of CCEAs and compared it with the accuracy
of a number of classifiers. The resulted correlations provided
evidence of CCEAs suitability to inform on MPR complexity.
All code and data used in this study is available online [17].

II. METHODS

A. Data Set

The data set used in this study is included in the BioPa-
tRec data repository and is available online [17]. EMG was
recorded in 20 subjects who performed 11 movements (Hand
open/close, wrist flexion/extension, pro/supination, side grip,
fine grip, agree or thumb up, pointer or index extension and
rest) [16]. Disposable Ag/AgCl electrodes (↵ = 1 cm) were
place over the skin in bipolar configurations with 2 cm inter-
electrode distance. The first channel was placed along the
extensor carpi ulnaris mucle, and the rest (three) were equally
spread around the most proximal third of the forearm. The
more proximal electrode of every bi-pole was connected to the
positive terminal of the amplifier.

B. Recording and Pre-Processing

The subjects were requested to perform each movement 3
times and rest in between. The movement was held during 3
seconds (contraction time) and the resting time was 3 seconds.
To avoid inactivity periods being considered as movement
related information due to delay between request and reaction,
only 70 % of the contraction time was used. This percentage of
the contraction time has been found to exclude inactive periods
while keeping the dynamic portion of the contraction [16].
Sliding time windows of 200 ms with a 50 ms increment were
used to extract a variety of signal features. The feature vectors
were randomly distributed into sets for training (40%), valida-
tion (20%) and testing (40%) before training the classifiers. No
data from the testing set was used during training and validation
of the classifier.

C. Classification Complexity Estimating Algorithms

The CCEAs were designed to accept different numbers of
channels and features, which allows for the estimation of
classification complexity for individual and sets of features.

1) Separability Index: Separability Index (SI) for one class
is defined as half the Mahalanobis distances (in features space)
between the class and the center (mean of all dimensions) of
its nearest class [12]. The distance in a two dimensional feature
space is illustrated in Fig. 1 A.

The SI for a complete data set is computed by the average
over all classes. See equation 1.

Fig. 1. Inset A shows the distance between the center points (mean of both
dimensions) of two classes in a two dimensional feature space. The ellipses are
constructed to represent the covariance of the classes. When the Separability
Index is extracted, the distance is weighted by the covariance of the classes
being compared. The bigger the weighted distance, the more separable the
classes [12]. Inset B shows the six Nearest Neighbors for the target point
marked by the red circle. By evaluating the dominance of Nearest Neighbors
from the same class as the target point, an estimation of class separability can
be established using all points in a data set as targets. Higher dominance equals
higher separability [13].
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Where c is the number of classes, µi and µj are vectors of
mean values, one for every dimension, and Si is the covariance
matrix of for the class i.
However, the Mahalanobis distance does not take the variance
of the nearest class into account [15]. In order to investigate
if this was limiting the algorithm, a list of commonly used
statistical similarity measures was implemented as distance
definition for SI. Their names and equations for multivariate
normal distributions are listed below, starting with the original:

• Mahalanobis distance [15]
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• Kullback-Leibler Divergence [14]
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• Mahalanobis distance modified to take both covariance

matrices into account:

DMM =
q
(µ1 � µ2)TS�1(µ1 � µ2) (5)



By this definition SI is related to the overlap shown
in Fig. 1 A. Note the similarities with equation 3. The
first term is completely included while the second is
left out. The second term compares the shapes of the
distributions. This is relevant for similarity measures but
not for separability. E.g. if µ1 = µ2, the second term
could still give a high value but class separation would
be impossible. This distance definition will be referred to
as Modified Mahalanobis.

For all equations µ1 and µ2 are vectors of mean values, one
for every dimension, and

S =
S1 + S2

2
(6)

where S1 and S2 are covariance matrices. Subscript 1 and 2
labels the two classes being compared.

2) Nearest Neighbor Separability: Nearest Neighbor Sepa-
rability (NNS) measures how well the class of a data set is rep-
resented among their nearest neighbors (NNs) in feature space
[13]. Fig. 1 B show the six NNs of a target member in a two
dimensional feature space. Proportions of NNs from the same
class as the target were calculated. The contribution of each
NN was weighted differently depending on its proximity to the
target point by calculating the average of the aforementioned
proportions for all numbers of NNs 1,2,...,k, where k is the
number of NNs taken into account. Equation 7 shows this step
for the target member in Fig. 1 B.
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The final result was the average over all members. In the
original algorithm this was repeated for a set of different
resolutions [13]. In this study only the resolution 1 was used,
e.i. feature space was not divided into hyper cuboids.

D. Features

The following features were used in this study. In time
domain; mean absolute value (tmabs), standard deviation (tstd),
variance (tvar), waveform length (twl), RMS (trms), zero-
crossing (tzc), slope changes (diff) (tslpch), power (tpwr),
difference abs. mean (tdam), max fractal length (tmfl), fractal
dimension Higuchi (tfdh) fractal dimension (tfd), cardinality
(tcard) and rough entropy (tren). In frequency domain; wave-
form length (fwl), mean (fmn) and median (fmd).

E. Classifiers

The classifiers used in this study were LDA, Multi-Layer
Perceptron (MLP), Support Vector Machine (SVM)(quadratic),
and Regulatory Feedback Networks (RFN). These classifiers
were used as implemented in BioPatRec [16] (code available
online [17]), where LDA and SVM were implemented using
pre-defined functions in Matlab.

F. Evaluation and Comparison

The data set was used in two ways. First, CCEs using individ-
ual features were compared with the resulting accuracy using
only that feature. This served not only to obtain a wide range
of CCEs, but also to rate the features adequacy as classifier
inputs. Both accuracy and CCE were calculated for all classes
and all subjects. Results given by use of individual classes
are referred as individual results. Rating classes individually
provided a wide CCE range as well as information about the
EMG acquisition, i.e low separability for one class means high
influence of error in that class. Averages over all classes were
included in the result and referred as average results. Sets of
2-4 features were selected by ranking the results given by SI
(Modified Mahalanobis) and NNS (k = 20) for all possible
feature combinations including the feature with the highest
CCE from individual feature evaluations, further referred to
as best sets. Ortiz-Catalan proposed sets of 2-4 features found
to be highly performing by a genetic algorithm [7]. These sets
containing two and three features, and the Hudgins set, which
is four out of five features introduced by Hudgins in [18], were
used as benchmarking reference sets:

• Ref 2: tstd, trms [7]
• Ref 3: tstd, fwl, fmd [7]
• Ref 4: tmabs, twl, tslpch, tzc [18]

The best and reference sets of equal number of features were
compared using different classifiers. Statistical significance
was calculated with Wilcoxon signed-rank test (p <= 0.05).
Since there was no clear linearity in the dependencies between
accuracies and any CCEA, correlations were calculated using
Spearmans rho.

III. RESULTS

A. Separability Index

Correlations between SI and LDA accuracy when using the
different statistical similarity measures as distance definitions
are presented in Table I. Because the Modified Mahalanobis had
higher correlation, and a more cohesive distribution with less
outliers (see Fig. 2), it was selected as the distance definition
for SI in following experiments.

TABLE I
SEPARABILITY INDEX CORRELATION WITH ACCURACY

Individual Results Average Results
Bhattacharyyas 0.79 0.83
Kullback-Leibler 0.78 0.69
Mahalanobis 0.85 0.78
Mahalanobis Modified 0.85 0.93

Correlations, using Spearmans rho, between accuracy and SI when using
individual features classified by LDA. The statistical similarity measures
in column one are used as distance definitions. Under individual results,
correlations were calculated using values for every class while average over
classes were used under column three.

In Fig. 3 accuracies using different classifiers are plotted
against SI. All data corresponds to individual features. SVM
and RFN results are more scattered compared with LDA and
MLP results. They also have a considerable number of indi-
vidual results close to zero accuracy, which seem uncorrelated



with SI. The average results however, show high correlation
between SI and accuracy for all classifiers.

Fig. 2. Plots of accuracy against SI using individual features fed separately to
LDA. The statistical similarity measure given in the plot is used as distance
definitions. Accuracy and SI are average result over all classes.

Fig. 3. Plots of accuracy against SI using individual features fed separately
to the different classifiers. The top four show results that are average over all
classes while the bottom four show result for classes individually. Correlation
was calculated using Spearmans rho.

B. Nearest Neighbor Separability

The consequence of increasing the parameter k is that the
algorithm becomes more sensitive to overlapping classes but it
takes more iterations to compute. See how higher k increases
correlation with accuracy along with the relative computation
time in Table II. SI with Modified Mahalanobis uses 5.2 % of
the computation time used by NNS with k = 20.

Plots of NNS results for different classifiers are shown
in Fig. 4. Again individual results for SVM and RFN are

TABLE II
NEAREST NEIGHBOR SEPARABILITY CORRELATION WITH ACCURACY AND

COMPUTATION TIME

Individual Results Average Results Relative Time
k = 20 0.84 0.87 1
k = 40 0.86 0.88 1.37
k = 60 0.88 0.90 1.75
k = 80 0.89 0.91 2.14

Correlations, using Spearmans rho, between accuracy and NNS when using
individual features fed separately to LDA and the values of k in the first
column. Correlations under individual result are calculated using values for
every class while average result is used for column three. Forth column shows
the computation time relative to the fastest, k = 20.

widely scattered, but high correlation can still be found for
all classifiers looking at the average result. However, NNS is
spreading more for higher accuracies. This is especially clear
in the average results for LDA where the plot is sun fan shape
above 60 % accuracy and clustered around a line otherwise.

Fig. 4. Plots of accuracy against NNS using individual features fed separately
to the different classifiers. The top four shows results that are average over all
classes while the bottom four shows result for classes individually. Correlation
was calculated using Spearmans rho.

C. Feature Sets

The classification accuracy from all classifiers when fed by
the best and reference sets was used as evaluation method for
performance. These results are illustrated in Fig. 5. Statistical
significance is indicated by *. Correlation between CCEs and
accuracies from using the best and reference sets are show in
Fig. 6. Comparing Fig. 6 with Fig. 3 and 4 the results for LDA
and MLP are similar except that accuracies are generally higher
for feature sets over individual features. The SVM results are



less scattered and neither RFN or SVM results are clustered at
zero accuracy as in Fig. 3 and 4.

Fig. 5. Accuracies using the best sets from SI and NNS compared with the
reference sets. The center line in the box is the median value, the marker is the
mean value and the top and bottom are 25th and 75th percentiles respectively.
The total data range is shown by the whiskers. Statistical significance using
significance level 5 % is marked with *.

Fig. 6. Accuracy plotted against SI (top four insets) and against NNS (bottom
four insets). The best and reference sets were used separately to extract feature
vectors for all subject. One feature vector was fed to the classifier to create
one point. Correlation was calculated using Spearmans rho.

D. Features

The rating of features and feature sets in this study has
provided information on the features general performance. Fig.
7 shows the five features with highest and lowest average
accuracy when using individual features. LDA and MLP results
are represented. The five most selected features for the best sets
are tcard, fmn, tvar, tstd and tpwr for SI and tcard, tdam, tstd,

twl and fmn for NNS. The features are ranked in the order they
are written, with the most selected feature first. It is worthy
of notice that one of the top feature, cardinality, was recently
found to be a highly performing feature in MPR [19].

Fig. 7. Ellipses representing feature scatters of Accuracy against SI plots. The
ellipses are drawn to represent the covariance matrix. The left insets show the
features with the lowest average accuracy and the right insets show the features
with the highest.

IV. DISCUSSION

A. Accuracy Prediction

This study shows that NNS and SI can provide useful
information when predicting accuracy for MLP and LDA
based on the high correlation between classification accuracies
and the CCEs, for both individual features and feature
sets. This was also supported by the statistically significant
improvement on MPR accuracy of the best sets over the
reference sets. The only exception found was the best set of
two features selected by NNS and fed to LDA which yielded
lower accuracy than the reference set. However, the fact that
these sets perform similarly is an indication that NNS provides
relevant information for the problem at hand.
The SVM accuracy had low correlation with SI and NNS,
compared to LDA and MLP, for individual features. However,
correlation improved when feature sets were used, and the
best sets are all yielded higher accuracy than the reference
sets. How relevant the CCEs are for SVM seems to change
with the number of inputs to the classifier.
All CCEAs evaluated in this study result in low correlation
with RFN accuracy. However, all the best sets from NNS
yielded significantly higher accuracy than the reference sets,
which supports the use of this method for feature selection.

B. Consistency Over Change in Number of Dimensions

Consistency of SI and NNS for MLP and LDA can be
appreciated by comparing the corresponding plots for individ-
ual features and feature sets. The clusters are forming similar
patterns even though different number of dimensions were used.
This is not true for SVM and RFN, where many of the individ-
ual results from individual features has accuracy close to zero.
This makes these plots inconsistent with the corresponding
patterns found for feature sets.



C. Limitations and Future Challenges

The CCEAs correlate differently with different classifiers
accuracies. One reason is that neither SI or NNS describe the
limitation of LDA due to its dependency on linearly separable
classes. MLP is a nonlinear classifier and its accuracy is
consequently more accurately estimated by the two CCEAs.
Another reason is that SI assumes normality of the feature
distributions while NNS does not. On the other hand, SI is
much less computationally demanding. How PRAs and CCEAs
are combined must be considered as CCEAs are implemented
in more specific applications.
The data set for this study is limited to individual movements,
four EMG channels and only offline accuracy was considered.
To really evaluate how relevant the CCEAs are for MPR, further
tests are needed with more diverse data sets.
This study shows that the information given by CCEAs can be
used in feature selection for MPR. However, the feature sets in
this study had maximum four features and there are only four
recorded channels. The low number of dimensions makes brute-
force search possible but the complexity will increase rapidly
as the number of channels, features and/or classes increase.
MFL and mRMR are two feature selection strategies already
used for MPR, and are both examples of what is likely to be
an important part of MPR in the future. The CCEAs in this
study will have to be used strategically in a similar way to be
efficient for feature selection.
Estimating accuracy without implementing a classifier allows
early evaluation of recorded data. Classes with low separability
can be recorded and evaluated again until desired separability
can be confirmed. More research needs to be done on how to
interpret CCEs when they are used for MPR.

V. CONCLUSIONS

Two Classification Complexity Estimating Algorithms,
namely Separability Index and Nearest Neighbor Separability,
were found adequate for MLP and LDA based on their high
correlation with classification accuracy for both individual
features and feature sets. High correlation with SVM accuracy
was also observed for feature sets.
The two CCEAs were also found useful for EMG feature
selection for all three aforementioned classifiers as feature sets
selected based on level of separability given by the CCEAs
resulted in higher or similar accuracies when compared with
reference sets.
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Abstract	
Background	
Limb	prosthetics,	exoskeletons,	and	neurorehabilitation	devices	can	be	intuitively	controlled	
using	myoelectric	pattern	recognition	(MPR)	to	decoded	the	subject’s	intention	of	movement.	
In	conventional	MPR,	descriptive	electromyography	(EMG)	features	representing	the	aimed	
movement	are	feed	to	a	classification	algorithm.	The	separability	of	the	different	movements	
in	 the	 feature	 space	 highly	 affects	 the	 classification	 complexity.	 Classification	 Complexity	
Estimating	Algorithms	(CCEAs)	were	studied	in	this	work	in	order	to	improve	feature	selection,	
predict	MPR	performance,	and	inform	on	faulty	data	acquisition.	
Methods	
CCEAs	 such	 as	 Nearest	 Neighbor	 Separability	 (NNS),	 Purity,	 Repeatability	 Index,	 and	
Separability	Index	(SI)	were	evaluated	based	on	their	correlation	with	classification	accuracy,	
and	on	the	their	suitability	to	produce	highly	performing	feature	sets.	SI	was	evaluated	using	
alternatives	 to	 the	 original	 distance	 definition,	 Mahalanobis	 Distance,	 including	
Bhattacharyyas	Distance,	Hellingers	Distance,	Kullback	Leiblers	Convergence	and	a	modified	
version	 of	 Mahalanobis	 Distance.	 Three	 commonly	 used	 classifiers	 in	 MPR	 were	 used	 to	
compute	classification	accuracy	(Linear	Discriminant	Analysis	(LDA),	Multi-Layer	Perceptron	
(MLP),	 and	 Support	 Vector	 Machine	 (SVM)).	 The	 algorithms	 and	 analytic	 graphical	 user	
interfaces	produced	in	this	work	are	freely	available	in	BioPatRec.	
Results	
NNS	and	SI	were	found	to	be	highly	correlated	with	classification	accuracy	(correlations	up	to	
0.98	 for	 both	 algorithms),	 as	 well	 as	 capable	 to	 yield	 highly	 descriptive	 feature	 sets.	
Additionally,	the	experiments	revealed	how	the	level	of	correlation	between	the	inputs	of	the	
classifiers	influence	classification	accuracy,	and	emphasizes	the	classifiers	sensitivity	to	such	
redundancy.	They	also	inform	on	how	dimensionality	of	the	classification	task	influences	the	
outputs	of	the	CCEAs.	
Conclusions	
This	study	deepens	the	understanding	of	the	classification	complexity	in	prediction	of	motor	
volition	based	on	myoelectric	 information.	 In	addition,	 it	provides	researcher	with	tools	 to	
analyze	myoelectric	recordings	in	order	to	improve	classification	performance.	
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Background	
Decoding	 of	 motor	 volition	 via	 Myoelectric	 Pattern	 Recognition	 (MPR)	 has	 many	 clinical	
applications	 such	 as	 prosthetic	 control	 [1],	 phantom	 limb	 pain	 treatment	 [2],	 and	
rehabilitation	after	stroke	[3].	Research	on	MPR	has	focused	on	classifiers	[4],	pre-processing	
algorithms	 [5],	 and	 electromyography	 (EMG)	 acquisition	 [6]	 among	 other	 factors	 that	
influence	the	classification	outcome.	Reaz	et	al.	studied	different	attributes	of	EMG	signals,	
such	 as	 signal-to-noise	 ratio,	 that	 decrease	 the	 complexity	 of	 MPR	 [7].	 However,	 limited	
studies	have	been	done	on	the	complexity	of	the	classification	task	itself.	
Most	algorithms	for	MPR,	except	for	a	few	exceptions	[8],	use	EMG	features	extracted	from	
overlapping	 time	 windows	 as	 the	 classifier	 input.	 The	 resulting	 classification	 accuracy	 is	
therefore	dependent	on	the	features	used	to	described	the	EMG	signals.	The	performance	of	
a	variety	of	such	features,	and	feature	selection	algorithms,	have	been	studied	previously	[9],	
[10].	 Two	 feature	 selecting	 algorithms,	 namely	 Minimum	 Redundancy	 and	 Maximum	
Relevance	(mRMR)	[11],	and	Markov	Random	Fields	(MRF)	[12],	were	applied	to	an	electrode	
array	by	Liu	et	al.	[13],	who	used	Kullback-Leibler	Divergence	and	Feature	Scatter	to	rate	the	
relevance	and	redundancy	of	features.	The	features	were	then	ranked	and	selected	into	sets	
according	 to	 these	 ratings.	 Similarly,	 Bunderson	 et	 al.	 defined	 three	 data	 quality	 indices,	
namely	Repeatability	Index	(RI),	Mean	Semi-principal	Axis	(MSA),	and	Separability	Index	(SI)	
to	evaluate	the	changes	in	data	quality	over	repeated	recordings	of	EMG	[14].	Classification	
complexity	estimation	was	not	investigated	in	the	aforementioned	studies,	but	suggestions	
were	made	on	such	task	could	be	achieved.		
Classification	 complexity	 has	 been	 studied	 outside	 the	 field	 of	MPR.	 Singh	 suggested	 two	
nonparametric	multiresolution	complexity	measures,	namely	Nearest	Neighbor	Separability	
(NNS)	and	Purity	[15].	These	complexity	measures	were	compared	with	common	statistical	
similarity	 measures,	 such	 as	 Kullback-Leibler	 Divergence,	 Bhattacharyya	 Distance,	 and	
Mahalanobis	 Distance,	 and	 were	 found	 to	 yield	 a	 higher	 correlation	 with	 classification	
accuracy.	These	Classification	Complexity	Estimating	Algorithms	(CCEAs)	along	with	Hellinger	
Distance	were	investigated	in	the	present	study	with	focus	on	their	relevance	for	MPR.	
In	 the	 present	 study,	 CCEAs	 were	 evaluated	 based	 on	 their	 correlation	 with	 offline	
classification	accuracy	and	real-time	classification	performance.	As	a	consequence,	different	
attributes	 were	 reveled	 about	 the	 CCEAs,	 classification	 algorithms,	 and	 features	
descriptiveness.	 Two	 of	 such	 attributes,	 namely	 channel	 correlation	 dependency	 and	
dimensionality	dependency,	were	investigated	further.	The	CCEAs	which	were	found	to	yield	
high	correlation	with	classification	accuracy	(NNS	and	SI)	were	then	used	for	feature	selection	
and	benchmarked	against	features	sets	found	in	the	literature.	
The	result	of	these	experiments	provided	evidence	on	the	suitability	of	CCEAs	to	predict	MPR	
performance.	The	algorithms	used	in	this	work	were	implemented	and	made	freely	available	
in	BioPatRec,	an	open	source	platform	for	development	and	benchmarking	of	algorithms	used	
in	advanced	myoelectric	control	[16],	[17].		
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Methods	
Data	Sets	
Two	 data	 sets	 were	 used	 in	 this	 study;	 both	 recorded	 on	 healthy	 subjects.	 The	 first	 set	
contained	individual	movements	(IM	data):	20	subjects,	4	EMG	channels,	14	bits	Analog	to	
Digital	 Conversion	 (ADC),	 and	 11	 classes	 (hand	 open/close,	 wrist	 flexion/extension,	
pro/supination,	side	grip,	fine	grip,	agree	or	thumb	up,	pointer	or	index	extension,	and	rest	or	
no	movement)	[16].	The	second	set	contained	individual	and	simultaneous	movements	(SM	
data):	 17	 subjects,	 8	 EMG	 channels,	 16	 bits	 ADC,	 and	 27	 classes	 (hand	 open/close,	 wrist	
flexion/extension,	 pro/supination,	 and	 all	 their	 possible	 combinations)	 [18].	 Disposable	
Ag/AgCl	(Ø	=	1	cm)	electrodes	in	a	bipolar	configuration	(2	cm	inter-electrode	distance)	were	
used	 in	both	 sets.	 The	bipoles	were	evenly	 spaced	around	 the	most	proximal	 third	of	 the	
forearm,	with	the	first	channel	placed	along	the	extensor	carpi	ulnaris.	The	data	sets	along	
with	 details	 on	 demographics	 and	 acquisition	 hardware	 are	 available	 online	 as	 part	 of	
BioPatRec	[17].	Table	1	summarizes	these	data	sets.	
Table	1	-	Summery	of	data	sets	

Table	summering	the	data	sets	used	in	the	experiments	of	this	study.	The	reference	column	contains	the	name	used	when	
referring	to	that	data	set	through	out	the	report.		

Reference	 Movements	 Subjects	 Channels	 ADC	(bits)	 Classes	
IM	data	 Individual	 20	 4	 14	 11	
SM	data	 Simultaneous	 17	 8	 16	 27	

Signal	Acquisition,	Pre-processing	and	Feature	extraction	
BioPatRec	recording	routines	guided	the	subjects	to	perform	each	movement	three	times	with	
resting	periods	in	between.	The	instructed	contraction	time,	as	well	as	the	resting	time	was	
three	seconds.	The	initial	and	final	15%	of	each	contraction	was	discarded	as	this	normally	
corresponds	 to	 delayed	 response	 and	 anticipatory	 relaxation	 by	 the	 subject,	 while	 the	
remaining	central	70%	still	preserves	portions	of	the	dynamic	contraction	[16].		
Time	windows	of	200	ms	were	extracted	from	the	concatenated	contraction	data	using	50	ms	
time	increment.	Features	were	then	extracted	from	each	time	window	and	distributed	in	sets	
used	for	training	(40	%),	validation	(20	%),	and	testing	(40	%)	of	the	classifiers.	The	testing	sets	
were	never	seen	by	the	classifier	during	training	or	validation.	A	10-fold	cross-validation	was	
performed	by	randomizing	the	 feature	vectors	between	the	three	sets	before	training	and	
testing.	
The	following	EMG	signal	features	were	used	as	implemented	in	BioPatRec	[16],	[17],	[19].	In	
time	domain;	mean	absolute	value	(tmabs),	standard	deviation	(tstd),	variance	(tvar),	
waveform	length	(twl),	RMS	(trms),	zero-crossing	(tzc),	slope	sign	changes	(tslpch),	power	
(tpwr),	difference	abs.	mean	(tdam),	max	fractal	length	(tmfl),	fractal	dimension	Higuchi	
(tfdh),	fractal	dimension	(tfd),	cardinality	(tcard),	and	rough	entropy	(tren).	In	frequency	
domain;	waveform	length	(fwl),	mean	(fmn)	and	median	(fmd).		
Classification	Complexity	Estimating	Algorithms	
The	 Classification	 Complexity	 Estimating	 Algorithms	 (CCEAs)	 were	 designed	 to	 return	
Classification	Complexity	Estimates	(CCEs)	for	each	movement	separately	(individual	result),	
and	averaged	over	all	movements	(average	results).	The	CCEAs	used	were:		
Separability	Index	
Separability	Index	(SI)	was	implemented	as	introduced	by	Bunderson	et	al.,	i.e.	the	average	
of	the	distances	between	all	movements	and	their	most	conflicting	neighbor	[14].	Figure	1A	
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illustrates	the	distance	and	conflict	between	two	classes	in	an	exemplary	two	dimensional	
feature	space.			

	
Figure	1	Illustration	of	a	two	dimensional	feature	space.	

Inset	A	shows	the	distance	between	two	classes	in	a	two	dimensional	features	space.	The	ellipses	representing	the	classes	
are	constructed	according	to	the	covariance	of	the	two	dimensional	data.	The	figure	emphasizes	the	overlap	of	classes,	
which	is	a	big	challenge	in	pattern	recognition.	Inset	B	shows	the	6	nearest	neighbors	of	the	marked	target	data	point.	
Nearest	Neighbor	Separability	is	based	on	the	fraction	of	the	neighbors	from	the	same	class	as	the	target	point.		

The	aforementioned	distance	was	defined	by	Bunderson	et	al.	to	be	half	the	Mahalanobis	
Distance,	resulting	in	the	following	equation:	

!" = min
'(),…,,-),,.),…,/

1
2 (3, − 3')6!,-)(3, − 3')

/

,()
	

	
where	 K	 is	 the	 number	 of	 classes	 or	 movements,	 and	 µx	 and	 Sx	 are	 mean	 vectors	 and	
covariance	matrices	for	class	x,	respectively.	
This	definition	only	considers	the	covariance	of	the	target	movement	(Si),	and	not	that	of	the	
comparing	 movement	 (i.e.	 Sj).	 We	 considered	 this	 particular	 formulation	 as	 a	 potential	
limitation,	 and	 therefore	 we	 introduced	 additional	 Distance	 Definitions.	 The	 Distance	
Definitions	 were	 used	 under	 the	 assumption	 of	 normality	 as	Mahalanobis	 Distance	 was	
defined	under	the	same	assumption	[20].	The	introduced	Distance	Definitions	are	described	
in	Table	2.	 	
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Table	2	-	Distance	Definitions	for	Separability	Index		

Table	of	Distance	Definitions	used	to	compute	Separability	Index	including	their	names,	definitions	and	how	the	were	
implemented	in	the	present	study.	

Distance	
Definition	

Description	

Mahalanobis	
Distance	

Mahalanobis	Distance	was	designed	to	measure	the	distance	between	a	
distribution	and	a	single	point	[20].	Half	the	Mahalanobis	Distance	will	
be	the	value	referred	to	as	Mahalanobis	Distance	hereafter	because	that	
is	how	it	was	originally	used	in	SI	[14].	
Mahalanobis	Distance	for	multivariate	normal	distributions	is	defined	as:	

78
2 = 1

2 (3) − 39)6!)-)(3) − 39)	
	

Bhattacharyyas	
Distance	

Bhattacharyyas	Distance	is	a	measurement	of	statistical	similarity	
between	two	distributions	based	on	the	Bhattacharyyas	Coefficient	(BC)	
[21].	Unlike	Mahalanobis	Distance,	Bhattacharyyas	Distance	take	both	
the	distance	and	similarity	in	covariance	between	the	distributions	into	
account.	In	this	study	the	square	root	of	Bhattacharyyas	Distance	was	
used	to	equate	the	formulation	of	Mahalanobis	Distance	and	facilitate	
comparison.	
Bhattacharyyas	Coefficient	for	the	continues	probability	distributions	p	
and	q	is	defined	as:	

:; = <(=)>(=)?=	
Bhattacharyyas	Distance	as	function	of	Bhattacharyyas	Coefficient:	

7@ = −12 ln	(:;)	

Bhattacharyyas	Distance	for	multivariate	normal	distributions	(square	
root)	[22]:	

7@ =
1
8 (3) − 39)

6!-)(3) − 39) −
1
2 ln	

?DE!
?DE!)?DE!9

	

	
Kullback-
Leibler	
Divergence	

Kullback-Leibler	Divergence	is	a	well-known	statistical	similarity	measure	
that	is	typically	used	to	determine	if	an	observed	distribution,	Q,	is	a	
sample	of	a	true	distribution,	P	[23].	
Kullback-Leibler	Divergence	for	multivariate	normal	distributions	is	
defined	as	[22]:	
	

7/F =
1
2 EG !)-)!9 + 3) − 39 6!)-) 3) − 39 − I + JK ?DE!)

?DE!9
	

	
	

Hellingers	
Distance	

Hellingers	Distance	is	related	to	Bhattacharyyas	Distance	as	it	is	also	
based	on	the	Bhattacharyyas	Coefficient	[24].	The	square	of	Hellingers	
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Distance	was	used	in	this	study	to	avoid	complex	numbers	appearing	
where	the	assumption	of	normality	fails,	and	this	will	be	the	value	
referred	to	as	Hellingers	Distance	here.	
Hellingers	Distance	as	function	of	Bhattacharyyas	Coefficient	is	defined	
as:	

7L9 = 1 − :;	
Hellingers	Distance	for	multivariate	normal	distributions:	

7L9 = 1 −
?DE!)

)
M ?DE!9

)
M

?DE!)
)
9

∗ D=< −
1
8
(3) − 39)6!-)(3) − 39) 	

	
Modified	
Mahalanobis	

	

This	measure	of	statistical	similarity	is	equal	to	the	aforementioned	
Mahalanobis	Distance,	except	that	it	takes	the	covariance	matrix	of	both	
distribution	being	compared	into	account.	The	algorithm	is	related	to	
Bhattacharyyas	Distance	but	is	only	focused	on	the	distance	between	
the	distributions.	This	CCEA	is	here	referred	to	as	Modified	Mahalanobis	
and	is	defined	for	multivariate	normal	distributions	as:	

788
2

=
1
2

(3) − 39)6!-)(3) − 39)	
	

Explanations	 For	all	equations	above	index	1	and	2	are	appointed	the	considered	
movement	and	the	compared	movement	respectively,	and	

! = 	
!) + !9
2

	
	

	
Nearest	Neighboor	Separability	
Nearest	 Neighbor	 Separability	 (NNS)	 was	 inspired	 by	 the	 algorithm	 with	 the	 same	 name	
defined	by	Singh	[15].	It	 is	based	on	the	dominance	of	nearest	neighbors,	in	feature	space,	
belonging	to	the	same	class	(movement)	as	a	target	data	point.	The	contribution	of	the	nearest	
neighbors	are	weighted	by	their	proximity	to	the	target	point	and	the	result	is	normalized	to	
be	values	between	0-1.	Let	

O <P, <, = 1,
0,

RS	<P, <, ∈ ;
								RS	<P ∈ ;, <, ∉ ;

	

Where	pt	is	the	target	point,	pi	is	pt:s	i-th	nearest	neighbor	and	C	is	a	class.	The	aforementioned	
dominance	is	then	defined	as:	

?P =
1
R

V

,()

-)
O <P, <,

R

V

,()

	

A	target	point	and	its	6	nearest	neighbors	are	illustrated	in	Figure	1B.	
The	end	result	is	the	average	dominance:	

WW! =
1
W

?,

X

,()

	

Where	N	is	the	total	number	of	samples.	
Unless	 stated	otherwise,	 the	parameter	k	 is	 set	 to	120,	which	 is	 the	maximum	number	of	
nearest	neighbors	from	the	same	class	for	the	data	sets	of	this	study.		
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Purity		
Purity	was	computed	by	dividing	 the	 feature	hyperspace	 into	smaller	hyper	cuboids	called	
cells	[15].	The	cells	were	rated	individually	and	high	dominance	of	one	class	in	one	cell	meant	
high	Purity	for	that	cell.	The	final	Purity	of	a	data	set	was	the	average	over	all	cells	and	different	
cell	resolutions.		

Repeatability	Index	
Repeatability	 Index	 (RI)	 measured	 how	 much	 individual	 classes	 varies	 between	 different	
occurrences	 using	Mahalanobis	 Distance	 [14].	 The	 three	 repetitions	 during	 the	 recording	
session	were	the	occurrences	that	were	evaluated.	The	end	result	is	the	average	Mahalanobis	
Distance	between	the	first	repetition	and	the	following	ones	for	all	movements.		

Classifiers	and	Topologies	
Three	common	classifiers	for	MPR	were	used	in	this	study,	Linear	Discriminant	Analysis	(LDA),	
Multi-Layer	Perceptron	(MLP)	and	Support	Vector	Machine	(SVM).	A	quadratic	kernel	function	
was	 used	 for	 SVM.	 The	 classifiers	 were	 utilized	 as	 implemented	 in	 BioPatRec	 [16]	 (code	
available	online	[17]),	where	LDA	and	SVM	were	implemented	using	Matlab’s	statistic	toolbox.	
MLP	and	SVM	are	inherently	capable	of	simultaneous	classification	when	provided	with	the	
feature	 vectors	 of	 mixed	 (simultaneous)	 outputs,	 hereafter	 referred	 as	 “MIX”	 output	
configuration,	 i.e.	 there	 is	one	output	 for	every	 individual	movement	and	combinations	of	
movements	 produce	 the	 corresponding	 mix	 of	 outputs	 to	 be	 turned	 on.	 LDA’s	 output	 is	
computed	by	majority	voting	and	therefore	it	cannot	produce	simultaneous	classification	by	
creating	 a	 mixed	 output.	 However,	 classifiers	 like	 LDA	 can	 still	 be	 used	 for	 simultaneous	
classification	using	the	label	power	set	strategy	where	the	classifier	is	constructed	having	the	
same	number	of	outputs	as	the	total	number	of	classes.	This	configuration	is	referred	here	as	
“All	Movements	as	Individual”	(AMI).	Ortiz-Catalan	et	al.	showed	that	AMI	could	also	favor	
classifiers	capable	of	mixed	outputs	[18],	and	therefore	MLP	and	SVM	were	evaluated	in	both	
MIX	and	AMI	configurations	for	simultaneous	predictions.	In	addition,	LDA	was	also	used	in	
the	One-Vs-One	topology	(OVO),	as	this	has	been	shown	to	improve	classification	accuracy	for	
individual	movements	[18],	[25].	
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Evaluation	and	Comparison	
In	order	to	evaluate	the	correlation	between	Classification	Complexity	Estimates	(CCEs)	and	
classification	accuracy,	all	features	were	used	individually	to	classify	all	movements	from	each	
subject	in	both	data	sets,	which	provided	a	wide	range	of	classification	accuracies	and	their	
related	 CCEs.	 Correlations	 were	 then	 calculated	 considering	 the	 classification	 of	 each	
movements	 individually	 (individual	 results),	 or	 the	 average	 over	 all	 movements	 (average	
results).		
In	order	to	evaluate	the	influence	of	dimensionality	change	(i.e.,	change	in	number	of	channels	
and/or	features),	the	feature	were	used	in	sets	of	two	or	three	features	and	then	feed	to	each	
MPR	 algorithm.	 The	 sets	 were	 selected	 so	 that	 one	member	 varied	 between	 all	 features	
(equivalent	 to	when	 features	were	used	 individually)	and	the	other	one	 (or	 two)	were	the	
feature(s)	 resulting	 in	 the	 lowest	 classification	 accuracy	 when	 used	 individually.	 This	 was	
based	on	the	assumption	that	the	additional	features	had	consequently	low	influence	on	the	
feature	 sets	performance,	 and	 the	 resulting	 classification	would	be	 closer	 to	 that	of	using	
individual	features.		
The	CCEAs	were	further	used	to	select	sets	of	two,	three,	and	four	features	by	brute	force	
search	through	all	possible	combinations	based	on	their	CCEs.	The	selected	sets	are	referred	
hereafter	as	the	best	sets	and	were	obtained	using	the	IM	data	set.	
Ortiz-Catalan	et	al.	used	a	genetic	algorithm	to	find	optimal	feature	sets	of	two,	three,	and	
four	features	based	on	classification	performance	[9].	Their	proposed	sets	of	two	and	three	
features	were	used	as	benchmarking	sets	in	this	study	along	with	the	commonly	used	four-
feature	set	proposed	by	Hudgins	et	al.	[26].	These	sets	are	referred	in	this	study	as	reference	
sets:		

. Ref	2:	tstd,	trms	[9]	

. Ref	3:	tstd,	fwl,	fmd	[9]	

. Ref	4:	tmabs,	twl,	tslpch,	tzc	[26]		
The	best	and	reference	sets	of	equal	number	of	features	were	compared	to	each	other	based	
on	the	resulting	classification	accuracy	as	given	by	the	three	different	classifiers.	Classification	
accuracy	corresponds	to	offline	computations	unless	otherwise	stated.	Real-time	testing	was	
done	using	the	Motion	Tests	as	 implemented	 in	BioPatRec	[16],	 [27].	CCEAs	proficiency	on	
predicting	real-time	performance	was	evaluated	by	their	correlation	with	the	Completion	Time	
obtained	from	Motion	Tests,	which	is	the	time	from	the	first	prediction	not	equal	to	rest	until	
20	correct	predictions	are	achieved.	If	the	number	of	correct	predictions	were	under	20	after	
20	seconds,	the	Completion	Time	was	set	to	20	seconds.	The	real-time	results	were	obtained	
from	IM	data	set	and	related	Motion	Tests	[27].	
Wilcoxon	signed-rank	test	(p	<=	0.05)	was	used	to	evaluate	statistical	significant	differences.	
Correlations	were	calculated	using	Spearmans	rho,	since	there	was	no	clear	linearity	in	the	
dependencies	between	accuracy	and	CCE.	
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Results	
Separability	Index	
The	correlations	found	between	classification	accuracy	and	Separability	Index	using		different	
Distance	Definitions	are	summarized	in	Table	3,	where	the	highest	value	for	every	classifier	is	
highlighted.	
Table	3	-	Correlations	for	the	different	Distance	Definitions	

Correlations	under	“individual	results”	were	calculated	using	classification	accuracies	and	Separability	Indices	from	every	
individual	movement,	subject	and	feature,	while	those	under	“average	result”	were	derived	using	the	average	Separability	
Index	and	classification	accuracy	per	subject	and	feature.	Both	methods	provide	one	correlation,	although	”individual	
results”	use	more	data.	Classifiers	were	configured	using	“All-Movements-as-Individual”	(AMI)	or	“Mixed	outputs”	(MIX).	
Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	
(OVO).	The	highest	correlation	values	per	column	are	highlighted	in	bold.	All	correlations	were	found	statistically	significant	
at	p<0.01.	The	MIX	configuration	is	not	applicable	(NA)	for	individual	movements	since	there	is	not	mixed	outputs.	

	 AVERAGE	RESULT	 INDIVIDUAL	RESULTS	 	

	 LDA	(AMI)	
	Single/OVO	 MLP	AMI/MIX	 SVM	

AMI/MIX	
LDA	(AMI)	
Single/OVO	

MLP	
AMI/MIX	

SVM	
AMI/MIX	

Data	
set	

MAHALANOBIS	
0.72/0.91	 0.90/0.91	 0.79/0.80	 0.81/0.92	 0.84/0.85	 0.70/0.68	 SM	
0.78/0.88	 0.86/NA	 0.71/NA	 0.85/0.91	 0.80/NA	 0.60/NA	 IM	

BHATTACHARYYA	
0.74/0.97	 0.98/0.97	 0.79/0.82	 0.69/0.91	 0.93/0.91	 0.66/0.65	 SM	
0.83/0.96	 0.96/NA	 0.68/NA	 0.79/0.89	 0.94/NA	 0.68/NA	 IM	

KULLBACK-
LEIBLER	

0.60/0.88	 0.93/0.90	 0.65/0.70	 0.54/0.76	 0.84/0.82	 0.63/0.60	 SM	
0.51/0.72	 0.80/NA	 0.32/NA	 0.65/0.75	 0.87/NA	 0.65/NA	 IM	

HELLINGER	
0.68/0.94	 0.98/0.96	 0.75/0.77	 0.69/0.90	 0.93/0.91	 0.66/0.65	 SM	
0.80/0.95	 0.97/NA	 0.66/NA	 0.79/0.89	 0.94/NA	 0.68/NA	 IM	

MODIFIED	
MAHALANOBIS	

0.92/0.97	 0.92/0.95	 0.94/0.95	 0.79/0.91	 0.88/0.89	 0.74/0.71	 SM	
0.93/0.94	 0.87/NA	 0.83/NA	 0.85/0.90	 0.86/NA	 0.71/NA	 IM	

	
Figure	2	and	Figure	3	shows	plots	of	average	result	for	IM	and	SM	data	sets	respectively	with	
the	most	correlating	Distance	Definition	highlighted	for	classifiers	individually.	Table	3,	Figure	
2	and	Figure	3	indicates	that	the	best	Distance	Definitions	vary	for	each	classifiers.	
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Figure	2	The	distribution	of	Distance	Definitions	and	classifiers	data	using	individual	movement	(IM	set)	

Plot	matrix	where	the	insets	show	classification	accuracy	plotted	against	Separability	Index	for	the	individual	movements	
data	set.	One	marker	represents	the	average	over	all	movements	for	one	subject	and	one	feature.	The	classifiers	are	
grouped	in	rows	and	the	Distance	Definitions	for	Separability	Index	are	group	in	columns.	Classifiers	were	used	in	the	
conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	All	correlations	were	
found	statistically	significant	at	p<0.01.	Classifiers	and	Distance	Definitions	are	stated	at	the	left	side	and	the	bottom	of	the	
plot	matrix	respectively.	Highest	correlating	Distance	Definition	for	every	classifier	is	marked	by	a	thicker	frame	around	the	
plot.	

	
Figure	3	The	distribution	of	Distance	Definitions	and	classifiers	data	using	simultaneous	movements	(SM	set)	

Plot	matrix	where	the	insets	shows	classification	accuracy	plotted	against	Separability	Index	for	the	simultaneous	
movements	data	set.	One	marker	represents	the	average	over	all	movements	for	one	subject	and	one	feature.	The	classifiers	
are	grouped	in	rows	and	the	Distance	Definitions	for	Separability	Index	are	group	in	columns.	Classifiers	were	configured	
using	“All-Movements-as-Individual”	(AMI)	or	“Mixed	outputs”	(MIX).	Classifiers	were	used	in	the	conventional	“single”	
topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	All	correlations	were	found	statistically	
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significant	at	p<0.01.	Classifiers	and	Distance	Definitions	are	stated	at	the	left	side	and	the	bottom	of	the	plot	matrix	
respectively.	Highest	correlating	Distance	Definition	for	every	classifier	is	marked	by	a	thicker	frame	around	the	plot.	

	
Mahalanobis	Distance	
Mahalanobis	Distance	was	found	as	the	Distance	Definition	that	most	correlated	with	LDA	in	
an	 OVO	 topology	 for	 individual	 results	 using	 SM	 data.	 The	 corresponding	 classification	
accuracy	against	SI	is	plot	in	Figure	4A.		

	
Figure	4	Data	distribution	for	the	most	correlating	Distance	Definitions	

Plot	matrix	where	the	insets	show	classification	accuracy	plotted	against	Separability	Index.	One	dot	represents	one	
movement,	one	subject	and	one	feature,	making	the	number	of	dots	the	number	of	movements	times	the	number	of	
subjects	times	the	number	of	features.	The	plots	represent	the	highlighted	correlations	in	Table	1.	

Kullback-Leibler	Divergence	
Kullback-Leibler	Divergence	was	not	found	to	yield	higher	correlation	than	any	other	Distance	
Definition	for	any	of	the	classifiers,	however	it	was	found	most	correlating	with	the	average	
results	of	MLP	using	both	topologies.	This	correlation	is	visualized	in	Figure	2	and	Figure	3.	
Owing	to	its	low	correlation	with	classification	accuracy,	Kullback-Leibler	Divergence	was	not	
used	in	the	reaming	experiments..	
Bhattacharyyas	Distance	
Bhattacharyyas	Distance	was	the	most	correlating	Distance	Definition	 for	MLP	in	both	AIM	
and	MIX	configurations.	Plots	of	classification	accuracy	for	the	two	classifiers	against	SI	based	
on	 Bhattacharyyas	 Distance	 is	 shown	 in	 Figure	 4	 insert	 B	 and	 C.	 Individual	 results	 are	
presented	and	IM	data	and	SM	data	are	used	for	AIM	and	MIX	configurations	respectively.	
Hellinger	Distance	
Bhattacharyyas	Distance	and	Hellingers	Distance	are	highly	related	as	they	are	both	based	on	
the	Bhattacharyyas	Coefficient.	Table	3	confirms	their	resemblance	as	the	correlations	related	
to	the	two	Distance	Definitions	are	very	similar	in	all	cases.	Naturally,	Hellingers	Distance	is	
together	with	Bhattacharyyas	Distance	as	the	Distance	Definitions	most	correlating	with	MLP	
MIX	and	AMI	for	individual	result,	and	with	MLP	AMI	for	average	result.	MLP	AMI	classification	
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accuracy	is	plotted	against	Hellingers	Distance	based	SI	in	Figure	4E,	where	individual	results	
using	IM	data	is	represented.	
Modified	Mahalanobis	
Modified	Mahalanobis	was	 found	as	 the	Distance	Definition	most	correlating	with	average	
results	of	LDA	and	SVM	classification	accuracy	for	all	topologies	and	configurations.	The	same	
is	true	for	individual	results,	except	for	LDA	in	an	OVO	topology.	Figure	4	inset	E	and	F	show	
LDA	 AMI	 and	 SVM	 MIX	 classification	 accuracy	 plotted	 against	 SI	 based	 on	 Modified	

Mahalanobis.	Modified	Mahalanobis	was	 the	version	of	Mahalanobis	Distance	used	 in	 the	
remaining	results	because	of	its	overall	higher	correlation	with	classification	accuracy.	
Nearest	Neighbor	Separabillity	
A	summary	of	correlations	with	all	classifiers	for	both	data	sets	is	presented	in	Table	4.		
Table	4	-	Correlations	between	classification	accuracy	and	Nearest	Neighbor	Separability		

The	correlation	between	classification	accuracy	and	Nearest	Neighbor	Separability	with	different	values	of	the	parameter	k.	

Correlations	under	“individual	results”	were	calculated	using	classification	accuracies	and	Nearest	Neighbor	Separabilities	

from	every	individual	movement,	subject	and	feature,	while	those	under	“average	result”	were	derived	using	one	average	

Nearest	Neighbor	Separability	and	classification	accuracy	for	every	subject	and	feature.	Both	methods	provide	one	

correlation,	although	“individual	results”	use	more	data.	Classifiers	were	configured	using	“All-Movements-as-Individual”	

(AMI)	or	“Mixed	outputs”	(MIX).	Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	

“single”	and	“One-Vs-One”	(OVO).	The	highest	correlation	values	per	column	are	highlighted	in	bold.	All	correlations	were	

found	statistically	significant	at	p<0.01.	The	MIX	configuration	is	not	applicable	(NA)	for	individual	movements	since	there	is	

not	mixed	outputs.	

	 AVERAGE	RESULT	 INDIVIDUAL	RESULTS	 	

	 LDA	(AMI)	
	Single/OVO	

MLP	
AMI/MIX	

SVM	
AMI/MIX	

LDA	(AMI)	
	Single/OVO	

MLP	
AMI/MIX	

SVM	
AMI/MIX	

Data	
set	

K	=	20	
0.86/0.98	 0.96/0.97	 0.90/0.90	 0.83/0.93	 0.92/0.92	 0.72/0.72	 SM	
0.86/0.97	 0.98/NA	 0.74/NA	 0.84/0.92	 0.97/NA	 0.70/NA	 IM	

K	=	120	
0.90/0.97	 0.92/0.95	 0.92/0.92	 0.87/0.90	 0.87/0.89	 0.73/0.73	 SM	
0.90/0.98	 0.97/NA	 0.78/NA	 0.89/0.93	 0.94/NA	 0.73/NA	 IM	
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Table	4	also	shows	the	influence	of	the	parameter	k.	Figure	5	and	Figure	6	shows	plots	of	
average	result	for	the	IM	and	SM	data	respectively.		

	
Figure	5	The	distribution	of	data	from	individual	movement	for	Nearest	Neighbor	Separability	and		all	classifiers	

Plot	matrix	where	the	insets	shows	classification	accuracy	plotted	against	Nearest	Neighbor	Separability	for	the	individual	

movements	data	set.	One	marker	represents	the	average	over	all	movements	for	one	subject	and	one	feature.	Classifiers	

were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).		All	

correlations	were	found	statistically	significant	at	p<0.01.	The	classifiers	are	grouped	in	columns	and	the	results	for	different	

values	of	the	parameter	k	are	group	in	rows.	The	highest	correlation	values	per	column	are	highlighted	by	a	thicker	frame.	

	
Figure	6	The	distribution	of	data	from	simultaneous	movement	for	Nearest	Neighbor	Separability	and	all	classifiers	

Plot	matrix	where	the	insets	shows	classification	accuracy	plotted	against	Nearest	Neighbor	Separability	for	the	

simultaneous	movements	data	set.	One	marker	represents	the	average	over	all	movements	for	one	subject	and	one	feature.	

Classifiers	were	configured	using	“All-Movements-as-Individual”	(AMI)	or	“Mixed	outputs”	(MIX).	Classifiers	were	used	in	the	

conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	The	highest	correlation	

values	per	column	are	highlighted	by	a	thicker	frame.	All	correlations	were	found	statistically	significant	at	p<0.01.	The	

classifiers	are	grouped	in	columns	and	the	results	for	different	values	of	the	parameter	k	are	group	in	rows.	
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NNS	is	most	correlated	with	LDA	in	an	OVO	topology,	which	is	equivalent	to	the	results	
obtained	by	SI	based	on	Bhattacharyyas	Distance	for	the	same	classifier.	The	individual	
results	for	LDA	using	OVO	are	plotted	for	both	data	sets	in	Figure	7.	

	
Figure	7	Highest	correlation	for	Nearest	Neighbor	Separability	

LDA	(OVO)	classification	accuracy	plotted	against	Nearest	Neighbor	Separability	for	individual	result.	One	dot	represents	one	
movements,	one	subject	and	one	feature,	making	the	number	of	dots	the	number	of	movements	times	the	number	of	
subjects	times	the	number	of	features.	The	plots	illustrate	the	highest	correlation	from	Table	2.	
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Purity	and	Repeatability	Index	
Purity	and	Repeatability	Index	resulted	in	low	correlation	with	classification	accuracy	for	all	
classifiers.	The	correlations	for	IM	data	can	be	found	in		
Table	5.	Figure	8	shows	Individual	results	of	MLP	for	the	two	algorithms	and	the	
aforementioned	data	set.	Because	of	the	low	correlation,	Purity	was	excluded	from	the	
following	experiments,	and	RI	from	the	Feature	Sets	experiment.		
	
Table	5	-	Correlation	for	Purity	and	Repeatability	Index	regarding	classification	accuracy	

The	correlation	with	classification	accuracy	for	Purity	and	Repeatability	Index.	Correlations	under	“individual	results”	were	

calculated	using	classification	accuracies	and	Classification	Complexity	Estimates	from	every	individual	movement,	subject	

and	feature,	while	those	under	“average	result”	were	derived	using	one	average	Classification	Complexity	Estimate	and	

classification	accuracy	for	every	subject	and	feature.	Both	methods	provide	one	correlation,	although	“individual	results”	use	

more	data.	Classifiers	were	configured	using	“All-Movements-as-Individual”	(AMI).	All	correlations	were	found	statistically	

significant	(p<0.05).	

	 AVERAGE	RESULT	 INDIVIDUAL	RESULTS	 	

	
LDA	(AMI)	

	
Single/OVO	

MLP	AMI	 SVM	AMI	
LDA	(AMI)	

	
Single/OVO	

MLP	AMI	 SVM	AMI	 Data	
set	

PURITY	 0.31/0.0062	 -0.14	 0.51	 0.3/0.15	 0.14	 0.54	 IM	
REPEATABILITY	 0.64/0.8	 0.85	 0.57	 0.23/0.36	 0.45	 0.16	 IM	

	
Figure	8	The	distribution	of	data	from	individual	movement	for	all	classifiers	with	Purity	and	Repeatability	

Plot	matrix	where	the	insets	shows	classification	accuracy	plotted	against	Purity	for	row	one	and	Repeatablity	for	row	two.	

The	result	is	for	the	individual	movements	data	set.	One	marker	represents	the	average	over	all	movements	for	one	subject	

and	one	feature.	Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	

“One-Vs-One”	(OVO).		The	classifiers	are	grouped	in	columns.		

	 	



	 16	

Feature	Sets	
In	this	section	the	best	sets	are	compared	with	each	other	and	the	reference	sets.	In	Figure	9,	
the	best	sets	corresponding	to	the	Distance	Definitions	of	SI	are	compared.	The	Modified	
Mahalanobis	sets	are	significantly	higher	than	the	other	Distance	Definitions	sets	in	8	out	of	
12	cases,	and	averagely	higher	in	all	but	the	case	where	MLP	is	used	with	sets	of	three	
features.	In	that	case	Bhattacharyyas	Distance	and	Hellingers	Distance	sets	performing	
higher	average	classification	accuracy.	

	
Figure	9	Classification	accuracy	for	the	best	sets	corresponding	to	Distance	Definitions	of	Separability	Index	

Boxplot	of	average	classification	accuracy	over	all	movements	when	using	the	best	sets	representing	the	Distance	
Definitions	found	in	the	legends.	The	middle	line	of	the	box	is	the	median,	the	marker	is	the	mean	and	the	box	extend	to	the	
25	and	the	75	percentile	for	the	bottom	and	the	top	respectively.	The	different	insets	compare	sets	of	different	number	of	
features.	The	result	is	derived	from	the	IM	data	set.	Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	
which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	
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The	influence	of	parameter	k	of	the	NNS	algorithm	is	shown	in	Figure	10	by	comparing	the	
best	sets	for	k	=	120	and	k	=	20.	The	higher	value	of	k	leads	to	higher	average	classification	
accuracy	in	all	cases.	However,	it	is	statistical	significant	for	SVM	and	three	features	only.		

	
Figure	10	Classification	accuracy	for	the	best	sets	corresponding	to	Distance	Definitions	of	Separability	Index	

Boxplot	of	average	classification	accuracy	over	all	movements	when	using	the	best	sets	representing	the	Distance	
Definitions	found	in	the	legends.	The	middle	line	of	the	box	is	the	median,	the	marker	is	the	mean	and	the	box	extend	to	the	
25	and	the	75	percentile	for	the	bottom	and	the	top	respectively.	The	different	insets	compare	sets	of	different	number	of	
features.	The	result	is	derived	from	the	IM	data	set.	Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	
which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	
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The	member	with	the	highest	average	classification	accuracy	were	selected	from	Figure	9	
and	Figure	10,	Modified	Mahalanobis	and	k	=	120	respectively,	to	be	compared	with	the	
reference	sets	in	Figure	11.	The	NNS	sets	leads	to	significantly	higher	classification	accuracy	
then	the	reference	in	all	but	one	case,	while	Modified	Mahalanobis	is	significantly	higher	for		
9	out	of	12.	The	average	classification	accuracy	for	the	NNS	sets	are	higher	than	Modified	
Mahalanobis	for	all	classifiers	but	for	LDA	in	an	OVO	topology,	where	Modified	Mahalanobis	
is	consistently	higher.		
	

	
Figure	11	Classification	accuracy	for	the	best	sets	compared	to	the	reference	sets	

Boxplot	of	average	classification	accuracy	over	all	movements	when	using	the	best	sets	representing	Separability	Index	with	
Modified	Mahalanobis	as	Distance	Definition,	Nearest	Neighbor	Separability	with	k	=	120	and	the	reference	sets.	The	value	
of	k	is	found	in	the	legend.	The	middle	line	of	the	box	is	the	median,	the	marker	is	the	mean	and	the	box	extend	to	the	25	
and	the	75	percentile	for	the	bottom	and	the	top	respectively.	The	different	insets	compare	sets	different	number	of	feature	
algorithms.	The	result	is	derived	from	the	IM	data	set.	Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	
LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	
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Real-Time	
Figure	12	summarizes	the	correlations	between	the	Motion	Test	result	Completion	Time	and	
CCEs	corresponding	to	RI,	NNS	and	SI	based	on	Modified	Mahalanobis	and	Bhattacharyyas	
Distance.	Statistical	significant	correlations	(p	<	0.001)	are	highlighted	by	a	darker	frame.	

	
Figure	12	Real-time	correlation	for	Classification	Complexity	Estimations	

Plot	matrix	where	the	insets	are	Completion	Time	plotted	against	Classification	Complexity	Estimates.	Significant	correlation	
(p	<	0.001)	is	highlighted	with	bold	frame.	
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Feature	Attributes	
As	the	correlations	used	to	evaluate	the	CCEAs	was	derived	by	use	of	one	feature	at	the	
time,	attributes	of	features	individually	were	revealed.	Examples	of	such	attributes	are	
average	classification	accuracy	and	classification	accuracy	variance.	These	two	attributes	are	
illustrated	in	Figure	13	and	Figure	14	for	IM	and	SM	data	respectively.	Figure	13	shows	the	5	
features	resulting	in	the	highest	and	lowest	average	classification	accuracy	for	classifiers	
separately.	

	
Figure	13	High	and	Low	performing	features	for	the	Individual	Movements	data		

Ellipses	representing	clusters	for	features	in	classification	accuracy	against	Separability	Index	plots	for	results	using	the	
individual	movements	data	set.	The	Separability	Index	Distance	Definition	is	Modified	Mahalanobis.	The	ellipses	are	
centered	around	the	means	of	the	feature	clusters	and	constructed	according	to	there	covariance	matrix.	Every	inset	
includes	the	features	with	the	top	5	and	bottom	5	average	classification	accuracies	for	the	classifier	stated	in	the	plot.	The	
ellipses	are	color	coded	by	red	and	blue	color	for	low	and	high	average	classification	accuracy	respectively.	Classifiers	were	
used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	(OVO).	
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Figure	14	High	and	Low	performing	feature	algorithms	for	the	Simultaneous	Movements	data		

Ellipses	representing	clusters	for	features	in	a	classification	accuracy	against	Separability	Index	plots	for	result	using	
simultaneous	movements	data	set.	The	Separability	Index	Distance	Definition	is	Modified	Mahalanobis.	The	ellipses	are	
centered	around	the	means	of	the	feature	clusters	and	constructed	according	to	there	covariance	matrix.	Every	inset	
includes	the	feature	algorithms	with	the	top	5	and	bottom	5	average	classification	accuracies	for	the	classifier	stated	in	the	
plot.	The	ellipses	are	color	coded	by	red	and	blue	color	for	low	and	high	average	classification	accuracy	respectively.	
Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	
(OVO).	
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One	attribute	that	was	observed	to	highly	influencing	the	CCEAs	correlation	with	
classification	accuracy	was	channel	correlation,	i.e.	correlation	between	feature	sequences	
extracted	from	the	channels	separately	using	only	the	feature	considered.	To	illustrate	this	
attribute,	average	determinants	of	the	channel	correlation	matrices	over	all	subjects	for	the	
different	features	were	extracted	from	SM	data	and	shown	in	the	bar	diagram	in	Figure	15.		

	
Figure	15	Channel	disassociation	for	features	individually	

Bar	diagram	showing	the	determinant	of	the	correlation	matrixes	for	sets	of	feature	sequences	were	one	feature	were	
extracted	from	all	channels.	The	values	are	averages	over	all	subjects	in	the	simultaneous	movement	data	set.	The	feature	
algorithm	used	is	stated	at	the	horizontal	axis.	A	high	value	means	low	correlation	between	channels	for	the	specific	feature.	
The	features	are	divided	into	two	groups	depending	on	there	channel	correlation.	Red	means	high	correlation,	while	blue	
means	low.	
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The	features	marked	by	red	color	has	low	average	correlation	matrix	determinants,	which	
means	high	correlation	between	channels,	while	the	blue	color	represents	features	of	low	
channel	correlation.	Figure	16	shows	how	the	two	groups	of	features,	red	and	blue	from	
Figure	15,	cluster	differently	in	classification	accuracy	against	CCE	plots.		

	
Figure	16	Channel	correlation	dependency	for	different	Classification	Complexity	Estimating	Algorithms		

Illustration	of	how		the	two	feature	groups	in	Figure	15	cluster	in	classification	accuracy	against	Classification	Complexity	
Estimate	plots.	The	red	and	blue	group	result	in	high	and	low	channel	correlation	respectively.	Insets	in	the	same	row	show	
result	from	the	same	Classification	Complexity	Estimating	Algorithm	and	insets	in	the	same	column	from	the	same	classifier.	
Classifiers	were	used	in	the	conventional	“single”	topology,	aside	of	LDA	which	was	used	in	“single”	and	“One-Vs-One”	
(OVO).	

The	blue	group	has	similarly	dependency	on	classification	accuracy	for	the	three	classifiers,	
while	the	red	clearly	varies	between	them.		
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Dimensionality	Dependency	
The	number	of	dimensions	of	a	classification	task	increase	as	the	number	of	channels	and/or	

features	increase.	Dimensionality’s	influence	on	the	correlation	with	classification	accuracy	

is	different	for	different	CCEAs.	Figure	17	shows	how	CCE	against	classification	accuracy	

clusters	shift	as	the	dimensionality	change	for	the	CCEAs	earlier	shown	to	be	relevant	for	

classification	accuracy	prediction.	

	
Figure	17	Dimensionality	dependency	for	different	Classification	Complexity	Estimating	Algorithms	

Surfaces	representing	clusters	in	MLP	classification	accuracy	against	Classification	Complexity	Estimates	plots.	The	
classification	dimensionalities	of	the	clusters	are	color	coded	and	given	in	the	legends.	The	different	Insets	shows	the	
dimensionality	dependency	for	different	Classification	Complexity	Estimating	Algorithms.		

Both	Bhattacharyyas	Distance	and	Modified	Mahalanobis	seem	to	have	offset	between	the	

clusters	of	different	classification	dimensionality,	while	Hellingers	Distance’s	dimensionality	

dependency	seem	more	complex.	Corresponding	clusters	for	NNS	seem	to	change	more	

depending	on	the	number	of	features	then	number	of	channels,	but	seems	less	influenced	

by	dimensionality	compared	to	the	other	CCEAs.		

To	compensation	for	the	dimensionality	dependency	of	Modified	Mahalanobis	and	
Bhattacharyyas	Distance,	average	offsets	for	the	dimensionalities	p	=	2,3,…,128	were	used.	
The	values	represent	the	average	change	in	CCE	when	going	from	the	previous	

dimensionality	(p-1)	to	the	considered	dimensionality	(p).	The	average	offsets	were	obtained	

after	100000	repeated	calculations	of	Modified	Mahalanobis	and	Bhattacharyyas	Distance	
for	every	p,	using	random	feature	vectors	with	members	from	a	0	to	1	uniform	distribution.	

The	results	are	plotted	against	p	in	Figure	18,	and	Figure	19	shows	how	the	distributions	in	
Figure	17	align	as	they	are	compensated.		
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Figure	18	General	increase	of	output	due	to	increased	dimensionality	

The	general	increment	of	Bhattacharyyas	Distance	(left	inset)	and	Modified	Mahalanobis	(right	inset)	do	to	increment	in	
dimensionality.	The	general	increment	for	one	dimensionality	is	its	average	value	minus	the	average	value	of	the	directly	
prior	dimensionality	after	100000	repeated	calculations	with	0	-	1	uniform	distributed	random	inputs.		

	
Figure	19	Cluster	alignment	due	to	compensation	for	Classification	Dimensionality	dependency	

Surfaces	representing	clusters	in	MLP	classification	accuracy	against	Classification	Complexity	Estimates	plots	that	are	
compensated	for	dimensionality	dependency.	Classification	dimensionality	of	the	clusters	are	color	coded	and	given	in	the	
legends	as	number	of	features	and	channels.	
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Discussion	
Offline	Results	
Separability	index	
Modified	Mahalanobis	was	 the	Distance	Definition	 that	most	 correlated	with	 classification	
accuracy	(Table	3).	However,	the	Distance	Definitions	based	on	Bhattacharyyas	Coefficient,	
being	Bhattacharyyas	Distance	and	Hellingers	Distance,	had	a	higher	correlation	with	MLP’s	
classification	 accuracy.	 In	 the	 section	 Feature	 Attributes,	 it	 is	 shown	 that	 Bhattacharyyas	
Distance	is	compensating	for	the	change	in	dependency	to	MLP	classification	accuracy	caused	
by	input	correlation	that	is	found	in	the	other	CCEAs.	It	should	therefore	be	a	more	adequate	
Distance	Definition	for	estimation	of	MLP	classification	complexity.	However,	as	features	are	
combined	 into	 sets,	 the	 feature	 correlation	 tend	 to	decrease	as	 larger	 feature	 vectors	 are	
formed	using	multiple	features.	This	is	probably	a	reason	for	the	absence	of	significantly	higher	
classification	accuracy	for	Bhattacharyyas	Distance	(Figure	9).	
Nearest	Neighbor	Separability	
NNS	has	high	correlation	with	classification	accuracy	for	all	classifiers,	as	shown	in	Table	4.	
Figure	10	shows	that	the	best	sets	corresponding	to	NNS	perform	higher	overall	classification	
accuracy	then	both	the	SI	best	sets	and	the	reference	sets.	The	big	benefit	of	NNS	is	that	it	
does	not	assume	normality	of	the	distribution	which	makes	it	more	general.	There	is,	
however,	a	dependency	to	input	correlation	as	can	be	seen	in	Figure	16,	but	just	as	for	
Modified	Mahalanobis	this	influence	will	decrease	as	features	are	combined	into	sets	and	
input	correlation	decrease.	
The	drawback	of	NNS	compared	to	SI	is	that	it	is	more	computationally	demanding.	As	
implemented	for	this	study,	the	computation	time	for	NNS	using	two	featuers	is	
approximately	20	and	16	times	longer	than	for	SI	with	Modified	Mahalanobis	as	Distance	
Definition	using	the	IM	and	SM	data	respectively.	
Purity	and	Repeatability	Index	
Purity	and	RI	does	not	show	as	high	correlation	with	with	classification	accuracy	as	the	other	
CCEAs	evaluated	in	this	study	and	are	therefore	not	included	in	the	feature	set	experiment.	
However,	the	correlation	for	RI	average	result	is	relatively	high	and	positive.	Interesting	is	
that	RI	measures	the	inconsistence	during	recording.	Higher	RI	means	larger	swifts	in	feature	
space	between	recording	repetitions.	As	this	was	expected	to	limit	the	classifiers	it	was	also	
expected	that	the	correlation	with	classification	accuracy	would	be	negative.		
Real-Time	
The	statistically	significant	correlations	with	Completion	Time	in	Figure	12	argues	that	both	
NNS	and	SI	are	relevant	for	prediction	of	performance	in	real-time.	However,	SI	with	
Modified	Mahalanobis	as	Distance	Definition	yield	higher	correlation	with	Completion	Time	
than	NNS,	while	the	offline	tests	show	that	the	NNS	best	sets	are	performing	with	higher	
classification	accuracy	for	both	MLP	and	LDA	also	represented	in	the	real-time	test.	The	
parametric	models	of	the	distributions	used	for	SI	are	probably	more	robust	to	changes	
present	in	a	real-time	situation,	similar	to	what	is	shown	for	LDA	,	also	dependent	on	the	
assumption	of	normality	[28].	
We	expected	consistent	within-class	distribution	in	feature	space	as	represented	by	RI	to	be	
beneficial	in	the	real-time	tests,	but	the	low	correlation	with	Completion	Time	in	Figure	12	
does	not	confirmed	that	hypothesis.	
Even	though	correlations	between	the	CCEAs	and	the	Completion	Time	are	significant	for	
many	CCEAs	the	correlations	with	offline	accuracy	are	clearly	higher.	The	complexity	of	real-
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time	testing	is	illustrated	in	Figure	20	where	classifier	training	data	is	compared	to	
corresponding	real-time	data	for	one	movement	per	inset.		

	
Figure	20	Real-time	Classification	Complexity	illustration	

Scatter	plots	of	the	classifier	training	data	together	the	corresponding	real-time	test	data.	The	inset	to	the	left	represents	
the	movement	with	the	highest	average	completion	time	of	the	subject	with	the	overall	highest	average	completion	time.	
The	inset	to	the	right	represents	the	movement	with	the	lowest	average	completion	time	of	the	subject	with	the	overall	
lowest	average	completion	time.	The	plots	also	include	the	movement	with	the	lowest	Modified	Mahalanobis	to	the	
movement	being	considered.	The	two	dimensions	that	are	used	to	plot	the	data	were	selected	from	the	16	dimensions	of	the	
classification	task	so	that	the	Modified	Mahalanobis	between	the	training	data	and	the	real-time	data	was	maximized.		

The	distribution	clearly	shifts	between	the	time	when	training	data	was	recorded	and	the	
time	when	the	real-time	test	was	executed.		
Dimensionality,	Channel	Correlation	Dependency	and	Feature	Attributes.	
For	a	CCEA	to	be	useful	in	a	channel	or	feature	selection	application	where	sets	of	different	
numbers	of	members	will	be	compared,	the	dimensionality	dependency	presented	in	the	
result	most	be	considered.	The	relatively	low	dependency	of	NNS	and	SI	using	Modified	
Mahalanobis	gives	them	an	advantage	in	such	applications.	Ways	to	compensate	for	
dimensionality	dependency,	as	such	suggested	using	common	offsets	derived	by	repeated	
calculations	with	random	inputs,	would	solve	the	problem.	However,	there	is	a	need	for	
further	investigation	to	enable	reliable	compensation.	The	reason	for	this	dependency	is	still	
unknown	to	the	authors.	
The	change	in	dependency	between	CCEs	and	classification	accuracy	due	to	channel	
correlation	of	the	features	presented	in	the	Channel	Correlation	Dependency	section	reveals	
some	interesting	attributes	of	the	classifiers.	Figure	16	shows	that	features	with	high	
channel	correlation	result	in	higher	average	classification	accuracy	for	MLP	compared	to	
LDA,	but	LDA	used	in	a	OVO	topology	is	less	influenced	by	the	feature	correlation.	MLP	uses	
the	redundant	information	in	the	features	more	efficient	than	what	is	observed	for	LDA,	
which	suggests	that	redundancy	reduction	is	of	higher	importance	when	selecting	both	
channels	and	features	for	a	LDA	application.	
The	feature	attributes	emphasized	in	Figure	13	and	Figure	14	provide	information	on	the	
performance	of	the	features	in	different	setups.	The	variation	in	the	top	5	features	shows	
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how	dependent	the	features	performance	is	to	others	conditions	of	the	classification	task,	
which	emphasizes	the	importance	of	dynamic	feature	selection	methods	for	MPR.	
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Conclusion	
This	study	compared	algorithms	that	estimates	the	classification	complexity	of	MPR.	Two	
such	algorithms,	Separability	Index	(SI)	and	Nearest	Neighbors	Separability	(NNS),	were	
found	to	yield	high	correlation	with	classification	accuracy.	There	adequacy	for	MPR	was	
further	emphasized	by	the	high	classification	accuracy	yielded	by	the	feature	sets	selected	
using	the	two	algorithms.	SI	was	evaluated	using	different	Distance	Definitions,	from	which		
best	performance	was	achieved	using	a	modified	version	of	the	Mahalanobis	Distance.	
Overall,	the	offline	results	indicated	that	NNS	is	a	more	stable	CCEA,	while	SI	is	less	
demanding	to	compute.	In	addition,	feature	correlation	and	dimensionality	dependency	
were	found	to	influence	the	correlation	between	CCEs	and	classification	accuracy.	
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