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SE-412 96 Göteborg, Sweden
Telephone: +46 (0)31-772 1000

Cover:
Geometric embedding of a five node graph.

Chalmers Reproservice
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Abstract

Graphs are natural representations of problems and data in many fields. For example, in
computational biology, interaction networks model the functional relationships between
genes in living organisms; in the social sciences, graphs are used to represent friendships
and business relations among people; in chemoinformatics, graphs represent atoms and
molecular bonds. Fields like these are often rich in data, to the extent that manual analysis
is not feasible and machine learning algorithms are necessary to exploit the wealth of
available information. Unfortunately, in machine learning research, there is a huge bias
in favor of algorithms operating only on continuous vector valued data, algorithms that
are not suitable for the combinatorial structure of graphs. In this thesis, we show how
to leverage both the expressive power of graphs and the strength of established machine
learning tools by introducing methods that combine geometric embeddings of graphs with
standard learning algorithms. We demonstrate the generality of this idea by developing
embedding algorithms for both simple and weighted graphs and applying them in both
supervised and unsupervised learning problems such as classification and clustering. Our
results provide both theoretical support for the usefulness of graph embeddings in machine
learning and empirical evidence showing that this framework is often more flexible and
better performing than competing machine learning algorithms for graphs.
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Part I

Extended summary





Chapter 1

Introduction

Recent years have seen a dramatic increase in the collection and representation of data
in the form of graphs. Examples include social networks (Wasserman and Faust, 1994),
made up of people and their relationships, and gene interaction networks representing
the functional interactions between genes in living organisms (Xenarios et al., 2002).
At the same time, the need for tools to automatically sift through and analyze graph
data has grown rapidly. Machine learning offers tools of exactly this kind, and many
labor-intensive tasks such as labelling or categorizing graph data can now be alleviated,
if not solved, using machine learning methods (S. Vishwanathan, Schraudolph, Kondor,
and K. M. Borgwardt, 2010). Problems of this nature arise in diverse fields, ranging from
chemoinformatics and bioinformatics to social sciences, where graphs are well suited to
represent information such as molecular compounds or friend networks. For example, in
drug development, some candidate compounds will be harmful to humans while some will
not. Predicting which compounds are beneficial based on molecular structure, rather than
through in-vivo studies, can lead to large savings (Debnath et al., 1991). Another area rich
in graph data is social network analysis (Wasserman and Faust, 1994). In social networks,
every node represents a person and every edge a relationship or an interaction between
two persons. Discovering communities or determining influencers in such networks are
important problems for marketing firms that can target campaigns towards groups of
people, or individuals who are likely to influence others (Fortunato, 2010).

A key issue in applications of almost any machine learning algorithm is representation
of data. In order to truly harness the power of such methods when dealing with graphs,
the graphs must be represented in a way that is efficient and informative to the algorithm
in question. Most algorithms for important learning problems such as classification,
clustering and dimensionality reduction, are designed for data represented by vectors
of real values, x ∈ Rd. Think for example of linear regression where the predictive
model is defined by the inner product w>x of a parameter vector w and the data vector
x. Graphs, defined as sets of nodes and edges, are combinatorial in nature and do
not fit immediately into this paradigm, and while for example the adjacency matrix
offers a numeric representation, it is very different from the kind of tabular data often
associated with classical machine learning applications. Overcoming this hurdle is an
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important challenge for several reasons: 1) Making established machine learning methods
applicable to graphs means that any further improvements to these methods benefit graph
applications as well. 2) Algorithms operating directly on the combinatorial representation
of graphs are often computationally expensive and not feasible to use with large datasets.

This thesis addresses the issue of representing graphs in ways that make them acces-
sible to general purpose machine learning algorithms. So-called geometric embeddings
are introduced and combined with both existing and new learning algorithms to form
competitive methods for tasks like classification and clustering of graphs. Specifically,
the Lovász number is described and used to introduce the novel Lovász graph kernel
for simple graphs. This is later generalized for weighted graphs, and an approximation
algorithm is developed to enable fast computation. Each method is motivated through
both theoretical and empirical results, several of which represent state-of-the-art results.

Thesis outline. This thesis is an extended summary of four published papers, all of
which are included in the appendix. In Paper I we generalize Lovász’s famous geometric
graph embedding to accommodate graphs with weights on nodes and edges. In Paper III
we use the original (unweighted) embedding to define graph kernels, designed to capture
global properties of graphs. In Paper II we employ these ideas to develop a general
framework for classifying graphs using matchings of geometric embeddings of graphs.
Paper IV applies graph kernels to the problem of relational entity disambiguation.

In the remainder of chapter 1 we give definitions for concepts and problems that form
the basis of this thesis. Chapter 2 introduces geometric embeddings of graphs, and in
particular, the generalized (weighted) Lovász embedding developed in Paper I. In chapter
3, we give several methods for learning with graphs using geometric embeddings, based
on the results of papers I–IV. Chapter 4 presents the application of graph classification to
entity disambiguation developed in Paper IV.

1.1 Graphs

The contents of this thesis revolve completely around graphs, structures used to represent
relations among a set of entities. A graph G = (V,E) comprises a set V = {v1, . . . , vn} of
nodes or vertices and a set E ⊆ V × V of pairs of nodes called edges. Nodes typically
represent objects like people or atoms, and edges represent connections like friendship or
molecular bonds. Nodes are often denoted simply by their index, i, and the edge from vi
to vj by the tuple (i, j). The characteristics of the edge set E is often referred to as the
graph structure or connectivity. It is common to represent the edge set by the adjacency
matrix A, with elements aij such that aij = 1 if (i, j) ∈ E and aij = 0 otherwise. Unless
otherwise stated, we use the notation n = |V | and m = |E| to denote the number of nodes
and edges respectively.

If it holds that (i, j) ∈ E ⇒ (j, i) ∈ E, for any edge e = (i, j), we call the graph
undirected. If this does not hold, the graph is directed. If it is clear from context that a
graph is undirected, the edge set is more efficiently represented as a set of unordered pairs.
We use a small social network as an example of an undirected graph. Three people, Anna,
Bob and Michael go to the same school. Anna knows Bob and Bob knows Michael, but
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Figure 1.1.1: Examples of graphs. A simple graph (left), a weighted graph with edge
weights wij and node weights σi (middle) and a directed graph (right).

Anna and Michael do not know each other. We may represent this as the undirected graph
G = (V,E) with V = {Anna,Bob,Michael} and E = {(Anna,Bob), (Bob,Michael)}. See
figure 1.1.1 for examples of various types of graphs, and an abstract representation of the
friends graph (left).

Graphs may be associated with a node labelling function σ : V −→ L, assigning a
label to each node from a set of labels L. The set L may be ordered, e.g. to represent the
importance of a node, or unordered when representing object categories. In the former
case, σ is often referred to as the node weight. Furthermore, the graph may have an edge
labelling function w : E −→ Le. Here, we limit ourselves to the case where Le = R and
refer to w as the edge weight. Node labels and edge weights for a fixed graph G = (V,E)
are often represented respectively by the vector Σ = [σ(v1), . . . , σ(vn)]> and matrix W
with elements wij = Le((i, j)). In general, we denote a labeled graph by G = (V,E,Σ,W ).
If all nodes share the same label, i.e. σ is a constant function, we call the graph unlabeled.
If all weights are equal, we call the graph unweighted. An undirected, unlabeled and
unweighted graph is called simple. The complement Ḡ of a graph G is the graph where two
nodes are adjacent if and only if they are not adjacent in G. For a more comprehensive
exposition of graphs, see for example West et al. (2001).

1.2 Learning problems on graphs

This section introduces two common learning problems on graphs that are addressed in
the later chapters of this thesis. We will see why special consideration is needed to adapt
machine learning methods to graph data.

Graph classification

Classification is one of the problems most frequently addressed within machine learning.
Here, we assume that the reader is already somewhat familiar with the classification
problem and commonly used algorithms. In supervised classification problems, objects
x1, . . . , xN ∈ X are observed, together with labels y(x) ∈ Y, and the goal is to predict
the label y(x′) of a previously unseen object x′. Said differently, the goal is to learn
the mapping from X to Y that gave rise to the data. In many applications, y is binary,
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Y = {−1,+1}, typically representing the logical truth value of some property, e.g. whether
an image depicts a cat or not.

When each object to classify is a graph, the problem is called graph classification.
Applications of this nature arise in for example chemoinformatics, where the goal is to
classify a molecular compound as toxic or harmless (Helma, King, Kramer, and Srinivasan,
2001). Here, nodes represent atoms and edges the molecular bonds, see figure 1.2.1.
Graph classification of this kind stands in contrast to the setting where the objective is
to classify each node of a single graph, a problem which is treated in 1.2. Formally, given
a training set comprising pairs {(G(i), yi)}Ni=1 of graphs G(i) and class labels yi ∈ Y, we
define graph classification to be the task of assigning labels to a new, previously unseen
test set of graphs {G(N+j)}Ntest

j=1 .

Classification is a general problem associated with both rich theory and history in
machine learning. One of the most widely used algorithms for classification is support
vector machines (SVM) (Vapnik, 1995), a famous example of kernel methods (Schölkopf
and Smola, 2001). SVMs belong to the class of large-margin methods which attempt not
only to fit the data well but to do so with a large margin of error, in order to generalize
well to new data. This means that training data should be correctly classified with a
separator that is as far away from both classes of points as possible, see figure 1.2.2. The
idea of large-margin methods is not only intuitive, but famously leads to strong upper
bounds on the generalization error (Vapnik, 1995). With (x1, y1), ..., (xN , yN ) a set of
labeled points, the hard-margin linear SVM solves the following optimization problem.

minimize
w

‖w‖2 subject to yi(w
>xi) ≥ 1 for i = 1, . . . , N (1.2.1)

A limitation of many machine learning algorithms, including the standard SVM, is that
they are applicable only to data in the form of real-valued vectors. The standard SVM is
also limited by its separator being linear in the input space. The kernel trick (Schölkopf
and Smola, 2001) removes both of these limitations by observing that several learning
problems, such as the dual problem of SVMs, interact with data only through inner
products of pairs of data points. The Lagrange dual of the (soft-margin) SVM, with
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Figure 1.2.2: Linear (left) and kernel (right) large-margin classifiers.

multipliers αi, is

maximize
α

∑N
i=1 αi − 1

2

∑N
i,j=1 yiyjαiαj(x

>
i xj)

subject to
∑N
i=1 αiyi and 0 ≤ αi ≤ C for i = 1, . . . , N .

(1.2.2)

The key realization of kernel methods is that inner products in the input space X ,
such as in the objective above, may be replaced by an inner product φ(xi)

>φ(xj) of
a mapping φ : X −→ H into a vector space H. In effect, by choosing (or learning) a
non-linear mapping φ, a non-linear classifier may be learned, without changing objective
functions, see figure 1.2.2. Crucially however, the mapping φ need not be explicitly
defined, but is only accessed implicitly through the so-called kernel function defined by
k(xi, xj) = φ(xi)

>φ(xj). As a result, we may define φ through the kernel function k,
instead of the other way around. A function k : X × X −→ R is a valid kernel only if
it induces a mapping φ such that k(xi, xj) = φ(xi)

>φ(xj) (Schölkopf and Smola, 2001).
There are several sufficient conditions on k for this to be true. A commonly used condition
is that the Gram matrix K = (k(xi,xj)))ij∈[n] is positive semi-definite for any choice of
sample {x1, . . . ,xn}.

The procedure outlined above, called the kernel trick, lets us learn models by considering
only similarities (kernels) between data points instead of the data points themselves. This
idea opens up machine learning methods such as SVMs to data that are not usually
represented by real-valued vectors, but have some natural notion of similarity. Graph
kernels (S. Vishwanathan, Schraudolph, Kondor, and K. M. Borgwardt, 2010) attempt to
define similarity functions between graphs that are informative to a learning algorithm.
For example, if the goal is to classify molecular compounds as toxic or harmless to the
human body, the kernel has to capture similarities in the atoms (node labels) and bonds
(edges) making up the molecule. In the sequel, we develop graph kernels and apply them
in classification tasks.

Clustering & community detection

Clustering, finding clusters of similar objects in a set, is perhaps the most common
unsupervised machine learning problem. While easy to put into words, the objective of
clustering problems is often hard to express mathematically. A common assumption is
that there are k centroids in the input space, and that each object belongs to the closest
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of the centroids. This leads naturally to k-means clustering which attempts to find both
centroids and assignments that minimizes the sum of distances from objects to their
respective centroids. Given a set of data points x1, . . . , xm, seeks k centroids µ1, . . . , µk
and a partition S = {S1, . . . , Sk} of the data points, the k-means objective is

arg min
S

k∑

i=1

∑

x∈Si

‖xi − µi‖2 . (1.2.3)

Finding the global optimum of (1.2.3) is NP-hard in the general case. As a result,
practitioners often settle for a local optimum found by a greedy algorithm such as the
widely used Lloyd’s algorithm. A remaining issue is the choice of k, the number of clusters.
In practice, the choice is often based on domain knowledge or heuristics.

In the world of graphs, clustering translates to community detection (Fortunato, 2010;
M. E. J. Newman and Girvan, 2004), and the objective is to partition the set of nodes
of a single graph into groups1. The name comes from applications to social networks,
in which the goal is to find densely connected groups of people within a population,
i.e. communities. Figure 1.2.3 visualizes an example problem and solution. Similar to
clustering of vector valued data is that there is no universally agreed upon measure for
what constitutes a good cluster or community structure (M. E. J. Newman and Girvan,
2004). In other words, not only do we not know the right algorithm - we don’t know the
right objective.

A common strategy in community detection is to look for communities such that nodes
in the same communities are strongly connected (many within-cluster edges), and nodes
from different communities are weakly connected (few between-cluster edges). The Girvan-
Newman algorithm (Girvan and M. E. Newman, 2002), for example, repeatedly identifies
and removes edges between communities, leaving only the well-connected communities
behind. Modularity maximization (M. E. Newman, 2004; Blondel, Guillaume, Lambiotte,
and Lefebvre, 2008) is one way that intuition about what constitutes a good community
partition has been formalized. Modularity measures the within-cluster connectivity of
a given partition, as compared to the same measure on a random graph with the same
node set. Even though globally maximizing modularity is NP-hard (Brandes et al., 2008),
it remains a popular method.

Instead of designing completely new clustering methods, such as modularity maximiza-
tion, when working with graph data, we may represent the graph in a form admissible
to existing clustering methods. In this thesis, we show that general purpose clustering
algorithms, such as Lloyd’s k-means clustering, can be used for community detection
when applied to a so-called geometric embedding of a graph. This idea reduces the need
for specialized methods and makes a larger body of algorithms applicable to graphs.

1Clustering of graphs could of course also mean partitioning multiple graphs into groups, rather than
partitioning nodes. This is not addressed in the thesis however.
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Figure 1.2.3: Community detection in a social network. Detected communities are shaded
in black, gray and white respectively. Note that the layout of the nodes is not available as
input, and may convince the reader that the problem is simpler than it actually is.
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Chapter 2

Geometric embeddings of
graphs

This chapter introduces geometric embeddings of graphs, including the embedding associ-
ated with the celebrated Lovász number (Lovász, 1979) which has had great impact on
graph algorithms (Goemans, 1997). We cover classical results motivating the use of these
embeddings in machine learning methods, as well as new results which generalize the
Lovász embeddings to weighted graphs. In chapter 3, we see how these tools are useful in
solving several machine learning problems.

In section 1.2, we saw that representing graphs in geometric spaces, or through kernel
functions, can be very useful when applying machine learning methods, reducing the
need for specializing learning algorithms to graphs. A natural first step in making the
relational information of a graph accessible to learning algorithms is to use a geometric
embedding. A geometric embedding UG of a graph G = (V,E) is a set of vectors {ui}i∈V ,
each of which represents a node i ∈ V in a space Rp,

UG := {ui ∈ Rp}i∈V . (2.0.1)

Clearly, there is an infinite number of possible embeddings UG of any graph G, and we
need some criteria by which we can select one to use. An implicit goal for most embedding
algorithms is to (approximately) preserve the connectivity of the graph G in the form
of closeness or distance in the embedding space. For example, we could attempt to find
an embedding such that the distance between ui and uj is small if nodes i and j are
connected, and large if they are disconnected.

When embedding graphs for machine learning, our goal is to create a representation
that is as informative to the learning algorithm as possible. By transferring the con-
nectivity information to a geometric space, several goals are accomplished. First, as
noted previously, a large family of machine learning methods, including classification and
clustering algorithms, only applicable to vector valued data are now accessible through
geometric embeddings. For example, performing k-means clustering (e.g. Lloyd (1982))
on the node embeddings is a straight-forward way of doing community detection, see
section 1.2. Second, the embedding may provide a softer distance measure between nodes

10



ϑ(G)

Figure 2.1.1: Lovász number ϑ(G) and the orthogonal representation for the pentagon.

than does the edge set. For example, two disconnected nodes that have a short path
connecting them (e.g. a common neighbor) may be represented by vectors separated by
a smaller distance in the embedding space than nodes that are connected only by long
paths. Using a softer distance measure can also help to de-noise the data, i.e. reduce the
impact of edges caused by noise.

A special case of geometric embeddings of graphs, that we will study further, is
so-called orthogonal representations. We say that an embedding UG is orthogonal if

(i, j) 6∈ E ⇒ u>i uj = 0 , (2.0.2)

and orthonormal if also ‖ui‖ = 1 for all i ∈ V . The intuition is clear: if two objects are
not connected, not similar, they should have no overlap in the vector space.

We note that this definition on its own does not provide fruitful ways of representing
graphs. For example, letting each ui be a different basis vector in Rn, results in an
orthonormal representation, but does not preserve the graph structure at all. Instead,
we are interested in embeddings that capture the connectivity structure in a way that
facilitates learning. In the sequel, we focus on a particular orthonormal representation,
the one associated with the celebrated Lovász number.

2.1 Lovász number and embedding

Lovász number (Lovász, 1979), usually denoted ϑ(G), was introduced as a polynomial-
time computable upper bound on the Shannon capacity of G, an important concept in
information theory for which a polynomial time algorithm is not known. It was also
shown to have the following attractive relationship with the clique number ω(G) and the
chromatic number χ(G), both of which are NP-hard to compute.

ω(G) ≤ ϑ(Ḡ) ≤ χ(G) (2.1.1)

Here Ḡ is the graph complement to G. The result above is sometimes referred to as Lovász
sandwhich theorem (Knuth, 1993). Because of the polynomial complexity of computing
ϑ(G) and its relation to several important quantities, known to be NP-hard to compute,
Lovász number has received considerable attention since its introduction (Goemans, 1997).
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Formally, ϑ(G) is defined as the smallest angle1 of any cone, enclosing any orthonormal
representation UG of G,

ϑ(G) = min
c,UG

max
i∈V

1

(c>ui)2
, (2.1.2)

where the minimization is taken over all orthonormal representations UG and all unit
vectors c. An illustration of ϑ(G) for the pentagon graph can be seen in figure 2.1.1.

Since its introduction, it has had large impact on combinatorial optimization, graph
theory and approximation algorithms (Goemans, 1997). ϑ(G) and the associated mini-
mizing orthogonal representation, has been used to derive state-of-the-art approximation
algorithms for max k-cut (Frieze and Jerrum, 1997), graph coloring (Karger, Motwani,
and Sudan, 1998; Dukanovic and Rendl, 2008) and planted clique problems (Feige and
Krauthgamer, 2000). These results provide ample motivation for using the embedding in
machine learning methods for graphs.

It is well-known that ϑ(G) can be computed to arbitrary precision in time poly-
nomial in the number of nodes, by means of solving a semi-definite program (Lovász,
1979). While polynomial, state-of-the-art algorithms for computing Lovász number have
time complexities O(n5 log n · ε−2) (Chan, Chang, and Raman, 2009) and O(n2m log n ·
ε−1 log3(ε−1)) (Iyengar, Phillips, and Stein, 2011), where n and m are the number of nodes
and edges respectively and ε the error. These complexities are typically prohibitively large
for machine learning applications, which thrive on using large datasets. In the next section,
we introduce a recent approximation to ϑ(G) (Jethava, Martinsson, Bhattacharyya, and
Dubhashi, 2014) that greatly reduces the computational cost.

2.1.1 Kernel characterization and the svm-ϑ approximation

Luz and Schrijver (2005) showed that ϑ(G) can be characterized by a convex quadratic
programming problem. Jethava, Martinsson, Bhattacharyya, and Dubhashi (2014) built
on this result by defining a simpler and equivalent formulation that made a crucial
link to a very well known machine learning problem, namely the SVM. They observed
that a one-class kernel SVM (Schölkopf, Platt, et al., 2001), like ϑ(G), searches for the
minimum cone enclosing a set of vectors, and that for an optimally chosen kernel, the
SVM and ϑ cones become equivalent. Crucially, they also observed that for a large family
of graphs, a specific kernel with a closed-form characterization produces a constant factor
approximation to ϑ.

Formally, for any graph G = (V,E), such that n = |V |, it holds that

ϑ(G) = min
κ∈KG

ω(κ) (2.1.3)

where ω(κ) is the solution to a kernel one-class SVM,

ω(κ) = max
αi>0

i=1,...,n

2

n∑

i=1

αi −
n∑

i,j=1

αiαjκij . (2.1.4)

1We note that ϑ(G) is really the inverse squared cosine of the half-angle of the cone, but as they grow
and decrease together, ϑ(G) is often referred to as the “angle”.

12



ω(K) ϑ(G)

Graph, G One-class SVM using KLS(G) SVM-ϑ cone

Figure 2.1.2: The components of svm-ϑ and an illustration of its relationship to ϑ(G).

KG is the set of kernel matrices that respect the same orthogonality constraints as the
orthonormal representations defined in section 2.1,

KG := {κ ∈ S+
n |κii = 1,∀i, κij = 0, (i, j) 6∈ E} , (2.1.5)

and S+
n is the set of n× n positive semi-definite matrices. With slight abuse of notation,

from now on, we let {αi}ni=1 denote the maximizers of (2.1.4).
By simply rewriting ϑ we have not gained anything in terms of computational com-

plexity. The optimization over KG involves solving a semi-definite program and the SVM
simultaneously, which in general is no faster than computing ϑ(G). Instead, our hope
is that a particular choice of kernel κ gives a good approximation to the minimum of
(2.1.3), without doing the optimization over κ. As it happens, there is a choice of κ, that
while not always optimal, gives good theoretical guarantees of this nature. We define this
choice of κ below.

Definition 2.1.1 (Luz and Schrijver (2005)). Let A be the adjacency matrix of G,
ρ ≥ −λn(A), with λn(A) the minimum eigenvalue of A. Then,

κLS(G) =
A

ρ
+ I � 0 . (2.1.6)

We refer to (2.1.6) as the LS-labelling (for Luz-Schrijver) of G. κLS(G) can be thought
of as a mapping from the adjacency matrix A to the set of positive semi-definite matrices.
Jethava, Martinsson, Bhattacharyya, and Dubhashi (2014) showed that,

ω(κLS(G)) =

n∑

i=1

αi (2.1.7)

where αi are the maximizers of (2.1.4). Henceforth, when referring to svm-ϑ, we refer
to the solution to of (2.1.4) with κ = κLS . svm-ϑ is illustrated in figure 2.1.2, for this
particular choice of κ. Jethava, Martinsson, Bhattacharyya, and Dubhashi (2014) proved
that on families of graphs, referred to by them as svm-ϑ graphs, ω(κLS) is w.h.p. a
constant factor approximation to ϑ(G),

ϑ(G) ≤ ω(κLS) ≤ γϑ(G) . (2.1.8)
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Important graph families such as Erdős-Rényi random graphs and planted clique graphs
have this property. svm-ϑ is for a given kernel computable in O(n2) due to the one-class
SVM (Hush, Kelly, Scovel, and Steinwart, 2006), but κLS requires O(n3) time due to the
computation of the minimum eigenvalue of A.

2.2 Lovász embedding of weighted graphs

A natural generalization in any treatment of graphs is to accommodate graphs with
weights on nodes and edges. This is also the case in machine learning. Node and edge
weights are often associated with strong intuition or associations to real-world objects
and we may for example interpret edge weights as the strength of a connection between
two objects, and node weights as the importance or relevance of the nodes. While there
is a version of the Lovász number for node-weighted graphs Knuth (1993), somewhat
surprisingly, there is no classical definition of the Lovász number for graphs with weights
on the edges. In Paper I, we introduce a unifying extension of the Lovász number and
embedding for graphs with weights on both nodes and edges. We outline the results of
this paper below.

We begin by observing that the orthogonality constraints, u>i uj = 0,∀(i, j) 6∈ E,
underpinning the classical definition of ϑ(G), make little sense for weighted graphs. In
general weighted graphs all edges are present (albeit with different weights), and there
can be no orthogonality constraints on the embedding if none of the weights equal
0. Furthermore, orthogonality constraints alone cannot capture the difference between
wij = 0.1 and wij = 1.0. A näıve generalization, forcing the inner products of node
embeddings to exactly equal the corresponding edge weight is too restrictive, and not
always feasible (the weight matrix must be positive semidefinite).

An alternative version of Lovász number, and its bound on the Shannon capacity, was
given by Delsarte (Schrijver, 1979), in which the equality constraints

u>i uj = 0,∀(i, j) 6∈ E
are replaced by inequalities

u>i uj ≤ 0,∀(i, j) 6∈ E ,

resulting in the kernel characterization

ϑ1(G) = min
κ∈K(G)

ω(κ), K(G) := {κ � 0 | κij ≤ 0,∀(i, j) 6∈ E} .

Schrijver, 1979 also showed that, with α(G) the independence number of G,

α(G) ≤ ϑ1(G) ≤ ϑ(G) .

In our generalization of ϑ to weighted graphs, we build on the Delsarte version by
incorporating edge weights in the inequality constraints. Let G = (V,E,W ) be an edge-
weighted graph with wij ∈ [0, 1]. We may interpret wij as the similarity of nodes i and j,
e.g. the similarity of two sentences in a document or the (inverse) distance between two
cities connected by roads. Our constraint for weighted graphs is

u>i uj ≤ wij ,∀i, j ∈ V .
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For a simple graph, with weights in {0, 1}, our inequality constraints reduce directly to
those of Delsarte. Also recall that we are considering normalized embeddings, so that
u>i ui = 1. This means that when wij = 1, there is no additional constraint from the
inequalities, just like in the standard definition of ϑ. When wij is small, the constraint is
strong, and when wij is large, it is weak. This means that weakly connected nodes will be
forced apart in the embedding space, more so than nodes that have stronger connections.

Unlike for edge weighted graphs, there is a classical definition of Lovász number for
graphs G = (V,E,Σ) with only node weights σi ∈ [0, 1], see for example Knuth (1993). It
is defined by,

min
{ui}

min
c

max
i

σi
(c>ui)2

with ui subject to the usual orthogonality constraints.
We can incorporate this in our kernel generalization by adding a constraint on the

diagonal of κ,

κii =
1

σi
.

This constraints ensures that the norm of the embedding of each node is the inverse of
the square root of the node weight. Trivially, this reduces to the standard definition if all
weights equal 1. We may unify our definition for graphs with weights on both nodes and
edges by the following set of kernels.

ϑ1(G, σ,W ) = min
κ∈K(G,σ,W )

ω(κ), K(G, σ,W ) :=

{
κ � 0 | κii =

1

σi
, κij ≤

wij√
σiσj

}

Our definition generalizes both the unweighted (Delsarte) version of Lovász number,
and the node-weighted version, to accommodate graphs with edge weights. If node and
edge weights are uniform, σi = 1 ∀i ∈ V , wij = 1 ∀(i, j) ∈ E, the definition reduces to
the original version. An interesting remaining problem is to relate this definition back to
information theory and the Shannon capacity. For an overview of the weighted extensions
presented in Paper I, see table 2.2.1.
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Table 2.2.1: Characterizations of weighted theta functions. In the first row are characteri-
zations following the original definition. In the second are kernel characterizations. The
bottom row are versions of the LS-labelling (Jethava, Martinsson, Bhattacharyya, and
Dubhashi, 2014). In all cases, ‖ui‖ = ‖c‖ = 1. A refers to the adjacency matrix of G.

Unweighted Node-weighted Edge-weighted

min
{ui}

min
c

max
i

1

(c>ui)2

u>i uj ≤ 0, ∀(i, j) 6∈ E

min
{ui}

min
c

max
i

σi
(c>ui)2

u>i uj = 0, ∀(i, j) 6∈ E

min
{ui}

min
c

max
i

1

(c>ui)2

u>i uj ≤ wij , i 6= j

KG = {κ � 0 | κii = 1,

κij = 0, ∀(i, j) 6∈ E}
KG,σ = {κ � 0 | κii = 1/σi,

κij = 0, ∀(i, j) 6∈ E}
KG,W = {κ � 0 | κii = 1,

κij ≤ wij , i 6= j}

κLS =
A

|λn(A)|
+ I κσLS =

A

σmax|λn(A)|
+diag(σ)−1 κSLS =

W

|λn(W )| + I
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Chapter 3

Learning with graph
embeddings

In this chapter, we describe several ways of using geometric embeddings of graphs (see
section 2) to improve existing, or define new, machine learning algorithms. We introduce
graph kernels and the kernel based on the Lovász embedding developed in Paper III, as
well as a matching-based approach to graph classification, introduced in Paper II. Finally,
we show how the Lovász embedding can be used to perform community detection, as
described in Paper I.

3.1 Graph classification and graph kernels

One of the hurdles when applying machine learning methods to graphs is that many of
the most widely used learning algorithms are designed for vector-valued representations
of data only. Kernel methods on the other hand, see section 1.2, remove this constraint
by accepting input in the form of similarity measures between observations (Schölkopf
and Smola, 2001). Graph kernels (Gärtner, Flach, and Wrobel, 2003; S. Vishwanathan,
Schraudolph, Kondor, and K. M. Borgwardt, 2010) are the specialization of this idea to
graphs. They are similarity measures on graphs that adhere to the positive definiteness
constraint of a kernel function, and enjoy all the theoretical benefits associated with kernel
methods in general. Graph kernels have also gained popularity in practical applications,
and have been used in diverse fields including computational biology (Schölkopf, Tsuda,
and Vert, 2004), chemoinformatics (Mahé and Vert, 2009) and information retrieval (see
Paper IV).

A natural way of measuring similarities between graphs doing so is to count all
subgraph patterns, e.g. triangles or cycles, that appear in both graphs (Gärtner, Flach,
and Wrobel, 2003). Counting all subgraph patterns however, implicitly solves the subgraph
isomorphism problem, which is widely known to be NP-hard. As we have little hope
of finding an efficient algorithm to solve this problem in the general case, many graph
kernels have restricted the comparison to specific types of subgraphs, such as paths or
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Shortest-path kernel Graphlet kernel Random walk kernel

Figure 3.1.1: Illustration of the subgraphs considered by different graph kernels. The
shortest-path kernel (left) compares histograms of shortest-path lengths. The graphlet
kernel (middle) compares counts of subgraph patterns of a certain size. The random walk
kernel compares simultaneous random walks in two graphs.

sub-trees. While not as precise as comparing all subgraphs, graph kernels represent
an attractive trade-off between expressivity and computational efficiency (Ramon and
Gärtner, 2003). For example, random walk kernels (Gärtner, Flach, and Wrobel, 2003;
Kashima, Tsuda, and Inokuchi, 2003) compare weighted counts of random walks of every
length. The shortest-path kernel (K. M. Borgwardt and Kriegel, 2005) compare features of
the shortest paths between every pair of nodes in each graph, and subtree kernels (Ramon
and Gärtner, 2003; Mahé and Vert, 2009) compare tree patterns. For an illustration of
three widely-used kernels, see figure 3.1.1. Recently, there has been a lot of research into
handling node and edge attributes efficiently. An important family of kernels in that line
of work are the Weisfeiler-Lehman kernels (Shervashidze, Schweitzer, et al., 2011), based
on the Weisfeiler-Lehman test of graph isomorphism.

One of the limitations of existing graph kernels is that they may fail to capture global
properties of graphs. It has been shown that there are graph properties which cannot
be captured by studying only small local structures. Perhaps the most celebrated result
on this topic is Erdős’ seminal proof of the existence of graphs with high girth and high
chromatic number (Alon and Spencer, 1992, p. 41-42), graphs for which all small-sized
subgraphs will be trees. It will seem to a kernel with local focus that the entire graphs
are trees, when they in fact have large cycles. Because of this issue, we seek graph kernels
and representations that capture precisely such global properties as well. The geometric
embedding associated with Lovász number, introduced in chapter 2, will lead us to such
a kernel in the next section.

We let K : G × G −→ R denote a graph kernel for a space of graphs G. Recall from
section 1.2 that a kernel K is only valid if it induces an inner product, i.e. K(G,G′) =
φ(G)>φ(G′) in some Hilbert space. A useful notion when defining graph kernels is the
concept of R-convolution kernels (Shervashidze, Schweitzer, et al., 2011; S. Vishwanathan,
Schraudolph, Kondor, and K. M. Borgwardt, 2010). We define the R-convolution kernel
below.

Definition 3.1.1 (Haussler (1999)). Let χ and χ′ be spaces and k : χ′ × χ′ −→ R a
positive semi-definite kernel. The R-convolution kernel for points x, y ∈ χ, associated
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with finite subsets χ′x ⊆ χ′ and χ′y ⊆ χ′ is defined by

K(x, y) =
∑

(x′,y′)∈χ′
x×χ′

y

k(x′, y′) . (3.1.1)

R-convolution kernels K are positive semidefinite as long as the base kernel k is
positive semidefinite (Haussler, 1999). This property is useful when proving the validity
of a new kernel, as it is sufficient to prove that the new kernel is an R-convolution kernel.
The R-convolution kernel was later generalized to mapping kernels (Shin and Kuboyama,
2008). Classical graph kernels based on the R-convolution kernel compare features of small
subgraphs or walks extracted from the original graphs. The graphlet kernel (Shervashidze,
S. Vishwanathan, et al., 2009) counts instances of subgraph patterns of at most 5 nodes.
The random walk kernel (Gärtner, Flach, and Wrobel, 2003) counts walks of any length,
but the counts are often weighted with a factor decreasing exponentially with the length
of the walk (S. V. N. Vishwanathan, K. M. Borgwardt, and Schraudolph, 2006). Subtree
kernels (Ramon and Gärtner, 2003; Shervashidze and K. Borgwardt, 2009), consider tree
patterns of a limited size. Furthermore, as Shervashidze, S. Vishwanathan, et al. (2009)
identified, “There is no theoretical justification on why certain types of subgraphs are
better than others”.

In the next section, we define a graph kernel based on Lovász ϑ which adopts a broader
focus, in order to capture global features of graphs. Furthermore, in contrast to existing
kernels, we provide theoretical justification for the usefulness of the kernel.

3.2 The Lovász ϑ kernel

This section introduces the graph kernels developed in Paper III, designed to capture
important global properties of graphs, such as the girth or the clique number. In contrast
to earlier graph kernels, focusing on local structure to increase efficiency, our kernels
are designed to capture global properties of graphs. To remain efficient, the kernels still
decompose into features of substructures, but in a manner that retains desired properties.

Motivated by the strong connection between ϑ(G) and global graph properties such as
the size of the largest cut and the chromatic number, as described in section 2.1, we begin
by defining the Lovász ϑ kernel using ϑ(G). We then define a kernel based on the svm-ϑ
approximation, enabling faster computation while retaining good accuracy. In Paper III,
we show that for certain classification tasks, we can bound the separation margin induced
by our kernels, providing theoretical justification for the choice of graph kernels in some
applications. We also show empirically that our kernel is competitive with state-of-the-art
graph kernels on established benchmark datasets.

In this chapter, when referring to an orthonormal representation UG = {u1, . . .un},
we always refer to the maximizer of (2.1.2). For notational convenience, we begin by
defining the Lovász value of a subset of nodes B ⊆ V , which represents the angle of the
smallest cone enclosing a subset of vectors UG|B ⊆ UG, as defined below.

Definition 3.2.1. Let G[B] be the subgraph of G = (V,E) induced by B ⊆ V . Then, the
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ϑ(G)

(a)

ϑB(G)G[B]

(b)

Figure 3.2.1: An illustration of the difference between ϑ(G) (a) and ϑB(G) (b).

Lovász value of G[B] is defined by,

ϑB(G) = min
c

max
ui∈UG|B

1

(c>ui)2
, (3.2.1)

where UG|B := {ui ∈ UG | i ∈ B} and UG is the maximizer of (2.1.2).

The Lovász value of subgraphs will constitute the components that we compare across
graphs, akin to e.g. subgraph patterns in the graphlet kernel. The crucial difference
however, is that ϑB(G) depends on the global connectivity properties of the graph G, not
just the structure of G[B]. Note for example that in general ϑB(G) 6= ϑ(G[B]). More
specifically, ϑB(G) adheres to the global set of orthogonality constraints, defined by all
of G. In contrast ϑ(G[B]) uses only the information present in G[B] and is therefore a
completely local feature. The difference between these quantities is what we’ll exploit in
building our kernel, and is illustrated in figure 3.2.1.

We now present the formal definition of Lovász ϑ kernel in terms of the Lovász values
of subgraphs.

Definition 3.2.2 (Lovász ϑ kernel). The Lovász ϑ kernel on two graphs, G, G′, with a
positive semi-definite kernel k : R× R −→ R, is defined by

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
· k(ϑB , ϑ

′
C) , (3.2.2)

with ϑB = ϑB(G), ϑ′C = ϑC(G′), and ZB,C =
(
n
|B|
)(

n′

|B|
)
.

The Lovász ϑ kernel compares Lovász values for all pairs of node subsets in two graphs.
In effect, this corresponds to comparing the independence structure of subgraphs, as ϑB
depends on which vectors in UG|B are orthogonal, which in turn depends on which nodes
in B are independent. We can also prove the following result, important for any graph
kernel.

Lemma 3.2.1 (Paper III, §3.1). The Lovász ϑ kernel, as defined in (3.2.2), is a positive
semi-definite kernel.

Proof sketch. The proof involves showing that the kernel is an R-convolution kernel (Haus-
sler, 1999). For a complete proof, see Paper III.
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As Lovász number is prohibitively expensive to compute for most graphs (see sec-
tion 2.1), we proceed to define a faster, approximate version of the Lovász ϑ kernel in the
next section.

3.2.1 The svm-ϑ kernel

To speed up computation of the Lovász ϑ kernel, while retaining similar properties, we
introduced the svm-ϑ kernel in Paper III. The kernel rests on an svm-ϑ analogue of
the Lovász value ϑB, which is used as a feature of subgraphs. We note that αi, the
optimizers of svm-ϑ, adhere to the global optimality conditions of (2.1.4) defined by the
edge set, and thus capture global properties of graphs. That is, similar the case for to ϑB ,∑
i∈B αi(G) 6= ∑i∈B αi(G[B]) in general. Based on this observation, and the connection

between ω(κ) and ϑ(G) as described in section 2.1.1, we let
∑
i∈B αi serve as an analogue

for ϑB in (3.2.2), when defining our new kernel.

Definition 3.2.3. The svm-ϑ kernel is defined, on two graphs G,G′, with corresponding
α = [α1, . . . , αn], α′ = [α1, . . . , αn′ ] maximizers of (2.1.4) for κ = κLS(G), with a positive
semi-definite kernel k : R× R −→ R, as

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
k(1>αB ,1

>α′C) (3.2.3)

where αB = [αB(1), . . . , αB(d)]
> with d = |B|, ZB,C =

(
n
|B|
)(

n′

|C|
)

and 1 the all one vector

of appropriate size.

We make a note that while
∑n
i=1 αi is an upper bound on ϑ(G), and a constant-factor

approximation for classes of graphs, the same cannot be said for the entire svm-ϑ kernel
in relation to the Lovász ϑ kernel. This is due to the fact that

∑
i∈B αi is not a tight

bound on ϑB(G) for all B ⊂ V , even for svm-ϑ graphs. Nevertheless, the svm-ϑ kernel is
a valid kernel capable of capturing global properties of graphs, such as the clique number,
as we will see in the next section. We can also show the following result.

Lemma 3.2.2 (Paper III, §4). The svm-ϑ kernel, as defined in (3.2.3), is a positive
semi-definite kernel.

Proof sketch. The proof involves showing that the kernel is an R-convolution kernel (Haus-
sler, 1999). For a complete proof, see Paper III.

3.2.2 Efficient computation

Direct evaluation of the Lovász ϑ and svm-ϑ kernels is computationally very expensive.
This is easily realized by noting the sums over subsets in the definition of either kernel, for
which the number of terms grows exponentially with the number of nodes in the graph.
To apply these kernels to large graphs, we need to rely on approximate computation. In
Paper III, we derive such a scheme based on sampling.
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To approximate the sums of the Lovász ϑ and svm-ϑ kernels, we note that both kernels
can be written on the following form.

K(G,G′) =
∑

B⊆V

∑

C⊆V ′

|C|=|B|

1

ZB,C
k(fB(G), fC(G′)) (3.2.4)

Here, fB(G) = ϑB(G) for the Lovász ϑ kernel and fB(G) =
∑
j∈B αj(G) for the svm-ϑ

kernel, and ZB,C =
(
n
|B|
)(

n′

|C|
)

for both. As this is the case, we derive an approximate

computation scheme for the general form in (3.2.4) applicable to both kernels.
The key observation is that (3.2.4) is easily decomposed into pairs of subsets of

nodes. Now, instead of considering all pairs, we sample a small (polynomial) number
of subsets for each graph, resulting in overall polynomial complexity. Formally, let Sd
and S′d be multisets of t uniformly sampled subsets of V and V ′ respectively, such that
|Sd| = |S′d| = d. If d > n, let Sd = ∅ and analoguously for S′d and n′. Then, define,

K̂(G,G′) =

dmax∑

d=1

∑

B∈Sd

∑

C∈S′
d

1

|Sd||S′d|
k(fB(G), fC(G′)) . (3.2.5)

Here the maximum size of subsets included is limited to dmax. It is plain to see that
(3.2.5) converges to (3.2.4), when dmax = n and the number of samples, k goes to infinity.
In practice, it is of course not feasible to use an infinite number of samples. Instead, in
Paper III, we provide sample complexity results, bounding the number of samples needed
to achieve a given quality of approximation.

3.2.3 Empirical evaluation

For a comprehensive empirical evaluation of both the Lovász ϑ kernel and the svm-ϑ
kernel, on synthetic graphs with known global properties as well as real-world graphs
used as benchmarks for graph kernels, see Paper III, section 5.

3.3 Graph classification using matchings of geometric
embeddings

In the previous section, and in Paper III, we introduced a novel graph kernel based
on the Lovász geometric embedding of graphs. The Lovász ϑ kernel compares graphs
by measuring the minimum enclosing angle of subsets of node embeddings, but while
Lovász ϑ is intimately associated with the angular distance between node embeddings,
this similarity measure does not necessarily generalize well to other embedding algorithms.
Furthermore, the exact kernel involves summing over all possible pairs of node subsets,
which is impractical for most real-world graphs. Motivated by these issues, we developed
a similarity measure on graphs in Paper II, based on matchings of geometric embeddings.
We cover the important results of the paper below.
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In many applications, observations represent composite objects, made up of several
distinct parts. For example, cars have got engines, doors, wheels etc., and each of these
components can be compared in isolation to their equivalent in another car. Graphs,
decomposable by e.g. nodes, edges or subgraphs, also fall into this category, and as we
have seen previously, graph kernels often successfully compare graphs by their respective
components (S. Vishwanathan, Schraudolph, Kondor, and K. M. Borgwardt, 2010).
Objects that decompose into collections of components have a very natural similarity
measure associated with them - the total similarity of optimally matched components.

Consider two decomposable objects X = {x1, . . . , xn} and Y = {y1, . . . , ym} such that
xi, yj ∈ Z for all i, j, and a similarity measure between components k : Z × Z −→ R.
Now, assuming m > n let the similarity of X and Y , K(X,Y ), be the sum of similarities
between components corresponding to an optimal matching p,

K(X,Y ) = max
p∈Sm

n∑

i=1

k(xi, yp(i)) (3.3.1)

with Sm the set of permutations of m objects. Fröhlich, Wegner, Sieker, and Zell (2005)
proposed using precisely this function, dubbed the optimal assignment (OA) kernel,
as a similarity measure between composite objects. To apply this similarity function
to pairs of graphs, we need to specify an appropriate decomposition, and a similarity
measure on components k. Following the theme of this thesis, we let graphs G and G′ be
associated with geometric embeddings UG = {ui}ni=1 and UG′ = {u′i}mi=1

1, and compare
node embeddings by e.g. the cosine similarity.

KU (G,G′) = max
p∈Sm

n∑

i=1

ui
>u′p(i)

See figure 3.3.1 for a visualization of this idea. In Paper II, we use Cholesky decompositions
of the adjacency matrix and graph Laplacian, the eigenvectors of the adjacency and
Laplacian matrices, the incidence matrix and the Luz-Schrijver and Lovász embeddings
as basis for matching, to construct similarity functions used in graph classification.

Unfortunately, Vert (2008) showed that optimal assignment does not always yield a
valid (positive semidefinite) kernel, a result that makes the theory of kernel methods
inapplicable in this case, including in particular kernel SVMs. While it is possible to use
the matching function with SVMs anyway, as Vert remarks, it would be more assuring
and satisfying if this was justified by a corresponding theory.

3.3.1 Learning with similarity functions

In spite of the negative result due to Vert (2008), we are interested in using optimal
assignment for learning algorithms on graphs. Instead of applying kernel methods however,
we build on the theory of learning using similarity functions, developed by Balcan, Blum,
and Srebro (2008). They observe that kernels do not necessarily correspond to natural
notions of similarity, and on the other hand, natural notions of similarity do not correspond

1We may view these embeddings as labels of the nodes, although that has little practical impact.
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Figure 3.3.1: Measuring similarity of graphs using matchings of geometric embeddings.

to positive semidefinite kernels, and it might require significant additional work to coerce
a similarity into a kernel, possibly also degrading the quality.

Consider a (binary) classification problem in which we observe samples (x, y), from
a distribution P over X × {−1,+1}, and aim to learn the labelling function y(x). In
this setting, Balcan, Blum, and Srebro (2008) introduced the notion of good similarity
functions. Goodness of a similarity function measures the margin between classes in
a classification problem induced by the function. Specifically, for a similarity function
K : X × X −→ [−1, 1], they define the following.

Definition 3.3.1. A similarity function K is an (ε, γ)-good similarity function for a
learning problem P if there exists a bounded weighting function w over X , (w(x) ∈ [0, 1]
for all x′ ∈ X ), such that at least a 1− ε mass of examples x satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ

Leaving aside the notion of a weighting function, this definition has the following
intuitive interpretation: in expectation, points that are of the same class should be judged
as similar (K > γ) by a good similarity function, and points of different classes should
be judged as dissimilar (K < −γ). In Paper II, we expand on this idea by making a
connection between optimal transport theory, the idea of similarity functions based on
matchings, and the theory of good similarity functions due to Balcan, Blum, and Srebro
(2008). Recall the definition of the transportation cost distance between distributions P
and Q, with respect to a distance function d (Villani, 2003).

d(P,Q) := min
π(x,x′)

Eπ[d(x, x′)] ,

where the minimum is over all couplings of P and Q, i.e. over joint distributions π
whose marginals are P and Q respectively. Observing that for any similarity function
K ∈ [−1, 1], we may form a dissimilarity function K̂(x, y) = (1−K(x, y))/2 ∈ [0, 1], and
corresponding transportation cost K̂(P,Q), we make the following definition.

Definition 3.3.2. A similarity function K has margin γ with respect to a distribution P
if the transportation cost K̂(P i, P j) ≥ γ for i 6= j where P i is the distribution conditioned
on the class with label i.
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This definition differs from that of Balcan, Blum, and Srebro (2008), in that it does
not require a separate weighting function w(x). We go on to prove the following result
about the learning capabilities of a good similarity function.

Theorem 3.3.1. Let K be a similarity function with margin γ for a learning problem P
with the measure concentration property. For any δ > 0, let S = {x1, . . . , xd} be a sample
of size d = 8 log 1/γ2 drawn independently at random from P . Consider the mapping
φS : x 7→ (K(x, xi)/d)i∈[d]. With probability at least 1 − δ, the induced separator has
margin at least γ/2.

In Paper II, we show that for two well known graph classification problems, the OA
similarity operating on the graph Laplacian embedding constitutes a good similarity
function according to our definition. We evaluate empirically the performance of the OA
similarity applied to seven different embeddings, including the Laplacian as well as the
Lovász and spectral embeddings, on four different datasets. The OA kernel achieved
state-of-the-art results for each dataset, both with and without inclusion of node labels.

3.4 Community detection with the Lovász embedding

In the previous parts of this thesis, the focus has rested firmly on supervised classification
problems. In many real-world applications however, supervised learning is not possible, as
there are no labeled data available. An important example of such problems is community
detection, in which the goal is to discover meaningful groups of nodes in a graph, see
section 1.2. In Paper I, we introduced a method for detecting communities in graphs
based on the Lovász ϑ embedding and k-means clustering. By making use of geometric
embeddings of graphs, we may convert the community detection problem to the more
standard problem of clustering a set of points {ui}ni=1 ∈ Rd×n, permitting the use of an
arsenal of established techniques, such as k-means clustering. The Lovász and svm-ϑ
embeddings developed in previous chapter allow us to address two common problems
with many existing clustering algorithms.

Problem 1: Number of clusters Many clustering algorithms rely on the user making
a good choice of k, the number of clusters. As this choice can have dramatic effect on
both the accuracy and speed of the algorithm, heuristics for choosing k, such as Pham,
Dimov, and Nguyen (2005), have been proposed.

Problem 2: Initialization Popular clustering algorithms such as Lloyd’s k-means, or
expectation-maximization for Gaussian mixture models require an initial guess of the
parameters. As a result, these algorithms are often run repeatedly with different random
initializations.

In Paper I, we propose solutions to both problems based on our weighted generalization
of Lovász number, ϑ1(G). We begin by noting that ϑ1(G) is a natural measure of group
diversity in graphs. For complete graphs Kn, it is well known that ϑ(Kn) = 1, and for
empty graphs K̄n, ϑ(K̄n) = n. We may interpret these graphs as having 1 and n clusters
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respectively. Graphs with several disjoint clusters make a natural middle-ground. For a
graph G that is a union of k disjoint cliques, ϑ(G) = k. To solve Problem 1 therefore,
we choose k = dϑ1(G)e. We note that real graphs are typically not made up of complete
subgraphs, but have both additional across-cluster edges and missing within-cluster edges.
An interesting open problem is therefore to study the value of ϑ1(G) as a function of this
kind of noise.

The solution to problem 2 relies on the kernel characterization of ϑ1(G). Recall from
section 2.2 that,

ϑ1(G) = min
κ

max
αi

2

n∑

i=1

αi −
n∑

i,j=1

κijαiαj .

When the support value αi is non-zero, the induced geometric representation of node i is a
support vector. Based on this observation, we propose a heuristic for initializing centroids
in k-means: Initialize centroids by the set {ui}i∈I of node embeddings corresponding to
the k nodes I that have the largest αi.

We show in Paper I that a) community detection based on geometric embeddings of
graphs is competitive with, and sometimes better than, special-purpose methods, b) our
heuristics for initializing centroids and choosing k in k-means outperform other heuristics.
The theoretical properties of these heuristics remain an open problem.
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Chapter 4

Application – Entity
disambiguation

Data mining applications increasingly deal with vast amounts of text data, often with
references to entities such as people and companies. To enable efficient use of such data, it
needs to be structured in a way that makes it accessible to both humans and algorithms.
Annotating documents with the identities of people mentioned in the text is an example
of information extraction of that kind. For instance, a user might be interested to know
which cities TED talks curator Chris Anderson is visiting this year. An automated reply
to such a query requires extraction of names and places from news texts, blogs or social
media. This task is made difficult by the existence of Chris’s namesakes: former Wired
Magazine editor-in-chief Chris Anderson and basketball player Chris Anderson, among
others. A näıve system considering only the names in isolation, essentially equating
identity with identifier, would answer that all Chris’s are the same person. In Paper IV,
we show that this problem can be tackled using graph classification.

Resolving ambiguities such as the one above is called entity disambiguation or entity
resolution, and is a problem which appears in many contexts. In its most general form, this
problem is one of finding a mapping between a set of identifiers and a set of entities. In
the example above, names are the identifiers and people are the entities. Related problems
include record linkage (Fellegi and Sunter, 1969), deduplication (Culotta and McCallum,
2005), object distinction (Yin, Han, and Yu, 2007) and co-reference resolution (Haghighi
and Klein, 2007). An subclass of entity disambiguation problems is relational entity
disambiguation which makes use of graph structure between entities (Bhattacharya and
Getoor, 2006; Bhattacharya and Getoor, 2004; Bekkerman and McCallum, 2005; Malin,
2005). Such information is available in many different contexts. In the example of
documents such as news articles or blogs, entities are related through documents in which
they are mentioned together. The resulting graph has nodes representing entities and
edges representing documents in which they co-occur.

In this chapter and in Paper IV, we explore an important subproblem of relational
entity disambiguation, namely that of determining which identifiers that are ambiguous,
i.e. identifiers that are used to refer to several different entities. A successful solution
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“Chris Anderson” “Chris Anderson”

TED WIRED

Figure 4.1.1: A toy example of an identifier graph (left) and the corresponding entity
graph (right). In this example, “Chris Anderson” is an ambiguous identifier.

to this subproblem may be a valuable preprocessing step to otherwise computationally
expensive disambiguation algorithms. We proceed to define this problem formally and give
our approach to solving it using graph kernels. In Paper IV, we also propose extensions
to existing graph kernels, tailored for the entity disambiguation task, and present an
empirical evaluation showing that the proposed kernel extensions result in improved
classification accuracy.

4.1 Entity disambiguation and graph classification

Henceforth, we let the term entity refer to a person or a company etc. while an identifier
is a name or a label. If several entities have the same identifier, we say that the identifier
is ambiguous. While a single entity may also have several identifiers, we assume that this
is not the case here; we focus only on ambiguities. In the relational entity disambiguation
setting, entities are assumed to be related according to some unknown graph structure,
or entity graph. We assume that this graph can be partially observed through a graph of
identifier relations, or identifier graph. Make sure to note the difference between these
two graphs: the identifier graph contains ambiguities we wish to resolve while the entity
graph does not. The difference is illustrated in figure 4.1.1.

Our running example is the setting in which identifiers are used in a corpus of
documents. We let the identifier graph be the graph with one node for each identifier and
an edge between every pair of identifiers co-occurring in at least one document. Edges
are weighted by the significance of the relationships, such as number of co-occurrences.
To provide mild anonymization of the data, we assume that the identifiers have been
assigned in a pseudo-randomized fashion. In effect, the only information available to our
method about the entities and their identifiers is the identifier graph.

We approach the following problem.

Definition 4.1.1 (Anonymized relational ambiguity detection). Given an undirected
identifier graph G = (V,E) with edge weights wij ∈ R+ and training data S = {(vi, yi) :
1 ≤ i ≤ m, vi ∈ V, yi ∈ {±1}} that labels certain nodes as ambiguous (+) or unambiguous
(−), anonymized relational ambiguity detection is the task of classifying new nodes as +1
or −1. Each node of G may refer to a single entity or several underlying entities. The
weight of an edge signifies the importance of the connection between two nodes.
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Algorithm 1 DetectAmbiguousNodes(G = (V,E), κ, Y, S, T )

Input: G = (V,E)
Input: Y = {yi : i ∈ S ⊂ V, yi ∈ {±1}} - Training labels
Input: T ⊂ V - Test set
Input: κ - Neighborhood size.
for vi ∈ V do

Set G(i) = N (i)
κ according to (4.1.1)

end for
Compute graph kernel matrix Kij = k(N (i)

κ ,N (j)
κ ), ∀i, j ∈ S

Train an SVM with K and labels Y
Output: SVM classification of test nodes T .

Note that this definition does not include the actual separation of the entities that
share identifiers. Nevertheless, this problem is of great importance, as pointing out which
identifiers are ambiguous can represent very large computational savings for the more
expensive task of resolving the ambiguities.

Consider figure 4.1.1 again, as it aims to illustrate some of the intuition behind our
assumptions. To the left is an identifier graph and to the right the corresponding entity
graph (assuming “Chris Anderson” is the only ambiguous identifier). In the figure, two
individuals called Chris Anderson have been assigned only one, common identifier and
thus one common node in the graph. This example shows how two otherwise only loosely
connected communities (TED and Wired) can become strongly connected in the identifier
graph through a single ambiguous node. In other words, it highlights our intuition that
the graph structure surrounding “Chris Anderson” is indicative of whether the identifier
is ambiguous or not. Although this example involves only people, we stress that nodes
can represent any type of entity; an equally troublesome example would be that of the
two cities Paris, France and Paris, Texas.

Motivated by our intuition that graph structure is indicative of ambiguity, we use
graph classification to solve the ambiguity detection problem as stated in Definition 4.1.1.

We let each node vi ∈ V be represented by its κ-neighborhood, N (i)
κ as defined below.

Definition 4.1.2 (κ-neighborhood). Let G = (V,E) be a graph. Then for any vi ∈ V ,

the κ-neighborhood, N (i)
κ is defined by

V (i)
κ = {vi} ∪ {vj ∈ V : s(vi, vj) ≤ κ}
E(i)
κ = {(vp, vq) : (vp, vq) ∈ E ∧ vp, vq ∈ V (i)

κ }
N (i)
κ = (V (i)

κ , E(i)
κ ) . (4.1.1)

In the example of figure 4.1.1, the 1-neighborhood of the “Chris Anderson” node in the
identifier graph is the entire graph. Each identifier is now represented by its neighborhood
graph and a binary label indicating ambiguity: +1 for ambiguous and -1 for unambiguous.
Given a training set consisting of an identifier graph G and a subset S nodes labeled by
Y , our procedure is summarized in Algorithm 1.
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Choice of graph kernel The choice of which kernel to use in Algorithm 1 can have a
large impact on the outcome. In chapter 3 we introduced several classical graph kernels
and two new ones developed as part of this thesis, all of which are applicable to the
disambiguation problem. In Paper IV (see section 4) we make several improvements to
existing graph kernels. The first extension specializes the random walk kernel (Gärtner,
Flach, and Wrobel, 2003) to fit our problem. It is based on the observation that the
graphs we are classifying are pointed ; they have a distinguished node representing the
identifier of interest, see figure 4.1.1. To this end, we consider a kernel variant counting
only random walks originating from the distinguished node, not all possible walks. This
observation could be applied to other kernels as well, such as subtree kernels (Shervashidze
and K. Borgwardt, 2009) or the Lovász ϑ kernel defined in chapter 3.

For an empirical evaluation of our proposed method in the task of disambiguating
identifiers in real-world datasets, see Paper IV, section 5. We show that our method is
better than or competitive to state-of-the-art methods and that our kernel extensions
increase classification accuracy. Unfortunately, this evaluation was made prior to the
work on the Lovász ϑ kernel and its weighted extension, as well as the work on learning
with matchings of geometric embeddings.
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Chapter 5

Concluding remarks

This thesis has explored the idea of embedding graphs in geometric spaces in order
to leverage powerful machine learning methods. In several instances, this has led to
algorithms that are more general than special-purpose methods, but still achieve state-of-
the-art results on important tasks. It is instructive to note that these results come from
embedding algorithms that are agnostic to the learning problem at hand. While this fact
speaks for the general applicability of geometric embeddings, it also suggests a natural
next step: adapt the embedding to the learning problem. Learning appropriate embedding
functions from data not only further reduces the reliance on hand crafted methods, it is
also very much in line with the representation learning movement in machine learning of
recent years. A strength of the methods developed in this thesis however, is that they
can be used to theoretically bound performance on specific learning problems, a property
typically not associated with representation learning. The marriage between data-driven
methods and this type of analysis is an important open problem.
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