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Figure 1: Interactive animation of deformable bodies modeled using hundreds of thousands of linear constraints. For each frame, the
dynamics is solved in a few milliseconds using our solver. Left. Self-colliding cloths (108K triangles, 324K constraints), 5 ms per frame.
Middle. Self-colliding noodles (52K triangles, 156K constraints), 4 ms per frame. Right. Volumetric Armadillo hanging by one hand (55K
tetrahedrons, 55K constraints), 15 ms per frame.

Abstract

The solution of large sparse systems of linear constraints is at the
base of most interactive solvers for physically-based animation of
soft body dynamics. We focus on applications with hard and tight
per-frame resource budgets, such as video games, where the solu-
tion of soft body dynamics needs to be computed in a few millisec-
onds. Linear iterative methods are preferred in these cases since
they provide approximate solutions within a given error tolerance
and in a short amount of time. We present a parallel random-
ized Gauss-Seidel method which can be effectively employed to
enable the animation of 3D soft objects discretized as large and ir-
regular triangular or tetrahedral meshes. At the beginning of each
frame, we partition the set of equations governing the system us-
ing a randomized graph coloring algorithm. The unknowns in the
equations belonging to the same partition are independent of each
other. Then, all the equations belonging to the same partition are
solved at the same time in parallel. Our algorithm runs completely
on the GPU and can support changes in the constraints topology.
We tested our method as a solver for soft body dynamics within the
Projective Dynamics and Position Based Dynamics frameworks.
We show how the algorithmic simplicity of this iterative strategy
enables great numerical stability and fast convergence speed, which
are essential features for physically based animations with fixed and
small hard time budgets. Compared to the state of the art, we found
our method to be faster and scale better while providing stabler so-
lutions for very small time budgets.
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1 Introduction

Many applications in Computer Graphics demand increasingly so-
phisticated models for animating physical phenomena. While these
topics have been studied extensively, the simulation of complex sys-
tems at interactive rates is still an open problem. In this paper, we
focus on real-time applications such as video games, with fixed and
small hard time budgets available for physically-based animation
and where responsiveness and stability are often more important
than accuracy, as long as the results are believable. In these appli-
cations, iterative solvers have been employed effectively to provide
fast, but approximated, solutions of the linear equations which gov-
ern the system. Their parallel implementation on commodity hard-
ware, such as GPUs and multicore CPUs, is becoming increasingly
important to speed up simulation.

To guarantee interactivity at 30 frames per second, the total amount
of time available to update the scene is 33 ms, and only a fraction
of this time can be devoted to advancing the dynamics of the ob-
jects. Often, the available time slice for physically based animation
is as little as 5 ms. The accuracy of the solution of linear iterative
solvers depends on the number of iterations; however only a small
number of iterations can be accommodated in such a tight time bud-
get. This forces the use of simple objects composed from few con-
straints whose dynamics can be solved in few iteration steps.

Some of the most popular iterative solvers in the Computer Graph-
ics community are the Gauss-Seidel- and the Jacobi-based solvers.
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These do not need computationally expensive inner products un-
like the iterative conjugate gradient and GMRES, or direct meth-
ods like Cholesky decompositions. Furthermore, the Jacobi-based
approaches are simple to parallelize, and thus suitable for modern
GPUs or multi-core processors. It is well-known that the con-
vergence speed of the Gauss-Seidel method is much faster than
the Jacobi one under an equal number of iterations [Saad 2003;
Thomaszewski et al. 2009]. However, the Gauss-Seidel method is
an inherently serial algorithm, and thus it cannot be implemented
easily on parallel architectures. There exists a significant body
of literature on how to parallelize Gauss-Seidel, but in general
these methods involve complex synchronization mechanisms and
expensive communications between threads, which undermine their
application in the context of interactive animation on commodity
GPUs.

In this paper we present Vivace1, a randomized parallel solver for
sparse systems of linear constraints with the convergence speed of
the Gauss-Seidel method. In Vivace we make use of a parallel ran-
domized graph coloring algorithm [Grable and Panconesi 2000] for
re-organizing the unknowns of the sparse linear system, such that
no interdependent unknowns in a constraint share the same color.
Then, unknowns that belong to the same color are solved in parallel
with a single Gauss-Seidel step, leading to a significant acceleration
of the convergence speed. The coloring algorithm itself is paral-
lel and suitable for implementation on modern GPU architectures.
While the use of graph coloring is known in our community, the
main technical contribution of Vivace is the adoption of a random-
ized model and a careful study of its tradeoffs compared to existing
models.

Vivace has three characteristics that make it particularly well suited
for interactive soft-body dynamics. First, the randomized coloring
algorithm produces partitions of similar size, which leads to bal-
anced workloads, making sure that none of the computational units
are overloaded or underutilized. Second, the coloring algorithm is
fast enough to be rerun as needed, even for each frame. Thus the
workload remains balanced even when the topology of the system
changes, e.g. in case of constraints derived by collisions. Finally,
the residual error in sequential Gauss-Seidel iterations depends on
the order in which the equations are solved [Fratarcangeli and Pel-
lacini 2015]. Randomizing this order, as is done in our algorithm,
removes this error faster leading to a more accurate solution.

We demonstrate the benefits of this solver for the parallel imple-
mentation of Projective Dynamics [Bouaziz et al. 2014] and Po-
sition Based Dynamics [Müller et al. 2007; Macklin et al. 2014].
These two methods can be formulated as linear systems and as such
can be solved efficiently with our method. Within these frame-
works, we can comfortably solve hundreds of thousands of con-
straints in 5 ms including collisions on a modern GPU. Fig. 1 shows
results from our solver. Compared to parallel Jacobi and Jacobi
accelerated with Chebyshev polynomials [Wang 2015], we found
Vivace to converge faster and remain significantly more stable for
small time budgets. In conclusion, in our application domain, Vi-
vace has the following benefits:

• Convergence Speed. Vivace is parallelizable, like the Jacobi-
based methods, with the convergence rate of Gauss-Seidel ones.
• Stability. If the linear system is symmetric positive defi-

nite, e.g., in the case of mass-spring networks [Liu et al. 2013],
V ivace always converges even in the case of a small number of
iterations used for each frame, allowing our solver to be used in
case of small time budgets available for the physics computation.

1Vivace is a word used for musical movements performed in a lively
and brisk manner. Our solver speeds-up the computation of physics-based
animation making it more “lively”, hence the name.

• Scalability. The number of parallel steps to perform a full itera-
tion is equal to the number of colors and does not depend on the
number of constraints in the system. Furthermore it is consider-
ably smaller than the maximal number of constraints influencing
a single vertex in the polygonal mesh representing the animated
object. In case of the triangular and tetrahedral meshes usually
employed in Computer Graphics, this number is small enough to
allow interactive animation of a very large of number constraints.

2 Related Work

Linear Iterative Solvers Iterative solvers are the algorithms of
choice for providing fast solutions of linear systems of equations
found in interactive physical simulations. In these domains, the re-
sulting linear systems, representing constrained systems, are large,
irregular, and mostly sparse. This sparsity can be exploited to iden-
tify independent subsets of equations which can be solved in paral-
lel. This strategy has been used to optimize the parallel implemen-
tation of popular Krylov subspace solvers on the GPU such as the
preconditioned conjugate gradient (PCG) [Weber et al. 2013] and
GMRES [Bahi et al. 2011].

Linear iterative solvers have slower convergence speeds than
Krylov subspace methods, nonetheless they have been extensively
employed because of their simplicity and faster computational
speed. For example, they have been used for contact resolution
of rigid body animation to avoid jitter artifacts [Bridson et al. 2002;
Govindaraju et al. 2005; Tonge et al. 2012; Abel and Erleben 2015].
In [Allard et al. 2010], a parallel, coloring-based technique is pre-
sented for solving dense systems using the Gauss-Seidel method.
In this method the thread synchronization relies on internal, poten-
tially slow, atomic instructions.

The widely used Position Based Dynamics approach (PBD) [Ben-
der et al. 2014] employs both the serial Gauss-Seidel
method [Müller et al. 2007], and the parallel Jacobi method [Mack-
lin and Müller 2013; Macklin et al. 2014] for the animation of
rigid and deformable bodies, fluids, and their interaction (e.g.,
collisions). The Nucleus solver tackles the same problem, and is
used within Maya [Stam 2009]. Projective Dynamics is an implicit
integrator for interactive physics-based animation, recently intro-
duced in [Bouaziz et al. 2014]. It is a generalization of [Liu et al.
2013] and [Müller et al. 2007], and shares some similarities with
the optimization framework for geometric constraints proposed
in [Bouaziz et al. 2012]. The main benefits of Projective Dynamics
are its stability and the accuracy of the results. Unlike other
implicit methods, it does not require computationally expensive
differentiations, and it converges to an almost exact solution in few
iterations.

Chebyshev semi-iterative method. Chebyshev polynomi-
als can be used to accelerate the rate of convergence of iterative
solvers [Golub and Van Loan 1996]. The lower and upper bounds
of the eigenvalues of the matrix must be computed to find the opti-
mal parameters of such polynomials. This is impractical because of
the potentially large size of the linear system, which may also vary
due to collisions or other topology changes. Recently, [Wang 2015]
proposed an iterative method to quickly approximate the computa-
tion of Chebyshev polynomials, and used this to significantly accel-
erate the convergence speed of the parallel Jacobi method applied
to both Projective Dynamics and Position Based Dynamics. How-
ever, using approximated values for the polynomial parameters may
introduce instabilities if the number of iterations is too low.



3 Background

Vivace is particularly well-suited for solving the large sparse linear
systems from the Projective Dynamics framework [Bouaziz et al.
2014]. In this section, we will quickly review this method, refer-
ring the reader to the original paper for further details. It is worth
noticing here that Position Based Dynamics can also be cast in the
Projective Dynamics framework.

Projective Dynamics. Projective Dynamics models the world as
a set of constrained particles. The state of the system is defined
by the position qi ∈ R3×n of the n particles, and their velocity
vi ∈ R3×n. The forces fint, which are generated internally by
the constraints, are defined as the gradient of the sum of the en-
ergy functions Wi as fint = −

∑
i∇qWi (q). Given the state

(qi,vi)
(k) and the current external force fext at time tk, the solver

computes the internal forces fint and the next state (qi,vi)
(k+1)

with the implicit Euler scheme{
q(k+1) = q(k) + hv(k+1)

v(k+1) = v(k) + hM−1 (fext + fint)

where h is the time step, M is the mass matrix and the forces are
evaluated in tk+1. [Bouaziz et al. 2014] show that this is equivalent
to solving a minimization problem that can be efficiently tackled
with an iterative local/global alternation approach. For each itera-
tion, they first project q on the nearest point p lying on the energy-
free manifold defined by each constraint (the local step). Then,
they minimize the distance of the current state (qi,vi)

(k) from the
resulting local configurations pi (the global step). The local step
is inherently parallel because it is performed for each constraint
independently from the other constraints. The main computational
hurdle is the global step that is equivalent to solving the large sparse
linear system Yq = b:(

M

h2
+
∑
i

ST
i A

T
i AiSi

)
︸ ︷︷ ︸

Y

q =
Ms

h2
+
∑
i
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i A

T
i Bipi︸ ︷︷ ︸

b

(1)

with s(k) = q(k) + hv(k) + h2M−1fext

where s(k) is the explicit integration of the state q(k) ignoring the
internal forces, Ai and Bi are constant matrices that define the con-
straint i (see [Liu et al. 2013; Bouaziz et al. 2014] for the definition
of common constraints), and Si is the selector matrix to select only
the particles influenced by the constraint i.

Chebyshev semi-iterative approach. In [Bouaziz et al. 2014],
Y is considered constant and, to solve the system in Equation 1,
it is inverted just once during the initialization, while b is updated
for each animation step. However, Y in general is not constant, in
particular when new constraints are inserted into the system, e.g.,
constraints arising from collisions. In these cases, recomputing
Y−1 for each frame is unfeasible given the large computational
cost. [Wang 2015] introduced a method to solve Yq = b using
the Jacobi method accelerated with the Chebyshev semi-iterative
approach [Golub and Van Loan 1996]. The proposed algorithm
evaluates iteratively the approximated value of the spectral radius ρ
for the matrix Y, and uses it to compute an amplification factor ω.
Then, for each iteration, the current solution is pushed towards the
optimal solution using q(k+1) = ωk+1(q̂(k+1)−q(k−1))+q(k−1)

where q̂(k+1) is the result of the Jacobi method at the current it-
eration k. The resulting method is straightforward to implement
in parallel, and leads to significant convergence speed-ups without
adding noticeable computational penalties.

However, the value of the spectral radius ρ is approximated, and
as such, it is not always possible to predict the actual acceleration
factor for the convergence speed. More importantly, if the estimate
of ρ is not precise enough, then divergence is likely to occur as we
have observed in practice for small time steps.

Parallel Gauss-Seidel approach. We focus our effort on im-
proving the solution of the linear system Yq = b since this is the
dominant cost in the Projective Dynamics framework. We seek a
parallel solution well-suited for GPU evaluation, achieved by an it-
erative stable scheme that works well even for small per-frame time
budgets. We base our work on the parallel Gauss-Seidel literature
given the high convergence property of the base method. While
Gauss-Seidel is an inherently serial algorithm, for sparse matrices
it can be parallelized by dividing the set of equations in partitions,
such that any pair of equations belonging to the same partition do
not share any unknown. The set of unknowns in each partition can
then be safely solved in parallel.

Graph Coloring. Of the many methods for partitioning a sparse
linear system, graph coloring is the one mostly used in practice,
both in the numerical analysis literature and in the distributed com-
puting one [Saad 2003]. A graph G is built from the matrix Y,
where each vertex corresponds to an unknown, and two vertices are
connected by an undirected edge if they belong to the same equa-
tion, i.e. they are related by a constraint.

By coloring G with a distance-1 algorithm with q colors, the un-
knowns assigned to the same color belong to independent equa-
tions by definition. Then, the standard lexicographic Gauss-Seidel
method can be applied and, instead of solving the equations one
after the other, all the equations belonging to the same partition
can be solved together in one parallel step, shifting the complexity
from O(n) where n is the number of vertices, to O(c), where c is
the number of colors. We refer the reader to [Saad 2003] for a more
comprehensive treatment. Since graph coloring belongs to the NP-
hard class [Garey and Johnson 1979], the outstanding problem is to
find an approximate and efficient algorithm to partition the vertices.

Parallel Graph Coloring. Graph coloring introduces a significant
overhead when run each frame. To reduce the per-frame time bud-
get, we investigate parallelizable graph coloring methods, a prob-
lem well-studied in the literature [Garey and Johnson 1979; Saad
2003]. Most parallel graph coloring methods are techniques that
follow the structure of the method in [Luby 1985], where a solution
is formed by iteratively determining an independent set I of vertices
(such that no two vertices share a common edge), and color them in
parallel. The colored vertices are removed from the graph and pro-
cess is iterated untill all the vertices have been colored. Different
methods are characterized by the manner in which they choose an
independent set I . Thus, vertices belonging to the same indepen-
dent set can be colored in parallel.

Practical Desiderata. When the solver is run on the GPU, q
kernels are run sequentially. Therefore it is desirable to have as
small a number of colors as possible, to lower the number of kernel
executions. It is also desirable to haven roughly an equal number
of nodes per color to ensure a balanced workflow. Furthermore,
we want to be able to color the graph at each frame, to allow the
solver to adapt to topology changes in the graph induces by time-
varying constraints, such as collisions. Given these desiderata and
that graph coloring is an NP-hard problem, we set to investigate
which methods perform well in practice.



Algorithm 1 Simulation Step in Vivace

1: q0 ← qt + hvt + h2M−1fext
2: Graph coloring: V = {qi, i = 1, . . . , N} is partitioned into
p colors C1, . . . , Cp, such that ∀ (qi,qj) ∈ Ci, qi and qj are
not shared by any constraint

3: for k = 0 . . .K − 1 do
4: for each partition Ci ⊂ V do
5: for each qi ∈ Ci do in parallel
6: q̂k+1

i ← solve
(
q0
i ,q

k
i

)
7: qk+1

i ← ω
(
q̂k+1
i − qk−1

i

)
+ qk−1

i

8: qt+1 ← qK

9: vt+1 ← (qt+1 − qt) /h

4 Vivace: Parallel Gauss-Seidel by Random-
ized Graph Coloring

Alg. 1 shows pseudocode for the Vivace solver. The core idea of
Vivace is the parallelization of lexicographic Gauss-Seidel by using
graph coloring. Whenever the topology of the graph induced by the
constraints network changes, then the coloring algorithm divides
the set of vertices into independent partitions; each one correspond-
ing to a color. Vertices belonging to the same partition are solved
in parallel.

The simulation step starts by advancing the dynamics of the system
with an explicit Euler step (step 1). Then, the coloring algorithm
divides the set of vertices in independent partitions; each one cor-
responding to a color (step 2). The solver iterates K times over all
the constraints. Each particle qi belonging to partition Cj is pro-
cessed in parallel. All the corrections induced by all the constraints
sharing the particle are computed and summed together (steps 3-6).
Then, a Successive Over-Relaxation (SOR) is applied to further ac-
celerate the convergence speed (step 7). In all our tests, we have
used ω = 1.9. Higher values lead to spurious deformation modes
or instabilities. Finally, in steps 8-9, the solution of the solver is
assigned to the current position of the particles, and the velocity is
updated accordingly.

4.1 Parallelization Strategy

In Alg. 2, we define a simple, randomized algorithm belonging
to the class of Brooks-Vizing vertex coloring algorithms [Grable
and Panconesi 2000]. These algorithms are appealing because they
are simple to implement, fast, and use considerably fewer than ∆
colors, where ∆ is the maximal degree of the graph. As input,
we consider graphs representing physically animated objects dis-
cretized as triangular or tetrahedral meshes. Such meshes are com-
posed of hundreds of thousands of vertices connected by constraints
(e.g., distance, bending and volume constraints), however ∆ is low
enough to enable real-time colorings.

The input of the algorithm is the undirected graph G corresponding
to the matrix Y in Equation 1. Every vertex v is initially assigned
a palette of available colors denoted as Pu. Colors are identified by
consecutive natural numbers. V denotes the set of vertices, and U
denotes the set of currently uncolored vertices.

During the initialization phase (steps 1-3), a list of ∆v/s colors is
given to the palette of each vertex v, where ∆v is the degree of v
and s > 1 is the palette shrinking factor, which is constant for the
whole graph. Then, the actual coloring round procedure starts and
is repeated until all the vertices have been colored. Each coloring
round comprises three parallel steps. In the tentative coloring round
(steps 5-6), a color c(v) is randomly chosen among the available

Algorithm 2 Vivace Graph Coloring Procedure [Grable and Pan-
conesi 2000]

1: U ← V . Initialization
2: for all vertex v ∈ U do
3: Pv ← {0, . . . ,∆v/s}
4: while |U | > 0 do
5: for all vertices v ∈ U do . Tentative coloring
6: c(v)← random color in Pv

7: I ← ∅
8: for all vertices v ∈ U do . Conflict resolution
9: S ← {colors of all the neighbors of v}

10: if c (v) /∈ S then
11: I ← I ∪ {v}
12: remove c(v) from palette of neighbors of v
13: U ← U − I
14: for all vertices v ∈ U do . Feed the hungry
15: if |Pv| = 0 then
16: Pv ← Pv ∪ {|Pv|+ 1}

colors in the palette Pv , and assigned to v. Then, in conflict resolu-
tion (steps 7-12), each vertex checks that none of its neighbors has
selected the same tentative color. If this occurs, the coloring of v
is accepted and c(v) is removed from the palette of the neighbors.
In the feed the hungry phase (steps 14-16), a color is added to the
palettes which have run out of colors. The maximal amount of col-
ors allowed is ∆v +1, but in our experiments we never reached this
maximal threshold.

The effect of the shrinking factor is to reduce the number of colors;
however increasing it too much leads to slower colorings without
meaningful gains in terms of reducing the number of colors. In our
case, we found that using the minimal degree of the graph as the
value of the shrinking factor leads to the best colorings. To speed up
the conflict resolution phase, we employed the Hungarian heuristic
[Luby 1985]: in case of conflict, if the node has the higher index
among its neighbors then the coloring is considered legitimate. We
have found this strategy to greatly reduce the number of coloring
rounds needed by the algorithm to color all the vertices in the graph.

4.2 Comparison with Other Graph Coloring

Other Graph Coloring Methods. In this section, we compare the
randomized coloring used in Vivace with other parallel algorithms
used in literature. [Luby 1985] proposed a Monte Carlo method to
find a maximal independent set (MIS) in parallel, that is the largest
possible independent set of vertices in the graph. In this approach,
a random weight is assigned to each vertex. The weights are a ran-
dom permutation of the integers 1, 2, . . . , |V |. Then, each maxi-
mal independent set is constructed in parallel by choosing vertices
which are local maxima i.e., that have a weight greater than any
other neighbors in |V |. Once a maximal independent set is iden-
tified, all the vertices belonging to such set are assigned the same
color and removed from the graph. The procedure is repeated, us-
ing different colors for different maximal independent sets, until all
the vertices are colored.

[Jones and Plassmann 1993] improved on Luby’s algorithm. In-
stead of using the same color for each vertex in the same inde-
pendent set, each vertex is colored individually with the smallest
available color not already assigned to a neighboring vertex. This
apparently simple improvement reduces both the number of colors
and the number of rounds.

The Largest-Degree-First (LDF) algorithm is similar to the Jones-
Plassmann approach but, instead of using random weights per ver-
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Figure 2: Adjacency matrices corresponding to the constraint graphs. Leftmost column: initial configuration. Other columns: reordering
induced by different coloring algorithms. Nodes belonging to the same color are independent from each other and can be solved in a single
parallel step. The number of colors and computation time averaged over 30 frames is reported below each matrix.

tex, the weight is defined as the current degree of the vertex [Welsh
and Powell 1967]. After an independent set is defined, the colored
vertices are removed from the graph and the degree of the remain-
ing nodes is updated. A vertex with i colored neighbors requires at
most i + 1 colors. The LDF algorithm keeps i as small as possi-
ble for each round, so that there is a better chance of keeping low
the number of used colors. In fact, LDF uses fewer colors than
the Jones-Plassmann algorithm; however the number of rounds to
completely color the graph increases significantly.

In [Tonge et al. 2012], a greedy approach based on the Vizing’s the-
orem [Vizing 1964] is used for reducing collision jittering of rigid
bodies. Such coloring strategy leads to 2∆ − 1 colors, where ∆
is the maximum degree of the graph, which in some cases can be
high enough to compromise real-time performances (e.g., for the
tetrahedral Armadillo used in our tests: ∆ = 35). In comparison,
our approach extends the use of Gauss-Seidel not only to collision
response but to the whole dynamics of deformable bodies, and it is
faster because uses far less colors than ∆ due to the shrinking factor
s and the feed the hungry step (Alg. 2, steps 14-16). Graph color-
ing for collision handling has also been used in [Govindaraju et al.
2005], for meshes with rectangular connectivity, i.e. every vertex
has four neighbors and every polygon is rectangular. Our approach
can handle meshes without any restriction on connectivity.

Recently, [Naumov et al. 2015] presented a parallel coloring algo-
rithm requiring a minimal amount of communication between the
threads, making it particularly appealing for GPU implementations.
This method performs better than the Jonas-Plassmann algorithm
when incomplete colorings are acceptable (in this particular case if
just 90% of the nodes need to be colored), making such an algo-

rithm unsuitable for our purposes. Furthermore, this algorithm is
based on custom hash functions which is not clear how to define in
case of graphs derived from irregular meshes.

In [Fratarcangeli and Pellacini 2015], a method based on sequen-
tial coloring changes the topology of the graph in the initialization
phase, in order to use a minimal number of colors. This method
leads to balanced partitions but, being executed just at the begin-
ning of the animation, it is not suitable for matrices varying over
time. In contrast, our approach focuses on interactively changing
sparse systems which require low overhead colorings.

Other approaches, such as the Smallest-Degree-First [Matula and
Beck 1983], focus on how to provide better coloring rather than
maximizing speed. And other good sequential algorithms, namely
the Saturation-Degree-Ordering [Brélaz 1979] and Incidence-
Degree-Ordering [Coleman and Moré 1983] algorithms, are not
suitable for parallelization, and we do not consider them here.

Performance Comparison. We compared the randomized col-
oring algorithm employed in Vivace with other parallel coloring al-
gorithms, namely Luby [Luby 1985], Jones-Plassmann (JP) [Jones
and Plassmann 1993] and Largest-Degree-First (LDF) [Welsh and
Powell 1967]. Unlike the existing literature, where the Brooks-
Vizing colorings are tested on triangle- or square-free graphs, we
applied the algorithms on graphs derived from irregular geometric
models: 1) a triangulated cloth using a spring constraint for each
edge, and 2) the Stanford Bunny and Armadillo using tetrahedral
constraints for volume preservation. From each model, we gener-
ated different meshes with an increasing number of triangles and
tetrahedrons, respectively.
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Figure 3: Comparison of different coloring algorithms w.r.t. time to
complete (left column), and number of used colors (right column).

The re-ordering induced by the coloring is depicted in the adjacency
matrices in Fig. 2, which correspond to the matrix Y in Equation 1,
and represent the topology of the constraints in the mesh before and
after the coloring. The rows and columns represent the indices of
the nodes. An element of the matrix mij is not empty if the corre-
sponding nodes i and j are shared by a constraint. A single row of
the matrix represents a constraint to be solved. The initial configu-
ration is shown in the leftmost column, labeled as unordered.

By reordering the indices of the nodes in the graph according to
their color, the elements are “pushed” away from the diagonal. In-
stead of solving for one unknown after the other as in the lexico-
graphic Gauss-Seidel, all the unknowns belonging to the same color
can be solved simultaneously in parallel.

We quantitatively compare algorithms with respect to the total time
for coloring and number of colors (Fig. 3). We remind the reader
that we seek a solution with the smallest number of colors, to
increase parallelism, and the smallest computation time. As ex-
pected, colorings using [Welsh and Powell 1967] employ the small-
est amount of colors but are 10-20 times slower than the other algo-
rithms. In general, our tests demonstrate that the random coloring
employed in Vivace outperforms all the other algorithms in speed
while using approximately the same number of colors.

5 Results and Discussions

In this section, we provide a qualitative and quantitative assessment
of Vivace. All algorithms have been fully implemented on the GPU
using CUDA/c++, and run on an NVIDIA GeForce GTX 970.

Performance and stability We have tested Vivace with respect
to stability, convergence speed and scalability, and compared it
with other two iterative solvers: the parallel Jacobi method [Mack-
lin et al. 2014], and parallel Jacobi accelerated with the Cheby-
shev semi-iterative method, as presented in [Wang 2015]. For
each experiment, we tested all the solvers with different time bud-
gets, while the same conditions were used, i.e. same time step
h = 33ms, same external forces, and same damping. The sup-
plemental video shows the performed experiments.

The plots in Fig. 4 report the residual error over time for a trian-
gulated cloth composed of 10K vertices and 20K triangles modeled
with a spring constraint for each edge [Liu et al. 2013], and a hinge-
edge constraint for each edge shared by two triangles [Bergou et al.
2006]. The accuracy of all the solvers increases with the number
of iterations; however, the number of iterations must be relatively
small in order to satisfy the time budgets. When the time budget
is 4 or 8 ms, the residual error of the Jacobi solver is too big to be
acceptable (blue curve), while the solver proposed in [Wang 2015]
diverges to an unstable state (green curve). One of the main practi-
cal benefits of our solver is its capability to provide stable solutions
despite the low number of iterations, while being at least one or-
der of magnitude more accurate than the other solvers (red curve).
Fig. 6 compares the corresponding visual results.

The plots in Fig. 5 show the residual error over time for a volumet-
ric armadillo composed of 55K tetrahedral constraints preserving
volume and shape. Even in this case, the convergence speed of Ja-
cobi and the stability of [Wang 2015] is not sufficient to provide
reliable results in case of small time budgets (Fig. 7). However, in-
terestingly, in case of larger time steps (25 ms) the convergence rate
of Vivace is the same as that the Chebyshev solver.

In principle, the acceleration technique presented in [Wang 2015] is
orthogonal to our approach and can be used to speed-up the Gauss-
Seidel solver; however, tuning its acceleration factor ω for opti-
mal results is not trivial. For this reason, we based our compari-
son on the source code available from the authors of [Wang 2015],
which uses Jacobi + approximated Chebyshev. Its stability can be
increased by reducing ω, but this would also slow down the conver-
gence speed.

Complex scenarios. The stability and the speed of Vivace en-
abled us to model more complex scenarios as depicted in Figures 8
and 9, where we demonstrate our solver’s scalability by handling
objects composed of a large number of interacting constraints. Here
we modeled the system using Position-Based Dynamics. In Fig. 8
we animated a stack of deformable noodles, composed of 30K ver-
tices, 52K triangles and 150K constraints falling on the floor and
colliding with each other. In Fig. 9, we represent a heap of cloths
falling on a static armchair. Each cloth is composed of 36K con-
straints, for a total number of 324K constraints. The armchair is
modeled as a Signed Distance Field which is used for the collision
tests. The scene is updated interactively at 30 fps, so that it is possi-
ble to pinch and drag the cloths. In these cases the topology of the
graph changes due to collisions, so recoloring is necessary and Vi-
vace handles this very well. We are not aware of any other existing
solver able to handle such complex test cases within the considered
time budgets.

Limitations Vivace has three main limitations. First, only a re-
stricted number of iterations can be accommodated in the consid-
ered time budgets. Thus, Vivace can deliver only approximate so-
lutions which, in some cases, may lead to artifacts; for example,
in Fig. 6 the cloth flexes excessively near the anchor points due to
the theoretical limits of the convergence speed of relaxation meth-
ods. The perceived animation is still visually acceptable in the do-
main of real-time applications (e.g., games). In case more accu-
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Figure 4: Relative error vs. time in the Tablecloth animation in the accompanying video (triangulated model composed by 10K vertices, 20K
triangles, 30K springs and 30K hinge-edge constraints; time step h = 33ms.). The convergence speed of our method (red curve) is compared
with the Jacobi method (blue curve) and [Wang 2015] (green) using different time budgets.
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Figure 5: Relative error vs. time in the Armadillo animation in the accompanying video (volumetric model composed by 10K vertices, 55K
tetrahedral constraints; time step h = 33ms.). The convergence speed of our method (red curve) is compared with the Jacobi method (blue
curve) and [Wang 2015] (green) using different time budgets.

Figure 6: Still frames from the animation corresponding to the plot
in Fig. 4b. Solver time budget: 8 ms. Upper row: our method, mid-
dle row: Jacobi + Chebyshev [Wang 2015], bottom row: Jacobi.

racy is needed, it may be interesting to use our solver as a pre-
conditioner in a parallel algebraic multigrid system (e.g., [Tam-
storf et al. 2015]), for further accelerating the overall convergence
speed. Second, while we have tested Vivace with deformable bod-
ies, where the topology of the system changes due to collisions, we
did not yet investigate its performance in handling fluids, where the
constrained system exhibits dramatic changes of topology for each
frame. Third, the actual implementation of Vivace is more complex

Figure 7: Still frames from the animation corresponding to the plot
in Fig. 5a. Solver time budget: 15 ms. Upper row: our method,
bottom row: Jacobi + Chebyshev [Wang 2015].

with respect to Jacobi-based solvers because it requires the graph
coloring step. This additional complexity is mitigated by the sim-
plicity of the randomized coloring algorithm.



Figure 8: Self-colliding noodles falling on the floor. 30K vertices, 52K elements, 150K constraints. Solver time budget including collision
handling: 15ms per frame.

Figure 9: Pinching and dragging a cloth on top of a heap. Solver
time budget including collision handling: 15ms per frame.

6 Conclusions

We demonstrated a solver for soft body dynamics that can handle
hundreds of thousands of constraints in a few milliseconds without
noticeable visual artifacts. Being based on a randomized algorithm,
it minimizes the communication among threads while retaining the
necessary simplicity in implementation. These features make our
solver particularly suitable for high-performance computations on
modern graphics hardware, with a focus on real-time applications
in entertainment and industrial design.

Acknowledgements

We would like to thank IKEA Communication AB, in particular
Martin Enthed and Anton Berg, for fundings and equipment, and
anonymous reviewers for their valuable comments. Marco Fratar-
cangeli was supported in part by the Swedish Research Coun-
cil (project number: 2015-05345). Fabio Pellacini and Valentina
Tibaldo from Sapienza, MIUR and Intel.

References

ABEL, S., AND ERLEBEN, K. 2015. Numerical methods for linear
complementarity problems in physics-based animation: synthe-
sis lectures on computer graphics and animation. Morgan &
Claypool Publishers, United States.

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,
DURIEZ, C., AND KRY, P. G. 2010. Volume contact constraints
at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1–
82:10.

BAHI, J. M., COUTURIER, R., AND KHODJA, L. Z. 2011. Parallel
gmres implementation for solving sparse linear systems on gpu
clusters. In Proceedings of the 19th High Performance Comput-
ing Symposia, Society for Computer Simulation International,
San Diego, CA, USA, HPC ’11, 12–19.
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