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Variational Methods for Moments of Solutions to
Stochastic Differential Equations

Kristin Kirchner

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

Numerical methods for stochastic differential equations typically estimate
moments of the solution from sampled paths. Instead, we pursue the approach
proposed by A. Lang, S. Larsson, and Ch. Schwab1, who derived well-posed
deterministic, tensorized evolution equations for the second moment and the
covariance of the solution to a parabolic stochastic partial differential equation
driven by additive Wiener noise.

In Paper I we consider parabolic stochastic partial differential equations
with multiplicative Lévy noise of affine type. For the second moment of the mild
solution, a deterministic space-time variational problem is derived. It is posed
on projective and injective tensor product spaces as trial and test spaces. Well-
posedness is proven under appropriate assumptions on the noise term. From
these results, a deterministic equation for the covariance function is deduced.

These deterministic equations in variational form are used in Paper II to
derive numerical methods for approximating the first and second moment of
the solution to a stochastic ordinary differential equation driven by additive or
multiplicative Wiener noise. For the canonical examples with additive noise
(Ornstein–Uhlenbeck process) and multiplicative noise (geometric Brownian
motion) we first recall the variational problems satisfied by the first and the
second moments of the solution processes and discuss their well-posedness in
detail. For the considered examples, well-posedness beyond the assumptions
on the multiplicative noise term made in Paper I are proven. We propose
Petrov–Galerkin discretizations based on tensor product piecewise polynomials
and analyze their stability and convergence in the natural norms.

Keywords: Stochastic ordinary and partial differential equations, Additive
and multiplicative noise, Space-time variational problem, Hilbert tensor prod-
uct space, Projective and injective tensor product space, Petrov–Galerkin dis-
cretization.

1A. Lang, S. Larsson, and Ch. Schwab, Covariance structure of parabolic stochastic
partial differential equations, Stoch. PDE: Anal. Comp., 1(2013), pp. 351–364.
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plicative Lévy noise. Preprint, arXiv:1506.00624.

II Roman Andreev and Kristin Kirchner. Numerical methods for the
2nd moment of stochastic ODEs. Preprint, arXiv:1611.02164.

Publication not included in the thesis:

Kristin Kirchner, Karsten Urban, and Oliver Zeeb. Maxwell’s Equa-
tions for Conductors with Impedance Boundary Conditions: Discontinuous
Galerkin and Reduced Basis Methods. M2AN, Math. Model. Numer. Anal.,
50(6):1763–1787, 2016.

iii





Acknowledgments

For the constant support and his unique way of motivating me, whenever
it is necessary, I would like to express my gratitude to Stig Larsson. I would
like to thank Annika Lang for the careful reading of this thesis and her valuable
comments. I am very grateful to Sonja Cox for agreeing on review the thesis.

During the elaboration of this work many people inside and outside of
academia have supported me. I would like to thank Roman Andreev for the
collaboration on a common research project, for productive four weeks, while he
was visiting Chalmers, and for sharpening my way of expressing mathematics
in the sense of Karl R. Popper

Wer’s nicht einfach und klar sagen kann,
der soll schweigen und weiterarbeiten, bis er’s klar sagen kann.

Thanks are also due to my fellow Ph.D. students, colleagues, and friends
Adam A., Alexey L., Anna P., Claes A., Dmitry Z., Jonas W., and Tobias Ö.,
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Introduction

Many models in, e.g., finance, biology, physics, and social sciences are based
on ordinary or partial differential equations. In order to improve their appli-
cability to the reality, one has to take uncertainties into account. These un-
certainties can be related to the parameters, to the geometry of the physical
domain, to boundary or initial conditions, or to the source terms. In this thesis
we focus on the latter scenario. More precisely, we consider ordinary and par-
tial differential evolution equations driven by an additive or multiplicative noise
term. Under appropriate assumptions, existence and uniqueness of a solution to
such an equation is ensured. This solution is then a square-integrable stochastic
process with values in a certain state space. In particular, the finiteness of the
first and second moment is guaranteed. In applications, often not the solution
process itself, but only its moments are of interest. In the case, when the so-
lution process is Gaussian, its distribution is even completely characterized by
the first two moments.

The numerical approximation of moments of the solution process to a sto-
chastic differential equation is typically based on sampling methods such as
Monte Carlo. However, Monte Carlo methods are, in general, computationally
expensive due to the convergence order 1/2 of the Monte Carlo estimation and
the high cost for computing sample paths of solutions to stochastic differential
equations.

An alternative approach has been suggested in [11], where the first and sec-
ond moment of the solution process to a parabolic stochastic partial differential
equation driven by additive Wiener noise have been described as solutions to
deterministic evolution equations which can be formulated as well-posed linear
space-time variational problems. Hence, instead of estimating moments from
computationally expensive sample paths, one can apply numerical methods to
the deterministic variational problems satisfied by the first and second moment.
The main promise of this approach is in potential savings in computing time and
memory through space-time compressive schemes, e.g., using adaptive wavelet
methods or low-rank tensor approximations.

The first aim of this thesis is to extend the result of [11] to parabolic stochas-
tic partial differential equation driven by multiplicative Lévy noise in Paper I.

Afterwards, in Paper II, we focus on deriving numerical methods for solving
these variational problems in the case of stochastic ordinary differential equa-
tions driven by additive or multiplicative Wiener noise.
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Introduction

Throughout the following sections, let H and U be separable Hilbert spaces
over R with respect to the inner products (·, ·)H and (·, ·)U , respectively. On H
we denote the induced norm by ‖ · ‖H and similarly for U . If (E, ‖ · ‖E) is a
normed vector space, then S(E) := {x ∈ E : ‖x‖E = 1} denotes its unit sphere
and E′ its dual, i.e, the space of all linear continuous mappings from E to R.

1. Operator theory and tensor product spaces

In the following we provide the definitions and results from the theory of
operators and tensor product spaces which are needed for the derivation of the
deterministic equations in Paper I and II.

For this purpose, we first introduce the relevant operator classes in Subsec-
tion 1.1, where we focus particularly on the notion of Schatten class operators.
In Subsection 1.2 we present different notions of tensor product spaces and some
of their properties. The deterministic variational problems derived in Paper I
and II are posed on tensor products of vector-valued function spaces as trial and
test spaces. The vector spaces needed to define these trial and test spaces are
introduced in Subsections 1.3 and 1.4. Finally, in Subsection 1.5 we establish a
connection between the notion of Schatten class operators on the one hand and
tensor products of Bochner spaces on the other hand.

1.1. Special classes of bounded linear operators. In this subsection
we present different classes of linear operators which are of relevance for our
analysis. For a detailed overview of operator classes we refer to [4, 5].

1.1.1. Bounded operators. A linear operator T : U → H is called bounded
or continuous if it has a finite operator norm:

‖T‖L(U ;H) := sup
x∈S(U)

‖Tx‖H < +∞.

With the above norm, the space of all continuous linear operators from U to H
is a Banach space denoted by L(U ;H). We write L(U) whenever U = H.

1.1.2. Compact operators. An operator T : U → H is compact if the image
of any bounded set in U (or equivalently the closed unit ball in U) under T is
relatively compact in H, meaning that its closure is compact. We denote the
set of all compact operators mapping from U to H by K(U ;H) and use the
abbreviation K(U) if U = H.

Equivalently, cf. [21, §X.2], one can define the subspace K(U ;H) ⊂ L(U ;H)
as the closure of all finite-rank operators mapping from U to H, i.e., T : U → H
is compact if and only if there exists a sequence of finite-rank operators Tn ∈
L(U ;H) converging to T in the norm topology on L(U ;H):

dim Im(Tn) < +∞ ∀n ∈ N, lim
n→∞ ‖T − Tn‖L(U ;H) = 0.

In our analysis we use the latter characterization of compact operators.
We introduce the adjoint T ∗ : H → U of a linear operator T : U → H, i.e.,

(Tx, φ)H = (x, T ∗φ)U ∀x ∈ U, ∀φ ∈ H.

If U = H and T ∗ = T then T is called self-adjoint.
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Operator theory and tensor product spaces

Self-adjoint compact operators have real-valued spectra and they generate
orthonormal bases consisting of eigenvectors, see [5, Cor. X.3.5]. Since we refer
to this property several times, we summarize it in the following theorem.

Theorem 1.1 (Spectral theorem for self-adjoint compact operators). Let
T ∈ K(U) be self-adjoint. Then there exists an orthonormal basis {en}n∈N of U
and a real-valued sequence {γn}n∈N, which has 0 as its only accumulation point,
such that Ten = γnen for all n ∈ N.

1.1.3. Schatten class operators. A continuous linear operator T ∈ L(U ;H)
is called a Schatten class operator of p-th order or a p-Schatten class operator
for p ∈ [1,∞) if T has a finite p-Schatten norm:

‖T‖Lp(U ;H) :=

(∑
n∈N

sn(T )
p

)1/p

< +∞,

where

s1(T ) ≥ s2(T ) ≥ . . . ≥ sn(T ) ≥ . . . ≥ 0

are the singular values of T , i.e., the eigenvalues of the operator |T | := (T ∗T )1/2.
The space of all Schatten class operators of p-th order mapping from U to H
denoted by Lp(U ;H) is a Banach space with respect to ‖ · ‖Lp(U ;H). Again, we
use an abbreviation when U = H and write Lp(U) in this case. The Schatten
norm is monotone in p, i.e.,

‖T‖L1(U ;H) ≥ ‖T‖Lp(U ;H) ≥ ‖T‖Lp′ (U ;H) ≥ ‖T‖L(U ;H)

for 1 ≤ p ≤ p′ < +∞ and, moreover, every Schatten class operator is compact.
Therefore, the introduced operator spaces satisfy the following relation:

L1(U ;H) ⊂ Lp(U ;H) ⊂ Lp′(U ;H) ⊂ K(U ;H) ⊂ L(U ;H).

1.1.4. Trace class and Hilbert–Schmidt operators. Schatten class operators
of first order mapping from U into U are also called trace class operators. Their
name originates from the following fact: For T ∈ L1(U) the trace defined by

tr(T ) :=
∑
n∈N

(Ten, en)U

is finite and independent of the choice of the orthonormal basis {en}n∈N of U .
Moreover, it holds | tr(T )| ≤ tr(|T |) = ‖T‖L1(U), cf. [2, Prop. C.1]. For self-
adjoint, nonnegative trace class operators the trace coincides with the 1-Schatten
norm, i.e., tr(T ) = ‖T‖L1(U) for all T ∈ L+

1 (U), where

L+
1 (U) := {T ∈ L1(U) : T ∗ = T, (Tx, x)U ≥ 0 ∀x ∈ U} .

This is due to the equality of |T | and T for T ∈ L+
1 (U).

The 2-Schatten norm of T : U → H satisfies

‖T‖2L2(U ;H) = tr(T ∗T ) =
∑
n∈N

‖Ten‖2H
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Introduction

for any orthonormal basis {en}n∈N of U . In contrast to all other Schatten norms
when p �= 2, this norm originates from the inner product given by

(S, T )L2(U ;H) :=
∑
n∈N

(Sen, T en)H , S, T ∈ L2(U ;H),

which is often referred to as the Hilbert–Schmidt inner product between S and
T . The 2-Schatten norm is known as Hilbert–Schmidt norm and 2-Schatten
class operators are also called Hilbert–Schmidt operators.

1.2. Tensor product spaces. In addition toH and U , let also (H̃, (·, ·)H̃)

and (Ũ , (·, ·)Ũ ) denote separable Hilbert spaces over R. We first introduce the

algebraic tensor product H ⊗ H̃ as the vector space consisting of all finite sums
of the form

N∑
k=1

φk ⊗ φ̃k, φk ∈ H, φ̃k ∈ H̃, k = 1, . . . , N,

equipped with the obvious algebraic operations. There are several ways to define
a norm on this vector space, and taking the closure with respect to the different
norms yields different Banach spaces. For our purposes, the three notions of
tensor products introduced below are important. We refer to [8, 17] for a general
introduction into the theory of tensor product spaces.

1.2.1. Hilbert tensor product. The Hilbert tensor product space H ⊗̂2 H̃ is

defined as the completion of the algebraic tensor product space H ⊗ H̃ with
respect to the norm induced by the inner product

(Φ,Ψ)H⊗̂2H̃
:=

N∑
k=1

M∑
�=1

(φk, ψ�)H(φ̃k, ψ̃�)H̃ ,

which is independent of the choice of the representations Φ =
∑N
k=1 φk⊗ φ̃k and

Ψ =
∑M
�=1 ψ� ⊗ ψ̃� of Φ, Ψ ∈ H ⊗ H̃. For H = H̃ we abbreviate the notation

for this space by H2 := H ⊗̂2 H and for the inner product by (·, ·)2 as well as
for the corresponding norm by ‖ · ‖2.

1.2.2. Projective tensor product. The projective tensor product space de-

noted by H ⊗̂π H̃ is obtained by taking the closure of the algebraic tensor prod-

uct space H ⊗ H̃ with respect to the projective norm defined for Φ ∈ H ⊗ H̃
by

‖Φ‖H⊗̂πH̃
:= inf

{
N∑
k=1

‖φk‖H‖φ̃k‖H̃ : Φ =

N∑
k=1

φk ⊗ φ̃k

}
.

We write Hπ := H ⊗̂π H and ‖ · ‖π := ‖ · ‖H⊗̂πH
, whenever H = H̃.

1.2.3. Injective tensor product. The injective norm of an element Φ in the

algebraic tensor product space H ⊗ H̃ is defined as

‖Φ‖H⊗̂εH̃
:= sup

{∣∣∣ N∑
k=1

f(φk) g(φ̃k)
∣∣∣ : f ∈ S(H ′), g ∈ S(H̃ ′)

}
,
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Operator theory and tensor product spaces

where
∑N
k=1 φk ⊗ φ̃k is any representation of Φ ∈ H ⊗ H̃. Note that the value

of the supremum is independent of the choice of the representation of Φ, cf. [17,

p. 45]. The completion of H ⊗ H̃ with respect to this norm is called injective

tensor product space and denoted by H ⊗̂ε H̃. If H = H̃, the abbreviations
Hε := H ⊗̂ε H as well as ‖ · ‖ε := ‖ · ‖H⊗̂εH

are used.
1.2.4. Some remarks. We note that the projective and injective tensor prod-

uct spaces in 1.2.2 and 1.2.3 are Banach spaces, which are in general not reflex-
ive, cf. [17, Thm. 4.21].

An immediate consequence of the definition of the above norms is the fol-
lowing chain of continuous embeddings, see [17, Prop. 6.1(a)]:

H ⊗̂π H̃ ↪→ H ⊗̂2 H̃ ↪→ H ⊗̂ε H̃.

Here, the embedding constants are all equal to 1.
Another important fact when dealing with linear operators on tensor prod-

uct spaces is the following: For T ∈ L(U ;H) and S ∈ L(Ũ ; H̃) setting

(T ⊗ S)(x⊗ x̃) = (Tx)⊗ (Sx̃), x ∈ U, x̃ ∈ Ũ ,

and extending this definition by linearity to elements in U ⊗ Ũ yields a well-
defined linear operator T ⊗ S mapping between the algebraic tensor product

spaces U ⊗ Ũ and H ⊗ H̃. This operator admits a unique extension to a con-

tinuous linear operator T ⊗̂ιS : U⊗̂ιŨ → H⊗̂ιH̃ and it holds

‖T ⊗̂ιS‖L(U⊗̂ιŨ ;H⊗̂ιH̃) = ‖T‖L(U ;H)‖S‖L(Ũ ;H̃)

for all types of tensor spaces ι ∈ {2, π, ε} considered above, see [17, Proposi-
tions 2.3 & 3.2] and Lemma 3.1 (ii) in Paper I.

1.3. Self-adjoint unbounded operators and semigroups. In the fol-
lowing we recall the notions of C0-semigroups on Hilbert spaces, their gener-
ators, as well as fractional powers of generators and the Hilbert spaces they
induce. For a general introduction to semigroup theory we refer to [6, 15].

Let A : D(A) → H be a linear operator defined on a dense subspace D(A)
of H. Furthermore we assume that A is self-adjoint and positive definite, i.e.,

(Aφ,ψ)H = (φ,Aψ)H and (Aϑ, ϑ)H > 0

for all φ, ψ, ϑ ∈ D(A), ϑ �= 0, and that A has a compact inverse A−1 ∈ K(H).
The application of Theorem 1.1 to A−1 shows that there exists an orthonormal
basis {en}n∈N of H consisting of eigenvectors of A and an increasing sequence
of corresponding eigenvalues {λn}n∈N ⊂ R>0, i.e., Aen = λnen for all n ≥ 1.

In particular, −A is a closed operator, densely defined on D(−A) = D(A)
and its spectrum consists only of negative real numbers. By the Hille–Yosida
theorem [6, Thm. 3.5], it is thus the generator of a C0-semigroup (S(t), t ≥ 0).
Here, (S(t), t ≥ 0) is called a C0-semigroup or strongly continuous semigroup if

7
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the following hold for all φ ∈ H and t1, t2 ≥ 0:

S(0)φ = φ,

S(t1 + t2) = S(t1)S(t2),

lim
t→0+

S(t)φ = φ,

and −A is its generator if

lim
t→0+

S(t)φ− φ

t
= −Aφ ∀φ ∈ D(A),

where limt→0+ denotes the one-sided limit from above 0 in H. Moreover, its
elements are contractions (i.e., ‖S(t)‖L(H) ≤ 1 for all t ≥ 0), the semigroup is
analytic [6, Cor. 4.7], and for r ≥ 0 the fractional power operator

Ar/2 : D(Ar/2) → H, Ar/2φ :=
∑
n∈N

λr/2n (φ, en)H en

is well-defined on a domain D(Ar/2) ⊂ H, cf. [15, Ch. 2], which can be charac-
terized as

D(Ar/2) =

{
φ ∈ H :

∑
n∈N

λrn(φ, en)
2
H < +∞

}
.

We define the Hilbert space Ḣr as the closure of D(Ar/2) with respect to the
norm induced by the inner product

(φ, ψ)Ḣr := (Ar/2φ,Ar/2ψ)H ,

and introduce the space Ḣ−r as the identification of the dual space of Ḣr via
the inner product on H. In this way we obtain the following scale of Hilbert
spaces:

Ḣs ↪→ Ḣr ↪→ Ḣ0 ∼= H ∼= Ḣ−0 ↪→ Ḣ−r ↪→ Ḣ−s

for 0 ≤ r ≤ s. We denote H∗ := Ḣ−0 as well as V := Ḣ1 and V ∗ := Ḣ−1 for
the case r = 1 and emphasize the following Gelfand triple of densely embedded
Hilbert spaces

V ↪→ H ∼= H∗ ↪→ V ∗.
The dual pairing between V ∗ and V is denoted by V ∗〈·, ·〉V or by V 〈·, ·〉V ∗ .

We stress the difference between the spaces V ′ and V ∗: V ′ denotes the dual of
V in its original sense, i.e., all continuous linear mappings from V to R, while
V ∗ is the identification of the dual via the inner product on H. Therefore, we
have the relation: φ ∈ V ∗ if and only if V ∗〈φ, ·〉V ∈ V ′.

1.4. Bochner spaces. In order to define the trial and test spaces for the
variational formulations of the evolution equations, we introduce a special class
of function spaces: Bochner or Lebesgue–Bochner spaces. For the definition of
the Bochner integral we refer to [21, §V.5].

For finite T > 0 and p ∈ [1,∞) we consider the time interval J := (0, T )
and the Bochner space Lp(J ;H) of Bochner-measurable, p-integrable functions

8



Operator theory and tensor product spaces

mapping from J to the Hilbert space H, which is itself a Banach space with
respect to the norm

‖u‖Lp(J;H) :=

(∫
J

‖u(t)‖pH dt

)1/p

.

For future reference, we introduce the abbreviation W := L2(J ;H) for the case
p = 2, and note that W is a Hilbert space with respect to the obvious inner
product inducing the norm ‖ · ‖L2(J;H).

Let u ∈ L1(J ;H) be an H-valued Bochner-integrable function. Following
[3, Ch. XVIII, §1, Def. 3] we define the distributional derivative ∂tu of u as the
H-valued distribution satisfying

((∂tu)(v), φ)H = −
∫
J

dv

dt
(t)(u(t), φ)H dt ∀(v, φ) ∈ C∞

0 (J ;R)×H.

Recall the Gelfand triple V ↪→ H ↪→ V ∗ from the previous Subsection 1.3. The
definition of the distributional derivative of an H-valued function above implies
that the for a V ∗-valued function u the distributional derivative ∂tu is defined
as the V ∗-valued distribution with

V ∗〈(∂tu)(v), φ〉V = −
∫
J

dv

dt
(t) V ∗〈u(t), φ〉V dt ∀(v, φ) ∈ C∞

0 (J ;R)× V.

After having defined the Bochner space L2(J ;V
∗) and the distributional

derivative we can now introduce the space

H1(J ;V ∗) := {u ∈ L2(J ;V
∗) : ∂tu ∈ L2(J ;V

∗)}
and equip it with the norm

‖u‖H1(J;V ∗) :=
(
‖u‖2L2(J;V ∗) + ‖∂tu‖2L2(J;V ∗)

)1/2

.

With respect to the corresponding inner product, H1(J ;V ∗) is a Hilbert space.
In the following the formulation of the variational problems is based on trial

and test spaces originating from the spaces

X := L2(J ;V ), Ŷ := L2(J ;V ) ∩H1(J ;V ∗).

These spaces are Hilbert spaces: X with respect to the Bochner inner product

(·, ·)X = (·, ·)L2(J;V ) and Ŷ being equipped with the graph norm

‖v‖Y :=
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗)

)1/2

and the obvious corresponding inner product.

It is a well-known result [3, Ch. XVIII, §1, Thm. 1] that Ŷ ↪→ C(J̄ ;H),
where C(J̄ ;H) denotes the space of continuous H-valued functions on the clo-
sure J̄ := [0, T ] of J . Therefore, the values v(0) and v(T ) are are well-defined

in H for v ∈ Ŷ and the following are closed subspaces of Ŷ:

Y0 := {v ∈ Ŷ : v(0) = 0 in H}, Y := {v ∈ Ŷ : v(T ) = 0 in H},

9
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which are equipped with the same norm ‖ · ‖Y as Ŷ. We note that

|||v|||Y :=
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) + ‖v(0)‖2H

)1/2

defines an equivalent norm on Y, which has the following advantages:

(i) The embedding constant in Y ↪→ C(J̄ ;H) is smaller: Fix t ∈ J .
The integration of d

dt‖v(t)‖2H = 2 V ∗〈∂tv(t), v(t)〉V for v ∈ Y over the
interval [t, T ] yields (recall that v(T ) = 0 for v ∈ Y):

‖v(t)‖2H ≤ 2 ‖∂tv‖L2((t,T );V ∗)‖v‖L2((t,T );V )

≤ ‖v‖2L2((t,T );V ) + ‖∂tv‖2L2((t,T );V ∗).

This already shows that the embedding constant with respect to ‖ · ‖Y
is bounded by 1. By integrating from 0 to t instead we obtain:

‖v(t)‖2H ≤ ‖v(0)‖2H + ‖v‖2L2((0,t);V ) + ‖∂tv‖2L2((0,t);V ∗).

Adding the two inequalities shows that ‖v(t)‖H ≤ 1√
2
|||v|||Y . For sharp-

ness of these bounds we refer to the example in §2.2 in Paper II.
(ii) If we define the evolution operator b : X → Y ′ by

(bu)(v) :=

∫
J
V 〈u(t), (−∂t +A)v(t)〉V ∗ dt,

then b ∈ L(X ;Y ′) is an isometry, i.e., |||bu|||Y′ = ‖u‖X , where |||f |||Y′ :=

supv∈Y\{0}
|f(v)|
|||v|||Y , see Subsection 2.2.

In particular, since the latter property is useful for the error analysis of numer-
ical methods, the results in Paper II are formulated with respect to the norm
||| · |||Y , while in, e.g., [11, 19, 20] and also in Paper I the norm ‖ · ‖Y is used.

1.5. Relating tensor product spaces and Schatten class operators.
In the following we establish a connection between the tensor products Wπ and
W2 of the Bochner space W = L2(J ;H) on the one hand, and Schatten class
operators of order 1 and 2 on the other hand. In addition, we show that compact
operators in K(W) are related to the elements in the injective tensor product
space Wε.

For this purpose we first define an H ⊗H-valued kernel k on J × J as an
element in the algebraic tensor product space W ⊗ W, which is, in addition,
symmetric, i.e.,

k(s, t) = k(t, s) for a.e. (s, t) ∈ J × J .

Due to the Riesz representation theorem, we can define the action of the linear
integral operator Tk : W → W associated with the kernel k on w ∈ W as the
unique element Tkw ∈ W satisfying

(Tkw, v)W =

∫
J

∫
J

(k(s, t), w(s)⊗ v(t))H2 ds dt = (k,w ⊗ v)W2 ∀v ∈ W.

The next proposition illustrates the relation between the introduced tensor prod-
uct spaces and compact / 1-Schatten class / 2-Schatten class operators.

10
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Proposition 1.2. Let k be an H⊗H-valued kernel k on J×J . The integral
operator Tk : W → W associated with the kernel k is self-adjoint and satisfies

‖Tk‖L(W) = ‖k‖ε, ‖Tk‖L1(W) = ‖k‖π, and ‖Tk‖L2(W) = ‖k‖2.

In other words, the mapping J : k �→ Tk extends to an isometric isomorphism
between the spaces

Wsym
ε

J∼= Ksym(W), Wsym
π

J∼= Lsym
1 (W), and Wsym

2

J∼= Lsym
2 (W),

where the superscript sym indicates for the tensor product spaces to take the
closure of only the symmetric functions in the algebraic tensor product space
W ⊗W with respect to the tensor norms and for the operator spaces the closed
subspaces of self-adjoint operators.

Proof. Self-adjointness of Tk follows from the symmetry of the kernel k.

In order to prove the identities of the norms, let k =
∑N
n=1 k

1
n ⊗ k2n be any

representation of k ∈ W ⊗ W. Then we obtain for the operator norm of the
induced operator Tk:

‖Tk‖L(W) = sup
w∈S(W)

‖Tkw‖W = sup
w,v∈S(W)

(Tkw, v)W

= sup
w,v∈S(W)

N∑
n=1

(k1n, w)W(k2n, v)W = sup
f,g∈S(W′)

N∑
n=1

f(k1n)g(k
2
n) = ‖k‖ε.

In this calculation the Riesz representation theorem justifies taking the supre-
mum over f, g ∈ S(W ′) instead of over w, v ∈ S(W). Therefore, the integral
operator Tk : W → W is continuous if and only if its kernel k is an element of
the tensor product space Wsym

ε . The identity

(Tkw, v)W =

N∑
n=1

(k1n, w)W(k2n, v)W =
( N∑
n=1

(k1n, w)W k2n, v
)
W

∀v ∈ W

shows that Tkw =
∑N
n=1(k

1
n, w)W k2n for all w ∈ W , i.e., Tk is a finite-rank

operator and thus compact if k ∈ W ⊗ W. In the more general case when
k ∈ Wsym

ε , we can find a sequence of kernels in W ⊗ W converging to k with
respect to the injective norm ‖·‖ε. Due to the isometry property derived above,
also Tk can be approximated by self-adjoint finite-rank operators in L(W) and,
hence, Tk ∈ Ksym(W), see Subsection 1.1.2.

The application of Theorem 1.1 to Tk ∈ Ksym(W) yields the existence of an
orthonormal basis {ei}i∈N ofW consisting of eigenvectors of Tk with correspond-
ing eigenvalues {γi}i∈N ⊂ R. The observation (k, ei ⊗ ej)W2 = (Tkei, ej)W =
δijγi, where δij denotes the Kronecker delta, shows that k can be expanded in
W2 as k =

∑
i∈N

γi(ei ⊗ ei) and we obtain the estimate

‖k‖π ≤
∑
i∈N

|γi| = tr(|Tk|) = ‖Tk‖L1(W).

11
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The reverse inequality follows from the Cauchy–Schwarz inequality for sums
and Parseval’s identity:

‖Tk‖L1(W) =
∑
i∈N

|γi| =
∑
i∈N

|(k, ei ⊗ ei)W2 | =
∑
i∈N

∣∣∣∣∣
N∑
n=1

(k1n, ei)W(k2n, ei)W

∣∣∣∣∣
≤

N∑
n=1

(∑
i∈N

(k1n, ei)
2
W

)1/2(∑
i∈N

(k2n, ei)
2
W

)1/2

=

N∑
n=1

‖k1n‖W‖k2n‖W .

Since the representation of k is arbitrary, we may take the infimum over all
representations of k in W⊗W and obtain ‖Tk‖L1(W) ≤ ‖k‖π. Thus, J extends
to an isometric isomorphism between the spaces Wsym

π and Lsym
1 (W).

For the Hilbert–Schmidt norm of Tk we calculate

‖Tk‖2L2(W) =
∑
i∈N

‖Tkei‖2W =
∑
i∈N

∑
j∈N

(Tkei, ej)
2
W

=
∑
i∈N

∑
j∈N

N∑
m=1

N∑
n=1

(k1m, ei)W(k1n, ei)W(k2m, ej)W(k2n, ej)W

=

N∑
m=1

N∑
n=1

(k1m, k
1
n)W(k2m, k

2
n)W = ‖k‖22.

The space of self-adjoint Hilbert–Schmidt operators Lsym
2 (W) is thus isometri-

cally isomorphic to the Hilbert tensor product space Wsym
2 . �

We note that Proposition 1.2 can be seen as a generalization of Mercer’s
theorem [13], which considers continuous real-valued kernels k ∈ C(J̄ × J̄ ;R).

In the literature, kernels in Wπ and W2
∼= L2(J × J ;H2) are often called

Fredholm kernels [7] and Hilbert–Schmidt kernels [21, §VII.3, Example 1], re-
spectively.

As a by-product of Proposition 1.2 we obtain an explicit way to calculate
the projective norm of a kernel k ∈ Wsym

π which is positive semi-definite, i.e.,∫
J

∫
J

(k(s, t), v(s)⊗ v(t))H2
ds dt ≥ 0 ∀v ∈ W.

For this purpose, we first introduce the real-valued operator δ on the al-

gebraic tensor product space W ⊗ W as follows: if k =
∑N
n=1 k

1
n ⊗ k2n is any

representation of k ∈ W ⊗W , then

δ(k) :=

N∑
n=1

∫
J

(k1n(t), k
2
n(t))H dt.

The operator δ is bounded with respect to the projective norm:

|δ(k)| ≤
N∑
n=1

∫
J

‖k1n(t)‖H‖k2n(t)‖H dt ≤
N∑
n=1

‖k1n‖W‖k2n‖W ,

12
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where this estimate holds for any representation of k ∈ W⊗W. For this reason
and due to the density of W⊗W in Wπ, there exists a unique linear continuous
extension of δ to a functional on the projective tensor product space Wπ.

If the kernel k ∈ Wsym
π is positive semi-definite, then the associated integral

operator Tk : W → W is an element of L+
1 (W) and, as in the proof of Propo-

sition 1.2, its kernel admits an expansion
∑
i∈N

γi(ei ⊗ ei) in Wπ, where the

coefficients γi are the nonnegative eigenvalues of Tk ∈ L+
1 (W). Therefore, we

obtain the identity

‖Tk‖L1(W) =
∑
i∈N

γi =
∑
i∈N

γi(ei, ei)W =
∑
i∈N

γi δ(ei ⊗ ei) = δ(k),

and the projective norm of a positive semi-definite kernel k ∈ Wsym
π is given by

‖k‖π = ‖Tk‖L1(W) = δ(k).

2. Deterministic initial value problems

We consider the abstract inhomogeneous initial value problem

u′(t) +Au(t) = f(t), t ∈ J = (0, T ), u(0) = u0,(IVP)

for a right-hand side f ∈ L1(J ;H) and an initial data u0 ∈ H. Here, u′(t) ∈ H
denotes the strong derivative of the H-valued function u, i.e.,

u′(t) = lim
h→0

u(t+ h)− u(t)

h
∀t ∈ J.

We assume that −A : D(A) → H is the generator of an analytic C0-semigroup
of contractions (S(t), t ≥ 0), see Subsection 1.3. In the homogeneous case when
f = 0, Problem (IVP) is often referred to as the Cauchy problem (relative to
the operator −A) in the literature.

A classical solution u to (IVP) on [0, T ) is an H-valued function which is
continuous on [0, T ), continuously differentiable on J , takes values in D(A) on
J , i.e.,

u ∈ C([0, T );H) ∩ C((0, T );D(A)), u′ ∈ C((0, T );H),

and satisfies (IVP). One knows [15, Ch. 4, Cor. 3.3] that the homogeneous initial
value problem has a unique classical solution for every initial data u0 ∈ H, since
−A is the generator of an analytic C0-semigroup. It is given by u(t) = S(t)u0 for
all t ∈ [0, T ). From this result, it is evident that the inhomogeneous problem
in (IVP) has at most one solution. However, for a general right-hand side
f ∈ L1(J ;H) the definition of a classical solution is often too restrictive in
order to ensure existence.

Consider, e.g., the simple example when A = 0. Then the initial value
problem (IVP) does not have a classical solution unless f is continuous. But
also continuity of f on J̄ = [0, T ] is not sufficient to guarantee existence of a
classical solution to (IVP) when −A is the generator of a C0-semigroup – for a
counterexample see [12, Example 4.1.7].

For this reason, generalized solution concepts have been introduced. Note
that for f ∈ L1(J ;H) and A = 0, the initial value problem (IVP) always has a

13
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solution, which is differentiable almost everywhere and satisfies u′(t) = f(t) for

almost every t ∈ J . Namely, the function given by u(t) = u0 +
∫ t
0
f(s) ds sat-

isfies these properties. This motivates the following notion of a strong solution
to (IVP) for a general generator −A, see [15, Ch. 4, Def. 2.8].

A function u : J̄ → H, which is differentiable almost everywhere on J̄ such
that u′ ∈ L1(J ;H) is called a strong solution of (IVP) if u(0) = u0 and

u′(t) +Au(t) = f(t) for a.e. t ∈ J̄ .

We note that this definition implies integrability of the strong solution u
itself and of Au on J , i.e.,∫

J

‖u(t)‖H + ‖Au(t)‖H dt < +∞,

and that the following hold for almost every t ∈ J̄ :

u(t) ∈ D(A), u(t) = u0 −
∫ t

0

Au(s) ds+

∫ t

0

f(s) ds.

Since −A is the generator of an analytic C0-semigroup one knows that the
initial value problem (IVP) has a unique strong solution for every u0 ∈ H if f
is locally α-Hölder continuous on (0, T ] with exponent α > 0, see [15, Ch. 4,
Cor. 3.3]. However, a solution concept for (IVP) which admits a unique solution
for every f ∈ L1(J ;H) would be preferable.

In the following, we present two different approaches to widen the notion
of a solution to the problem (IVP):

(i) Motivated by the fact that the unique classical solution to the homo-
geneous problem for u0 ∈ H is given by u(t) = S(t)u0, one can define
generalized solutions in terms of the analytic semigroup. These func-
tions are then continuous on J̄ , but in general not differentiable and
they do not necessarily take values in D(A) on J , see [12, 15].

(ii) In [19, 20] it has been proposed to treat the initial value problem (IVP)
with variational formulations posed on Bochner and vector-valued
Sobolev spaces as trial and test spaces as, e.g., the spaces introduced
in Subsection 1.4. If the pair of trial–test spaces is chosen appropri-
ately, one can show that the resulting variational problem satisfies an
inf-sup condition and that existence and uniqueness of a solution in
this variational sense is guaranteed.

2.1. The semigroup approach. For every f ∈ L1(J ;H) the function
u : J̄ → H defined by

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds, t ∈ J̄ ,

is continuous, i.e., u ∈ C(J̄ ;H). Furthermore, if the initial value problem (IVP)
has a classical solution, then it is given by this function. In this way, it may be
considered as a generalized solution called the mild solution of (IVP).

14
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As already mentioned, every classical solution is a mild solution. Since we
assume that the semigroup (S(t), t ≥ 0) is analytic, it is furthermore ensured
that for every u0 ∈ H, the mild solution is also a classical solution if f is locally
α-Hölder continuous on (0, T ] with exponent α > 0, see [15, Ch. 4, Cor. 3.3].

2.2. The variational approach. Every variational formulation of the ini-
tial value problem (IVP) is posed on a trial and a test space. These spaces have
to be balanced in such a way that the resulting solution operator is a bijection
between the dual of the test space and the trial space, since then existence and
uniqueness of a variational solution in the trial space is ensured.

In order to introduce the trial and test spaces of the variational problems
below, we assume that A is a self-adjoint, positive definite operator with a
compact inverse as in Subsections 1.3–1.4. In addition, we recall the Gelfand
triple V ↪→ H ∼= H∗ ↪→ V ∗ as well as the Hilbert spaces

X = L2(J ;V ), Ŷ = L2(J ;V ) ∩H1(J ;V ∗),

and the closed linear subspaces Y0,Y ⊂ Ŷ of functions vanishing at time t = 0
and t = T , respectively.

There are different ways to derive a well-posed variational formulation of the
initial value problem (IVP), but all of them have in common that the resulting
solution concept is less restrictive than the ones of the classical and strong
solution presented above.

For the first approach, let f ∈ L2(J ;V
∗). Furthermore, we assume that the

solution u to (IVP) has a square-integrable V ∗-valued distributional derivative
∂tu, that u takes values in V = D(A1/2) almost everywhere in J̄ , and that u
is square-integrable on J with respect to V . In other words, u is a well-defined

element of the space Ŷ. If the initial value u0 equals 0, a variational problem
corresponding to (IVP) is given by [20]:

Find u ∈ Y0 s.t. b∗(u, v) = �∗(v) ∀v ∈ X ,(VP1)

where the bilinear form b∗ : Y0 ×X → R is defined by

b∗(w, v) :=
∫
J
V ∗〈∂tw(t) +Aw(t), v(t)〉V dt ∀(w, v) ∈ Y0 ×X ,

and �∗(v) :=
∫
J V ∗〈f(t), v(t)〉V dt for v ∈ X .

In order to cope with non-vanishing initial data u(0) = u0 �= 0, one can,

e.g., choose a function up ∈ Ŷ with up(0) = u0 and consider the problem

Find ũ ∈ Y0 s.t. b∗(ũ, v) = �̃∗(v) ∀v ∈ X ,

where �̃∗(v) := �∗(v) − b∗(up, v) for v ∈ X . The function u := up + ũ ∈ Ŷ
solves (IVP) then in the variational sense.

A problem arising with this approach is that the function up ∈ X has
to be chosen and, in particular, this function has to have V -regularity almost
everywhere. Thus, e.g., the choice up(t) := e−tu0 is only admissible for u0 ∈ V .
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If u0 ∈ H \ V one can, e.g., enforce the initial value with a multiplier in
the variational problem, see [19]. For this approach, we consider the the vector
space

X̂ := {(v, φ) : v ∈ X , φ ∈ H}
equipped with the following algebraic operations:

(v, φ) + (w,ψ) := (v + w, φ+ ψ) ∀(v, φ), (w,ψ) ∈ X̂ ,
λ(v, φ) := (λv, λφ) ∀(v, φ) ∈ X̂ , λ ∈ R,

and the graph norm:

‖(v, φ)‖X̂ :=
(
‖v‖2X + ‖φ‖2H

)1/2
.

We define the bilinear form b̂ : Ŷ × X̂ → R for w ∈ Ŷ and (v, φ) ∈ X̂ by

b̂(w, (v, φ)) :=

∫
J
V ∗〈∂tw(t) +Aw(t), v(t)〉V dt+ (w(0), φ)H ,

where again ∂tw denotes the distributional derivative of w. A variational solu-
tion to (IVP) is then given by the function u satisfying

Find u ∈ Ŷ s.t. b̂(u, (v, φ)) = �̂(v, φ) ∀(v, φ) ∈ X̂ ,(VP2)

where �̂(v, φ) :=
∫
J V ∗〈f(t), v(t)〉V dt+ (u0, φ)H for (v, φ) ∈ X̂ .

An alternative approach [20] is to choose the trial and test spaces in such a
way that the variational problem incorporates the initial condition as a “natural
boundary condition”. For this purpose, we first note that the following integra-

tion by parts formula holds for functions w, v ∈ Ŷ with V ∗-valued distributional
derivatives ∂tw and ∂tv:∫

J
V ∗〈∂tw(t), v(t)〉V dt =−

∫
J
V 〈w(t), ∂tv(t)〉V ∗ dt

+ (w(T ), v(T ))H − (w(0), v(0))H .

After multiplying the initial value problem (IVP) with a test function v ∈ Y
(i.e., v(T ) = 0) and integrating over J , the application of the above identity
yields the following variational problem:

Find u ∈ X s.t. b(u, v) = �(v) ∀v ∈ Y,(VP3)

with the bilinear form b : X × Y → R defined by

b(w, v) :=

∫
J
V 〈w(t),−∂tv(t) +Av(t)〉V ∗ dt, ∀(w, v) ∈ X × Y

and the right-hand side �(v) :=
∫
J V ∗〈f(t), v(t)〉V dt + (u0, v(0))H . Note that

we have included the term arising from the initial value in the functional �.
In the following theorem we address well-posedness of the three presented

variational problems.
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Theorem 2.1. The bilinear forms b∗ : Y0 × X → R, b̂ : Ŷ × X̂ → R, and
b : X × Y → R in (VP1), (VP2), and (VP3) are continuous and there exist
constants γ∗, γ̂, γ > 0 such that the following inf-sup and surjectivity conditions
are satisfied:

inf
w∈S(Y0)

sup
v∈S(X )

b∗(w, v) ≥ γ∗, ∀v ∈ X \ {0} : sup
w∈S(Y0)

b∗(w, v) > 0,

inf
w∈S(Ŷ)

sup
v∈S(X̂ )

b̂(w, v) ≥ γ̂, ∀v ∈ X̂ \ {0} : sup
w∈S(Ŷ)

b̂(w, v) > 0,

inf
w∈S(X )

sup
v∈S(Y)

b(w, v) ≥ γ, ∀v ∈ Y \ {0} : sup
w∈S(X )

b(w, v) > 0.

Furthermore, for any f ∈ L2(J ;V
∗), the functionals �∗ and �̂ in (VP1)

and (VP2) are linear and continuous on X and X̂ , respectively. More precisely,
the following estimates hold:

‖�∗‖X ′ ≤ ‖f‖L2(J;V ∗), ‖�̂‖X̂ ′ ≤ ‖f‖L2(J;V ∗) + ‖u0‖H .
The functional � in (VP3) is continuous on Y for every f ∈ Y∗ and u0 ∈ H
with ‖�‖Y′ ≤ ‖f‖Y∗ + ‖u0‖H , where Y∗ denotes the identification of the dual of
Y via the inner product on L2(J ;H).

Proof. For the proof of the inf-sup and surjectivity conditions, see [19,
Thm. 5.1] and [20, Thm. 2.2].

The bounds for ‖�∗‖X ′ and ‖�̂‖X̂ ′ are readily seen. In order to derive

the bound for ‖�‖Y′ , we recall that the embedding constant in Y ↪→ C(J̄ ;H)
equals 1, see Subsection 1.4. Thus, we obtain for v ∈ Y:

|�(v)| ≤ ‖f‖Y∗‖v‖Y + ‖u0‖H‖v(0)‖H ≤ (‖f‖Y∗ + ‖u0‖H)‖v‖Y . �
We close this section by drawing some conclusions from Theorem 2.1.

• The bilinear forms b∗, b̂, and b induce boundedly invertible continuous

linear operators b∗ ∈ L(Y0;X ′), b̂ ∈ L(Ŷ; X̂ ′), and b ∈ L(X ;Y ′), where
we use the same notation for the operators as for the bilinear forms,
since it will be evident from the context to which we refer.

Therefore, the variational problems (VP1), (VP2), and (VP3) con-
sidered above are uniquely solvable. For (VP3), the data-to-solution
mapping (f, u0) �→ u, where u ∈ X denotes the solution to (VP3),
satisfies the stability bound

‖u‖X ≤ γ−1‖�‖Y′ ≤ γ−1(‖f‖Y∗ + ‖u0‖H),

and analogous results hold for (VP1) and (VP2).
• Recall the equivalent norm ||| · |||Y on Y from Subsection 1.4:

|||v|||Y =
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) + ‖v(0)‖2H

)1/2

.

With this norm the induced operator b : X → Y ′ is an isometry. To
show this, we first emphasize the following identity

|||v|||Y = ‖ − ∂tv +Av‖L2(J;V ∗) ∀v ∈ Y,
17
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and, thus, |||bw|||Y′ := supv∈Y
|b(w,v)|
|||v|||Y ≤ ‖w‖X for w ∈ X follows from

the definition of b. It remains to verify |||bw|||Y′ ≥ ‖w‖X or, equiva-
lently, that ‖b−1�‖X ≤ |||�|||Y′ holds for all � ∈ Y ′. Since the inf-sup
constant γ of b is positive and ||| · |||Y defines an equivalent norm on Y,
one knows that the inf-sup constant γ� of b with respect to ||| · |||Y on

Y inherits the positivity. Moreover, ‖b−1�‖X ≤ γ−1
� |||�|||Y′ for � ∈ Y ′

and the following identity holds

γ� = inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X |||v|||Y
= inf
v∈Y

sup
w∈X

b(w, v)

‖w‖X |||v|||Y
.

For v ∈ Y and w := v − (A∗)−1∂tv we obtain

b(w, v) = ‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) − 2

∫
J
V ∗〈∂tv(t), v(t)〉V dt

= |||v|||2Y = ‖w‖2X = ‖w‖X |||v|||Y .
This shows that γ� ≥ 1 and the isometry property of b : X → Y ′ with
respect to the norms ‖ · ‖X and ||| · |||Y′ follows.

Note also that this result in conjunction with the observation that
|||v|||Y ≥ ‖v‖Y for all v ∈ Y implies the following lower bound for the
inf-sup constant of the bilinear form b with respect to the norms ‖ · ‖X
and ‖ · ‖Y :

inf
w∈S(X )

sup
v∈S(Y)

b(w, v) = inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X ‖v‖Y
≥ 1.

and, therefore, γ ≥ 1 holds.
• The latter variational approach (VP3) does not pose more assump-
tions on the source term f and the initial value u0 in (IVP) than the
semigroup approach does, since � ∈ Y ′ for every f ∈ L1(J ;H) and
u0 ∈ H.

3. Stochastic differential equations

In order to introduce the stochastic differential equations of interest, we
recall certain notions and concepts from probability theory in Subsection 3.1
first. In addition, we summarize basic definitions and results from Itô inte-
gration and Itô calculus in Subsection 3.2. This establishes the framework for
defining solutions to stochastic differential equations in Subsection 3.3.

From here on, let (Ω,A,P) denote a complete probability space equipped
with the filtration F := (Ft, t ∈ I) which satisfies the “ususal conditions”, i.e.,

(i) F is right continuous, i.e., Ft = Ft+ :=
⋂
s>t Fs for all t ∈ I;

(ii) F0 contains all P-null sets of A.

For our purposes, the index set I is either the nonnegative part of the real line
I := {t ∈ R : t ≥ 0} or the closed finite time interval I := J̄ = [0, T ].

Throughout this section, we write s ∧ t := min{s, t} for s, t ∈ R and we
mark equalities which hold P-almost surely with P-a.s.
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3.1. Stochastic processes, moments, and covariance functions. In
this subsection we present the classes of stochastic processes as well as their
characteristics which are of interest for our investigations. We refer the reader,
e.g., to [16, §§3, 4] for a more detailed introduction to stochastic processes with
values in Hilbert spaces and, in particular, Lévy processes.

Any measurable mapping Z : Ω → H is called an H-valued random variable
and an H-valued stochastic process is defined as a family (X(t), t ∈ I) of H-
valued random variables. For a stochastic process X := (X(t), t ∈ I) taking
values in H one can define the following characteristics:

(i) integrability : X is said to be integrable if

‖X(t)‖L1(Ω;H) := E[‖X(t)‖H ] < +∞ ∀t ∈ I,

and square-integrable if

‖X(t)‖L2(Ω;H) := E[‖X(t)‖2H ]1/2 < +∞ ∀t ∈ I;

(ii) mean: if X is integrable, the H-valued mapping

m : I → H, t �→ E[X(t)]

is well-defined and it is called the mean or first moment of X;
(iii) second moment and covariance: assuming that X is square-integrable,

the tensor-space-valued functions M,C : I × I → H2 defined by

M(s, t) := E[X(s)⊗X(t)],

C(s, t) := E[(X(s)− E[X(s)])⊗ (X(t)− E[X(t)])], s, t ∈ I,

are called the second moment and the covariance of X, respectively.

We note that the covariance can be expressed in terms of the second moment
and the mean:

C(s, t) =M(s, t)−m(s)⊗m(t).

Furthermore, the second moment and the covariance are well-defined mappings
to the Hilbert tensor product space H2 due to the observation

‖E[X(s)⊗X(t)]‖H2 ≤ E[‖X(s)⊗X(t)‖H2 ] = E[‖X(s)‖H‖X(t)‖H ]

≤ ‖X(s)‖L2(Ω;H)‖X(t)‖L2(Ω;H),

where the first estimate holds by the properties of the expectation operator for
H-valued random variables and the last one is Hölder’s inequality.

In the following we present certain classes of stochastic processes which we
are going to refer to in the course of the thesis.

3.1.1. Martingales. An integrable stochastic process (X(t), t ∈ I) taking
values in H is called an H-valued martingale with respect to F if it is
F-adapted, i.e., X(t) is Ft-measurable for all t ∈ I, and it satisfies the martin-
gale property: the conditional expectation of X(t) with respect to the σ-field
Fs for s ≤ t is given by E[X(t)|Fs] = X(s).
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3.1.2. Lévy processes. An H-valued stochastic process L := (L(t), t ∈ I) is
said to be a Lévy process if the following conditions are satisfied:

(i) L has independent increments, i.e., for all 0 ≤ t0 < t1 < . . . < tn,
t1, . . . , tn ∈ I, the H-valued random variables L(t1) − L(t0), L(t2) −
L(t1), . . ., L(tn)− L(tn−1) are independent;

(ii) L has stationary increments, i.e., the distribution of L(t)−L(s), s ≤ t,
s, t ∈ I, depends only on the difference t− s;

(iii) L(0) = 0 P-almost surely;
(iv) L is stochastically continuous, i.e.,

lim
s→t
s∈I

P(‖L(t)− L(s)‖H > ε) = 0 ∀ε > 0, ∀t ∈ I.

We often assume that a Lévy process L satisfies some or all of the following
conditions:

(a) L is adapted with respect to the filtration F ;
(b) for t > s the increment L(t)− L(s) is independent of Fs;
(c) L is integrable;
(d) L has mean zero, i.e., E[L(t)] = 0 for all t ∈ I;
(e) L is square-integrable.

Note that the Lévy process L satisfies Assumptions (a)–(b), e.g., for the fil-
tration F := (F̄L

t , t ∈ I), where F̄L
t denotes the smallest σ-field containing the

σ-field FL
t := σ(L(s) : s ≤ t) generated by L and all P-null sets of A, [16, Re-

mark 4.43]. Under Assumptions (a)–(d) L is a martingale, see [16, Prop. 3.25].
If, in addition, L satisfies Assumption (e), then there exists a self-adjoint, non-
negative trace-class operator Q ∈ L+

1 (H) such that for all s, t ∈ I

E [(L(s)⊗ L(t), φ⊗ ψ)2] = (s ∧ t) (Qφ,ψ)H ∀φ, ψ ∈ H,

cf. [16, Thm. 4.44]. This operator is also referred to as the covariance operator
of the Lévy process L.

In the following we illustrate how covariance functions relate to the concept
of tensor product spaces from Subsection 1.2. Suppose that I = J̄ = [0, T ] and
that L is an H-valued Lévy process satisfying the assumptions above. Since L
has mean zero, the second moment and the covariance C of L coincide and they
satisfy∫

J×J
(C(s, t), φ(s)⊗ ψ(t))2 ds dt =

∫
J×J

(s ∧ t)(Qφ(s), ψ(t))H ds dt

=

∫
J×J

(∑
i∈N

(s ∧ t)γi(ei ⊗ ei), φ(s)⊗ ψ(t)
)
2
ds dt

for all φ, ψ ∈ W = L2(J ;H), where {ei}i∈N is an orthonormal basis of H con-
sisting of eigenvectors of Q with corresponding nonnegative eigenvalues {γi}i∈N.
Therefore, the covariance of L can be represented as

C(s, t) =
∑
i∈N

(s ∧ t)γi(ei ⊗ ei), s, t ∈ J̄ ,
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with convergence of this series in W2, since
∑
i∈N

γi < +∞. Furthermore, C is

even an element of Wπ with ‖C‖π ≤ 1
2T

2 trQ.
In order to derive the latter bound, we define the vector q :=

∑
i∈N

γi(ei⊗ei)
and the real-valued function w∧(s, t) := s ∧ t. Then w∧ is an element of the
projective tensor space L2(J ;R)π with

‖w∧‖π = δ(w∧) = 1
2T

2,

where we used that w∧ is a positive semi-definite kernel as well as the char-
acterization of the projective norm derived in Subsection 1.5. In addition, the
vector q is an element of Hπ, since ‖q‖π = tr(Q) < +∞. Thus, the covariance
of L satisfies

C = w∧ ⊗ q ∈ L2(J ;R)π ⊗Hπ, ‖C‖L2(J;R)π⊗̂πHπ
= 1

2T
2 tr(Q),

and the same bound holds for the projective norm on Wπ due to

L2(J ;R)π ⊗̂π Hπ
∼= (L2(J ;R) ⊗̂π H)π ↪→ (L2(J ;R) ⊗̂2 H)π ∼= Wπ,

where the first identification is due to the associativity of the projective tensor
product [9, Ch. 33]. The embedding holds, since the projective tensor product
inherits the continuous embedding from L2(J ;R) ⊗̂π H ↪→ L2(J ;R) ⊗̂2 H and
the last identification is a consequence of the definitions of the Hilbert tensor
product space L2(J ;R) ⊗̂2 H and the Bochner space W = L2(J ;H).

3.1.3. Wiener processes. An important subclass of Lévy processes is formed
by Wiener processes. Here, a Lévy process W := (W (t), t ∈ I) is said to be an
H-valued Wiener process if it has continuous trajectories in H and mean zero.
In the finite-dimensional case H = Rn the covariance function is given by

E
[
W (s)W (t)T

]
= (s ∧ t)Q ∀s, t ∈ I

for a symmetric positive semi-definite matrix Q ∈ Rn×n. If Q equals the identity
matrix in Rn×n thenW is called Wiener white noise. In one dimension (H = R)
W is called a real-valued Brownian motion if Q = 1.

3.2. Stochastic integration. The purpose of this section is to make sense
of the stochastic integral∫ t

0

Ψ(s) dL(s), t ∈ J̄ = [0, T ],

where the noise L = (L(t), t ∈ J̄) is a Lévy process taking values in a separable
Hilbert space U and Ψ is a stochastic process taking values in an appropriate
space of operators mapping from U to the separable Hilbert space H, so that for
fixed t ∈ J̄ the stochastic integral itself becomes an H-valued random variable.

To this end, following the lines of [16, §8.2], we first define the stochastic
Itô integral for L(U ;H)-valued processes Ψ on J̄ , which are simple, i.e., there
exist finite sequences

• of nonnegative numbers 0 = t0 < t1 < . . . < tm ≤ T ,
• of operators Ψ1, . . . ,Ψm ∈ L(U ;H), and
• of events Aj ∈ Ftj−1 , 1 ≤ j ≤ m,
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such that

Ψ(s) =
m∑
j=1

1Aj
1(tj−1,tj ](s)Ψj , s ∈ J̄ ,

where 1A and 1(s,t] denote the indicator functions of the event A ∈ A and the

interval (s, t] ⊂ J̄ , respectively.
Let the U -valued Lévy process L satisfy Assumptions (a)–(e) posed in Sub-

section 3.1.2. Then the stochastic integral with respect to the simple process Ψ
and the Lévy noise L is defined by∫ t

0

Ψ(s) dL(s) :=

m∑
j=1

1Aj
Ψj(L(tj ∧ t)− L(tj−1 ∧ t)) ∀t ∈ J̄ .

The so-constructed stochastic integral is called Itô integral and it satisfies the
following important property—the Itô isometry, see [16, Prop. 8.6]:

E

[∥∥∥∫ t

0

Ψ(s) dL(s)
∥∥∥2
H

]
= E

[∫ t

0

‖Ψ(s)Q1/2‖2L2(U ;H) ds

]
∀t ∈ J̄ .

Here, the operator Q ∈ L+
1 (U) is the self-adjoint, nonnegative covariance oper-

ator of the Lévy process L. Its square root Q1/2 and the pseudo inverse Q−1/2

can be defined via the spectral expansions

Q±1/2x :=
∑
i∈I

γ
±1/2
i (x, ei)U ei ∀x ∈ U

with respect to an orthonormal basis {ei}i∈N ⊂ U consisting of eigenvectors of
Q with corresponding nonnegative eigenvalues {γi}i∈N, where the index set is
given by I := {i ∈ N : γi �= 0}.

The space H := Q1/2U equipped with the inner product

(·, ·)H := (Q−1/2·, Q−1/2·)U
is a Hilbert space called the reproducing kernel Hilbert space of the Lévy pro-
cess L, [16, Def. 7.2]. It is common to formulate the Itô isometry in terms of
the Hilbert–Schmidt norm with H instead of U as inverse image space:

E

[∥∥∥∫ t

0

Ψ(s) dL(s)
∥∥∥2
H

]
= E

[∫ t

0

‖Ψ(s)‖2L2(H;H) ds

]
∀t ∈ J̄ .

In order to extend the space of admissible integrands, we take the closure
of the vector space of all L(U ;H)-valued simple processes with respect to the
following norm:

‖Ψ‖2L2
H,T (H) := E

[∫ T

0

‖Ψ(s)‖2L2(H;H) ds

]
.

The resulting Banach space denoted by L2
H,T (H) is in fact a Hilbert space,

namely the space of predictable processes Ψ taking values in the space of
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Hilbert–Schmidt operators L2(H;H) such that the L2
H,T (H)-norm defined above

is finite, i.e.,

L2
H,T (H) := {Ψ: Ω× J̄ → L2(H;H) : Ψ predictable, ‖Ψ‖L2

H,T (H) < +∞}
: = L2(Ω× J̄ ,PJ̄ ,P dt;L2(H;H)),

where PJ̄ denotes the σ-field of all predictable sets in Ω× J̄ , that is the smallest
σ-field of subsets of Ω × J̄ containing all sets of the form A × (s, t], where
0 ≤ s < t ≤ T and A ∈ Fs, see [16, Thm. 8.7, Cor. 8.17]. Recall that the
process Ψ is called predictable if Ψ is measurable with respect to PJ̄ .

The construction described above yields a well-defined stochastic integral∫ t
0
Ψ(s) dL(s) ∈ L2(Ω;H) for integrands Ψ ∈ L2

H,T (H) for all t ∈ J̄ . Moreover,
it is the largest class of integrands satisfying the Itô isometry.

In Paper I we furthermore need the notion of the weak stochastic integral.
In order to introduce it, let Ψ be a stochastic process in the space of admissible
integrands L2

H,T (H) and v ∈ C(J̄ ;H) be a deterministic continuous H-valued

function. We then define the L2(H;R)-valued stochastic process Ψv for t ∈ J̄
by

Ψv(t) : z �→ (v(t),Ψ(t)z)H ∀z ∈ H.
The predictability of Ψ and the continuity of v imply that Ψv is predictable.
Moreover, it can be derived from the finiteness of supt∈J̄ ‖v(t)‖H < +∞ and
‖Ψ‖L2

H,T (H) < +∞ that Ψv is an element in the space of admissible integrands

L2
H,T (R). Therefore, we can define the real-valued weak stochastic stochastic

integral
∫ t
0
(v(s),Ψ(s) dL(s))H as the stochastic integral with respect to the

integrand Ψv, i.e.,∫ t

0

(v(s),Ψ(s) dL(s))H :=

∫ t

0

Ψv(s) dL(s) ∀t ∈ J̄ P-a.s.

We note that the Itô isometry for the original stochastic integral implies
the following isometry for the weak stochastic integral:

E

[∣∣∣∫ t

0

(v(s),Ψ(s) dL(s))H

∣∣∣2] = E

[∫ t

0

‖Ψv(s)‖2L2(H;R) ds

]
∀t ∈ J̄ .

This weak version of the Itô isometry and some of its implications are important
for our analysis in Paper I.

3.3. Strong and mild solutions. We consider equations of the form

dX(t) +AX(t)dt = G(X(t)) dL(t), t ∈ J̄ , X(0) = X0(SDE)

in the Hilbert space H, where

• A : D(A) → H is a self-adjoint, positive definite, possibly unbounded
operator with a compact inverse as in Subsection 1.3;

• G : H → L2(H;H) is an affine operator, i.e., there exist operators

G1 ∈ L(H;L2(H;H)) and G2 ∈ L2(H;H)
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such that

G(ϕ) = G1(ϕ) +G2 ∀ϕ ∈ H;

• L is a U -valued Lévy process satisfying Assumptions (a)–(e) posed
in Subsection 3.1.2 and H = Q1/2U denotes its reproducing kernel
Hilbert space;

• X0 is an F0-measurable, square-integrable H-valued random variable.

Equation (SDE) is said to be a stochastic differential equation, SDE for
short. More precisely, it is called a stochastic ordinary differential equation
(SODE) if H = Rn and U = Rm for finite dimensions m,n ∈ N and a stochastic
partial differential equation (SPDE) if H is an infinite dimensional function
space and A a differential operator. For vanishing G1, (SDE) is said to have
additive noise, otherwise it is called an SDE with multiplicative noise.

The purpose of this section is to make sense of the notion of solutions to
these kinds of equations. In fact, as for the deterministic initial value prob-
lem (IVP) there are also different solution concepts for (SDE). In the following
we present their definitions and how they relate. For an introduction to stochas-
tic ordinary differential equations and stochastic partial differential equations
the reader is referred to [10, 14] and to [2, 16], respectively.

An H-valued predictable process X = (X(t), t ∈ J̄) taking values in D(A)
PJ̄ -a.s. is called a strong solution to (SDE) if∫

J

‖X(s)‖H + ‖AX(s)‖H + ‖G(X(s))‖2L2(H;H) ds < +∞ P-a.s.

and the following integral equation holds for all t ∈ J̄ :

X(t) = X0 −
∫ t

0

AX(s) ds+

∫ t

0

G(X(s)) dL(s) P-a.s.

We emphasize the close relation in the definitions of a strong solution to the
deterministic initial value problem (IVP) on the one hand, and of a strong
solution to the stochastic differential equation (SDE) on the other hand.

Since we assume that the operators A and G are linear and affine, respec-
tively, in the case of an SODE with H = Rn and U = Rm we have

A ∈ R
n×n, G1 ∈ L(Rn;Rn×m), G2 ∈ R

n×m.

It is well-known [14, Thm. 5.2.1] that this SODE when driven by Rm-valued
Wiener white noise (cf. Subsection 3.1.3) admits a strong solution. Moreover,
this solution is unique up to modification, i.e., if X1 and X2 are two strong
solutions, then

P(X1(t) = X2(t)) = 1 ∀t ∈ J̄ .

Under the additional assumption that the mapping t �→ X(t) is continuous
P-a.s. (t-continuity), the solution is pathwise unique in the sense of [10], i.e.,

P(X1(t) = X2(t) ∀t ∈ J̄) = 1

for any two t-continuous strong solutions X1 and X2.
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As a further illustration of the concept of strong solutions we take as explicit
examples the real-valued (m = n = 1) model SODEs considered in Paper II:
with additive noise

dX(t) + λX(t) dt = μ dW (t), t ∈ J̄ , X(0) = X0,(SODE1)

and with multiplicative noise

dX(t) + λX(t) dt = ρX(t) dW (t), t ∈ J̄ , X(0) = X0(SODE2)

for an initial value X0 ∈ L2(Ω;R) and constant parameters λ, μ, ρ > 0.
As stated above, there exist strong solutions to these SODEs. Indeed, for

additive noise the so-called Ornstein–Uhlenbeck process defined by

X(t) := e−λtX0 + μ

∫ t

0

e−λ(t−s) dW (s), t ∈ J̄ ,

and in the multiplicative case the geometric Brownian motion given by

X(t) := X0e
−(λ+ρ2/2)t+ρW (t), t ∈ J̄ ,

satisfy the conditions of being strong solutions to the model SODEs above. We
note that in both cases the integral equation can be verified by an application of
the Itô formula [14, Thm. 4.1.2]: to the process (eλtX(t), t ∈ J̄) in the additive
case and to the geometric Brownian motion X itself in the multiplicative case.
Moreover, these solutions are the unique t-continuous strong solutions.

Due to the availability of existence and uniqueness results for strong so-
lutions to SODEs of the kind above and more generally with global Lipschitz
coefficients (see [10, 14] for Wiener noise and [1] for Lévy noise) this definition
is usually sufficient in the finite-dimensional case when dim(H) = n < +∞ and
dim(U) = m < +∞.

However, as for deterministic initial value problems, it is often unsatisfac-
tory when considering equations in infinite dimensions, since – depending on
the operator A – the condition “X takes values in D(A) P-a.s.” may be very
restrictive. Recall that for the deterministic problem (IVP) existence of a strong
solution is only ensured, if the source term f is Hölder continuous. In the ter-
minology of the deterministic framework, the noise term generated by the Lévy
process L in (SDE) takes the role of the source term. Since a Lévy process is
in general not pathwise differentiable (e.g., in the case when L is a Wiener pro-
cess), it is usually irregular with respect to t. For this reason, strong solutions
rarely exist and a less restrictive solution concept is needed.

As in the deterministic case, the semigroup (S(t), t ≥ 0) generated by −A
can be used to define mild solutions of (SDE), see [16, Def. 9.5].

Let X = (X(t), t ∈ J̄) be an H-valued predictable process with

sup
t∈J̄

‖X(t)‖L2(Ω;H) < +∞.

Then X is said to be a mild solution to (SDE) if

X(t) = S(t)X0 +

∫ t

0

S(t− s)G(X(s)) dL(s), ∀t ∈ J̄ , P-a.s.
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In contrast to strong solutions, one knows [16, Theorems 9.15, 9.29] that
under the assumptions on A and G made above, there exists a mild solution
to (SDE), which is unique up to modification. Moreover, the mild solution has
a càdlàg modification, which is pathwise unique. Whenever a strong solution
to (SDE) exists, it coincides with the mild solution.

4. Summary of Paper I

In Paper I we pursue the study of [11], where the second moment and
the covariance of the mild solution to a parabolic stochastic partial differential
equation driven by additive Wiener noise have been described as solutions to
well-posed space-time variational problems posed on Hilbert tensor products of
Bochner spaces. More precisely, in [11] parabolic stochastic partial differential
equations of the form (SDE) are considered, where the noise term is driven by
an H-valued Wiener process, satisfying Assumptions (a)–(e) in Subsection 3.1.2
and the operator G equals the identity on H, i.e., G1 = 0, G2 = Id. In this
way, the state space of the Wiener noise and of the mild solution X to (SDE)
coincide (both are H).

With the notation and definitions of Hilbert tensor product spaces as well
as the vector-valued function spaces X , Y and the bilinear form b : X ×Y → R

from Subsections 1.2, 1.4, and 2.2, the mean m of the mild solution X satisfies
the following deterministic variational problem:

Find m ∈ X s.t. b(m, v) = (EX0, v(0))H ∀v ∈ Y.(VPm)

Well-posedness of this variational problem was already observed in the analysis
of (VP3) in Subsection 2.2. In [11] the tensorized bilinear form B : X2×Y2 → R

is introduced as B := b⊗ b, or explicitly as

B(w, v) :=

∫
J

∫
J
V2〈w(s, t), (−∂s +A)⊗ (−∂t +A)v(s, t)〉V ∗

2
ds dt

and it is proven that the second moment M of the mild solution X satisfies the
following deterministic variational problem:

Find M ∈ X2 s.t. B(M, v) = �(v) ∀v ∈ Y2,(VPM+)

where �(v) := (E[X0 ⊗ X0], v(0, 0))2 + δq(v) and the functional δq : Y2 → R is
defined by (recall that (·, ·)2 abbreviates the inner product on H2 = H ⊗̂H)

δq(v) :=

∫
J

(q, v(t, t))2 dt ∀v ∈ Y2.

It is shown that under the assumption that tr(AQ) < +∞, the functional δq
and, thus, the right-hand side of the variational problem for M is an element
of the dual (Y2)

′. As remarked in Subsection 2.2, the operator b ∈ L(X ;Y ′) is
an isomorphism, so that B = b ⊗ b ∈ L(X2;Y ′

2) inherits this property and the
variational problem for the second moment is well-posed.

In Paper I we prove that also in the case of multiplicative Lévy noise the
second moment as well as the covariance of the square-integrable mild solution
satisfy deterministic space-time variational problems posed on tensor products
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of Bochner spaces. In contrast to the case of additive Wiener noise consid-
ered in [11], the pair of trial–test spaces is not given by Hilbert tensor product
spaces, but projective–injective tensor product spaces. In addition, the result-
ing bilinear form in the variational problem involves a non-separable form on
these tensor spaces. Therefore, well-posedness does not readily follow from the
isomorphism property of b and a careful analysis is needed to derive existence
and uniqueness of a solution to the derived variational problem.

To specify this non-separable form, we define the bilinear form Δ, referred
to as the trace product, on the algebraic tensor product spaces W ⊗ W and
Y ⊗ Y by

Δ(w, v) :=

N∑
k=1

M∑
�=1

∫
J

(w1
k(t), v

1
� (t))H(w2

k(t), v
2
� (t))H dt,

where
∑N
k=1 w

1
k ⊗w2

k and
∑M
�=1 v

1
� ⊗ v2� are any representations of w ∈ W ⊗W

and v ∈ Y ⊗Y. We prove that the trace product Δ admits a unique continuous
extension by bilinearity to a bounded bilinear form Δ: Wπ × Yε → R and the
induced operator Δ ∈ L(Wπ;Y ′

ε) satisfies ‖Δ‖L(Wπ ;Y′
ε)

≤ 1, where Y ′
ε denotes

the dual of the injective tensor product space Yε. Having defined the trace
product Δ, we introduce

B : Xπ × Yε → R, B(w, v) := B(w, v)−Δ((G1 ⊗G1)(w)q, v),

where q :=
∑
i∈N

γi(ei ⊗ ei) with the nonnegative eigenvalues {γi}i∈N and the
corresponding orthonormal eigenvectors {ei}i∈N of the covariance operator Q
of the Lévy noise L in (SDE). Continuity of this bilinear form is proven. We
show that the second moment of (SDE) with multiplicative Lévy noise satisfies
the following deterministic variational problem:

Find M ∈ Xπ s.t. B(M, v) = f(v) ∀v ∈ Yε(VPM∗)

with the right-hand side (recall m ∈ X denotes the mean of X):

f(v) := (E[X0 ⊗X0], v(0, 0))2 +Δ((G1(m)⊗G2)q, v)

+ Δ((G2 ⊗G1(m))q, v) + Δ((G2 ⊗G2)q, v).

Well-posedness of this problem is proven under an appropriate assumption on
the operator G1. More precisely, the lower bound γ ≥ 1 for the inf-sup constant
of the bilinear form b : (X , ‖ · ‖X )× (Y, ‖ · ‖Y) → R discussed in Subsection 2.2
along with the observation that Y ′

ε = (Y ′)π, see [18, Theorems 2.5 and 5.13],
implies that the bilinear form B : Xπ × Yε → R satisfies the following inf-sup
condition

inf
w∈S(Xπ)

sup
v∈S(Yε)

B(w, v) ≥ 1.

Owing to ‖Δ‖L(Wπ ;Y′
ε)
≤ 1 and the definition of q we find

‖B‖L(Xπ ;Y′
ε)
≤ 1− ‖G1‖2L(V ;L2(H;H))
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for the operator B : Xπ → Y ′
ε induced by the bilinear form B in (VPM∗) and

injectivity holds for

‖G1‖L(V ;L2(H;H)) < 1.(G1)

A variational equation for the covariance function of the mild solution X to
(SDE), again posed on Xπ and Yε as trial–test spaces, follows from the results
for the mean and the second moment.

5. Petrov–Galerkin approximations

In this section we collect results for Petrov–Galerkin discretizations of the
generic linear variational problem

Find u ∈ U : B(u, v) = �(v) ∀v ∈ V,
posed on normed vector spaces (U , ‖·‖U ) and (V, ‖·‖V), with a continuous linear
right-hand side � ∈ V ′, and a bilinear form B : U × V → R. We assume that
B is continuous on U × V, so that the operator induced by B (again denoted
by B) is linear and bounded, i.e., B ∈ L(U ;V ′). The generality of considering
normed vector spaces as trial–test spaces instead of Hilbert spaces will allow us
to address the variational problem (VPM∗) satisfied by the second moment of
the solution to (SDE) with multiplicative noise – recall that the trial and test
spaces Xπ and Yε are non-reflexive Banach spaces.

We assume that Uh×Vh ⊂ U×V is a fixed pair of non-trivial subspaces with
equal finite dimension dimUh = dimVh < +∞, and we aim at approximating
the solution u ∈ U of the variational problem above by a function uh ∈ Uh and
quantifying the error ‖u − uh‖U . For this purpose, suppose that the operator
B̄ : U → V ′ is an approximation of B, which again is continuous. We introduce
the notation

‖�‖V′
h
:= sup

v∈S(Vh)

|�(v)|

for functionals � which are defined on Vh, and assume that the approximation
B̄ admits a constant γ̄h > 0 such that

‖B̄wh‖V′
h
≥ γ̄h‖wh‖U ∀wh ∈ Uh.

In other words, the corresponding bilinear form B̄ satisfies the following discrete
inf-sup condition:

inf
wh∈S(Uh)

sup
vh∈S(Vh)

B̄(wh, vh) ≥ γ̄h > 0.

We then define the approximate solution uh as the solution of the following
discrete variational problem:

Find uh ∈ Uh : B̄(uh, vh) = �(vh) ∀vh ∈ Vh.
Recall that we only assume that the discrete trial and test spaces Uh and Vh
are of the same dimension and that they may differ. In this case when Uh �= Vh,
the discrete variational problem is said to be a Petrov–Galerkin discretization
and its solution uh ∈ Uh is called a Petrov–Galerkin approximation.
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The following proposition ensures existence and uniqueness of the Petrov–
Galerkin approximation. In addition, it quantifies the error ‖u − uh‖U , which
is of importance for the convergence analysis of the Petrov–Galerkin discretiza-
tions discussed in Paper II.

Proposition 5.1. Fix u ∈ U . Under the above assumptions there exists a
unique uh ∈ Uh such that

B̄(uh, vh) = B(u, vh) ∀vh ∈ Vh.

The mapping u �→ uh is linear with ‖uh‖U ≤ γ̄−1
h ‖Bu‖V′

h
, and satisfies the

quasi-optimality estimate

‖u− uh‖U ≤
(
1 + γ̄−1

h ‖B̄‖L(U ;V′)
)

inf
wh∈Uh

‖u− wh‖U + γ̄−1
h ‖(B − B̄)u‖V′

h
.

Proof. Injectivity of the operator B̄ on Uh follows from the discrete inf-
sup condition imposed above. Since dimUh = dimVh, the operator B̄ : Uh → V ′

h

is an isomorphism and existence and uniqueness of uh follows.
In order to derive the quasi-optimality estimate, fix wh ∈ Uh. By the

triangle inequality, ‖u− uh‖U ≤ ‖u− wh‖U + ‖wh − uh‖U . Due to the discrete
inf-sup condition we can bound the second term as follows:

γ̄h‖wh − uh‖U ≤ sup
vh∈Vh

B̄(wh − uh, vh) = sup
vh∈Vh

[B̄(wh, vh)− B(u, vh)]

≤ sup
vh∈Vh

B̄(wh − u, vh) + sup
vh∈Vh

[B̄(u, vh)− B(u, vh)]

≤ ‖B̄‖L(U ;V′)‖u− wh‖U + ‖(B − B̄)u‖V′
h
.

Therefore, for arbitrary wh ∈ Uh we may estimate the error ‖u− uh‖U by

‖u− uh‖U ≤
(
1 + γ̄−1

h ‖B̄‖L(U ;V′)
)
‖u− wh‖U + γ̄−1

h ‖(B − B̄)u‖V′
h

and taking the infimum with respect to wh ∈ Uh proves the assertion. �

6. Summary of Paper II

In Paper II we consider the canonical examples of stochastic ODEs with
additive or multiplicative Wiener noise, namely the Ornstein–Uhlenbeck pro-
cess (SODE1) and the geometric Brownian motion (SODE2) from Subsec-
tion 3.3.

We first recall the deterministic equations in variational form satisfied by the
first and second moments of the solution processes. As already seen in Paper I,
the equations for the second moment and the covariance are posed on tensor
products of function spaces. In the additive case (VPM+) they can be taken
as the Hilbert tensor product spaces X2 and Y2 and well-posedness is readily
seen, since B : (X , ‖ · ‖X ) → (Y, ||| · |||Y) is an isometric isomorphism. In the
multiplicative case (VPM∗), however, the pair Xπ × Yε of projective–injective
tensor product spaces as trial–test spaces is required and well-posedness, proven
in Paper I under Assumption (G1), is not an immediate consequence anymore
due to the presence of the trace product Δ in the operator induced by the
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bilinear form B. For the considered example (SODE2) with multiplicative noise,
we prove well-posedness even beyond the assumption (G1) imposed in Paper I.

Afterwards, we focus on deriving numerical approximations for the mean
and the second moment. We start by discussing different Petrov–Galerkin dis-
cretizations for the variational problem (VPm) satisfied by the first moment.
From these, Petrov–Galerkin discretizations based on tensor product piecewise
polynomials are constructed, which are then applied to the variational prob-
lems (VPM+) and (VPM∗) for the second moments. We discuss briefly the
discretization of (VPM+) and focus on the more sophisticated multiplicative
case (VPM∗). We prove stability of the discrete solution with respect to the
projective norm on Xπ and conclude that a discrete inf-sup condition is satis-
fied. Therefore, Proposition 5.1 is applicable, which yields a quasi-optimality
estimate. From this, convergence of the discrete solution to the exact solution
in Xπ is derived.

These results should be useful for developing numerical methods for mo-
ments of solutions to stochastic partial differential evolution equations by inves-
tigating the underlying family of ODEs in the spectral space of the differential
operator A.
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