

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, November 2015

Estimating the Influence on Execution Times from

Shared Resources on a Dual-Core Processor

Master of Science Thesis in the Networks and Distributed Systems

PEYMAN BARAZANDEH

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Estimating the Influence on Execution Times from Shared Resources on a Dual-Core Processor

PEYMAN BARAZANDEH

© PEYMAN BARAZANDEH, March 2016.

Examiner: PER STENSTRÖM

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden March 2016

i

Acknowledgements

I would like to extend my deepest appreciation for Anders Svensson, from Volvo

Group Technology in Gothenburg, who provided me with careful supervision and

technical support throughout the entire project. I am more than thankful to him for

giving me the excellent opportunities to learn and dive into the areas that I had not

touched before.

I also appreciate professor Per Stenström from the department of Computer Science

and Engineering at Chalmers University of Technology, who guided me to write and

organize my thesis report using his invaluable feedback.

I’m truly thankful to my parents and my lovely wife who relentlessly supported me all

the way to do this study, stood by me with their everlasting love and endowed me

with their passionate support and encouragement.

ii

Dedication

To my wife Bahar and my lovely son Artin!

iii

Abstract

The goal of this Master’s thesis is to estimate the influence of shared hardware

resources on the worst-case execution time (WCET) of real-time tasks on a dual-core

processor. The studied hardware is MPC5517E Microcontroller which is a dual-core

32-bit microcontroller unit (MCU), manufactured by Freescale Semiconductor. The

invented measurement technique scrutinizes the impact of the secondary/slave core on

the execution time of a task running on the primary/master core when both cores

access a shared resource. First, the slave core is disabled (is not started), and the

execution process takes place for a code fragment running on the master core, and the

execution time is measured. Then, the slave core is enabled, and the cores run

concurrently to access the shared system resources, principally the shared SRAM. The

execution time of the task running on the master core is measured for the concurrent

utilization of both cores to inspect the impact of the slave core on the master core.

 The executable binaries are generated using Freescale CodeWarrior Development

Studio for MPC55XX/MPC56XX microcontrollers and the measurement is conducted

using Freescale FreeMASTER. To have a quantitative criterion, in order to investigate

the influence of the slave core on the master core, we define a factor known as the

Slowdown Factor (SDF). The SDF reveals the extent at which the master core is

influenced by the slave core. We try to find a upper band for this factor through

developing some codes and carrying out a couple of measurements. In our survey,

programs run either in the processor's internal flash or RAM. In addition, the primary

core runs the same piece of code in all measurement scenarios, whereas the secondary

core runs a varying code fragment to expose its impact on the primary core. One

remarkable finding is that for a given piece of code, the SDF is not constant and it

depends if the code runs in internal flash or RAM. This means that the master core

can experience less or more impact from the slave core, depending on the type and

target of the code running on the cores.

iv

Contents

List of Tables .. vi

List of Figures .. vii

1 Introduction 1

1.1 The Goal of the Project and Contribution ... 1

2 Background and Related Work 3

2.1 Embedded Real-Time Systems .. 3

2.2 The Problem Statement and Motivation .. 5

2.3 Major Issues in WCET Analysis ... 7

2.4 Classification of WCET Estimation Techniques 8

2.5 Distribution of Execution Time and WCET 9

3 The Investigated Hardware Platform 11

3.1 The e200 Cores ... 11

 3.1.1 Variable Length Encoding (VLE) .. 13

 3.1.2 Memory Management Unit .. 13

3.2 The MPC5510 Family of Microcontrollers 14

 3.2.1 Z1 Core vs. Z0 Core .. 15

3.3 The Used Development Tools in the Project 17

3.4 The MPC5510 Freescale Evaluation Board 18

4 The Experimental WCET Methodology 21

4.1 Measuring Execution Time in MPC5510 Microcontrollers 21

4.2 The Basics of Execution Time Measurement Technique 22

4.3 Measuring Execution Time using Freescale FreeMASTER 24

v

4.4 The Slowdown Factor .. 25

5 The Experimental Results 26

5.1 Exploring the Scenario Leading to the Largest Slowdown Factor .. 26

5.2 The Observed Bugs in CodeWarrior Development Studio 33

6 Conclusions and Future Work 36

6.1 Conclusions ... 36

6.2 Future Work ... 37

Appendices 38

A Integrating FreeMASTER with CodeWarrior .. 39

B Listing of Codes .. 44

C List of Abbreviations ... 48

References .. 49

vi

List of Tables

5.1 Examining the FreeMASTER impact on measurements 31

5.2 The measurements for the surveyed scenarios to find the largest SDF 32

5.3 The measurements scenario to approximate the largest SDF 34

vii

List of Figures

2.1 A real-time task model (image exactly taken from [2]) 5

2.2 Timing analysis of systems (image exactly adopted from [6]) 9

3.1 The Freescale e200 core devices (image exactly taken from [9]) 12

3.2 High-level system architecture of dual-core MPC5510 processors 15

3.3 MPC5510 Evaluation Board (EVB) (image exactly taken from [13]) 19

3.4 MPC5510 daughter cards (image exactly taken from [13]) 19

3.5 P&E Microsystems USB Multilink hardware interface 20

A.1 CodeWarrior IDE integrated with embedded-side FreeMASTER 41

A.2 Real-time display using PC-side FreeMASTER 42

A.3 Displaying a recorded variable using PC-side FreeMASTER 43

B.1 Code listing for the basics of execution time measurement technique ... 45

B.2 Code listing to measure execution times using Freescale FreeMASTER 47

 1

1 Introduction

Multi-core processors are becoming rampant these days in a wide variety of applications

and embedded systems are not an exception to this trend. In automotive industry, the

competition among manufacturers is cutthroat, and there exists an ever-increasing desire

to add novel functionalities and features to vehicles at reasonable costs in order to be able

to strive in the competitive market. These functionalities range from entertaining

applications, like the infotainment, to safety-critical functions, such as airbag and Anti-

lock braking system (ABS). Multi-core processors enjoy high performance and are

efficient in terms of cost and power consumption; hence they are very appropriate

candidates to provide the sophisticated automotive software tools with their demanded

underlying hardware requirements. Most of the applications in the automotive domain fall

into the category of hard real-time embedded systems, in a sense that the precise

functioning of the system is contingent upon meeting the timing constraints, namely the

tasks deadlines.

1.1 The Goal of the Project and Contribution

The goal is to estimate the influence of shared hardware resources on the execution times,

or more accurately saying, on the WCET of tasks, running on a dual-core processor. The

approach is a measurement-based technique that involves developing a program to run

some task and measuring its execution time. The target processor has two cores, known as

the master and slave cores. The invented measurement technique, first executes the code,

in isolation on the master core, meaning that the slave core performs no activity in the

beginning. Then, different kinds of workload are put on the slave core to exploit both

cores simultaneously, and the execution times for the task running on the master core are

measured while both cores are operating concurrently. The objective is to investigate the

impact of the stress imposed on common hardware resources, mainly the shared memory,

due to concurrent access of both cores to such resources. Freescale MPC5510 contains a

set of single- and dual-core 32-bit MCUs based on the Power Architecture. MPC5517E

from this family is evaluated in this project. This processor functions at speeds up to 80

MHz and is used for vehicle central body and gateway applications in automotive

embedded systems [20].

 The rest of the report is organized as follows. Chapter 2 explains the main concerns

associated with WCET analysis. Issues like why it is not a straightforward problem, and

how the WCET estimation techniques are classified, are explained in this chapter.

Chapter 3 describes the features of the investigated hardware platform in this project.

Chapter 4 presents our methodology and the developed measurement approach. Chapter 5

 2

explains the carried out experiments and their obtained results using the devised

measurement technique in Chapter 4. Chapter 6 concludes the report and presents the

possibilities for the potential ongoing work. The report has three appendices as well.

Appendix A gives some details on how to make use of FreeMASTER application.

Appendix B provides the source codes that were developed in the investigated scenarios,

and Appendix C expresses the used abbreviations in the report.

 3

2 Background and Related Work

The status quo of WCET study is not satisfactory since industry suffers from the lack of

competent WCET analysis tools [15]. The advanced architecture of modern processors

such as cache hierarchies and pipelining has resulted in considerable performance

increase in computing. However, these features have caused the instructions of these

processors have time-varying properties which make their timing analysis a cumbersome

task. The reason is that caching or pipelining retains an execution-dependent internal state

within the processor that can be figured out as the execution history. Any calculation

made based on the previously-executed instruction streams in state-of-the-art processors

is typically inaccurate, and as a result WCET analysis is challenging in such processors.

Another issue is that WCET analysis cannot rely on the data sheets presented by

manufacturers of processors because timing of instructions available on these documents

are generally a rough estimate of real situations [14].

2.1 Embedded Real-Time Systems

Embedded systems play a key role in our today’s world and we have been surrounded by

a myriad of them. There are a plenty of gadgets around us that their operations are partly

or wholly dependent on computer-controlled systems. The computer systems applied in

these devices, are usually invisible to us because they themselves are the embedded

computing components of a bigger machine. Consequently, we as the users of these

machines are usually unaware of the fact that there is a hidden computer system

contributing to the machine’s operations. Home appliances (washing machines, dish

washers, microwave ovens), transportation vehicles (cars, trucks, airplanes), submarines,

satellites, mobile phones, industrial and space exploration robots (the Mars rovers),

biomedical instruments (ultrasound imaging equipment, patient monitoring systems),

office machines (printers, faxes, copiers, calculators) and consumer electronics gadgets

(TVs, DVD players, security tokens, digital cameras) are all the ubiquitous cases of

machines equipped with embedded systems. It is evident that our life has become heavily

dependent on these so-called embedded systems, and this reliance will continue with an

increasing drift in future. Microcontrollers have become pervasive in the automotive

industry due to wide-ranging application of ECUs in a vehicle. They are exploited in a

variety of applications including,

 body

 gateway

 chassis and safety

 dashboard

 4

 engine management

 advanced driver assistance

 controller Area Network (CAN), Local Interconnect Network (LIN), FlexRay and

other peripherals

 entry-level

 cluster applications

 powertrain

 electric power steering

 Many of the services, offered by the systems mentioned above, are demonstrated by

real-time systems. In [1] we have,

 A real-time system is one in which the correctness of the system depends not only on

 the logical result of computation, but also on the time at which the results are

 generated.

In a real-time system, a task should complete its execution within an allowed time frame.

The temporal properties, mainly responsiveness and periodicity, are the strict timing

constraints of a real-time system [2]. Responsiveness indicates that the system should be

able to complete execution of tasks before their deadlines, and periodicity designates the

system’s sampling rate, i.e. the period at which tasks arrive (if tasks arrive periodically).

If the real-time system fails to deliver its response within the permitted time frame, the

computation results, although logically correct, might be useless. Depending on the type

of timing constraints (hard or soft), and also the nature of system’s operation in terms of

safety (non-critical, critical and safety-critical), a timing failure can have different

consequences. For example, in a car, airbag system and ABS are safety-critical systems,

since the deferred release of airbag after a crash in high speeds or malfunctioning of ABS

in a slippery and icy road can endanger passengers and cause serious injury or loss of life.

 When it comes to real-time applications compared to other domains, different criteria

come into the picture to evaluate the correctness of delivered output. As a case in point, in

High Performance Computing (HPC), the ultimate objective is to maximize the average

throughput. Nevertheless, in real-time systems the average throughput cannot be regarded

as a criterion to judge about the correctness of generated results by the system. Depending

on the type of application domain, a real-time system is typically optimized with regard to

a definite criterion for the provided functionality or service. Dynamic control systems and

multimedia applications are two application examples. In dynamic control systems,

maintaining system robustness is the desirable objective and in multimedia applications

the goal is to have comfort in the provided service.

 5

2.2 The Problem Statement and Motivation

Any development process contains a number of stages or phases. The development

process of a real-time system involves the following three major phases,

 specification

 implementation

 verification

It is absolutely essential to verify the system’s capability in meeting its temporal

characteristics for critical and safety-critical real-time systems. The verification should be

carried out before the system is put into the actual mission. Selecting the suitable

scheduling algorithm for the real-time tasks is an integral part of system design. The

scheduling algorithms require having the tasks model. A task has temporal behaviors and

these behaviors can be either static or dynamic [2]. Static parameters are derived within

the specification or implementation stages and are not dependent on other tasks. Dynamic

parameters involve those parameters that reflect the impacts imposed on one task by other

tasks during the execution of tasks set.

 Figure 2.1 illustrates a real-time task model. Only four static parameters are presented

in a task model. These parameters are Ci, Di, Ti and Oi, and are described as,

 - Ci: task’s worst-case execution time (WCET)

 - Di: task’s relative deadline, indicates the responsiveness timing constraint

 - Ti: task’s period, indicates how frequently the task is released

 - Oi: task’s time offset, indicates the first instance of task arrival, e.g., the earliest time

 at which the task executes

 WCET is defined as the longest possible undisturbed execution time for an iteration of

the task [2]. Among the four static parameters in the task model, determining Ci or WCET

is not trivial and it is a challenging factor to identify this parameter in developing a real-

time system. Execution time of a task depends on several factors including [2],

Figure 2.1: A real-time task model ([2])

 6

 structure of the program and its input data, e.g., loop iterations, branching and

conditional statements

 system properties and architectural factors, i.e. hardware as well as operating

system, e.g., caches, memory hierarchies, out-of-order/speculative instructions

execution and pipelining

 initial system state

 internal and external events of the system, e.g., system interrupts, exceptions

handling and context switching

It is essential to have an estimation of WCET to allocate a reasonable percentage of CPU

utilization to the execution of a periodic task, and construct a feasible schedule which is

verifiable within the verification phase of system development.

 A hard real-time system should complete the task execution within its allowable

timing constraints (deadlines must be met) and WCET is a parameter of great importance

in the schedulability analysis of such systems. In [4] it has been stated that,

 The purpose of worst-case execution time (WCET) analysis is to provide a priori

 information about the worst possible execution time of a piece of code before using

 the code in an actual system.

There exist three different types of tasks in a real-time system [2],

 periodic task, task is released with a specific and constant period of Ti

 aperiodic task, task is released at time intervals greater than a specific period, i.e.

release time ≥ Ti

 sporadic task, task does not have any guaranteed minimum bound between its two

consecutive releases

 A WCET analysis method aims at deriving an upper bound for the time that it takes a

piece of code to execute on a specific platform [6]. It is not a trivial attempt to define the

real WCET and it is typically sufficient to have an estimation of the execution times for a

specific task, hence the following relation applies,

0 ≤ Estimated WCET – Real WCET < ε (2.1)

 Regarding hard real-time systems, the method must satisfy two requirements [2],

 must be pessimistic to guarantee that the timing constraints considered in the

schedulability analysis are also valid at run time

 7

 must be tight to avoid unnecessary allocation of hardware resources, mainly CPU

and memory, to the scheduled tasks set

A particular system consists of,

 organizational platform, i.e. the underlying hardware as well as the running

system software

 structure of the program executing on the platform

Given the particular system and the formerly-mentioned factors affecting the execution

time,

 WCET problem deals with finding the worst-case execution time for all likely input

 data vectors, initial system states and internal and external system events for a

 particular platform.

The above statement formulates WCET problem.

 A real-time system is specified, implemented and verified assuming that the tasks set

WCET executing on the target hardware is known to a relatively accurate extent. The

estimated WCET suffices to perform schedulability analysis for a set of real-time tasks on

single-core systems under the available scheduling algorithms such as Rate

Monotonic/Deadline Monotonic (RM/DM) or Earliest Deadline First (EDF) algorithms

[2].

2.3 Major Issues in WCET Analysis

Relation 2.1 specifies the two necessary constraints that any approach dealing with

WCET estimation for a particular system should meet: pessimistic and tight. Regarding

these two constraints, there exist issues in analyzing the possible execution paths of a

given program. How to pessimistically place a limit on WCET and how to remove the

false paths, i.e. the paths that are not taken at runtime, are the two major concerns in

finding an effective analysis model. Moreover, there are challenging issues in specifying

the timing behavior of a system. Hardware properties of the system, such as cache

memories and pipelining, make it a big deal to define an efficient and accurate temporal

model for intended platform. Another important aspect is taking the impact of system

events into account. Interrupts, context switching and exceptions are the examples of

system events.

 Modern processors, irrespective of being single- or multi-core, have a variety of

advanced attributes. Cache hierarchies, pipelining, branch predictions, out-of-order and

speculative execution of instructions are such attributes. As for pipelining, structural

 8

conflicts, data conflicts and branch conflicts are the causes of inaccuracy in timing

analysis. Cache misses are also a substantial source of timing variations [2]. It is hard

indeed to precisely model these influencing factors in WCET analysis and define an exact

timing model for such processors. In order to have a quite exact and competent WCET

analysis model, any factor or parameter affecting the temporal behavior of the platform

must be pessimistically modeled. Besides, practicable and feasible assumptions should be

made in constructing a timing model. In the context of multi-core embedded processors

the situation is more intricate, because the current techniques to measure/estimate the

tasks execution times on single-core processors are not fully applicable on multi-core

processors. Although multi-core processors offer better performance than single-core

processors, they are very complicated to analyze [7]. The reason is that inter-core

interferences arise among executing tasks, while the tasks are accessing a shared

hardware resource. Such interferences disallow the available single-core processor

models to provide a reliable timing analysis for multi-core processors. System bus, Level

1 (L1) and Level 2 (L2) instruction and data caches are the cases of shared resources.

2.4 Classification of WCET Estimation Techniques

In general, there are two categories of techniques in the timing analysis of real-time

systems concerning WCET estimation [6],

 static

 measurement-based

In static methods, the program does not execute on real hardware target or on a simulator.

Instead, the code implementing the task is taken into account to derive all possible control

flow of execution paths. The code may be annotated in this step. Then the derived control

flow is associated with some (abstract) model of the hardware platform to determine the

upper execution bounds for the resultant association.

 Static WCET analysis has some shortcomings. One noticeable problem is that it is a

rather time-consuming technique because deriving a relatively exact model for a complex

processor requires considerable amount of time. Further, the technique is processor-

dependent and cannot be extended to other processors, even with slight architectural

differences. Another important challenge is the inaccuracy of instructions timing written

down on a processor technical documents presented by its vendor. Such timings are

usually some approximate figures for the execution times of processor instructions and

are not exact; therefore any approximation for execution times of an annotated piece of

code is inaccurate and cannot be trusted in real-time applications.

 Measurement-based techniques execute the real task or some parts of a partitioned task

on the real hardware target, or on a simulator, for some vector or some set of input data to

 9

measure execution times. The WCET is specified by the measured minimum and

maximum execution times for the whole task, their distribution, or combined measured

times for execution times of code snippets of the partitioned task. This is an effective

WCET analysis approach, but the major concern is that it is almost infeasible to carry out

exhaustive end-to-end measurements for the programs with large size of code. To enjoy

the best of both worlds, the well-liked trend is to apply the hybrid approach, i.e. to

combine measurement-based techniques with static methods. There are some WCET

analysis methods available using the hybrid methodology, but they are still immature

[14].

 Path analysis is a common technique in static WCET analysis and it is being replaced

by test data generation method in measurement-based approach [14]. In WCET analysis

using test data generation, the user manually generates various sets/vectors of synthetic

data or simply generates random data sets. The adopted approach in this project is a

measurement-based technique and will be described in detail in Chapter 4.

2.5 Distribution of Execution Time and WCET

A real-time system comprises some tasks and each task implements some part of the

overall functionality of the system. As it was described before in Section 2.2, the

execution time of a task is a varying parameter and depends on several factors. The

varying nature of execution time results in having a set of execution times, as opposed to

just a single value, and allows us to define some real-time pertinent properties for a

particular task. Figure 2.2 [6] illustrates the involving fundamental terms in timing

analysis of real-time systems. The lower curve points out a subpart of the measured

Figure 2.2: Timing analysis of systems ([6])

 10

execution times in which there are minimum and maximum values for the measured

executions. The upper curve indicates the superset of all possible execution times and its

lower and upper bound characterize the best-case execution time (BCET) and worst-case

execution time (WCET) of the task, respectively.

 11

3 The Investigated Hardware Platform

Microcontrollers have become prevalent in the automotive industry thanks to broadly

usage of ECUs in a vehicle. The MPC5510, presented by Freescale Semiconductor, is the

first product family of 32-bit low-power microcontrollers based on the Power

Architecture technology, designed for automotive body and gateway applications. All

processors of the family have program flash and SRAM (with different sizes depending

on the processor) and can support a range of advanced peripherals. The MCUs of this

family are capable of accessing the flash memory and peripherals in one clock cycle.

Different vendors active in the automotive embedded systems provide the MPC5510 with

extensive support through offering quality hardware and software development tools built

on the Power Architecture technology.

3.1 The e200 Cores

Freescale Semiconductor offers a series of dual-core 32-bit microcontrollers utilizing two

e200 cores. The cores employ the Power Architecture presented by PowerPC [9]. Power

Architecture has demonstrated its efficiency in a wide range of embedded applications

including, but not limited to, automotive industry, robotics, signal processing, compact

networking, industrial control and health equipment. Currently, Freescale presents four

flavors of e200 cores: e200z0, e200z1, e200z3 and e200z6. Freescale’s e200 architecture

provides cost-sensitive, embedded real-time applications with substantial performance

needs. Figure 3.1, exactly adopted from [9], illustrates the fundamental characteristics of

the available e200 cores.

 The Z0 is the simplest one among the four cores and the Z6 is the most complex core

offering uppermost performance in the family. All cores exploit the Power Instruction Set

Architecture (ISA), version 2.03, and have support for Variable Length Encoding (VLE).

Besides, all cores, excluding Z0, provide full implementation for 32-bit Power

architecture Book E instruction set. The dual-core processors of the family sets have two

dissimilar cores that are called the master and slave cores throughout this text.

 With regard to the dual-core Freescale Semiconductor MCUs, both cores can

thoroughly act independent of each other; therefore they can either execute completely

isolated tasks or execute partially or fully dependent tasks. The subject of dividing the

code between the master and slave cores have been extensively discussed among

embedded applications developers. Depending on the type of applications, there are

various options available to efficiently trade off the running loads between the two cores.

Some well-known scenarios are [11],

 12

- dividing the code between cores meticulously to relieve the burden on the

master core

- dedicating the slave core to interrupt-handling routines

- utilizing the slave core to accomplish an isolated functionality such as

implementing gateway operations between CAN and LIN

- allocating the slave core to implement a computationally-intensive task and

making calls to the task from the master core when it is needed

- allocating the slave core to carry out the error checking of the tasks being

executed by the master core

Figure 3.1: The Freescale e200 core devices ([9])

 The Memory Management Unit (MMU), present on the Z1, Z3 and Z6 cores, is

suitable mechanism for the applications requiring full Operating System (OS) support.

The Signal Processing Engine (SPE) and the Floating Point Unit (FPU) in the Z3 and Z6

deliver signal processing capabilities for the applications performing signal processing

computations. These two units typically remove the need for providing the

microcontroller with a supplementary Digital Signal processor (DSP). The Z6 core enjoys

seven-stage pipelining and is endowed with all the features of the Z3 core as well as an

on-chip cash memory [9].

 13

 The investigated processor in this project is MPC5517E microcontroller, belonging to

the MPC5510 family of microcontrollers. The processor is equipped with the Z1 and Z0

cores; hence the two important functionalities provided by this processor are VLE and

MMU. The following, describes these advanced hardware-level capabilities in brief.

3.1.1 Variable Length Encoding (VLE)

VLE is a technique to re-encode the Power instruction set with the help of 16- and 32-bit

formatting. Freescale developed VLE to optimize code density through encoding 32-bit

PowerPC instructions into mingled 16- and 32-bit instructions in order to decrease the

code footprint. It is an enhancement to the POWER (Instruction Set Architecture) ISA. It

is possible to achieve high performance and code density through inter-mixing the code

pages utilizing VLE formatting or non-VLE formatting. This performance improvement

is yielded by exploiting the 16-bit space-efficient binary illustrations of Power

instructions versus the more lengthy 32-bit instructions. VLE employs both 16- and 32-bit

instructions; hence it is possible to achieve considerable code density at the expense of

negligible or even no performance loss [11]. Instructions are prefixed by “se_” and “e_”

to designate 16- and 32-bit VLE instructions correspondingly. For instance, the add

instruction in the VLE format is,

- se_addi, is 16-bit VLE “add immediate” instruction

- e_add16i, is 32-bit VLE “add immediate” instruction

 It is possible for the compiler to choose whether to use Power Architecture Book E or

VLE by the help of a switch at compile time.

As for the embedded software applications, the achieved density in code can lead to less

system cost, and also to some lesser extent, improved performance. It is possible to

condense the code up to 30% using this feature via free intermingling of 16- and 32-bit

instructions [9]. All four types of e200 cores back up VLE and the feature is almost

offered by all development toolchains. The feature has been accepted by power.org and

Power ISA (version 2.03) supports it. The Freescale’s comprehensive manual [10]

describes VLE in detail.

3.1.2 Memory Management Unit (MMU)

All e200 cores, except the Z0, possess an MMU. This unit is the same in the Z1, Z3 and

Z6 cores, in a sense that it provides equal functionality, identical user interface and

compatibility in cross-core program code. The applications requiring full OS capabilities

are very appropriate candidates to be deployed on the MMU. The MMU outlines different

memory sections. One of the fundamental parameters being set by the MMU is to

 14

determine whether the memory section should contain Power Architecture Book E or

VLE code. This way, the Z1 core can decide if it should use Power Architecture Book E

encoding or VLE formatting. The significant benefit is that there is no need to transform

the current libraries developed in Power Architecture Book E encoding scheme to VLE

formatting scheme. The Z0 core is only compliant to VLE scheme; consequently it lacks

an MMU [11].

 The characteristics of MMU (adopted from [9]) include,

 translation from 32-bit effective (virtual) to 32-bit real (physical) addresses:

- 32-entry MMU in Z6

- 16-entry MMU in Z3

- 8-entry MMU in Z1

 support for nine page sizes (4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB,

64 MB, and

256 MB)

 accesses qualified by:

- Address spaces: 2 data and 2 instruction

- 8-bit process identifier (supervisor accessible or global resource)

 selectable access privileges:

- User Read/Write/Execute (UR/UW/UX)

- Supervisor Read/Write/Execute (SR/SW/SX)

Furthermore, it falls to the MMU to select the endianness of memory section for each

core. The Z1 core is capable of using either big endian or little endian, while the Z0 core

can only use big endian.

3.2 The MPC5510 Family of Microcontrollers

The MPC5510 family is an extensively-used set of 32-bit microcontrollers in the

automotive embedded applications, based on e200 cores family. The family set includes a

number of single- and dual-core cost-efficient microcontroller units (MCUs) capable of

operating with outstanding performance at low power consumption modes. The dual-core

members of this family are endowed with e200z1 (Z1) and e200z0 (Z0) cores. The Z1

and Z0 cores are also known as the primary/master and secondary/slave cores,

respectively. Both MPC5510 single- and dual-core processors provide support for Power

Architecture Book E instruction set. A majority of the family members have a second

core (Z0), intended to act as the Input/Output Processor (IOP). The secondary/slave core

provides the processor with a number of powerful features. This core is brought out of

reset by the primary/master core, and just the once it is in the functional mode it can

 15

operate autonomously of the primary/master core. The secondary/slave core can carry out

a variety of tasks such as [11],

 handling I/O processing

 executing gateway functionalities between communication networks

 creating virtual peripherals

 offloading the burden running on the master core via performing some of

necessary system tasks

Figure 3.2 [12], shows the high-level system units of a dual-core processor belonging to

the MPC5510 devices.

3.2.1 Z1 Core vs. Z0 Core

Figure 3.1 illustrates that the e200 cores have some structural differences leading to

different performance levels and functionality for each core. Thus, the applied dual-core

organization in MPC5510 devices results in an asymmetric implementation. On the other

Figure 3.2: High-level system architecture of dual-core MPC5510 processors [12]

hand, there is symmetric multi-core architecture in which all cores have almost the same

structural design and implementation, usually with identical functionalities present on

each core. Most of the times, there is an OS running on the platform (symmetric or

asymmetric multi-core systems) which dynamically decides how the execution of tasks

should be allocated to the cores. This decision is made by the OS based on the available

system resources and also according to the time-related necessities of the running

 16

application. Typically, it is not needed to run an OS on the dual-core processors of

MPC5510 family [12]. The master core generally executes the main control loop and the

slave core is launched to accomplish certain jobs, like gathering data from various

external devices.

 When it comes to the dual-core processors of MPC5510 family, such as MPC5517E,

the Z1 and Z0 cores are involved. Subsequently, it would be beneficial to focus on the

substantial differences between these two cores. The most important dissimilarities in Z1

and Z0 are,

 the supported instruction set by each core

 the hardware-wise type of access to shared resources

 the core registers

The Supported Instruction Set by each Core

As stated earlier, one of the major differences between the master core (Z1) and the slave

core (Z0) is the type of the instruction sets that they can execute. Z1 can exploit both

Power Architecture Book E and the extended VLE instruction sets whereas Z0 executes

only VLE instruction set.

The Hardware-wise Type of Access to Shared Resources

The Z1 core utilizes the Harvard architecture, indicating that it has separate instruction

and data buses, while the Z0 core makes use of Von Neumann architecture, specifying

that it has an individual, unified instruction/data bus. There are also variants of the Z0

core that utilize Harvard architecture, belonging to non MPC5510 family set. As

demonstrated on Figure 3.2, the crossbar switch is in charge of managing and arbitrating

access to the shared resources. The supplementary direct link between the Z1 core and the

flash memory provides this core with the immediate access to the flash memory through

bypassing the crossbar switch. This extra link decreases the access time and also

facilitates the simultaneous access of both cores to different locations of flash memory

[12]. Cores have their own individual interrupts set and run at the same speed supplied by

a shared clock source which is configured in the System Integration Unit (SIU).

The Core Registers

The master core contains all the slave core’s registers as well as a few additional registers

which enable it to implement specific functionalities. In [12] the differences have been

listed as following,

 17

- the Z0 core lacks the timing registers available on Z1, including the two 32-bit

Time-Base (TBL and TBU) and the decrementer registers

- the Z1 core has eight General Special Purpose (SPRG0 to SPRG7) and one

User Special Purpose (USPRG0) registers, whereas Z0 core has only two

Special Purpose registers (SPRG0 and SPRG1)

- the Z1 core has the branch target buffer to accelerate the execution of loops,

but the Z0 core lacks this feature

In this project, the basic principle in the measurement of execution times is using the

Time-Base registers on the Z1 core.

3.3 The Used Development Tools in the Project

There are several development tools presented by different vendors to provide embedded

software developers with their needed tools to generate, compile and debug their program

code or model/simulate MPC5510 MCUs. The following, taken from [9], lists the

available tools. The software and hardware tools denoted with a check mark were used in

this thesis work. Freescale FreeMASTER does not exist in the tools list provided by [9].

 Compilers

 CodeWarrior Development Studio

 Green Hills

 WindRiver

 GNU

 Debuggers

 Green Hills

 Lauterbach

 iSystem

 P&E Microcomputer Systems USB Multilink

 Freescale FreeMASTER

 Simulators

 CodeWarrior (Core only)

 Green Hills (Core only)

 Hardware

 Freescale Evaluation Board (EVB)

 Green Hills (Nexus Class 1 and Class 2+)

 Lauterbach (Class 1 and Class 2+)

 iSystem (Class 1 & Class 2+)

 P&E Microcomputer Systems USB Multilink (Nexus Class 1)

 Initialization tools

 18

 RAppID Init

 Modeling/Code generation

 dSpace TargetLink

 MathWorks Simulink

3.4 The Freescale MPC5510 Evaluation Board

Freescale Semiconductor presents an Evaluation Board (EVB) to ease hardware and

software development processes for MPC5510 family of microcontrollers and also

provide customers with an an easy-to-use piece of hardware to assess the capabilities of

the processors belonging to this family of microcontrollers. The EVB is planned to be

used in bench/laboratory applications under normal ambient tempratures [13]. Figure 3.3

shows this EVB.

 The main board lacks an MCU and the MCU is mounted on an MCU daughter card.

The EVB has a modular organization in the sense that different MCU packages can be

installed on the supporting daughter card; hence the EVB can enjoy full flexibility and

simplicity. At present, there are three packages to be used with the MPC5510 processors

and by the EVB as well. These package types are 208BGA, 176QFP and 144QFP. This

mechanism allows the MPC5510 microcontrollers to be exploited with the same EVB but

with various package types and MCU derivatives. The daughter board is interfaced with

the EVB using high density connectors [13]. The switches, jumpers and user connector on

the EVB make it possible to provide the hardware with a couple of different

configurations and settings. Power supply configurations, clock sources selection, reset

control, debug configuration, external memory configuration, CAN, RS232, LIN and

Flexray configurations, the LED dot matrix and termination resistor control are the

various features that can be flexibly configured according to the needs. Figure 3.4

displays the available three daughter cards supporting the available three MCU packages.

 The explored processor in this project (MPC5517E) uses 144OFP daughter board and

the target hardware includes the EVB and daughter card existing in the Qorivva

MPC5510 kit. The kit includes an EVB equipped with a Nexus connector through which

 19

Figure 3.3: MPC5510 Evaluation Board (EVB) ([13])

Figure 3.4: MPC5510 daughter cards ([13])

it is possible to have full debug access to the MCU. The codes are compiled using the free

license of CodeWarrior Development Studio that limits the code size up to 128 KB. To

upload and debug the created elf, P&E Microcomputer Systems USB Multilink interface

 20

that comes with the Qorivva MPC5510 kit has been used. The MPC5517E has been

plugged into the daughter card. This processor has the following fundamental features,

- one e200z1 (the master core) and one e200z0 core (the slave core)

- 1.5 MB internal program flash, 80 KB on-chip SRAM

Figure 3.5: P&E Microsystems USB Multilink hardware interface

 The P&E USB Multilink is the hardware interface, placed between PC and the EVB,

in order to transfer the generated executable binary to the processor. Figure 3.5 shows the

interface. The executable binary can be placed into flash memory or SRAM, depending

on the code size and the size of available SRAM.

 21

4 The Experimental WCET Methodology

Our intention is to develop a measurement-based mechanism to estimate the influence on

execution times of the task running on the master core of MPC5517E, when both master

and slave cores access the shared resources. As stated earlier, in Chapter 2 (Section 2.4),

measurement-based WCET techniques for multi-core processors are more promising than

static WCET analysis methods. The developed approach in this work utilizes the features

that are available on the investigated hardware, as well as a real-time debugging tool, to

measure the execution times of a piece of code running on the master core. In the

beginning, only the master core starts executing a code snippet as the baseline for

measurement and the slave core does not start, i.e. it stays in reset mode. Then the slave

core is brought out of reset by the master core, and starts executing a number of

background loads. Using the real-time debugger, the impacts on the execution time of the

piece of code running on the master core, due to concurrent operation of both cores, are

inspected.

4.1 Measuring Execution Time in MPC5510 Microcontrollers

The master core in MPC5510 microcontrollers has two 32-bit registers, identified as Time

Base (TB) registers [16]. These registers belong to the category of special purpose

registers (spr) in the MPC5510 MCUs and they both together form a 64-bit TB register.

Special purpose registers are not memory-mapped and they can be accessed indirectly

through a general purpose register (gpr). Concerning an spr, there are only two

instructions available: mtspr (move to spr) and mfspr (move from spr). The lower and

upper 32 bits are denoted as TBL and TBU, correspondingly. Using the TB registers, it is

possible to count the number of system clocks involved in the execution of a code

fragment. The MPC5510 features different memory types including, internal flash, on-

chip SRAM, external flash and off-chip SRAM. The TB regiters are capable of counting

the number of system clocks for the code executing in any of these memory types.

 Before the TB registers start counting the number of elapsed system clocks, they must

be enabled. There is a special puspose register in the primary core, named as Hardware

Implementation Register 0 (spr HID0) having a bit known as Time Base Enable (TBE).

To enable the TB registers, it is enough to set this bit. Once being enabled, the TB

registers start counting the number of clock cycles after an initial delay owing to the

pipelining feature. The primary core (e200z1) has a 4-stage pipelining [9]. Qorivva

Simple Cookbook [16] has a simple example and further information to use the TB

registers. The default system clock frequency for MPC551x processors is 16 MHz and at

this operating frequency, it takes around 4.5 minutes that the TBL register overflows to

 22

the TBU register [16]. The tasks that we are dealing with in our work have execution

times in the range of several milli seconds. The system clock in our codes for all projects

is set to 64 MHz, and at this clock rate it takes around 67.5 seconds for the TBL to

overflow to the TBU. This is a rather long time and it would not be required ro take care

of the overflowing issue. Thus, we only read the values of the TBL register in our

measurements.

4.2 The Basics of Execution Time Measurement Technique

We need to come up with a method to measure the execution times of tasks running on

the primary core (Z1) of MPC5510 dual-core devices. Assume the piece of code that we

are interested in its execution time, is placed into a function named Z1_routine().

The TB registers allow us to count the number of clock cycles before and after making

the call to Z1_routine(). As the processor’s primary core continues running, the

number of elapsed clock cycles are stored into the TB registers. The values of the TB

registers, before and after making a call to Z1_routine(), are stored to measure the

execution time. The execution time for Z1_routine() can be simlpy calculated using

the following relation,

execution_time =
end - start

PROCESSOR_CLOCK
 (4.1)

Where we have,

- end: The read value of TB register after making a call to the code snippet

- start: The read value of TB register before making a call to the code snippet

- PROCESSOR_CLOCK: The processor’s operating frequency

The default clock for MPC5510 devices is 16 MHz and MPC5517E can be clocked up to

80 MHz [16]. The estimated time is in microsecond since PROCESSOR_CLOCK is set

in MHz in our measurements.

 As the starting point, we create a single-core project, targeted at MPC5517E, using the

CodeWarrior IDE. Figure B.1 in Appendix B shows the code listed in the

main_master.c file (running on the master core, i.e. Z1) with a simple body for the

user-defined Z1_routine()to illustrate the basics of our measurement technique.

 To enable the TBL register and read its value, some source files from a formerly

created project in Arctic Studio [17] have been integrated with the created project in the

CodeWarrior IDE. Arctic Studio, presenetd by ARC CORE, is an open source Eclipse-

based [19] embedded software package to address AUTOSAR [8] standard. The software

 23

provides a platform that includes real-time operating system, facilities to support

communication services like CAN and LIN, memory services and also drivers for a

number of microcontrollers used in the automotive ECUs, such as MPC5510 MCUs. The

code listing mentioned above includes a header file named Cpu.h. This header file is

borrowed from the created project for MPC5517E in Arctic Studio and then is added to

the source files of our project. In the code, there is a routine as well as some defined

macros in Cpu.h to utilize the TB registers as described below,

- SPR_TBL_R, the macro to symbolize the lower TB register to read its

contents

- SPR_HID0, the macro to symbolize Hardware Implementation Register 0 (spr

HID0)

- get_spr(spr_nr), the function to read the contents of special purpose

registers

 The initSysclk() routine makes it possible to change the default operating

frequency, i.e. 16 MHz, to our desired clock frequency. All the measurements for both

single- and dual-core projects throughout this work are carried out at 64 MHz.

Z1_routine()declares a volatile 32-bit integer in the SRAM and implements an

empty nested loop which means the function performs no useful work. To achieve a

relatively accurate measurement, the code fragment of our interest (Z1_routine() in

our measurements) is called more than once. The NUMBER_OF_EXECUTIONS macro

specifies how many times the piece of code executes. The project is compiled and linked,

and the generated executable binary (elf) is transferred to the EVB using P&E USB

Multilink hardware interface. At this stage, we find the value of execution time through

watching execution_time variable using the existing debugger. For the

implemented code, we obtained two execution times: 35937 and 35938 micro seconds,

and the larger value is considered as the WCET for Z1_routine(). It should be noted

that the code runs in the internal Flash memory. If it runs in the SRAM, the execution

times, as we will see in Section 4.5, are larger. Freescale provides FreeMASTER [18]

which is a powerful free and open source real-time debugger. In the rest of the work, this

tool has been applied to facilitate our measurements.

 24

4.3 Measuring Execution Time using Freescale FreeMASTER

Three steps are taken to be able to use FreeMASTER in our application. First, its source

files are added to our project code in the CodeWarrior IDE, then one of the eSCI ports,

available on the EVB, is initialized, and finally, FreeMASTER user interface is installed

on PC to interact with it through a GUI. FreeMASTER has been implemented as an open

source communication protocol in C, therefore it is added to the embedded application

project as a number of .c and .h files. The tool consists of two applications: the PC-side

application and the embedded-side application. The PC-side application provides a user

interface to watch and record the variables in real time and the embedded-side application

acts as a server to the PC-side application to fulfill the actual real-time debugging

process. The EVB has two serial communication interfaces known as eSCI_A and

eSCI_B. The communication between the PC-side and embedded-side applications in our

project is conducted through eSCI_A serial port. The routine called ESCI_A_Init()is

added to the main_master.c on the master core, and it is called after clock

initialization process to manage the communication between the processor and the GUI

through the eSCI port.

 To use FreeMASTER in our application, the main_master.c file is modified with

making calls to the serial communication port (ESCI_A_Init()) and FreeMASTER

(FMSTR_Init()) initialization routines. Figure B.2, in Appendix B, lists the new

version of our code to demonstrate the measurement approach using FreeMASTER. The

code inside the main() function consists of two parts. The first part includes the real-

time measurement using a for loop and the second part comprises an infinite while

loop to provide FreeMASTER with an array for off-line display of the recorded

variable(s). Here, the basic notion is that we log a variable in real time and then display

its value off line.

 FreeMASTER GUI lets us create oscillscope and recorder mechanism in our project to

inspect and log up to eight variables in an application. To achieve a relatively precise

measured value, we execute the code fragment more than once. In the code listing in

Appendix B, Z1_routine() is called NUMBER_OF_EXECUTIONS times and each

measured value is stored in an array with the size equal to NUMBER_OF_EXECUTIONS.

When the first part, dealing with real-time debugging (the for loop) terminates, and the

measurement process is over, the two FreeMASTER routines associated with the real-

time debugging, i.e. FMSTR_Record() and FMSTR_Poll()are called again infinitely

in the second part (the while loop). The second part actually supplies the FreeMASTER

oscilloscope and recorder tools with their required data. In fact, the endless while loop

in the recording part enables FreeMASTER client to visualize the measured variables

(register values) on screen forever until the system (EVB) is interrupted by user.

 25

 FreeMASTER can be used in the interrupt- and poll-driven modes [18]. We use the

poll-driven mode in all the carried out measurements in this project. Appendix A

describes how to integrate and configure FreeMASTER in the projects that are built using

the CodeWarrior IDE.

4.4 The Slowdown Factor

The execution time for a specific piece of code running on the master core, when the

slave core is in reset mode, is considered as the baseline. Once the secondary core is

started, the execution time of the task running on the primary core is affected, even

though the secondary core does not execute any useful work. The slave core’s impact on

master core is embodied as the execution time of the task running on the master core is

stretched.

 To come up with a quantitative criterion in order to evaluate the extent at which the

execution time is influenced, we define a factor known as the Slowdown Factor (SDF).

The factor is described as,

Slowdown Factor =
T2

T1
 (4.2)

In which,

T1: Execution time of task running standalone on the master core (slave core is inactive)

T2: Execution time of task running on the master core while the slave core is running

In the relation above, the numerator denotes the execution time of some task running on

the master core while both primary and secondary cores are operating concurrently,

whereas the denominator specifies the measured execution time when the same task runs

on the master core as the second core is in reset. To explore the influence of the slave

core on the SDF, the master core task is kept constant (Z1 runs the same piece of code in

all measurements) and the slave core runs an increasing load, functioning as the

background load. The background load is gradually increased and the execution time of

the task runnig on the master core is measured. In the CodeWarrior IDE main() and

main_p1() are Z1's and Z0's main functions respectively. The simplest scenario is

when the secondary core starts with a bodiless main function, i.e. an empty main_p1()

routine.

 26

5 The Experimental Results

In this chapter we will explaine how the devised measurement technique, described in

Chapter 4, is employed with the aim of conducting a number of experiments to estimate

the influence on master core’s WCET from shared resources in MPC5517E.

5.1 Exploring the Scenario Leading to the Largest Slowdown Factor

The slowdown factor is greater than or equal to 1.0, and it increases as the background

load increases, however there is an upper band for this factor in such a way that the

following relation holds,

1.0 ≤ SDF ≤ Upper bound (5.1)

 To estimate the upper band for SDF, a dual-core project in the CodeWarrior IDE for

MPC5517E device is created, and three different scenarios, described fully subsequently,

will be explored. In the dual-core projects, each core has its own main function placed in

a separate source file. As for the CodeWarrior IDE, these files are the main_master.c

for Z1 and the main_slave.c for Z0.

Scenario 1

- Z1 runs an unvarying load

- Z0 defines and manipulates a variable in the SRAM, Z1 does not access this

variable

 Scenario 2

- Z1 runs an unvarying load and also it defines a variable in the SRAM which is

accessible from Z0

- Z0 accesses the variable defined in Z1

Scenario 3

- Z1 runs an unvarying load and also it defines a variable in the SRAM which is

accessible from Z0

- Z0 accesses the variable defined in Z1, and also it defines and manipulates a

variable that is only accessible to Z0

In these scenarios, Z1 defines a variable in the SRAM and allows Z0 to access it through

making calls to global functions defined in Z1. The variable in Z1 is declared as a 32-bit

integer using the int type and is preceded with the volatile keyword to ensure that it

is stored in the SRAM. Z0 runs the background load and we will investigate its impact on

Z1 by measuring the execution times of the unvarying load running on Z1. The largest

 27

obtained values for execution times are taken into account, since we are interested in the

WCET.

Implementation for Scenario 1

The only difference between the codes placed in the Z1’s main_master.c file in the

Section 4.3 and this scenario is that in this scenario Z1’s main()makes a call to a

routine, named __start_p1(), to trigger the secondary core (Z0). The created project

here is a dual-core project to activate Z0. At startup process, Z0 is in reset and shall be

started by Z1. The CodeWarrior stationery embeds __start_p1()routine (written in

the PowerPC Assembly) with the project, and once this function is called it writes to the

CRP.Z0VEC.R to initiate the Z0 core.

 Z0 declares a variable, which is inaccessible by Z1, and increments it infinitely. The

code is placed into a function, named Z0_routine(), and the function is called from

main_p1().

void Z0_routine(void)

{

 volatile int a1 = 0;

 while (1)

 {

 a1++;

 }

}

int main_p1(void)

{

 Z0_routine();

}

Implementation for Scenario 2

A variable of integer type along with the two routines responsible for manipulating and

reading this variable are added to the code listing of Section 4.3, i.e. to

main_master.c file. The variable is named Z1_var_accessible_to_Z0 and is

initialized with 0. Z1 also defines two routines to make it possible for Z0 to access and

manipulate Z1_var_accessible_to_Z0. The calls are made within the Z0's main

function in an infinite loop. These two routines are,

increment_Z1_var_accessible_to_Z0()

read_Z1_var_accessible_to_Z0().

Following, are the contents of the main_master.c file (running on Z1) to implement

this scenario.

 28

#include "MPC5517E.h"

#include "Cpu.h"

#include "freemaster.h"

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */

#define NUMBER_OF_EXECUTIONS 50

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1

/* Prototype for PRC1 startup */

extern void __start_p1();

/* Measurement variables */

int enable, start, end;

/* FreeMASTER variables */

float execution_time = 0, samples[NUMBER_OF_EXECUTIONS] = {0};

int sampling_index = 0;

/* The shared variable between the two cores */

volatile int Z1_var_accessible_to_Z0 = 0;

void ESCI_A_Init(void)

{

 ESCI_A.CR2.R = 0x2000;

 ESCI_A.CR1.B.TE = 1;

 ESCI_A.CR1.B.RE = 1;

 ESCI_A.CR1.B.PT = 0;

 ESCI_A.CR1.B.PE = 0;

 ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */

}

void initSysclk(void)

{

 /* Initialize PLL and sysclk to 64 MHz */

 FMPLL.ESYNCR2.R = 0x00000007;

 FMPLL.ESYNCR1.R = 0xF0000020;

 CRP.CLKSRC.B.XOSCEN = 1;

 while (FMPLL.SYNSR.B.LOCK != 1) {}; /* Wait for PLL to LOCK */

 FMPLL.ESYNCR2.R = 0x00000005;

 SIU.SYSCLK.B.SYSCLKSEL = 2;

}

void Z1_routine(void)

{

 volatile int i, j;

 for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++)

 {

 for (j = 0; j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS;

 j++)

 {

 }

 }

 29

}

void increment_Z1_var_accessible_to_Z0(void)

{

 Z1_var_accessible_to_Z0++;

}

int read_Z1_var_accessible_to_Z0(void)

{

 return Z1_var_accessible_to_Z0;

}

int main(void)

{

 initSysclk();

 ESCI_A_Init();

 /* Initialize FreeMASTER driver */

 FMSTR_Init();

 /* Start the other core by writing CRP.Z0VEC.R */

 CRP.Z0VEC.R = (unsigned long)__start_p1;

 /* Enable Time Base register (TBE) */

 enable = get_spr(SPR_HID0);

 end = 0x4000;

 enable = enable | end ; /* according to the manual */

 set_spr(SPR_HID0, enable);

 for(sampling_index=0; sampling_index < UMBER_OF_EXECUTIONS;

 sampling_index++)

 {

 start = 0;

 end = 0;

 /* Start measuring execution time */

 start = get_spr(SPR_TBL_R);

 Z1_routine();

 /* Stop measuring execution time */

 end = get_spr(SPR_TBL_R);

 /* Measure execution time using the processor clock */

 execution_time=(float)((end - start) / PROCESSOR_CLOCK);

 /* Store the measured times in an array being used by

 FreeMASTER Recorder Mode */

 samples[sampling_index] = execution_time;

 FMSTR_Recorder();

 FMSTR_Poll();

 }

 /* Record the samples using FreeMASTER Recorder Mode */

 30

 sampling_index = 0;

 while(1)

 {

 FMSTR_Recorder();

 FMSTR_Poll();

 execution_time = samples[sampling_index];

 sampling_index++;

 if(sampling_index >= NUMBER_OF_EXECUTIONS)

 sampling_index = 0;

 }

}

The code placed in the main_slave.c file (running on Z0) is,

extern int read_Z1_var_accessible_to_Z0(void);

extern void increment_Z1_var_accessible_to_Z0(void);

int main_p1(void)

{

 while(1)

 {

 increment_Z1_var_accessible_to_Z0();

 read_Z1_var_accessible_to_Z0();

 }

}

Implementation for Scenario 3

In the implementation for Scenario 3, the code executed by Z1 is exactly the same code

that was developed for the Scenario 2. The Z0 core increments and reads a variable which

is defined in Z1 and is accessible to this core. Z0 also manipulates a variable which is

local to it and is not accessible from Z1. The contents of main_slave.c file for this

scenario are,

extern int read_Z1_var_accessible_to_Z0(void);

extern void increment_Z1_var_accessible_to_Z0(void);

void Z0_routine(void)

{

 volatile int a1 = 0;

 while (1)

 {

 increment_Z1_var_accessible_to_Z0();

 read_Z1_var_accessible_to_Z0();

 a1++;

 }

}

int main_p1(void)

{

 31

 Z0_routine();

}

 To make sure that FreeMASTER does not inflict any overhead on the code fragment

running on Z1, the measurements are performed with and without FreeMASTER for a

very simple occasion. Z0 calls an empty main_p1() function. FreeMASTER runs in

the poll-driven mode and Z1 runs Z1_routine() with the following body,

void Z1_routine(void)

{

 volatile int i;

 for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++)

 {

 for (j = 0; j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS;

 j++)

 {

 }

 }

}

Table 5.1 shows that both measured values using the native debugger of Code Warrior

Development Studio and FreeMASTER tool are exactly the same. The outcome of this

simple test is very substantial as it made us confident that FreeMASTER does not cause

any overhead on the execution times after it is hooked to the program. Table 5.2 presents

the results of measurements for the three surveyed scenarios. To calculate the SDF for

each case, we need a baseline. The baseline is defined as the execution time for

Z1_routine() when the slave core has not started yet. As it is obviously evident in

Table 5.2, the largest SDF occurs in the Scenario 1, where the slave core infinitely

increments an integer declared in the shared SRAM. Making calls from the slave core to a

variable which has been explicitly shared between the two cores (scenarios 2 and 3) does

not necessarily yield the largest execution time.

No.

FreeMASTER is used

Execution Time (µs)

1

No

35938

2

Yes

35938

Table 5.1: Examining the FreeMASTER impact on measurements

 32

Concerning the scenarios 2 and 3, the inter-core shared variable has been declared as a

32-bit scalar integer. This scalar variable was also declared as a static array with large

sizes, e.g., 10000 (volatile int Z1_var_accessible_to_Z0[10000] =

{0}), but we observed no significant effect on the SDF.

 We focus on Scenario 1 to achieve a setting that can potentially lead to the possible

largest execution time and therefore to the largest SDF. The background load running on

Z0 is gradually increased by declaring more private variables in Z0_routine() to

increase the rate at which Z0 accesses the shared memory space. First, a2 is added, the

measurement is done and the SDF is calculated using the baseline. Then, a3 is added, the

measurement procedure is repeated and so on. The code fragment running as the

reference and the unvarying load on Z1 are the same Z1_routine() that we had

before. We found it out that the largest SDF is gained for the arranged setting with nine

defined variables in Z0.

Scenario

Measured Execution Time (µs)

SDF

Baseline

35937

1

1

38542
1.0725

2

37022
1.0302

3

37500
1.0435

Table 5.2: The Measurements for the surveyed scenarios to find the largest SDF

We are extending the Scenario 1, therefore these variables are not accessible from the

master core. The body of Z0_routine() is,

void Z0_routine(void)

{

 volatile int a1=0, a2=0, a3=0, a4=0, a5=0, a6=0, a7=0,

 a8=0, a9=0, a10=0;

 while (1)

 {

 a1++;

 a2++;

 a3++;

 a4++;

 a5++;

 33

 a6++;

 a7++;

 a8++;

 a9++;

 a10++;

 }

}

 Table 5.3 lists the obtained results for a number of declared variables in

Z0_routine(). We start with one variable and increase the number of variables, one

by one, to explore the influence of the increasing load on the execution time of the task

running on Z1. The measurements are carried out for both the internal flash and RAM as

the targets of deployed executable binary. The largest SDF when the code runs in the

internal flash is 1.1033 and it occurs when 9 variables are declared in

Z0_routine().The maximum SDF while the code runs in the RAM is 1.3187 with 3

declared variables in Z0_routine(). The Largest figures for the SDF values (marked

in red) reveal that the influence of the slave core on the execution time of the task running

concurrently on the master core can be significant. In the explained scenario, when the

task runs in RAM, there is a relatively noticeable impact on the WCET. The SDF is

dependent on the pattern of accessing the shared memory and also the location of the

running code, i.e. whether the code runs in internal flash or RAM. This implies that the

execution times have to be measured for both cases: when the code runs in internal flash

and when the code runs in RAM. This point should be taken into deliberate account by

the embedded application designer at the design and verification phases of critical and

safety critical applications. The reason is that the designer has to specify which target for

application's code (internal flash or RAM) results in the largest SDF, and hence more

impact on the cores.

5.2 The Observed Bugs in CodeWarrior Development Studio

During carrying out the experiments, two bugs, one in the compiler and one in the IDE,

were found in the CodeWarrior Development Studio tool. The glitches were reported to

the Freescale support team; they confirmed them and provided us with the solution to

resolve them.

 The first bug was a fault in the compiler, and it dealt with the dual-core projects when

the target device was chosen as MPC5517E. For this processor, the code did not execute

on the secondary core (Z0) when a function call was made in the Z0’s main routine, i.e.

main_p1(), as if the Z0 core was still in reset. However, if the project was created for

MPC5516E as the target device, there would be no problem with

 34

Target for Executable Binary

Internal Flash

RAM

Number of the Declared

Variables in Z0

Execution

Time (µs)

SDF

Execution

Time (µs)

SDF

Z0 does not start (baseline)

35938

1

50000

1

1

38542

1.0725

64583

1.2917

2

38566

1.0731

65104

1.3021

3

38945

1.0837

65937

1.3187

4

39063

1.0870

65024

1.3005

5

39063

1.0870

64844

1.2969

6

39313

1.0939

65533

1.3107

7

39353

1.0950

65278

1.3057

8

39535

1.1000

65625

1.3125

9

39649

1.1033

65625

1.3125

10

39489

1.0988

65625

1.3125

Table 5.3: The measurement scenarios to approximate the largest SDF

 35

making calls to functions from the Z0’s main routine. We contacted the Freescale support

team, and they confirmed that the issue was certainly a bug in their tool. It was fixed in

the version 2.1 of the compiler.

 The second bug was related to the generated code by the IDE for dual-core projects.

We started with a very simple scenario in which the Z1 core ran only a finite for loop

and the Z0 core ran only a bodiless main function that does not return. In the beginning,

to determine the baseline, the slave core was not enabled and the execution time of the

finite for loop was measured as T1. Then, the slave core was enabled and the execution

time was measured as T2. It is evident that T2 must be greater than, or at its best, equal to

T1. But, amazingly enough, we observed that T2 was less than T1, as it would be there is

some kind of unexpected speedup, opposed to facing an anticipated slowdown. The

support team explained that the reason behind this issue is the pre-fetching feature. By

default, the pre-fetching is enabled by the CodeWarrior IDE stationery, despite the fact

that it should be disabled according to [22]. At the startup process, there are some

initializing macros that affect the device behavior through writing specific values to

different registers and memory locations of the processor. One of the macros is

FLASH_DATA, defined in __pc_eabi_init.c. This macro is written to the PFCRP0

register during the startup process and enables pre-fetching. To disable pre-fetching, the

assigned value for this macro must be changed from 0x00016B55 to 0x00006B05. At

the time of writing this report, the bug has not been fixed in the latest CodeWarrior IDE

(version 5.9.0). To avoid the issue, the set value for the macro explained above needs to

be manually changed to the right value to disable pre-fetching.

 36

6 Conclusions and Future Work

6.1 Conclusions

The model of a real-time task (Figure 2.1) points out four static parameters: offset,

deadline, period and execution time. Among these parameters, the execution time is

the one that requires a demanding effort to determine, since it is contingent upon a

number of influencing factors. These factors are organization of program code,

hardware and software properties of system, initial system state and system events. It

is an intricate process to specify the exact time that it takes for a piece of code to

execute on a specific platform due to the mentioned affecting factors. Hence, it

suffices to estimate the execution time of a real-time task instead of dealing with its

exact value. Regarding sceduling algoritms for real-time systems, we always deal

with WCET which is defined as the probable uninterrupted execution time for one

iteration of the task.

 In this thesis, we presented a measurement method to estimate the WCET for a

task running on the master core of a dual-core processor. Then, we investigated the

impact of the slave core on the execution time of tasks runing on the master core,

using our proposed measurement technique. We defined a term known as SDF to

characterize the influence of the second core on the execution times. Depending on

the codes running on each core, this influence can be conspicuous and can increase

the task execution time. Consequently, system designer should reflect on the WCET

for the dual-core projects with respect to this slowing down factor, especially for

critical and safety critical functionalities in real-time systems. One interesting finding

in this project is the need for estimating the largest SDF for all memory types (such as

internal flash, external flash, on-chip SRAM, off-chip SRAM) that are supposed to

host a real-time application. This stipulates that the execution time of a real-time

application should be measured (estimated) for all available type of memories that are

supposed to host executable binaries, and that would be wrong to apply the measured

execution time for one specific type of memory to the other memory types.

 37

6.2 Future Work

As for all the embedded projects that were implemented for the explained scenarios in

this thesis work, the executable binaries run either in the internal flash or in the on-

chip SRAM. However, the explored processor can also support external flash and off-

chip SRAM, and one further work can be evaluating the SDF when the codes run in

the external flash or off-chip RAM. Moreover, it will be very impressive to do some

analytical analysis to explain the different SDF values, for example, based on the

number of references to shared resources per time units. Of course this is not

something trivial to achieve.

 Another future work can be centered around AUTOSAR to develop a tool to

automate the process of extracting all the required ports data of a Software

Components (SWCs) [8] out of their XML specifications, in order to have an

automatic execution estimation technique for SWCs runnables. Currently, to estimate

the WCET or investigate how the primary core is affected by the secondary core, we

have to manually take out the ports information and supply SWC’s input ports with

their allowed values that are specified in their XML specification files. A tool can be

developed to automate the entire process.

 38

Appendices

 39

A Integrating FreeMASTER with CodeWarrior

FreeMASTER is a powerful real-time debugger presented as a free and open source tool

by Freescale Semiconductor. The tool involves PC-side and embedded-side applications,

where the PC-side provides a GUI to visualize and record variables in real time and the

embedded-side is a server to provide the PC-side application with real-time debugging

capability. To use the tool it is required to pursue three steps,

- integrate its source files with an embedded application project

- initialize a communication interface to communicate with the tool

- install its user interface on PC

The embedded-side application is actually an open source communication protocol

developed as a number of .c and .h files in C that are added to an exixting embedded

application project to provide real-time debugging feature.

The PC-side application has an HTML-based GUI to graphically watch the variables of

our interest on PC side. The GUI is installed on Microsoft Windows operating systems,

and allows the user to create oscilloscope or recorder in their FreeMASTER project and

monitor or record the variables in real time.

 The transferred executable binary running on the target hardware is capable of

communicating with the PC-side application through a communication interface. In our

measurements, we use the serial communication port available on the EVB to interact

with the embedded-side FreeMASTER. The EVB has two eSCI ports: eSCI_A and

eSCI_B. It is required to apply the correct jumper settings on the EVB to utilize the

communication interfaces. For the proper jumper settings one should consult the EVB

reference manual [13].

 At 64 MHz, the default baud rate is 9600 (ESCI_A.CR1.B.SBR = 417). With this

default value, the communication between the PC- and embedded-side applications was

not handled properly and it was impossible to watch the variables designated in the

FreeMASTER GUI. We found it out that the baud rate should be set as to the highest

value as possible to avoid facing issues in the communication. When the processor runs at

64 MHz, 115000 is a suitable value for the baud rate. To achieve this baud rate the

corresponding register is initialized with the correct matching value

 40

(ESCI_A.CR1.B.SBR = 34) . The following routine initializes the communication

between the EVB and the PC via eSCI_A serial port.

void ESCI_A_Init(void)

{

ESCI_A.CR2.R = 0x2000;

ESCI_A.CR1.B.TE = 1;

ESCI_A.CR1.B.RE = 1;

ESCI_A.CR1.B.PT = 0;

ESCI_A.CR1.B.PE = 0;

ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */

}

 The above routine as well as the FreeMASTER source files are added to the project to

provide our application with the real-time debugging capability. To come up with a tidy

source code, the FreeMASTER files are placed in a folder with this name and a group is

created with the same name in the CodeWarrior IDE to organize the related files under

this group. Figure A.1 displays the project tree. To start FreeMASTER in the application,

FMSTR_Init()routine is called and it falls to FMSTR_Record() and

FMSTR_Poll() routines to provide real-time montitoring and recording features. To be

able to make calls to the FreeMASTER functions, freemaster.h is the only header

file needed to be included in the main_master.c file. In brife, the routines in below

are added to the main_master.c file,

- ESCI_A_Init(), to initilize communication through the eSCI_A port

- FMSTR_Init(), to start embedded-side application

- FMSTR_Record()and FMSTR_Poll(), to implement real-time debugging

The serial communication driver file, freemaster_cfg.h defines the macros to set

different configurations in the embedded-side application. One important configuration is

 41

Figure A.1: CodeWarrior IDE integrated with embedded-side FreeMASTER

the operating mode. There are three modes available,

- short interrupt

- long interrupt

- poll-driven

The following variables defined in freemaster_cfg.h should be set properly to

determine the operating mode,

FMSTR_LONG_INTR 0 /* complete message processing in interrupt */

FMSTR_SHORT_INTR 0 /* SCI FIFO-queuing done in interrupt */

FMSTR_POLL_DRIVEN 1 /* no interrupt needed, polling only */

 42

To determine the operating mode, the corresponding macro is set to 1 and the other two

are set to 0. We use the poll-driven mode so the corresponding variable is set to 1 and the

other two variables related to interrupt-driven modes are set to 0. Another important

macro is FMSTR_REC_BUFF_SIZE that specifies the built-in buffer size in the memory

space of the target hardware. This macro determines the size of buffer in bytes and is set

to an appropriate value to be able to record the desired number of samples through the

recorder interface created in the PC-side GUI.

Figure A.2: Real-time display using PC-side FreeMASTER

The GUI running on PC allows watching up to eight variables and also creating

oscilloscope and recorder to observe the variations of watched variables graphically.

Besides, it is capable of storing the watched data on file, manually or automatically.

Figure A.2 shows start, end and execution_time variables in the debugging pane

for the code listed in Chapter 4, Section 4.5 and plots the variations of

execution_time using the oscilloscope application. Figure A.3 displays

execution_time for 50 recorded samples.

 43

Figure A.3: Displaying a recorded variable using PC-side FreeMASTER

 44

B Listing of Codes

#include "MPC5517E.h"

#include "Cpu.h"

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */

#define NUMBER_OF_EXECUTIONS 50

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1

/* Measurement variables */

int enable, start, end;

float execution_time = 0;

void initSysclk(void)

{

 /* Initialize PLL and sysclk to 64 MHz */

 FMPLL.ESYNCR2.R = 0x00000007;

 FMPLL.ESYNCR1.R = 0xF0000020;

 CRP.CLKSRC.B.XOSCEN = 1;

 while (FMPLL.SYNSR.B.LOCK != 1){}; /*Wait for PLL to LOCK*/

 FMPLL.ESYNCR2.R = 0x00000005;

 SIU.SYSCLK.B.SYSCLKSEL = 2;

}

void Z1_routine(void)

{

 volatile int i, j;

 for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++)

 {

 for (j = 0;j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS; j++)

 {

 }

 }

}

int main(void)

{

 volatile int i;

 initSysclk();

 /* Enable Time Base register (TBE) */

 enable = get_spr(SPR_HID0);

 end = 0x4000;

 enable = enable | end ; /* according to the manual */

 set_spr(SPR_HID0, enable);

 for (i = 0; i < NUMBER_OF_EXECUTIONS; i++)

 {

 start = 0;

 45

 end = 0;

 /* Start measuring execution time */

 start = get_spr(SPR_TBL_R);

 Z1_routine();

 /* Stop measuring execution time */

 end = get_spr(SPR_TBL_R);

 /* Measure execution time using the processor clock */

 execution_time = (float)((end-start)/PROCESSOR_CLOCK);

 }

}

Figure B.1: Code listing for the basics of execution time measurement technique (Section 4.2)

#include "MPC5517E.h"

#include "Cpu.h"

#include "freemaster.h"

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */

#define NUMBER_OF_EXECUTIONS 50

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1

/* Measurement variables */

int enable, start, end;

/* FreeMASTER variables */

float execution_time = 0, samples[NUMBER_OF_EXECUTIONS] = {0};

int sampling_index = 0;

void ESCI_A_Init(void)

{

 ESCI_A.CR2.R = 0x2000;

 ESCI_A.CR1.B.TE = 1;

 ESCI_A.CR1.B.RE = 1;

 ESCI_A.CR1.B.PT = 0;

 ESCI_A.CR1.B.PE = 0;

 ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */

}

void initSysclk(void)

{

 /* Initialize PLL and sysclk to 64 MHz */

 FMPLL.ESYNCR2.R = 0x00000007;

 FMPLL.ESYNCR1.R = 0xF0000020;

 CRP.CLKSRC.B.XOSCEN = 1;

 while (FMPLL.SYNSR.B.LOCK != 1){};/*Wait for PLL to LOCK */

 FMPLL.ESYNCR2.R = 0x00000005;

 SIU.SYSCLK.B.SYSCLKSEL = 2;

}

void Z1_routine(void)

{

 46

 volatile int i, j;

 for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++)

 {

 for (j = 0;j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS; j++)

 {

 }

 }

}

int main(void)

{

 initSysclk();

 ESCI_A_Init();

 /* Initialize FreeMASTER driver */

 FMSTR_Init();

 /* Enable Time Base register (TBE) */

 enable = get_spr(SPR_HID0);

 end = 0x4000;

 enable = enable | end ; /* according to the manual */

 set_spr(SPR_HID0, enable);

 for(sampling_index=0; sampling_index <NUMBER_OF_EXECUTIONS;

 sampling_index++)

 {

 start = 0;

 end = 0;

 /* Start measuring execution time */

 start = get_spr(SPR_TBL_R);

 Z1_routine();

 /* Stop measuring execution time */

 end = get_spr(SPR_TBL_R);

 /* Measure execution time using the processor clock */

 execution_time = (float)((end-start)/PROCESSOR_CLOCK);

 /* Store the measured times in an array being used by

 FreeMASTER Recorder Mode */

 samples[sampling_index] = execution_time;

 FMSTR_Recorder();

 FMSTR_Poll();

 }

 /* Record the samples using FreeMASTER Recorder Mode */

 sampling_index = 0;

 while(1)

 {

 FMSTR_Recorder();

 FMSTR_Poll();

 47

 execution_time = samples[sampling_index];

 sampling_index++;

 if(sampling_index >= NUMBER_OF_EXECUTIONS)

 sampling_index = 0;

 }

}

Figure B.2: Code listing to measure execution time using Freescale FreeMASTER (Section 4.3)

 48

C List of Abbreviations

ABS Anti-lock braking system

AUTOSAR AUTOmotive Open System ARchitecture

BCET Best-case execution time

CAN Controller Area Network

DM Deadline Monotonic

ECU Electronic Control Unit

EDF Earliest Deadline First

eSCI enhanced Serial Communication Interface

EVB Evaluation Board

GUI Graphical User Interface

IDE Integrated Development Environment

LIN Local Interconnect Network

MCU Microcontroller Unit

MMU Memory Management Unit

OEM Originally Equipment Manufacturer

RM Rate Monotonic

RTE Runtime Environment

SRAM Static Random Access Memory

SWC Software Component

TB Time Base

TBL Time Base Lower

TBU Time Base Upper

VLE Variable Length Encoding

WCET Worst-case execution time

 49

References

[1] J. Stankovic. Misconceptions of Real-Time Computing, 1988.

[2] J. Jonsson. Real-Time Systems (EDA222). Master’s level 7.5 ECTS course,

Lectures slides, Chalmers University of Technology, 2012,

http://www.cse.chalmers.se/edu/course/EDA222/.

[3] A. Bets. Hybrid Measurement-Based WCET Analysis using Instrumentation Point

Graphs. PhD thesis, University of York, 2010.

[4] J. Engblom, A. Ermedhal, M. Sjödin, J. Gustafsson, H. Hansson. Worst-case

Execution time Analysis for Embedded Real-Time Systems.

[5] MPC5510 Microcontroller Family Data Sheet. Rev. 3, Freescale Semiconductor,

2009.

[6] R. Wilhelm et al. The worst-case execution-time Problem—Overview of Methods and

Survey of Tools, ACM Transactions on Embedded Computing Systems, Vol. 7, Issue 3,

Article No. 36, 2008.

[7] M. Paolieri et al. Hardware Support for WCET Analysis of Hard real-Time Multicore

Systems, ACM SIGARCH Computer Architecture News, Vol. 37, Issue 3, 55-68, 2009.

[8] AUTOSAR, www.autosar.org.

[9] e200 core family: Freescale power Architecture™ IP, Product Brochure, IPextreme,

2007.

[10] Variable-Length Encoding (VLE) Programming Environments Manual: A

Supplement to the EREF, VLEPEM, Rev. 0, Freescale Semiconductor, 2007.

[11] Designing Code for the MPC5510 Z0 Core, Document Number: AN3614 Rev. 0,

Freescale Semiconductor, 2008.

[12] Basic Multicore Initialization For the MPC5516G/E and MPC5514G/E Devices,

Document Number: AN3627 Rev. 0, Freescale Semiconductor, 2008.

[13] MPC5510EVB User Manual, Revision 1.0, Freescale Semiconductor, 2007.

[14] R.Kirner, P. Puschner, I. Wenzel. Measurement-Based Worst-Case Execution Time

Analysis using Automatic Test-Data Generation, Proc. 3rd IEEE Workshop on

Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05).

Seatlle, Washington, 7–10, 2005.

http://www.cse.chalmers.se/edu/course/EDA222/
http://www.autosar.org/

 50

[15] P. Puschner. Is worst-case execution-time analysis a non-problem? – towards new

software and hardware architectures. Proc. 2nd Euromicro International Workshop on

WCET Analysis, Technical Report, York YO10 5DD,

United Kingdom, Department of Computer Science, University of York, 2002.

[16] Qorivva Simple Cookbook “Hello World” Programs to Exercise Common Features

on MPC5500 & MPC5600 Microcontrollers, Document Number: AN2865, Rev. 4,

Freescale Semiconductor, 2010.

[17] Arctic Studio, www.arccore.com.

[18] FreeMASTER for Embedded Applications, User Guide, FMSTERUG Rev 2.1,

Freescale Semiconductor, 2011.

[19] Eclipse, www.eclipse.org.

[20] MPC5510 Microcontroller Family Reference Manual, Document Number:

MPC5510RM, Rev. 1, Freescale Semiconductor, 2008.

[21] Introducing AUTOSAR , presentation slides, Volvo Group Trucks, 2008.

[22] Mask Set Errata for Mask REVA, MPC5510ACE, Rev. 08, Freescale

Semiconductor, 2011.

http://www.arccore.com/
file:///C:/Users/Peyman/AppData/Roaming/Microsoft/Word/www.eclipse.org

