
Centralized MPC for Autonomous Intersection Crossing

Lea Riegger, Markus Carlander, Niklas Lidander, Nikolce Murgovski, Jonas Sjöberg

Abstract— This paper develops a method for a safe and
autonomous intersection crossing. A centralized system con-
trols autonomous vehicles within a certain surrounding of
the intersection and generates optimized trajectories for all
vehicles in the area. A recently proposed design approach,
[10], where this problem is expressed as a convex optimization
problem using space sampling instead of time sampling, is
formulated as a MPC problem solved by a QP algorithms so
that it can be executed in real time. The MPC controller is
then integrated in CarMaker using Matlab/Simulink so that
the controller can be validated against the advanced vehicle
models and sensor models available in CarMaker. Preliminary
results of this validation are presented. Also, a method is
designed to obtain time gaps between the vehicles to prevent
the optimization problem to become infeasible when sensors
give noisy measurements.

I. INTRODUCTION

Around the world, traffic accidents that are related to
intersections occur all too often. Compiled statistic from
several European Countries shows that 43 % of all road
injury accidents can be related to intersections [1]. Statistic
conducted in the USA indicates similar numbers [2]. The
actual number of related traffic accidents in Sweden is
slightly less in total. Of all reported accidents in the year
2014 in Sweden, 24 % are intersection related. Of those, 91 %
led to severe person injuries [3]. As the statistics show, inter-
sections lead to high risk for accidents. Even though the most
dangerous intersections are regulated by traffic lights, signs
and road-markings, accidents occur still very frequently. On
the contrary, improving the safety at intersection crossing
by, e.g., installing traffic lights, may also come at a price in
today’s society since it limits the traffic flow. This causes
bottlenecks in the traffic rhythm which not only wastes
a lot of time for travelers but also leads to environment
pollution caused by unnecessary accelerations/decelerations
and engine idling operation.

Today’s vehicles are trending to become more and more
autonomous. Exclusive benefits as adaptive cruise control,
automatic lane change maneuvers, parking assistance are
available on the market today. Statistics from USA show
that about 96 % of all intersection related accidents are
attributed to drivers [2]. If intersections would be controlled
by an autonomous cooperative intersection algorithm that
can optimize the crossing sequence for all nearby vehicles,

This work was supported by the European Commission Seventh Frame-
work Program under the project AdaptIVe, grant agreement number 610428.

This work has been performed by the first three authors as a stu-
dent project supervised by the last two authors, Nikolce Murgovski and
Jonas Sjöberg who are with the Department of Signals and Systems,
Chalmers University of Technology, Sweden. {nikolce.murgovski,
jonas.sjoberg}@chalmers.se.

the intersection should be made more safe since no human
factor would cause accidents. The intersection should also be
more efficient in both terms, time and energy consumption,
since the algorithm would decide the crossing order and vehi-
cles’ speed for maximum efficiency. Aspects as minimizing
deceleration, respectively acceleration, as well as reducing
the total time for the intersection crossing could be taken
into account for computing the optimal crossing sequence.
It would also be possible to set different priority orders
for different types of vehicles, for example according to
their fuel consumption and performance. Emergency vehicles
could be given precedence to enter the intersection on call-
out.

In this paper, a Model Predictive Controller (MPC) is
designed for a centralized system which takes control over
autonomous vehicles within a certain surrounding of the
intersection. The vehicles are assumed to drive fully au-
tonomously. Among other recent work some have already
exploited the idea of using different MPC implementations
[4], [5], [6], [7], [8], [9], [10]. In [6] for example, the solution
is approximated by a centralized, finite time optimal control
problem. In [7], a decentralized approach based on sub-
optimal decision-making heuristics is used.

The general optimization algorithm for intersection cross-
ing in this paper is based on the modeling approach of [10]
where the problem is formulated in space coordinates and
the inverse of speed is used as a state variable. For a given
crossing sequence, the approach allows the problem to be
formulated as a convex program that optimizes vehicles’
speed and prevents collision in a smooth way.

This paper has three main contributions. First, an MPC,
based on a point mass model, is designed rested on the
convex modeling proposed by [10]. The MPC, expressed as
an quadratic program, (QP), generates optimized trajectories
for all vehicles in the controlled area, such that a cost
function is minimized and the constraints are satisfied. The
vehicles may differ in speed, acceleration and braking capa-
bilities. Second, to validate the controller based on the point
mass model, the MPC is implemented in Matlab/Simulink
and the simulation tool CarMaker, which provides advanced
vehicle models and sensor models. Preliminary results with
this simulation environment are presented where also the
computational aspects of the algorithm are illustrated. Third,
when the control is based on noisy sensor signals, it may
happen that the trajectory optimization, which is repeated
each sampling instant, becomes infeasible. This is solved
by introducing a penalized time gap in the optimization
criterion.

The paper is organized as follows: Section II gives an

overview of the convex problem formulation in space co-
ordinates. In Section III, an MPC is designed. Section IV
provides an MPC simulation in CarMaker running under
Matlab/Simulink. Section V shows a case study and investi-
gates the controller efficiency in the simulation environment.
Section VI closes the paper with final conclusions.

II. PROBLEM FORMULATION

This section presents the modeling approach proposed by
[10] and formulates the autonomous intersection crossing as
a convex optimization problem.

A. Assumptions

Considering Nv autonomous vehicles in a surrounding of
an intersection, each with a predefined path to follow, it is
assumed that for each vehicle i = 1, ...Nv , the acceleration
along its path can be varied. The vehicle dynamics in the
control model are simplified to a point mass model.

The presented intersection crossing scenario is limited to
one vehicle per lane which means that the scenario where
vehicles are following each other on the same lane is not
studied here. Nevertheless, the controller is designed in such
a way that an adaptation to enable this is possible.

B. Problem statement

For a safe intersection crossing, autonomous vehicles
within a certain surrounding of the intersection shall be
controlled by a centralized system. An illustration of an
intersection is shown in Fig. 1. The red color indicates the
critical set, where more than one vehicle should never reside,
due to safety reasons. The yellow color shows the enlarged
set, which will be discussed later, in Section III-B. The light
blue color indicates the start and end of the control region.
The centralized system controls only vehicles in this region.
The position, where vehicle k enters respectively exits the
critical set, is called Lk respectively Hk. The order in which
the vehicles cross the intersection is called crossing sequence
and the matrix which contains all the possible crossing
sequences is called permutation matrix Ω.

The requirement to allow only one car in the critical
set is unnecessary conservative. For example, two vehicles
traveling in opposite directions could obviously pass the
crossing at the same time. However, this algorithm does not
permit it, a relaxation would be needed to allow this, but this
is not done in this contribution.

C. Convex problem statement

To formulate the optimization problem in a convex form,
the problem is formulated in space coordinates, rather than
time, according to [10]. With the spatial coordinate p, the
linear state space model

κ′i(p) =

(
0 1
0 0

)
︸ ︷︷ ︸

A

κi(p) +

(
0
1

)
︸︷︷︸
B

ui(p) (1)

is used to model each vehicle i, where κi =
(
ti(p) zi(p)

)T
is the state vector and κ′i = dκ/dp is the derivative with

Fig. 1. Illustration of an intersection showing the critical set (red), the
enlarged set (yellow) and the control region (light blue).

respect to the spatial distance p. The slowness of the system
is indicated by the lethargy zi(p) = 1/vi(p), where vi(p) is
the vehicle velocity. The time needed to reach position p is
ti(p). Input ui(p) = z′i(p) is the spatial derivative of zi(p).

1) Cost function: The cumulative cost function is the sum
of cost functions for each vehicle i

min
ui(p)

Nv∑
i=1

Ji(κi(p), ui(p), u
′
i(p), κi(pif)), (2)

where pif is the final position after leaving the intersection.
The cost function for each vehicle i

Ji = Ji1 + Ji2 + Ji3 (3)

consists of three quadratic convex functions. The first term

Ji1 = wi1v̄
3
ir

∫ pif

0

(
zi(p)−

1

vir(p)

)2

dp (4a)

penalizes the deviation from the reference velocity, where
wij [j = 1 in (4a)] are weighting factors. The mean of the
reference velocity vir(p) for each car i is v̄ir. The terms
Ji2, Ji3 with

Ji2 = wi2v̄
5
ir

∫ pif

0

u2i (p)dp, (4b)

Ji3 = wi3v̄
7
ir

∫ pif

0

u′2i (p)dp (4c)

penalize high longitudinal acceleration and jerk to guarantee
a comfortable drive and limited actuator usage. The uncon-
ventionally appearance of Ji2 and Ji3 with powers of the
mean velocity is due to that the problem is described in space
coordinates. In [10], it is shown how these are obtained by
direct translation of quadratic penalties from time to space
domain.

2) Constraints: In addition to the equality constraint (1),
the problem includes inequality constraints on the states κi
and the input ui as well as initial and final state constraints

κ′i(p) = Aκi(p) +Bui(p) (5a)
κi(p) ∈ [κimin(p), κimax(p)] (5b)
ui(p) ∈ [uimin(p, zi(p)), uimax(p, zi(p))] (5c)

κi(0) = κi0 =
(
0 1/vi0

)T
(5d)

κi(pif) = κif =
(
free 1/vif

)T
, (5e)

where the limits (5c) are linear functions of zi and represent
a linearized inner approximation of corresponding constant
acceleration limits in the time domain formulation [10].
To avoid collisions, a final constraint is needed, which
guarantees that a vehicle can enter a certain critical set at
the center of the intersection, only when the previous vehicle
has left the critical set, i.e.

tk(Hk) ≤ tl(Ll), k = Ωm,n, l = Ωm,n+1,

n = 1, . . . , Nv − 1,
(5f)

where k and l are indices of consecutive vehicles in a given
crossing sequence m of the permutation matrix Ω, which
contains all possible crossing sequences. Position Hk is the
point where vehicle k exits the critical set and Ll is the
entry point for vehicle l. For a given crossing sequence, the
optimization problem is a convex quadratic program (QP).

More detailed explanations about the convex modeling of
the problem can be found in [10].

III. MPC DESIGN

This section presents the optimization problem in a dis-
crete space coordinate, proposes and extended cost function
and rewrites the problem as a standard QP suitable for MPC
implementation.

A. Discrete state space model

In order to implement the controller in Matlab, a discrete
version of the model (1) with a sampling interval ds is
derived with Forward Euler approximation. The result is the
following discrete state space representation

κi(p+ 1) = Adκi(p) +Bdui(p), (6)

with the discrete matrices expressed as

Ad = I2 + dsA =

(
1 ds
0 1

)
,

Bd = dsB =

(
0
ds

)
.

(7)

In order to guarantee stability of the discretized state space
representation, the discretization step must fulfill the criterion
|I2 + dsA| ≤ 1. Since the eigenvalues of the discrete state
space representation λ1,2 = 1 are mapped on the border of
the unit circle, stability is guaranteed.

B. Extended cost function to impose time gap

The constraint (5f) prevents the vehicles to collide, but it
also allows several vehicles to be on the borders, or very
close to the borders of the opposite ends of the critical set
[when constraint (5f) is active]. This can lead to an infeasible
solution in the next MPC update, in the case when noise
and model uncertainty initialize the problem with a slight
violation of (5f). Hence, constraint (5f) is modified so that
there is some margin between the vehicles. This is done by
introducing a slack variable sj for each consecutive vehicle
pair inside the control region. The variable sj expresses
the time difference between the first vehicle leaving the
intersection and the second vehicle entering the intersection.
By defining ∆t as the desired time difference, the cost
function (2) can be extended to

min
ui,sj

Nv∑
i=1

Ji(·) +

Nv−1∑
j=1

wj max(0,∆t− sj)2 (8a)

and the constraint (5f) can be replaced by

sj = tl(Ll)− tk(Hk), sj ≥ 0. (8b)

The maximization in (8a) is a convex function of sj and
∆t, where tl(Ll) − tk(Hk) < ∆t. Vehicle pairs in which
the vehicles are far apart are not forced to have a predefined
time difference in the crossing. The extended cost function
(8a) together with constraint (8b) effectively introduces an
additional enlarged region, which is illustrated in Fig. 1. In
comparison to the critical set, multiple vehicles may reside
within the enlarged region, as long as they are outside the
critical set.

Further, the min/max function in (8a) can be written
without the max term as

min
sj

∑
j=1

wjq
2
j (9a)

subject to: qj ≥ ∆t− sj , qj ≥ 0, (9b)

where qj are additional optimization variables.

C. Transformation to a standard QP

In this section, the problem is transformed into the stan-
dard QP form

min
x

1

2
xTHx+ fTx (10a)

subject to: Aeqx = beq (10b)
Ainx ≤ bin, (10c)

where x is the vector of optimization variables, H the
Hessian matrix and f the remaining linear terms in the
objective. The constraints are also transformed to fit the
formulation in (10b)-(10c).

1) Cost function: The cost function (3) is transformed
into a quadratic form for the MPC by writing the vector
x =

(
x1 . . . xNv

)T
in (10a) as

xi = (Ki Ui U
′
i Sj Qj)

T (11)

where Ki = [κi(1), . . . , κi(N)]T , Ui = [ui(0), . . . , ui(N −
1)]T , U ′i = [u′i(0), . . . , u′i(N − 1)]T , Sj =
[sj(1), . . . , sj(N)]T , Qj = [qj(1), . . . , qj(N)]T for
each vehicle i and vehicle pair j in the control region. The
vector xi involves the states, the control input, the derivative
of the control input and the slack variable. The prediction
and control horizon are both equal to N. The Hessian matrix
Hi for each vehicle i results in

Hi = 2

Qi1 0 0 0 0
0 Qi2 0 0 0
0 0 Qi3 0 0
0 0 0 0 0
0 0 0 0 Qi4

 . (12)

The matrices Qi1, Qi2, Qi3 and the scalar Qi4 are equal to

Qi1 = wi1v̄
3
irC

TCIN , (13a)

Qi2 = wi2v̄
5
irIN , (13b)

Qi3 = wi3v̄
7
irIN , (13c)

Qi4 = wj , (13d)

where IN is the identity matrix with N rows and C = [0 1].
The fi vector containing the remaining non-quadratic terms
for each vehicle i is

fTi = −2wi1v̄
3
ir

1

vir(p)

(
C . . . C 0 . . . 0

)
. (14)

2) Constraints: The state constraint of the model de-
scribed in (5a) has to be reformulated in a matrix form as
shown in (10b) with the discrete model described in (7).
Furthermore, the constraints (5b)-(5c) limiting the state vari-
ables and the acceleration as well as the collision avoidance
constraint (5f) can be written into new inequality constraints
(10c). The two constraints (5b)-(5c) have to be split up into
two constraints in order to be implemented in a matrix form.

In order to control Nv vehicles, the cost function (10a)
needs to be extended. The new vector x and Hessian matrix
for Nv cars are then according to (10a)

x =
(
xT1:Nv

)T
, (15)

H = diag
(
H1:Nv

)
, (16)

and the vector f is changed to

fT =
(
fT1:Nv

)
. (17)

Analogously, the constraints also change in the same
manner. Using the vector x (15), the equality and inequality
constraints for all Nv vehicles can be written as

AT
eq =

(
AT

eq,1:Nv

)
, (18)

bTeq =
(
bTeq,1:Nv

)
, (19)

AT
in =

(
AT

in,1:Nv

)
, (20)

bTin =
(
bTin,1:Nv

)
. (21)

D. Control area and optimization horizon

Whether a vehicle is included in the MPC computation
depends on its distance to the intersection. The control
area of the centralized controller is defined for a certain
surrounding of the intersection. The vehicle speed at the
moment of entering the control area is chosen as a reference.
The control area is re-scanned in every time step searching
for new arriving or leaving cars. The controller re-optimizes
in every time step and takes into account only the vehicles
in the control area.

Since there is no point in controlling the vehicles after
they have passed the control area, the optimization horizon
Ni for each vehicle i = 1, . . . , Nv , is not moving along the
vehicles as they advance. Instead the horizon is shrinking as
the cars are progressing through the control area. Thus, the
computation load of the MPC algorithm is decreasing as con-
trolled vehicles are approaching the end of the intersection
and it is increasing as new vehicles enter the intersection.

IV. SIMULATION

In this section the MPC is applied to an advanced vehicle
model, with the focus on connecting the MPC developed in
Matlab/Simulink to a traffic model and an advanced vehicle
model developed in CarMaker.

The MPC is implemented in Simulink as a Matlab Func-
tion block, see Fig. 2. The simulation tool IPG CarMaker
provides a detailed vehicle model and serves as a simulation
environment to design a traffic model, containing an intersec-
tion and traffic flow. Furthermore, CarMaker provides a video
animation by the plug in program IPG Movie for visualizing
the simulation results. This is used as an additional tool for
validation of collision avoidance and representation of the
simulation results.

A. Restrictions of CarMaker 5.0.2

In CarMaker 5.0.2, only one host car can be simulated as
an advanced car model. For other cars, only their position
can be controlled. This means that the validation is only
done with respect to one (the simulated) car, the others can
be placed exactly where the MPC controller commands them
to be. Nevertheless, these cars have the same dynamics as
the point mass model used for the controller design.

B. Simulation environment design

A CarMaker road is constructed from start to stop by a list
of road segments, each one only connected with the previous
and following segment [11]. In this paper, for simplicity, the
intersection is constructed by making a turn and letting the
road cross itself (see Fig. 3). This causes a limitation to the
movements of the vehicles because the motion of the traffic
objects is connected to the definition of the road. Thus, the
traffic objects have to pass straight through the intersection.
A turn in such intersection is not possible.

After the creation of the intersection, traffic is added to the
model. For each vehicle, the host car as well as the traffic
objects, the vehicle type, the reference starting point and
reference speed are preset. The host car starts with a zero

Fig. 2. Implementation of the MPC in Simulink combined with CarMaker’s Simulink environment. Green color indicates CarMaker’s environment and
orange color indicates signals taken from CarMaker. The MPC is added in between the two green boxes, where signals, e.g brake and gas are ’hijacked’
from CarMaker and used in the MPC algorithm. The output of the MPC with the manipulated signals are afterward reconnected to CarMaker.

velocity and the road model is designed to allow the host
vehicle reach its desired speed before entering the controlled
intersection area.

C. Including the MPC into CarMaker

The CarMaker simulation model in Simulink consists
of a chain of individual subsystem blocks. These blocks
cannot be removed, but their functionality can be changed
by overwriting their input or output signals.

The MPC is included by replacing the driver model in
CarMaker so that it gives the gas and brake signals in the
Vehicle Control block in Simulink as seen in Fig. 2, where the
preset desired speed is overwritten by the calculated values
from the MPC algorithm. The gas and brake signals from the
driver model are only used for the vehicle with dynamics.
For the other vehicles the calculated control signals overwrite
directly the acceleration signal without a conversion to gas
and brake signals.

V. SIMULATION EVALUATION WITH THREE VEHICLES

In the selected case study, the presented MPC is tested for
three cars approaching an intersection as shown in Fig. 3. Car
1 is simulated using the advanced model in CarMaker, the
other two are simulated with the same point mass model as in
the MPC. In Table I, the parameters for the cars i = 1, 2, 3
can be found. The speed and acceleration limits as well as
the weights for the cost function are selected identically for
all three vehicles. The desired crossing sequence is chosen
to 1, 2, 3. This means, for space reasons, that the search
over possible crossing sequences, one of the motivations to
formulate the problem as an efficient QP, is skipped. The
vehicles start with different initial speed and distances from
the intersection. Without a controller, car 1 and 2 would

Fig. 3. Created intersection crossing in CarMaker environment where the
three cars are approaching the intersection.

TABLE I
PROBLEM DATA OF THE CASE STUDY.

Parameter Values(
v1r v2r v3r

) (
47 km/h 48 km/h 50 km/h

)(
vimin vimax

) (
30 km/h 90 km/h

)(
aimin aimax

) (
−3 m/s2 3 m/s2

)(
wi1 wi2 wi3 wi4

) (
1 1100 23 10000

)
∆t 0.6 s
ds 4 m

collide in the intersection1. The MPC takes control over a
vehicle when it has entered the control distance of the inter-
section, which is 60 m. The critical set, where no collisions
are allowed, is the 15·15 m2 intersection crossing area. The
vehicles do not turn left or right in the intersection, instead
they only drive straight forward. The initial optimization

1A video animation showing that vehicles would collide if not controlled,
is provided at https://youtu.be/LKcXflY6Mtw.

https://youtu.be/LKcXflY6Mtw

horizon for every car entering the control area is N=135
steps, with a sampling interval of 1 m.

Data gathered from the CarMaker vehicle sensors are
shown in the top three plots of Fig. 4. When vehicle 1 comes
closer to the intersection it can be observed that it starts to
accelerate and vehicle 2 starts to decelerate in order to avoid
a collision. The third vehicle slows down to avoid a collision
between the second and third vehicle. Furthermore, by look-
ing at the last plot, it is evident that the MPC controller
efficiently prohibits collisions between the vehicles2. An
upward-pointing triangle depicts the time where the vehicle
is entering the intersection and a downward-pointing triangle
shows the time when it is leaving. Since there is no vertical
alignment among the triangles, there are no collisions.

16 18 20 22 24 26 28

-2

-1

0

1

2

 A
c

c
e
le

ra
ti

o
n

[m
/s

2
]

16 18 20 22 24 26 28

40

45

50

55

60

 V
e

lo
c

it
y

[K
m

/h
]

16 18 20 22 24 26 28

200

250

300

350

 P
o

s
it

io
n

[m
] Car 1

Car 2

Car 3

16 18 20 22 24 26 28

 Time [s]

0

0.02

0.04

0.06

 C
o

m
p

u
ta

ti
o

n
 T

im
e

[s
]

Fig. 4. Trajectories from the MPC controller. The upper three subplots
show velocity, acceleration and position for each vehicle. The very last plot
shows the computation time of the quadratic programming solver.

Compared to the solution presented in [10], the compu-
tation time for the convex problem is decreased by using
a QP solver instead of the generalized second order cone
program (SOCP) solver. It can be seen in the bottom plot
of Fig. 4 that in the worst case scenario, the problem can

2A video animation showing that the controller has prevented collision
can be found on https://youtu.be/VV36-eJ0tEw. In the video, it
can be observed that the cars drive in a smooth way following the given
crossing sequence and there is never more than one car in the intersection.

be solved in less than 0.05 seconds3. The figure also shows
that the computation time has an increasing trend, up to the
MPC update at about the 18th second, when all cars have
entered the control area. After this, the computation time has
a decreasing trend, since the prediction horizon is shrinking
for all the vehicles.

VI. CONCLUSIONS

This paper provides a centralized MPC for optimal control
of autonomous vehicles in the control area of an intersection.
The problem is formulated as a convex quadratic program
that can be solved efficiently. The controller is tested for an
advanced vehicle model using the simulation tool CarMaker.
The simulation results show that the test environment works
as intended, and the algorithm successfully avoids collisions
in the test example.

Hence, the test environment is ready to be used for more
advanced validation of the MPC algorithm. Sensor noise can
be included, and the parameters of the test situation can be
explored. Also, the simulation environment can be extended
for further validation tests, the road construction can be
improved to allow cars turning in the crossing, robustness
can be explored adding noise to the not simulated cars etc.
These, and further tasks are left for future studies.

REFERENCES

[1] M. A. Martinez. Accident causation and pre-accidental driving
situations. [Online]. Available: https://dspace.lboro.ac.uk/2134/8434,
2008

[2] National Highway Traffic Safety Administration. Crash factors
in intersection-related crashes: An on-scene perspective. [Online].
Available: http://www-nrd.nhtsa.dot.gov/Pubs/811366.pdf,2010

[3] Sveriges Officiella Statestik Trafik Analys. Vägtrafikskador 2014.
road traffic injuries 2014. [Online]. Available: http://www-nrd.nhtsa.
dot.gov/Pubs/811366.pdf

[4] K.-D. Kim, “Collision free autonomous ground traffic: A model
predictive control approach,” in ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), 2013, pp. 51–60.

[5] K.-D. Kim and P. Kumar, “An MPC-based approach to provable
system-wide safety and liveness of autonomous ground traffic,” IEEE
Transactions on Automatic Control, vol. 59, no. 12, pp. 3341–3356,
2014.

[6] R. Hult, G. R. de Campos, P. Falcone, and H. Wymeersch, “An approx-
imate solution to the optimal coordination problem for autonomous
vehicles at intersections,” in Proceedings of the American Control
Conference, 2015, pp. 763–768.

[7] G. R. de Campos, P. Falcone, and J. Sjöberg, “Autonomous cooper-
ative driving: A velocity-based negotiation approach for intersection
crossing,” in 16th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), Oct 2013, pp. 1456–1461.

[8] G. R. de Campos, P. Falcone, H. Wymeersch, R. Hult, and J. Sjöberg,
“Cooperative receding horizon conflict resolution at traffic intersec-
tions,” in IEEE 53rd Annual Conference on Decision and Control
(CDC), Dec 2014, pp. 2932–2937.

[9] L. Makarem and D. Gillet, “Model predictive coordination of au-
tonomous vehicles crossing intersections,” in 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013), Oct
2013, pp. 1799–1804.

[10] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex modeling of
conflict resolution at traffic intersections,” in Conference on Decision
and Control, Osaka, Japan, 2015.

[11] IPG CarMaker, User’s guide version 5.0.2. IPG Automotive, Karl-
sruhe, 2015.

3The Simulation was preformed on a computer with (Intel(R) Core(TM)
i7-3520M) processor and 8 GB RAM.

https://youtu.be/VV36-eJ0tEw
https://dspace.lboro.ac.uk/2134/8434, 2008
https://dspace.lboro.ac.uk/2134/8434, 2008
http://www-nrd.nhtsa.dot.gov/Pubs/811366.pdf, 2010
http://www-nrd.nhtsa.dot.gov/Pubs/811366.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811366.pdf

	Introduction
	Problem Formulation
	Assumptions
	Problem statement
	Convex problem statement
	Cost function
	Constraints

	MPC Design
	Discrete state space model
	Extended cost function to impose time gap
	Transformation to a standard QP
	Cost function
	Constraints

	Control area and optimization horizon

	Simulation
	Restrictions of CarMaker 5.0.2
	Simulation environment design
	Including the MPC into CarMaker

	Simulation evaluation with three vehicles
	Conclusions
	References

