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Compressed Sensing in Wireless Sensor Networks

without Explicit Position Information
Christopher Lindberg, Alexandre Graell i Amat, Senior Member, IEEE,

and Henk Wymeersch, Member, IEEE

Abstract—Reconstruction in compressed sensing relies on
knowledge of a sparsifying transform. In a setting where a sink
reconstructs a field based on measurements from a wireless
sensor network, this transform is tied to the locations of the
individual sensors, which may not be available to the sink during
reconstruction. In contrast to previous works, we do not assume
that the sink knows the position of each sensor to build up
the sparsifying basis. Instead, we propose the use of spatial
interpolation based on a predetermined sparsifying transform,
followed by random linear projections and ratio consensus
using local communication between sensors. For this proposed
architecture, we upper bound the reconstruction error induced
by spatial interpolation, as well as the reconstruction error
induced by distributed compression. These upper bounds are
then utilized to analyze the communication cost tradeoff between
communication to the sink and sensor-to-sensor communication.

I. INTRODUCTION

W
IRELESS sensor networks (WSNs) have received a lot

of attention due to the possibility of dense deployment

of sensors with communication capabilities to cooperatively

sense and monitor a physical phenomenon of interest. Most

works in the technical literature consider the WSN to be

energy-constrained, and focus on developing energy-efficient

sensing strategies. However, smart phones and similar devices

carrying powerful batteries have become ubiquitous and may

serve as a platform for WSNs [1], in which energy is not

the limiting resource. The number of sensors in large WSNs

is typically in the order of hundreds to several thousands.

Consequently, this makes sending the sensed data from the

network to the sink expensive in terms of bandwidth. Hence,

there is a need for in-network compression to decrease the

bandwidth cost of conveying the information to the sink.

There exist several techniques for in-network compression.

Examples include Slepian-Wolf coding [2], [3], which uses the

fact that sensor measurements are spatially and/or temporally

correlated; distributed transform coding using the Karhunen-

Loève transform [4]; or wavelet transforms [5]. Approaches

relying on the theory of compressed sensing (CS) [6]–[8] have

recently gained attention due to their scalability in the number

of sensors, and the fact that they do not require precise models

of the monitored phenomenon, only that the phenomenon can

The authors are with the Department of Signals and Systems,
Chalmers University of Technology, Gothenburg, Sweden. Email:
{chrlin,alexandre.graell,henkw}@chalmers.se. This work is supported,
in part, by the European Research Council, under Grant No. 258418
(COOPNET).

be described with a limited number of components in a suitable

basis.

Prior work on CS-based in-network compression and recon-

struction at a sink can be divided into three categories. First

of all, distributed compressed sensing (DCS) [9], [10] utilizes

correlation present in sensor measurements by representing

the measured field as a sum of a sparse common component

and a sparse innovation component unique to each sensor.

The second category is compressive wireless sensing (CWS)

[11]–[13]. This approach lets every sensor first compute its

contribution to the complete CS compression. The sensors then

send their contributions to the sink simultaneously, usually by

analog transmission. The contributions are directly added at

the sink by superposition of the waveforms. Finally, the third

category involves DCS with pre-distribution using consensus

or gossip algorithms [14], [15]. Similar to CWS, the sensors

first calculate their own contribution to the CS compression.

Then, these contributions are spread in the network by a

consensus or gossip algorithm.

Comparing the three categories in terms of communication

cost, we observe the following. DCS is not well suited

for scenarios where the goal is to decrease the amount of

communication between sensors and the sink, since all sensors

need to communicate with the sink. CWS is performed either

by analog transmissions between sensors and the sink [11],

[12], which requires tight synchronization and channel state

information, or by forming a spanning tree of the sensors

[13] to route the information towards the sink, which does not

scale well in the number of sensors. Finally, DCS with pre-

distribution (distribution of compression by linear projections

before transmission to the sink) relies largely on transmissions

between sensors, but since the measurements are spread in

the network, only few sensors need to be queried by the

sink. This allows for a tradeoff between communication to

the sink and communication among sensors. Common to all

three categories is that, in order to find the sparsifying basis,

position information from all sensors is required at the sink,

which defeats the purpose of decreasing the transmission

cost between sensors and the sink, as this information scales

linearly with the number of sensors.

In this paper, we propose a novel variation of DCS with

pre-distribution, where the sensor locations are unknown to

the sink. The sensors measure the intensity of a spatial field

in their respective locations, and then locally interpolate the

field at certain predetermined locations, known a priori by

the sink and the network. The sensors then compress and

distribute the interpolated data, after which a limited number
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of sensors transmit it to the sink, which reconstructs the

data using the basis pursuit denoising (BPDN) algorithm.

Our contributions are (i) a framework to use DCS with pre-

distribution for in-network compression of measurement data,

without the requirement of complete position knowledge at the

sink; (ii) an analytical description of the reconstruction error

induced by spatial interpolation, based on nearest neighbor

sensing, in in-network compression; (iii) a study of the tradeoff

between local and global communication to achieve a target

reconstruction error.

Notation: We use boldface lowercase letters x for column

vectors, and boldface uppercase letters X for matrices. In

particular, IM denotes an M×M identity matrix, 1N×1 is the

all-one vector of size N × 1, and 0N×1 is the all-zero vector

of size N×1. The (i, j)th element of a matrix X is expressed

as [X]i,j or Xij . Sets are described by calligraphic letters X .

The cardinality of a set is denoted by |X |. The transpose of a

vector or matrix is denoted by [·]T. Expectation and variance

(or covariance matrix) of a random variable with respect to

the probability measure P is denoted by EP {·} and VarP (·),
respectively.

II. SYSTEM MODEL

We consider a two-dimensional WSN consisting of N
sensors spread uniformly in a square area with sensor density

ρ. The sensors measure the intensity of a random spatial

field x(s), where x : R
2 → R and s denotes a generic

location. The spatial field x(s) is considered to be low-pass,

wavenumber-limited (equivalent of band-limited for multidi-

mensional signals), and to have an isotropic spectrum. Hence,

letting f = [fX , fY ]
T denote the spatial frequency, then the

power spectral density (PSD) W (f) of x(s) is a function of

‖f‖2 and

W (f) = 0, ‖f‖2 ≥ fu, (1)

where fu is the maximum spatial frequency. Without loss

of generality, we normalize the area in which we want to

reconstruct the field to be Ωfield = [0, 1] × [0, 1], while the

sensors are deployed in Ωnetwork = [−δ, 1 + δ]× [−δ, 1 + δ],
δ > 0. The coordinate of sensor k, k = 0, . . . , N − 1, is

denoted sk ∈ Ωnetwork. The measurement of sensor k is given

by

zk = x(sk) + nk, (2)

where x(sk) is the intensity of the field in location sk, and

nk is a spatially white Gaussian noise sample with variance

σ2
n. The quantities x(sk), zk, and nk are stacked in vectors

x = [x(s0), . . . , x(sN−1)]
T, z = [z0, . . . , zN−1]

T, and n =
[n0, . . . , nN−1]

T, respectively.

Sensors can communicate with neighbors within a distance

Rcomm and with the sink (or base station). Communication

to the sink incurs a fixed communication cost Cglo, while

inter-sensor communication incurs a communication cost Cloc.

For later use, we denote by G = (V , E) the undirected

graph describing the network, where V is the set of sensor

nodes and E the set of edges connecting the sensor nodes.

Additionally, the set of neighboring sensors to sensor i is

defined as Mi = {j : (i, j) ∈ E}. Associated with the graph G

we have the adjacency matrix E, where Eij = 1 if (i, j) ∈ E
and zero otherwise, and the degree matrix D = diag(E1). In

order for the graph G to be connected with high probability,

i.e., there exists a path from every node to every other node,

we assume Rcomm ≥
√

4.52/ρπ [16]. In order to achieve

good reconstruction, we assume ρ ≥ πf2
u [17].

The sink is assumed to know the statistical properties of the

field, the number of nodes N , and the measurement variance

σ2
n. The sink does not know the precise locations of all of the

nodes. Furthermore, the sink can broadcast information to all

sensors without any communication cost.

Goal: Given the observations z and the system model, the

goal is to reconstruct the sampled field at the sink such that

a certain reconstruction error can be guaranteed. In addition,

z should be compressed in such a way that the compression

scheme scales well in the number of sensors and that the sink

does not need to know each individual sk.

III. COMPRESSED SENSING

In this section, we provide the basics of CS and highlight

challenges in its use in wireless networks.

A. Compressed Sensing Basics

Let A ∈ R
M×N be an M × N matrix with M ≪ N ,

and let x ∈ R
N×1 be a vector of samples of a field x(s), i.e.,

x = [x(s0), . . . , x(sN−1)]
T. We define the noisy compression

of x

y = Ax+ e, (3)

where e = Am, in which m is a vector whose entries are spa-

tially white noise samples with variance σ2
i , i = 0, . . . , N−1.

Since M ≪ N , recovering x from y is an ill-posed problem,

as there are infinitely many vectors x⋆ that satisfy y = Ax⋆.

However, if x is sparse, or has a sparse representation in some

transform basis, the theory of CS enables the recovery of x.

Assume that x is such that there exists a transformation T

such that

θ = Tx, (4)

where θ is K-sparse, i.e., contains no more than K nonzero

entries. Assume further that AT−1 satisfies the restricted

isometry property (RIP) [6] of order 2K , i.e., there exists a

constant δ2K ≥ 0 such that the following inequality holds for

all 2K-sparse vectors u

(1− δ2K)‖u‖22 ≤ ‖AT−1u‖22 ≤ (1 + δ2K)‖u‖22. (5)

In general, it is hard to determine if a given matrix satisfies the

RIP. However, in [6] and [18] it was shown that if AT−1 is

a Gaussian random matrix with independent and identically

distributed (i.i.d.) entries
[
AT−1

]

i,j
∼ N (0, 1/M), then

AT−1 satisfies the RIP with high probability (w.h.p.). If T−1

is a unitary matrix, we can let the entries of A be i.i.d.

and distributed as Aij ∼ N (0, 1/M) in order for AT−1

to satisfy the RIP w.h.p. In the remainder of the paper we

assume that the sparsifying transform T is such that T−1 is

unitary. Additionally, the event that AT−1 does not satisfy
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RIP is neglected since the probability of this happening is

exponentially decaying in M [6].

We now consider the following convex ℓ1-minimization

problem, called BPDN [7],

minimize ‖θ‖1 (6a)

subject to ‖AT−1θ − y‖22 ≤ ε2, (6b)

where ε is the denoising parameter. When δ2K <
√
2− 1 and

ε2 ≥ ‖e‖22, we obtain so-called stable recovery, and the ℓ2-

norm of the reconstruction error of BPDN can be shown to

be upper bounded as [7], [19]

‖x− x⋆‖2 ≤ C0√
K

‖T−1(θ − θK)‖1 + C1ε, (7)

where x⋆ = T−1θ⋆, in which θ⋆ is the solution to (6), θK

is the best K-sparse approximation of θ, and C0, C1 ≥ 0 are

constants [7].

We observe that ‖e‖22 is unknown to the sink, but provided

that N and M are sufficiently large, e can be approximated by

a zero-mean Gaussian random variable with covariance matrix

σ̄2N/MIM , where σ̄2 = 1/N
∑N

i=1 σ
2
i . Hence, ‖e‖22 has a

χ2(M)-distribution with E
{
‖e‖22

}
= Nσ̄2 and Var

(
‖e‖22

)
=

2N2σ̄4/M . Thus, we can set

ε2 = Nσ̄2
(

1 + µ
√

2/M
)

. (8)

where µ is a confidence level [7, eq. (17)], which serves as a

tuning to the denoising parameter in the BPDN reconstruction

algorithm, where a higher µ means that we hedge against

higher perturbation levels of y at the expense of reconstruction

performance (when the perturbation does not exceed ε2).

B. Compressed Sensing in WSNs

CS in WSNs faces two fundamental challenges: first of all,

the sparsifying transform T depends on the positions of the

individual sensors, with typical examples including the wavelet

or Fourier transforms [12], [20]. Secondly, the sensors must

compute y and send it to the sink, in such a way that it is less

costly than sending the individual sensor measurements to the

sink. The latter challenge was addressed in [11]–[13] through

analog transmission and in [14], [15] using pre-distribution

using consensus. However, the former challenge remains and

will be the focus of this paper.

IV. PROPOSED FRAMEWORK

In this section, we give a high-level description of the

framework that we propose for DCS with pre-distribution

without knowledge of the locations of all sensors at the sink.

The framework is shown in Fig. 1, and comprises the following

steps. First, the sink decides on a sparsifying transform T , de-

fines NG locations s̃ = [s̃0, . . . , s̃NG−1]
T, where s̃i ∈ Ωfield,

associated with the transform T , and broadcasts a description

of the desired locations to all sensors (step A in Fig. 1).

These NG locations should (i) have an associated sparsifying

transform, related to the sparsity of the scenario (e.g., a grid

with a Fourier transform would be suitable in our scenario);

(ii) have a compact description (e.g., an origin, a horizontal
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Figure 1. Overview of the steps performed by the network and the sink.
Box (A) illustrates the sink distributing the system parameters to the WSN;
box (B) represents the measurement collection phase, at locations unknown
to the sink; box (C) shows the interpolation phase, and how a subset of the
sensors form a spanning tree to interpolate the field at a given location; box
(D) depicts the compression and pre-distribution phase, and the network over
which the sensors exchange local information.

resolution, and a vertical resolution for a two-dimensional

grid) so that the broadcast overhead is independent of NG

or N . Then, the sensors measure the field in their respective

locations sk, which are unknown to the sink (step B in Fig. 1).

In step C, the sensors collectively determine the measurements

at the desired locations through spatial interpolation. This leads

to a virtual measurement at coordinate s̃k

ẑk = x(s̃k) +mk, (9)

where mk is the combined measurement and interpolation

error when interpolating the field at s̃k. The values ẑk, x(s̃k),
and mk are stacked in the vectors ẑ = [ẑ0, . . . , ẑNG−1]

T,

x̂ = [x(s̃0), . . . , x(s̃NG−1)]
T, and m = [m0, . . . ,mNG−1]

T,

respectively. In step D in Fig. 1, the sensors compress x̂ to

y with the measurement matrix A ∈ R
M×NG in a distributed

manner using a specialized consensus algorithm. Finally, the

sink queries a subset of the sensors for their compressed

estimates, which the sink combines and uses to reconstruct

the sampled field using the theory described in Section III.

The querying of the sensors is done by sampling uniformly

at random from the N sensors, known to sink, and then

broadcasting this request to the sensors.

The framework above relies on spatial interpolation and

consensus, both of which affect the compression perturbation

e in (3), and thus also the choice of the denoising parameter ε
in (6). In the subsequent sections, we will detail how ε should

be selected to enable stable field reconstruction.

V. SPATIAL INTERPOLATION

In order to estimate the values at the predetermined loca-

tions s̃, we rely on spatial interpolation [21]. The design and

properties of the interpolator depends on the statistics of the

underlying field. In this section, we will describe the statistics

using the semivariogram, which is subsequently used to design

spatial interpolators. Finally, we will quantify the interpolation

error.
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A. Semivariogram

Most techniques for spatial interpolation rely on the assump-

tion of stationarity of the random process. We consider a weak

type of stationarity for isotropic processes: intrinsic stationar-

ity [21], whereby x(s1) − x(s2) is second-order stationary,

which implies that it has a zero mean and a covariance that

depends only on h = ‖s1 − s2‖2. The field is defined by

the variogram 2γ (‖s1 − s2‖2) = Var(x(s1) − x(s2)). The

semivariogram γ(h) can be related to the covariance C(h) of

the field by γ(h) = C(0) − C(h), whenever the covariance

function exists. Semivariograms provide a convenient way to

model, describe, and predict spatial processes. There exist

different models for the semivariogram, among which the

exponential, Gaussian, power, and spherical are the most

common. Due to the smooth nature of the fields we are

concerned with, the semivariogram model we consider is the

Gaussian semivariogram

γ(h) =

{

(γ∞ − γ0)
(

1− e−h2/h2

r

)

+ γ0, h > 0

0 h = 0,
(10)

where γ∞ = limh→∞ γ(h), γ0 is used to account for the

measurement noise, and hr is a correlation distance. Note that

γ(h) has a discontinuity at h = 0. In practice, the parameters

γ0 and hr of the semivariogram can be learned by the sensors

in a distributed manner [22]. Here, we assume that each sensor

has knowledge of γ(h). In particular, we approximate W (f),
the PSD of the field, with a Gaussian, so that we can set

hr ∝ 1/fu and γ0 = σ2
n.

B. Spatial Interpolation

Given a semivariogram, spatial interpolation operates as

follows: an interpolated value ẑk at a desired location s̃k is

obtained from a set Kk of measurements zi with associated

sensor locations si as a linear combination

ẑk =
∑

i∈Kk

vizi, (11)

where vi’s are the non-negative interpolation weights, which

satisfy
∑

i∈Kk
vi = 1. The weights are set to minimize the

interpolation error variance, and exploit the spatial dependency

of the field through the semivariogram. It can be shown that

the prediction error variance is given by [21, eq. (3.2.17)]

σ2
K = 2

∑

i∈Kk

viγ̄ik −
∑

i,j∈Kk

vivjγij , (12)

where γij = γ(‖si− sj‖2), and γ̄ik = γ(‖si− s̃k‖2). Hence,

the sensors in the set Kk determine v by solving the following

optimization problem

minimize σ2
K (13a)

s.t. 1
Tv = 1. (13b)

Practically, this problem is solved with the method of La-

grangian multipliers. In the sensors, this boils down to solving

a linear system of equations in a distributed fashion [21]. The

set Kk will affect the performance of the interpolation, with

more sensors in Kk leading to lower prediction variance but

also higher complexity and more communication overhead.

In general, sensors at a distance greater than hr away from

s̃k will not improve the quality of the interpolation. We will

consider two choices for Kk: Kk = {i : ‖si−s̃k‖2 ≤ Rint} for

some interpolation radius Rint; and nearest neighbor sensing

(NNS) wherein Kk = {argmini ‖si − s̃k‖2}. Note that for

NNS, vi = 1 and σ2
NNS(‖s̃k − si‖2) = 2γ (‖s̃k − si‖2). To

simplify the analysis, we will assume that Kk is not empty for

any k and that the sensors in Kk form a connected network.

How removing these assumptions affects the framework is

revisited at the end of Appendix D. The communication over-

head associated with spatial interpolation scales as O(R2
intρ)

for each location s̃k.

C. Interpolation Error

We have seen in Section III-A that the sink does not need

to know the interpolation error σ2
K for each individual point

s̃k, but only the average. This average can be computed with

a standard consensus scheme. For NNS, the average error can

be obtained in closed-form.

Lemma 1. Assume a random distance to the nearest sensor

d0 ∈ [0,∞). Using the NNS to interpolate the given grid

points with the semivariogram given by (10), the average

interpolation error is

Ed0

{
σ2
NNS

}
=

2(γ0 − γ∞)πρ

1/h2
r + πρ

+ 2γ∞ , φ. (14)

Proof: The proof is given in Appendix A.

We observe that when ρ ≫ 1/(h2
rπ), then φ ≈ 2γ0, so for

a sufficiently large density of sensors, the spatial interpolation

error will be dominated by the measurement error.

VI. RATIO CONSENSUS

After the interpolation phase, each sensor i has knowledge

of ẑk and |Kk|, for all {k : i ∈ Kk}. Hence a sensor i may

have access to multiple ẑk or no zk at all (when i /∈ Kk , ∀k).

A value ẑk can also be known to multiple sensors. Due to the

assumption that Kk is never empty, each ẑk is known to at

least one sensor. We recall that ẑ = [ẑ0, ẑ1, . . . , ẑNG−1]
T is

the vector of stacked interpolated measurements.

At this stage, any local measurement made by sensor i
is discarded. The compression by linear projections of the

interpolated measurements ẑk’s is now

ŷ = Aẑ = Ax̂+ eint, (15)

where x̂ is the true value of the interpolated field and eint =
Am is the perturbation due to interpolation error (cf. (3)).

The expression in (15) can be rewritten as

ŷ = NGw̄, (16)

where

w̄ =
1

NG

NG−1∑

k=0

wk,

and where wk = akẑk, in which ak is the kth column of

A. The expression in (16) includes the average w̄ of the

NG vectors wi, which allows us to compute ŷ using an
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average consensus algorithm. A standard choice of consensus

algorithm to solve this kind of problem is, e.g., using a Perron

matrix as in [23], which assumes that all sensors have one

value each, and that this value is unique. However, since a

sensor may have access to a single ẑk, multiple ẑk’s, or no ẑk
at all, standard average consensus is not applicable. Here, we

compute w̄ by ratio consensus1 [24]–[26].

A. Ratio Consensus Operation

Ratio consensus can be applied to scenarios where sensors

compute the average of a set of values, and where each value

may be associated with more than one sensor and one sensor

may be associated with more than one value or even no value.

Ratio consensus comprises two parallel consensus algorithms,

whereby the average is achieved by taking the ratio of the two

resulting values. The two initial values of sensor i are

βi(0) =
∑

k:i∈Kk

wk

|Kk|
(17)

αi(0) =
∑

k:i∈Kk

1

|Kk|
, (18)

with the tacit assumption that summations over empty sets

are set to zero. The initialization ensures that
∑N

i=0 βi(0) =
∑NG−1

i=0 wi and
∑N

i=0 αi(0) = NG. At each iteration l, every

node updates βi and αi as follows

βi(l) =
βi(l − 1)

|Mi|+ 1
+
∑

j∈Mi

βj(l − 1)

|Mj|+ 1
, (19)

and

αi(l) =
αi(l − 1)

|Mi|+ 1
+
∑

j∈Mi

αj(l − 1)

|Mj|+ 1
, (20)

where Mi denotes the set of neighboring sensors to sensor

i. We can express (19)–(20) for the whole network in matrix

form as B(l) = PB(l − 1) = P lB(0) and α(l) = Pα(l −
1) = P lα(0), where P = (IN + E)(IN + D)−1 ∈ R

N×N

is the consensus matrix defined by the updating equations,

B(l) = [β0(l), . . . ,βN−1(l)]
T ∈ R

N×M , and α(l) =
[α0(l), . . . , αN−1(l)]

T ∈ R
N×1. The ratio consensus estimate

at iteration l is defined as

Ŵ (l) = P lB(0)⊘ P lα(0)11×M , (21)

where ⊘ denotes the Hadamard division, i.e., element-wise

division of two matrices, and Ŵ (l) ∈ R
N×M . It should be

noted that while (19)–(20) are defined for all l > 0, (21) is

only defined for l ≥ κ, where κ is the first iteration for which

αi(l) > 0 for all i. The value of κ is related to the maximum

number of hops separating a sensor with no initial information

to its nearest sensor with initial information. The ith row of

Ŵ (l) serves as sensor i’s approximation of w̄ at iteration

l. The convergence and tightness of this approximation is

discussed below.

1Sometimes also referred to as sum-weight consensus, or push-sum con-
sensus.

B. Convergence Properties

1) Convergence: By following the updating procedure de-

scribed in the previous subsection, P is guaranteed to be a

column stochastic matrix, i.e.,
∑N

i=1 Pij = 1 for all j =
1, . . . , N , where Pij , [P ]i,j . This means that all columns

converge to a stationary distribution π, i.e., liml→+∞ P l =
π11×N . Since the consensus algorithm operates independently

on every compression dimension m = 1, . . . ,M , we show

that the algorithm converges on one dimension. Let b(0) be

the mth column of B(0). Then, for the consensus update of

the mth element of ŵi(l) in every node i

lim
l→+∞

ŵi,m(l) = lim
l→+∞

[
P lb(0)

]

i

[P lα(0)]i
(22)

=
liml→+∞

∑N
j=1 P

l
ijbj(0)

liml→+∞

∑N
j=1 P

l
ijαj(0)

(23)

(a)
=

πi

∑N
j=1 bj(0)

πi

∑N
j=1 αj(0)

=

∑NG−1
j=0 wj

NG
, (24)

where πi is the ith element of the stationary distribution

π. In (a) above, we used the fact that all columns of P

converge to the stationary distribution π. Since (24) holds for

all dimensions m, the ratio consensus algorithm converges to

the average of the projected virtual measurements, i.e.,

lim
l→∞

B(l)⊘α(l)11×M =
1N×1

NG

NG−1∑

k=0

wT

k = 1N×1w̄
T.

(25)

Thus, in the limit l → +∞, all sensors have access to w̄.

2) Convergence Rate: Now that we know that the algorithm

converges to the desired value, we upper bound the speed at

which it converges. The following lemma upper bounds the

convergence rate of the ratio consensus algorithm as a function

of the number of iterations l.

Lemma 2. Let P be the column stochastic ratio consensus

matrix of a fixed, connected, and undirected graph, and let λ2

be the second largest eigenvalue of P . Then, the ℓ2-norm of the

error of the ratio consensus algorithm after l ≥ κ iterations

is upper bounded by

‖b(l)⊘α(l)− (b̄/ᾱ)1‖2 ≤
∣
∣λl

2

∣
∣ ‖1⊘ P lα(0)‖2

×
(

‖b(0)− b̄π‖2 +
∣
∣b̄
∣
∣

|ᾱ| ‖α(0)−NGπ‖2
)

where π is the limiting column distribution of liml→∞ P l,

b̄ =
∑NG−1

k=0 wm,k for the mth dimension of wi, and ᾱ =
∑N

j=1 αj(0).

Proof: The proof is given in Appendix B.

We note that after l ≥ κ iterations of ratio consensus (see

Appendix C)

∥
∥1⊘ P lα(0)

∥
∥
2
≈ N3/2

NG
. (26)

Remark regarding tightness of the bound: The bound in

Lemma 2 describes how the error evolves as a function of the

number of iterations l. The error is exponentially decaying
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as a function of l, and the rate is determined by the second

largest eigenvalue λ2 of P . The approximation in (26) turns

out to be a good approximation for reasonable values of N and

NG. This is partly due to the fact that the consensus converges

much faster than the eigenvalue bound states. After only a few

iterations, most values are close to consensus, i.e., 1/αi(l) ≈
NG/N . This is a consequence of the bound in Lemma 2 being

loose in general, and the actual convergence rate depends on

the structure of the initial b(0) and α(0) within the eigenspace

of P .

VII. TRANSMISSION TO SINK AND RECONSTRUCTION

After a certain number of iterations I ≥ κ of ratio con-

sensus, a set L ⊆ V of |L| = L randomly chosen sensors

communicate their estimates ŵi(I) of w̄. The sink estimates

ŷ from the set of received packets as

ŷ = NG

(

1

L

∑

i∈L

ŵi(I)

)

, (27)

which is assumed to be a good approximation of Ax̂+ eint.

Finally, ŷ is used in (6) to reconstruct x̂. The perturbed

compression ŷ can be decomposed as ŷ = Ax̂ + e, where

e = eint + econs is due to measurement noise, interpolation

error, and consensus error.

A. Choice of Denoising Parameter

The following theorem states how the denoising parameter

ε should be chosen in order to ensure that ε2 ≥ ‖e‖22 with high

probability while still providing a sparse solution to BPDN,

and in turn that we can upper bound the reconstruction error

as in (7).

Theorem 3. Let P be the column stochastic ratio consensus

matrix of a fixed, connected, and undirected graph, and let

λ2 be the second largest eigenvalue of P . Let also all Kk

be nonempty. Given the system model in Section II, A as

described in Section III-A, the NNS, the compression in (27),

and 1 ≤ L ≤ N , the denoising parameter ε for stable field

reconstruction using BPDN should be chosen such that

ε2 =

(
NG

M
φ+ σ2

∆

)(

M + µ
√
2M
)

, (28)

where

σ2
∆ =

4

L

(
N − L

N − 1

)
EX +NGφ

M
λ2I
2 N3, (29)

φ was defined in Lemma 1, EX = ‖x̂‖22 , and µ is the desired

confidence level.

Proof: The proof is given in Appendix D.

We observe that ε2 comprises a contribution due to (i)

measurement error and spatial interpolation error (related to φ)

and (ii) ratio consensus and compression estimation (related

to σ2
∆). The first term NGφ/M can be made arbitrarily close

to the measurement error (i.e., 2NGσ
2
n/M ) by using a higher

density of nodes, while the second term can be made arbitrarily

small by employing more consensus iterations.

In the next section, we present an analysis of how this term

behaves with respect to the different system parameters.
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Figure 2. Minimal number of consensus iteration I∗(L) as a function of
the number of sensor-to-sink transmissions L, for different levels of ν ∈
{0.01, 0.1, 1}.

B. Communication Cost Trade-off Analysis

1) Trade-off between ratio consensus iterations and number

of queried nodes: In the error term ε, we have limited control

over the interpolation error φ, other than increasing the node

density. However, by tuning how many sensors transmit to the

sink L, and choosing the number of consensus iterations I ,

we can reduce σ∆ to a level so that the consensus error is

negligible, i.e., such that σ∆ ≤ ν
√

NGφ/M , for some small

value of ν ∈ (0, 1]. For a fixed value of L, there is a minimal

number of iterations

I∗(L) =

⌈

log ν + 1
2 log

(
M

EX+NGφ
L

4N3

(
N−1
N−L

))⌉

logλ2
(30)

needed to satisfy σ∆ ≤ ν
√

NGφ/M , with the understanding

that I∗(L) ≥ 0. Fig. 2 shows I∗(L) for ν ∈ {0.01, 0.1, 1},

fixing EX = 1000, N = 1000, NG = 1000, φ = 1, and

λ2 = 0.7. We observe that the curves are rather flat, indicating

that it is preferred to have a low value of L. Nevertheless, a too

low value of L leads to a need to run many more consensus

iterations. To reduce σ∆ with an order of magnitude, it can

be seen that we can employ two strategies: increasing the

number of iterations with about 50, or drastically increasing

the number of sensor-to-sink transmissions. This indicates that

it is generally preferred to run more consensus iterations to

reduce the impact of disagreement among nodes. For example,

increasing the number of consensus iterations from 100 to 140
when ν = 0.1, enables us to lower L from around 900 to

around 100.

2) Trade-off between local and global communication:

To obtain further insight into the communication trade-offs,

we must include the communication cost. The (local) com-

munication cost for performing the spatial interpolation is

small compared to the cost of consensus, it is therefore

ignored. Given a certain number of queried nodes L and a
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Figure 3. This plot shows the values of I∗(L∗) and L∗ for different values
of the global-local communication cost ratio Cloc/Cglo .

corresponding number of consensus iterations I∗(L), the total

communication cost is given by

Ctot(L) = CgloL+ Cloc I
∗(L)N. (31)

For a given local-global cost ratio Cloc/Cglo, we can thus

determine the number of nodes to query to minimize the total

communication cost:

L∗ = argmin
L

[L+ (Cloc/Cglo)I
∗(L)N ] . (32)

In Fig. 3, we show the number of sensors transmitting to the

sink L∗ as a function of Cloc/Cglo, and the corresponding

number of consensus iterations I∗(L∗), of the cost-optimal

communication strategy. We see a strong threshold effect:

for low values of Cloc/Cglo, the cost-optimal communication

strategy should be almost all sensor-to-sensor communication,

the sink querying only a small fraction of the sensors, while

after a threshold value of Cloc/Cglo, the cost-optimal com-

munication strategy is to let all sensors transmit directly to

the sink without any sensor-to-sensor communication. This

threshold effect can be explained as follows. Assume Cglo = 1
is fixed and we vary Cloc. For very small Cloc, L∗ will be small

and monotonically increasing in Cloc (since I∗(L) is monoton-

ically decreasing in L). Hence, there exists a value of Cloc (say

Ctip
loc ) and thus of L∗(Ctip

loc) < N for which Ctot(L
∗(Ctip

loc))
will be slightly below N . When Cloc is increased slightly

beyond this point, say to Ctip
loc + δ, L∗(Ctip

loc + δ) will become

N , since I∗(N) = 1, and suddenly it will become cheaper to

have no local communication and instead let all sensors send

directly to the sink.

VIII. RESULTS AND DISCUSSION

A. Evaluation of Bounds

In this section, we evaluate the tightness of the bounds

derived in Lemma 1 and Lemma 2.
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Figure 4. Expected value of the ℓ2-norm of the interpolation error variance
as a function of ρh2

r of the NNS bound φ, simulations of NNS σ2
NNS, and

simulations of spatial interpolation using all nodes σ2
K

.

1) Spatial Interpolation: Fig. 4 shows the mean of the pre-

diction error variance for NNS (i.e., σ2
NNS), and the analytical

expression φ from Lemma 1 as a function of ρh2
r, for h2

r = 0.1,

2γ0 = σ2
n = 0.01, and γ∞ = 1. Results were averaged over

400 Monte Carlo runs. While the bound is tight for NNS, there

is a gap to more sophisticated interpolation strategies, which

lead to much lower interpolation errors. As an extreme case,

Fig. 4 also shows the mean of the prediction error variance for

an interpolator that uses all sensor nodes. The performance was

obtained by solving (13) and computing (12). As expected, the

average prediction error variance (denoted by σ2
K) is much

lower than that of the NNS, which is due to the former

method using all available information, while NNS only uses

information from the closest sensor. For very low densities,

σ2
NNS and σ2

K will tend to 2γ∞, while for very high densities,

σ2
NNS and σ2

K will tend to 2γ0, though they do so at different

rates.

2) Ratio Consensus: We evaluate the actual performance

of ratio consensus and compare with the bounds from Lemma

2. We consider a scenario with N = 100, and NG = 50,

within an area of 1m × 1m (so that ρ ≈ 100). We set

Rcomm = 0.25m, so that the network is connected with high

probability. To have non-unique data association, we emulate

the spatial interpolation procedure described in Section V-B.

Data to sensor association is based on an interpolation radius

of Rint = 0.2m. However, if an interpolation point has no

sensor in its vicinity, the nearest sensor is associated with

that data point. In Fig. 5, we plot the average ℓ2-norm of the

ratio-consensus error for different number of iterations. The

ℓ2-norm of the error is averaged over instances of a randomly

generated sensor network and randomly generated data. We

compare the performance to two versions of Lemma 2: one

for which we use the simulations to evaluate ‖1⊘α(l)‖2,

and the other where we use the approximation (26). From

Fig. 5, it is clear that only after a few iterations, the error
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Figure 5. The average of the ℓ2-norm of the ratio consensus error with respect
to the number of iterations, for the bound in Lemma 2 with the approximation
(26), without the approximation (26), and for simulations of ratio consensus.

in the simulation is dominated by λ2, whereas in the first

iterations, the error decreases much faster (see the discussion

after (26)). Moreover, there is a gap between the simulated

error and the upper bounds. The gap is due to two reasons:

(i) we assume a worst case scenario for the error, i.e., it

is aligned only in the part of the eigenspace corresponding

to λ2; (ii) in the derivation of the upper bound, we use

the triangle inequality and Cauchy-Schwarz inequality on

multiple occasions to bound ℓ2-norms. Inspecting the figure,

we deduce that the gap induced by bounding the ℓ2-norms

using Cauchy-Schwarz is dominant over the error from the

eigenspace alignment, since the error drop in the first iterations

of the simulated consensus is the smaller part of the gap. This

implies that a practical system can use far fewer iterations than

predicted using Lemma 2.

B. System-level Impact of Position Uncertainty

We generate a sparse field x(s) over an area of 30 m ×
30 m (using a 2001× 2001 grid). The field has a maximum

spatial frequency of fu = 1/15m−1. N sensors are dropped

in the area, of which NG = 400 sensors are assumed to

lie on a 20m × 20m grid, while the remaining N − NG

nodes are uniformly distributed over the entire 30 m × 30
m area. To model a mismatch between the sensor locations

assumed by the sink and the actual locations, we distinguish

between the true locations of each sensor (si) and the assumed

locations at the sink (ŝi), related by ŝi = si + np, in which

np ∼ N (0, I2δ). The sink has perfect knowledge of the grid

locations and the number of sensors, but not of the individual

sensors’ locations. Each sensor has perfect knowledge of its

own location. When δ = 0, the sink knows the locations of

all sensors.

We compare two methods, each of which relies on NG

observations.

• Method 1: The sink utilizes the direct measurements from

the NG sensors that are assumed to be on the grid for

0
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Figure 6. The average ℓ2-norm of the reconstruction error for the two
approaches with respect to the position error variance.

compression, under the assumption that δ = 0. This

method corresponds to the conventional approach, but

with location errors.

• Method 2: The sink utilizes the interpolated measurement

at the NG grid locations for compression. These interpo-

lated measurements are computed using the direct mea-

surement from the nearest sensor of each grid location.

This method corresponds to the framework proposed in

this paper.

In both scenarios, we assume convergence of (ratio) consensus,

so that the sink has perfect knowledge of the compressed

vector. We set the compression ratio to M/NG = 0.3, which

we have observed to be sufficient for the scenario under

consideration. The measurement data is reconstructed from

y by solving (6) using CVX. The reconstruction error is

calculated as ‖x(sg)− x⋆‖2, where x(sg) is the generated

field on the uniform sampling grid and x⋆ is the reconstructed

measurement vector.

Fig. 6 shows the average reconstruction error versus the

position uncertainty δ over 100 Monte Carlo simulations. We

see that the error for all cases is monotonically increasing

with δ, which is to be expected as the mismatch between

the reconstructed spatial position of a measurement and its

sampling position increases as δ increases. However, the

reconstruction error in the NNS cases (method 2) saturates

to a level much lower than for method 1. This effect is due

to the possibility of using a closer sample of the field than

the originally associated sensor. Hence, there is a maximum

position error lower than δ for the NNS cases, and in turn

this yields a maximum reconstruction error. The performance

difference between the two methods can be traced to how they

use position information. For method 1, explicit knowledge of

all sensors’ positions is needed centrally at the sink, while

for method 2 position information is only needed locally

to support the interpolation. Note also that one can expect

even better performance for method 2 when considering more

advanced interpolation than NNS, such as ordinary kriging.



9

IX. CONCLUSION

We studied the problem of distributed compressed sensing

with in-network compression and pre-distribution, for field

reconstruction at a sink in a wireless sensor network. To avoid

the use of global position information at the sink during recon-

struction, we proposed a novel framework comprising three

phases: (i) distributed spatial interpolation, (ii) distributed

compression using ratio consensus, (iii) transmission to the

sink by selection of a subset of sensors. We derived an

upper bound on the reconstruction error accounting for the

error induced by the interpolation, distributed compression,

selected transmission, and sparse reconstruction. Moreover, we

established a tradeoff between local and global communication

to meet a target upper bound on the reconstruction error.

Based on numerical simulations, we quantified the impact of

position uncertainty on the reconstruction error of the proposed

framework and demonstrated improved performance over a

conventional approach.

APPENDIX

A. Proof of Lemma 1

In this proof we approximate the uniform sensor placement

with a Poisson point process (PPP). We note that σ2
NNS(d0)

only depends on d0 through exp
(
−d20/h

2
r

)
. For a network of

nodes placed according to a PPP with intensity (approximately

the sensor density) ρ, the probability density function of the

distance d0 from an arbitrary point to its nearest node is given

by f(d0) = 2πρd0 exp(−πρd20) [27]. Hence,

Ed0
{e−d2

0
/h2

r} =

ˆ ∞

0

2πρd0e
−πρd2

0e−d2

0
/h2

rdd0 (33)

=
πρ

1/h2
r + πρ

, (34)

from which the result follows immediately.

B. Proof of Lemma 2

Since b̄π ⊘ ᾱπ = (b̄/ᾱ)1, the ℓ2-norm of the error at

iteration l, l ≥ κ, is

∥
∥b(l)⊘α(l)− (b̄/ᾱ)1

∥
∥
2

(35)

=
∥
∥P lb(0)⊘ P lα(0)− b̄π ⊘ ᾱπ

∥
∥
2

(36)

=
∥
∥P lb(0)⊘ P lα(0)− b̄π ⊘ P lα(0) (37)

+ b̄π ⊘ P lα(0)− b̄π ⊘ ᾱπ
∥
∥
2

=
∥
∥(P lb(0)− b̄π)⊘ P lα(0) (38)

+
(
b̄π ◦ ᾱπ − b̄π ◦ P lα(0)

)
⊘ (P lα(0) ◦ ᾱπ)

∥
∥
2
,

where ◦ denotes the Hadamard product. Using the triangle

inequality, we upper bound
∥
∥b(l)⊘α(l)− (b̄/ᾱ)1

∥
∥
2

(39)

≤
∥
∥(P lb(0)− b̄π)⊘ P lα(0)

∥
∥
2

(40)

+
∥
∥b̄π ◦

(
ᾱπ − P lα(0)

)
⊘
(
P lα(0) ◦ ᾱπ

)∥
∥
2

(41)

=
∥
∥1⊘ P lα(0)

∥
∥
2

(42)

×
(

∥
∥P lb(0)− b̄π

∥
∥
2
+

∣
∣b̄
∣
∣

|ᾱ|
∥
∥P lα(0)− ᾱπ

∥
∥
2

)

=
∥
∥1⊘ P lα(0)

∥
∥
2

(∥
∥
(
P l − P∞

) (
b(0)− b̄π

)∥
∥
2

(43)

+

∣
∣b̄
∣
∣

|ᾱ|
∥
∥
(
P l − P∞

)
(α(0)− ᾱπ)

∥
∥
2

)

≤
∣
∣λl

2

∣
∣
∥
∥1⊘ P lα(0)

∥
∥
2

(44)

×
(

∥
∥
(
b(0)− b̄π

)∥
∥
2
+

∣
∣b̄
∣
∣

|ᾱ| ‖(α(0)− ᾱπ)‖2

)

,

where we have used the convergence of ratio consensus and, in

the last step, the eigen-decomposition of P with eigenvalues

1 = λ1 > |λ2| ≥ · · · ≥ |λN |.

C. Approximation

The definition of the ℓ2-norm gives

∥
∥1N×1 ⊘ P lα(0)

∥
∥
2
=

√
√
√
√

N−1∑

i=0

(
1

αi(l)

)2

. (45)

For large networks, and after a sufficient number of iterations

l, αi(l) ≈ (NG/N) for all i. Therefore,

∥
∥1N×1 ⊘ P lα(0)

∥
∥
2
≈

√
√
√
√

N−1∑

i=0

(
N

NG

)2

(46)

=
N3/2

NG
. (47)

D. Proof of Theorem 3

The observation at the sink can be decomposed as follows:

ŷ = NG/L

(
∑

i∈L

ŵi(I)

)

=
NG

L

(
∑

i∈L

bi(l)

αi(l)

)

=
NG

L

(
∑

i∈L

[∑NG

j=0 wj

NG
+∆i

])

=
NG

L

(
∑

i∈L

Ax̂+ eint

NG

)

+
NG

L

∑

i∈L

∆i

= Ax̂+ eint +
NG

L

∑

i∈L

∆i

︸ ︷︷ ︸

=econs

,

where ∆i is the consensus error vector at node i. The total

error is e = eint + econs, with mean E {e} = E {eint} +
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E {econs}, and variance Var(e) = Var(eint)+Var(econs) due

to eint and econs being uncorrelated which we show in the

following lemma.

Lemma 4. The two error vectors econs and eint are uncorre-

lated, i.e., E
{
einte

T

cons

}
= 0M×M .

Proof: First of all, E
{
einte

T

cons

}
is a diagonal matrix,

since the M compression dimensions are mutually inde-

pendent. Hence, we focus on one of the dimensions j ∈
{1, . . . ,M}. We aim to show that E {eint,jecons,j} = 0. For

some l ≥ κ we have

E {eint,jecons,j} (48)

= E

{

eint,j
NG

L

∑

i∈L

(ŵj,i(l)− w̄j)

}

(49)

=
NG

L

∑

i∈L

(E {eint,jŵj,i(l)} − E {eint,jw̄j}) . (50)

Since ratio consensus is mean preserving at every iteration

l ≥ κ it follows that

E {eint,jecons,j}

=
NG

L

∑

i∈L

(

E {eint,jŵj,i(l)} −
N−1∑

n=0

E {eint,jŵj,n(l)}
N

)

.

Furthermore, we know that E {eint,jŵj,n(l)} =
E {eint,jŵj,i(l)} for any i, n ∈ {0, . . . , N − 1}, and

thus

E {eint,jecons,j}

=
NG

L

∑

i∈L

(E {eint,jŵj,i(l)} − E {eint,jŵj,i(l)})

= 0.

Continuing with the proof of Theorem 3: when employing

NNS, we have that eint is zero-mean with covariance matrix

φ(NG/M)IM when averaging over d0, using the same argu-

ment as in Section III-A. It follows immediately that

E

{

‖eint‖22
}

= NGφ,

and

Var
(

‖eint‖22
)

=
2N2

G

M
φ2.

We will now characterize econs in terms of its first two

moments. We readily find that the mean of econs is zero

as a consequence of the mean of the consensus error vector

being zero. Next, we observe that the variance induced by the

random querying of sensors, in a specific dimension m, can

be expressed as [15]

VarL(econs,m) =
N2

G

L

(
N − L

N − 1

)

σ2
w,

where σ2
w = ‖w(l)− w̄1N×1‖ is the sample variance among

the N sensors after l iterations of consensus, when A, n, and

d0 are fixed. Now, by considering A, n, and d0 to be random

and applying expectation to both sides we get

VarL,A,n,d0
(econs,m) =

N2
G

L

(
N − L

N − 1

)

EA,n,d0

{
σ2
w

}
.

Due to Lemma 2, it follows that

EA,n,d0

{
σ2
w

}

= EA,n,d0

{∥
∥b(l)⊘α(l)− b̄π ⊘ ᾱπ

∥
∥
2

2

}

≈ λ2l
2

N3

N2
G

(

EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

2

}

+ 2
EA,n,d0

{∣
∣b̄
∣
∣
}

NG
‖α(0)− ᾱπ‖2

× EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

}

+
EA,n,d0

{∣
∣b̄
∣
∣
2
}

N2
G

‖α(0)− ᾱπ‖22



 .

We upper bound ‖α(0)− ᾱπ‖2 ≤ NG (the upper bound is

achieved when one sensor holds all NG interpolated measure-

ments). Due to Jensen’s inequality, E{
√
X} ≤

√

E{X}, we

find that the cross-term can be expressed as

EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

}
EA,n,d0

{∣
∣b̄
∣
∣
}

≤
√

EA,n,d0

{∣
∣b̄
∣
∣
2
}

EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

2

}

.

Hence

EA,n,d0

{
σ2
w

}
(51)

≤ λ2l
2

N3

N2
G

(√

EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

2

}

+

√

EA,n,d0

{∣
∣b̄
∣
∣
2
})2

.

We easily find that

EA,n,d0

{∣
∣b̄
∣
∣
2
}

=
EX +NGφ

M
,

where EX = ‖x̂‖22, due to the independence of the NG

variables bi(0) = ai (xi +mi) that are non-zero (recall

that N − NG variables bi(0) are equal to zero) and since

Ed0
{σ2

NNI} = φ. Secondly,

EA,n,d0

{∥
∥b(0)− b̄π

∥
∥
2

2

}

= EA,n,d0

{
‖b(0)‖2 + b̄2‖π‖2 − 2b̄πTb(0)

}

=
EX +NGφ

M
(1 + ‖π‖2)− 2πT

EA,n,d0

{
b̄b(0)

}

≤ EX +NGφ

M
(1 + ‖π‖2),

since EA,n,d0

{
b̄bi(0)

}
= EA,n,d0

{
b2i (0)

}
. It is readily ver-

ified that ‖π‖2 ≤ 2/N ≪ 1, so we can neglect this term.

Substituting back into (51) leads to

EA,n,d0

{
σ2
w

}
≤ λ2l

2

4N3

N2
G

EX +NGφ

M

and hence
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Var(econs,m) .
4

L

(
N − L

N − 1

)

λ2l
2 N

3EX +NGφ

M
, σ2

∆.

Finally, since the m dimensions of compression are i.i.d., it

follows that [11], [16], [18]

E

{

‖econs‖22
}

= σ2
∆M,

and

Var
(

‖econs‖22
)

= 2Mσ4
∆.

Hence, we can set ε2 as specified in the Theorem, using (8).

Remark 5. Throughout the proof, we assumed that Kk was not

empty and that the sensors in Kk formed a connected network.

In case Kk is empty for some k, this means that w̄ is missing

a contribution akẑk. Considering 0 ≤ E < NG empty sets

Kk then (ignoring the consensus error):

ŷ =
NG

NG − E

(
A− Ā

)
x̂+

NG

NG − E
(A− Ā)m,(52)

= cAx̂+ cĀx̂+ c(A− Ā)m, (53)

where Ā is a matrix of all zeros and c = NG/(NG−E) ≤ 1,

except with columns equal to ak when Kk is empty. We see

from (52) that (i) the solution to (6) must be scaled by c;
(ii) the total interpolation error is reduced; (iii) there is an

additional signal-dependent error term. The statistics of similar

errors were investigated in [15], where information is lost due

to packet erasures. A detailed analysis is beyond the scope of

the current paper.

In case the sensors in Kk do not form a connected network,

ratio consensus as proposed here will not work. Supposing Kk

comprised Nk clusters, with interpolated measurements ẑk,n,

n = 1, . . . , Nk, then ratio consensus will converge to

A
∑NG

k=1 Nk






∑N1

n=1 ẑ1,n
...

∑NNG

n=1 ẑNG,n




 ,

which is not the desired result. Hence, clusters must be aggre-

gated before ratio consensus. This can be achieved through an

additional consensus (e.g., max-consensus based on a unique

hash value per cluster), based on which the communication

range can be increased.
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