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Abstract 

The goal of this Master’s thesis is to estimate the influence of shared hardware 

resources on the worst-case execution time (WCET) of real-time tasks on a dual-core 

processor. The studied hardware is MPC5517E Microcontroller which is a dual-core 

32-bit microcontroller unit (MCU), manufactured by Freescale Semiconductor. The 

invented measurement technique scrutinizes the impact of the secondary/slave core on 

the execution time of a task running on the primary/master core when both cores 

access a shared resource. First, the slave core is disabled (is not started), and the 

execution process takes place for a code fragment running on the master core, and the 

execution time is measured. Then, the slave core is enabled, and the cores run 

concurrently to access the shared system resources, principally the shared SRAM. The 

execution time of the task running on the master core is measured for the concurrent 

utilization of both cores to inspect the impact of the slave core on the master core.  

     The executable binaries are generated using Freescale CodeWarrior Development 

Studio for MPC55XX/MPC56XX microcontrollers and the measurement is conducted 

using Freescale FreeMASTER. To have a quantitative criterion, in order to investigate 

the influence of the slave core on the master core, we define a factor known as the 

Slowdown Factor (SDF). The SDF reveals the extent at which the master core is 

influenced by the slave core. We try to find a upper band for this factor through 

developing some codes and carrying out a couple of measurements. In our survey, 

programs run either in the processor's internal flash or RAM. In addition, the primary 

core runs the same piece of code in all measurement scenarios, whereas the secondary 

core runs a varying code fragment to expose its impact on the primary core. One 

remarkable finding is that for a given piece of code, the SDF is not constant and it 

depends if the code runs in internal flash or RAM. This means that the master core 

can experience less or more impact from the slave core, depending on the type and 

target of the code running on the cores. 
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1 Introduction 

Multi-core processors are becoming rampant these days in a wide variety of applications 

and embedded systems are not an exception to this trend. In automotive industry, the 

competition among manufacturers is cutthroat, and there exists an ever-increasing desire 

to add novel functionalities and features to vehicles at reasonable costs in order to be able 

to strive in the competitive market. These functionalities range from entertaining 

applications, like the infotainment, to safety-critical functions, such as airbag and Anti-

lock braking system (ABS). Multi-core processors enjoy high performance and are 

efficient in terms of cost and power consumption; hence they are very appropriate 

candidates to provide the sophisticated automotive software tools with their demanded 

underlying hardware requirements. Most of the applications in the automotive domain fall 

into the category of hard real-time embedded systems, in a sense that the precise 

functioning of the system is contingent upon meeting the timing constraints, namely the 

tasks deadlines.  

1.1 The Goal of the Project and Contribution 

The goal is to estimate the influence of shared hardware resources on the execution times, 

or more accurately saying, on the WCET of tasks, running on a dual-core processor. The 

approach is a measurement-based technique that involves developing a program to run 

some task and measuring its execution time. The target processor has two cores, known as 

the master and slave cores. The invented measurement technique, first executes the code, 

in isolation on the master core, meaning that the slave core performs no activity in the 

beginning. Then, different kinds of workload are put on the slave core to exploit both 

cores simultaneously, and the execution times for the task running on the master core are 

measured while both cores are operating concurrently. The objective is to investigate the 

impact of the stress imposed on common hardware resources, mainly the shared memory, 

due to concurrent access of both cores to such resources. Freescale MPC5510 contains a 

set of single- and dual-core 32-bit MCUs based on the Power Architecture. MPC5517E 

from this family is evaluated in this project. This processor functions at speeds up to 80 

MHz and is used for vehicle central body and gateway applications in automotive 

embedded systems [20]. 

     The rest of the report is organized as follows. Chapter 2 explains the main concerns 

associated with WCET analysis. Issues like why it is not a straightforward problem, and 

how the WCET estimation techniques are classified, are explained in this chapter. 

Chapter 3 describes the features of the investigated hardware platform in this project. 

Chapter 4 presents our methodology and the developed measurement approach. Chapter 5 
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explains the carried out experiments and their obtained results using the devised 

measurement technique in Chapter 4. Chapter 6 concludes the report and presents the 

possibilities for the potential ongoing work. The report has three appendices as well. 

Appendix A gives some details on how to make use of FreeMASTER application. 

Appendix B provides the source codes that were developed in the investigated scenarios, 

and Appendix C expresses the used abbreviations in the report. 
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2 Background and Related Work 

The status quo of WCET study is not satisfactory since industry suffers from the lack of 

competent WCET analysis tools [15]. The advanced architecture of modern processors 

such as cache hierarchies and pipelining has resulted in considerable performance 

increase in computing. However, these features have caused the instructions of these 

processors have time-varying properties which make their timing analysis a cumbersome 

task. The reason is that caching or pipelining retains an execution-dependent internal state 

within the processor that can be figured out as the execution history. Any calculation 

made based on the previously-executed instruction streams in state-of-the-art processors 

is typically inaccurate, and as a result WCET analysis is challenging in such processors. 

Another issue is that WCET analysis cannot rely on the data sheets presented by 

manufacturers of processors because timing of instructions available on these documents 

are generally a rough estimate of real situations [14]. 

2.1 Embedded Real-Time Systems 

Embedded systems play a key role in our today’s world and we have been surrounded by 

a myriad of them. There are a plenty of gadgets around us that their operations are partly 

or wholly dependent on computer-controlled systems. The computer systems applied in 

these devices, are usually invisible to us because they themselves are the embedded 

computing components of a bigger machine. Consequently, we as the users of these 

machines are usually unaware of the fact that there is a hidden computer system 

contributing to the machine’s operations. Home appliances (washing machines, dish 

washers, microwave ovens), transportation vehicles (cars, trucks, airplanes), submarines, 

satellites, mobile phones, industrial and space exploration robots (the Mars rovers), 

biomedical instruments (ultrasound imaging equipment, patient monitoring systems), 

office machines (printers, faxes, copiers, calculators) and consumer electronics gadgets 

(TVs, DVD players, security tokens, digital cameras) are all the ubiquitous cases of 

machines equipped with embedded systems. It is evident that our life has become heavily 

dependent on these so-called embedded systems, and this reliance will continue with an 

increasing drift in future. Microcontrollers have become pervasive in the automotive 

industry due to wide-ranging application of ECUs in a vehicle. They are exploited in a 

variety of applications including, 

 body 

 gateway 

 chassis and safety  

 dashboard 
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 engine management 

 advanced driver assistance 

 controller Area Network (CAN), Local Interconnect Network (LIN), FlexRay and 

other peripherals 

 entry-level 

 cluster applications 

 powertrain 

 electric power steering 

     Many of the services, offered by the systems mentioned above, are demonstrated by 

real-time systems. In [1] we have, 

   A real-time system is one in which the correctness of the system depends not only on  

   the logical result of computation, but also on the time at which the results are  

   generated. 

In a real-time system, a task should complete its execution within an allowed time frame. 

The temporal properties, mainly responsiveness and periodicity, are the strict timing 

constraints of a real-time system [2]. Responsiveness indicates that the system should be 

able to complete execution of tasks before their deadlines, and periodicity designates the 

system’s sampling rate, i.e. the period at which tasks arrive (if tasks arrive periodically). 

If the real-time system fails to deliver its response within the permitted time frame, the 

computation results, although logically correct, might be useless. Depending on the type 

of timing constraints (hard or soft), and also the nature of system’s operation in terms of 

safety (non-critical, critical and safety-critical), a timing failure can have different 

consequences. For example, in a car, airbag system and ABS are safety-critical systems, 

since the deferred release of airbag after a crash in high speeds or malfunctioning of ABS 

in a slippery and icy road can endanger passengers and cause serious injury or loss of life. 

     When it comes to real-time applications compared to other domains, different criteria 

come into the picture to evaluate the correctness of delivered output. As a case in point, in 

High Performance Computing (HPC), the ultimate objective is to maximize the average 

throughput. Nevertheless, in real-time systems the average throughput cannot be regarded 

as a criterion to judge about the correctness of generated results by the system. Depending 

on the type of application domain, a real-time system is typically optimized with regard to 

a definite criterion for the provided functionality or service. Dynamic control systems and 

multimedia applications are two application examples. In dynamic control systems, 

maintaining system robustness is the desirable objective and in multimedia applications 

the goal is to have comfort in the provided service. 
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2.2 The Problem Statement and Motivation 

Any development process contains a number of stages or phases. The development 

process of a real-time system involves the following three major phases, 

 specification 

 implementation  

 verification 

It is absolutely essential to verify the system’s capability in meeting its temporal 

characteristics for critical and safety-critical real-time systems. The verification should be 

carried out before the system is put into the actual mission. Selecting the suitable 

scheduling algorithm for the real-time tasks is an integral part of system design. The 

scheduling algorithms require having the tasks model. A task has temporal behaviors and 

these behaviors can be either static or dynamic [2]. Static parameters are derived within 

the specification or implementation stages and are not dependent on other tasks. Dynamic 

parameters involve those parameters that reflect the impacts imposed on one task by other 

tasks during the execution of tasks set.  

     Figure 2.1 illustrates a real-time task model. Only four static parameters are presented 

in a task model. These parameters are Ci, Di, Ti and Oi, and are described as,  

     - Ci:  task’s worst-case execution time (WCET)  

     - Di: task’s relative deadline, indicates the responsiveness timing constraint  

     - Ti: task’s period, indicates how frequently the task is released 

     - Oi:  task’s time offset, indicates the first instance of task arrival, e.g., the earliest time   

            at which the task executes 

     WCET is defined as the longest possible undisturbed execution time for an iteration of 

the task [2]. Among the four static parameters in the task model, determining Ci or WCET 

is not trivial and it is a challenging factor to identify this parameter in developing a real-

time system. Execution time of a task depends on several factors including [2], 

 

 

Figure 2.1: A real-time task model ([2]) 
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 structure of the program and its input data, e.g., loop iterations, branching and 

conditional statements   

 system properties and architectural factors, i.e. hardware as well as operating 

system, e.g., caches, memory hierarchies, out-of-order/speculative instructions 

execution and pipelining  

 initial system state 

 internal and external events of the system, e.g., system interrupts, exceptions 

handling and context switching  

It is essential to have an estimation of WCET to allocate a reasonable percentage of CPU 

utilization to the execution of a periodic task, and construct a feasible schedule which is 

verifiable within the verification phase of system development.   

     A hard real-time system should complete the task execution within its allowable 

timing constraints (deadlines must be met) and WCET is a parameter of great importance 

in the schedulability analysis of such systems. In [4] it has been stated that,   

     The purpose of worst-case execution time (WCET) analysis is to provide a priori   

     information about the worst possible execution time of a piece of code before using  

     the code in an actual system. 

There exist three different types of tasks in a real-time system [2], 

 periodic task, task is released with a specific and constant period of Ti   

 aperiodic task, task is released at time intervals greater than a specific period, i.e. 

release time  ≥ Ti 

 sporadic task, task does not have any guaranteed minimum bound between its two 

consecutive releases 

     A WCET analysis method aims at deriving an upper bound for the time that it takes a 

piece of code to execute on a specific platform [6]. It is not a trivial attempt to define the 

real WCET and it is typically sufficient to have an estimation of the execution times for a 

specific task, hence the following relation applies,    

 

0 ≤ Estimated WCET – Real WCET < ε                      (2.1) 

 

     Regarding hard real-time systems, the method must satisfy two requirements [2], 

 must be pessimistic to guarantee that the timing constraints considered in the 

schedulability analysis are also valid at run time 
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 must be tight to avoid unnecessary allocation of hardware resources, mainly CPU 

and memory, to the scheduled tasks set 

A particular system consists of, 

 organizational platform, i.e. the underlying hardware as well as the running 

system software 

 structure of the program executing on the platform 

Given the particular system and the formerly-mentioned factors affecting the execution 

time,  

     WCET problem deals with finding the worst-case execution time for all likely input     

     data vectors, initial system states and internal and external system events for a        

     particular platform. 

The above statement formulates WCET problem.  

     A real-time system is specified, implemented and verified assuming that the tasks set 

WCET executing on the target hardware is known to a relatively accurate extent. The 

estimated WCET suffices to perform schedulability analysis for a set of real-time tasks on 

single-core systems under the available scheduling algorithms such as Rate 

Monotonic/Deadline Monotonic (RM/DM) or Earliest Deadline First (EDF) algorithms 

[2]. 

2.3 Major Issues in WCET Analysis 

Relation 2.1 specifies the two necessary constraints that any approach dealing with 

WCET estimation for a particular system should meet: pessimistic and tight. Regarding 

these two constraints, there exist issues in analyzing the possible execution paths of a 

given program. How to pessimistically place a limit on WCET and how to remove the 

false paths, i.e. the paths that are not taken at runtime, are the two major concerns in 

finding an effective analysis model. Moreover, there are challenging issues in specifying 

the timing behavior of a system. Hardware properties of the system, such as cache 

memories and pipelining, make it a big deal to define an efficient and accurate temporal 

model for intended platform. Another important aspect is taking the impact of system 

events into account. Interrupts, context switching and exceptions are the examples of 

system events.  

     Modern processors, irrespective of being single- or multi-core, have a variety of 

advanced attributes. Cache hierarchies, pipelining, branch predictions, out-of-order and 

speculative execution of instructions are such attributes. As for pipelining, structural 
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conflicts, data conflicts and branch conflicts are the causes of inaccuracy in timing 

analysis. Cache misses are also a substantial source of timing variations [2]. It is hard 

indeed to precisely model these influencing factors in WCET analysis and define an exact 

timing model for such processors. In order to have a quite exact and competent WCET 

analysis model, any factor or parameter affecting the temporal behavior of the platform 

must be pessimistically modeled. Besides, practicable and feasible assumptions should be 

made in constructing a timing model. In the context of multi-core embedded processors 

the situation is more intricate, because the current techniques to measure/estimate the 

tasks execution times on single-core processors are not fully applicable on multi-core 

processors. Although multi-core processors offer better performance than single-core 

processors, they are very complicated to analyze [7]. The reason is that inter-core 

interferences arise among executing tasks, while the tasks are accessing a shared 

hardware resource. Such interferences disallow the available single-core processor 

models to provide a reliable timing analysis for multi-core processors. System bus, Level 

1 (L1) and Level 2 (L2) instruction and data caches are the cases of shared resources. 

2.4 Classification of WCET Estimation Techniques 

In general, there are two categories of techniques in the timing analysis of real-time 

systems concerning WCET estimation [6],  

 static  

 measurement-based  

In static methods, the program does not execute on real hardware target or on a simulator. 

Instead, the code implementing the task is taken into account to derive all possible control 

flow of execution paths. The code may be annotated in this step. Then the derived control 

flow is associated with some (abstract) model of the hardware platform to determine the 

upper execution bounds for the resultant association.  

     Static WCET analysis has some shortcomings. One noticeable problem is that it is a 

rather time-consuming technique because deriving a relatively exact model for a complex 

processor requires considerable amount of time. Further, the technique is processor-

dependent and cannot be extended to other processors, even with slight architectural 

differences. Another important challenge is the inaccuracy of instructions timing written 

down on a processor technical documents presented by its vendor. Such timings are 

usually some approximate figures for the execution times of processor instructions and 

are not exact; therefore any approximation for execution times of an annotated piece of 

code is inaccurate and cannot be trusted in real-time applications. 

     Measurement-based techniques execute the real task or some parts of a partitioned task 

on the real hardware target, or on a simulator, for some vector or some set of input data to 
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measure execution times. The WCET is specified by the measured minimum and 

maximum execution times for the whole task, their distribution, or combined measured 

times for execution times of code snippets of the partitioned task. This is an effective 

WCET analysis approach, but the major concern is that it is almost infeasible to carry out 

exhaustive end-to-end measurements for the programs with large size of code. To enjoy 

the best of both worlds, the well-liked trend is to apply the hybrid approach, i.e. to 

combine measurement-based techniques with static methods. There are some WCET 

analysis methods available using the hybrid methodology, but they are still immature 

[14].      

     Path analysis is a common technique in static WCET analysis and it is being replaced 

by test data generation method in measurement-based approach [14]. In WCET analysis 

using test data generation, the user manually generates various sets/vectors of synthetic 

data or simply generates random data sets. The adopted approach in this project is a 

measurement-based technique and will be described in detail in Chapter 4. 

2.5 Distribution of Execution Time and WCET 

A real-time system comprises some tasks and each task implements some part of the 

overall functionality of the system. As it was described before in Section 2.2, the 

execution time of a task is a varying parameter and depends on several factors. The 

varying nature of execution time results in having a set of execution times, as opposed to 

just a single value, and allows us to define some real-time pertinent properties for a 

particular task. Figure 2.2 [6] illustrates the involving fundamental terms in timing 

analysis of real-time systems. The lower curve points out a subpart of the measured   

 

 

Figure 2.2: Timing analysis of systems ([6]) 
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execution times in which there are minimum and maximum values for the measured 

executions. The upper curve indicates the superset of all possible execution times and its 

lower and upper bound characterize the best-case execution time (BCET) and worst-case 

execution time (WCET) of the task, respectively. 
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3 The Investigated Hardware Platform 

Microcontrollers have become prevalent in the automotive industry thanks to broadly 

usage of ECUs in a vehicle. The MPC5510, presented by Freescale Semiconductor, is the 

first product family of 32-bit low-power microcontrollers based on the Power 

Architecture technology, designed for automotive body and gateway applications. All 

processors of the family have program flash and SRAM (with different sizes depending 

on the processor) and can support a range of advanced peripherals. The MCUs of this 

family are capable of accessing the flash memory and peripherals in one clock cycle. 

Different vendors active in the automotive embedded systems provide the MPC5510 with 

extensive support through offering quality hardware and software development tools built 

on the Power Architecture technology. 

3.1 The e200 Cores 

Freescale Semiconductor offers a series of dual-core 32-bit microcontrollers utilizing two 

e200 cores. The cores employ the Power Architecture presented by PowerPC [9]. Power 

Architecture has demonstrated its efficiency in a wide range of embedded applications 

including, but not limited to, automotive industry, robotics, signal processing, compact 

networking, industrial control and health equipment. Currently, Freescale presents four 

flavors of e200 cores: e200z0, e200z1, e200z3 and e200z6. Freescale’s e200 architecture 

provides cost-sensitive, embedded real-time applications with substantial performance 

needs. Figure 3.1, exactly adopted from [9], illustrates the fundamental characteristics of 

the available e200 cores.  

     The Z0 is the simplest one among the four cores and the Z6 is the most complex core 

offering uppermost performance in the family. All cores exploit the Power Instruction Set 

Architecture (ISA), version 2.03, and have support for Variable Length Encoding (VLE). 

Besides, all cores, excluding Z0, provide full implementation for 32-bit Power 

architecture Book E instruction set. The dual-core processors of the family sets have two 

dissimilar cores that are called the master and slave cores throughout this text.    

     With regard to the dual-core Freescale Semiconductor MCUs, both cores can 

thoroughly act independent of each other; therefore they can either execute completely 

isolated tasks or execute partially or fully dependent tasks. The subject of dividing the 

code between the master and slave cores have been extensively discussed among 

embedded applications developers. Depending on the type of applications, there are 

various options available to efficiently trade off the running loads between the two cores. 

Some well-known scenarios are [11],  



 12 

- dividing the code between cores meticulously to relieve the burden on the 

master core 

- dedicating the slave core to interrupt-handling routines 

- utilizing the slave core to accomplish an isolated functionality such as 

implementing gateway operations between CAN and LIN 

- allocating the slave core to implement a computationally-intensive task and 

making calls to the task from the master core when it is needed 

- allocating the slave core to carry out the error checking of the tasks being 

executed by the master core    

 

     

 
      

Figure 3.1: The Freescale e200 core devices ([9]) 

 

     The Memory Management Unit (MMU), present on the Z1, Z3 and Z6 cores, is 

suitable mechanism for the applications requiring full Operating System (OS) support. 

The Signal Processing Engine (SPE) and the Floating Point Unit (FPU) in the Z3 and Z6 

deliver signal processing capabilities for the applications performing signal processing 

computations. These two units typically remove the need for providing the 

microcontroller with a supplementary Digital Signal processor (DSP). The Z6 core enjoys 

seven-stage pipelining and is endowed with all the features of the Z3 core as well as an 

on-chip cash memory [9].      
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     The investigated processor in this project is MPC5517E microcontroller, belonging to 

the MPC5510 family of microcontrollers. The processor is equipped with the Z1 and Z0 

cores; hence the two important functionalities provided by this processor are VLE and 

MMU. The following, describes these advanced hardware-level capabilities in brief.  

3.1.1 Variable Length Encoding (VLE) 

VLE is a technique to re-encode the Power instruction set with the help of 16- and 32-bit 

formatting. Freescale developed VLE to optimize code density through encoding 32-bit 

PowerPC instructions into mingled 16- and 32-bit instructions in order to decrease the 

code footprint. It is an enhancement to the POWER (Instruction Set Architecture) ISA. It 

is possible to achieve high performance and code density through inter-mixing the code 

pages utilizing VLE formatting or non-VLE formatting. This performance improvement 

is yielded by exploiting the 16-bit space-efficient binary illustrations of Power 

instructions versus the more lengthy 32-bit instructions. VLE employs both 16- and 32-bit 

instructions; hence it is possible to achieve considerable code density at the expense of 

negligible or even no performance loss [11]. Instructions are prefixed by “se_” and “e_” 

to designate 16- and 32-bit VLE instructions correspondingly. For instance, the add 

instruction in the VLE format is,  

- se_addi, is 16-bit VLE “add immediate” instruction 

- e_add16i, is 32-bit VLE “add immediate” instruction   

     It is possible for the compiler to choose whether to use Power Architecture Book E or 

VLE by the help of a switch at compile time.   

As for the embedded software applications, the achieved density in code can lead to less 

system cost, and also to some lesser extent, improved performance. It is possible to 

condense the code up to 30% using this feature via free intermingling of 16- and 32-bit 

instructions [9]. All four types of e200 cores back up VLE and the feature is almost 

offered by all development toolchains. The feature has been accepted by power.org and 

Power ISA (version 2.03) supports it.  The Freescale’s comprehensive manual [10] 

describes VLE in detail.  

3.1.2 Memory Management Unit (MMU) 

All e200 cores, except the Z0, possess an MMU. This unit is the same in the Z1, Z3 and 

Z6 cores, in a sense that it provides equal functionality, identical user interface and 

compatibility in cross-core program code. The applications requiring full OS capabilities 

are very appropriate candidates to be deployed on the MMU. The MMU outlines different 

memory sections. One of the fundamental parameters being set by the MMU is to 
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determine whether the memory section should contain Power Architecture Book E or 

VLE code. This way, the Z1 core can decide if it should use Power Architecture Book E 

encoding or VLE formatting. The significant benefit is that there is no need to transform 

the current libraries developed in Power Architecture Book E encoding scheme to VLE 

formatting scheme. The Z0 core is only compliant to VLE scheme; consequently it lacks 

an MMU [11].    

     The characteristics of MMU (adopted from [9]) include,   

 translation from 32-bit effective (virtual) to 32-bit real (physical) addresses: 

- 32-entry MMU in Z6 

- 16-entry MMU in Z3 

- 8-entry MMU in Z1 

 support for nine page sizes (4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 

64 MB, and   

256 MB) 

 accesses qualified by: 

- Address spaces: 2 data and 2 instruction 

- 8-bit process identifier (supervisor accessible or global resource) 

 selectable access privileges: 

- User Read/Write/Execute (UR/UW/UX) 

- Supervisor Read/Write/Execute (SR/SW/SX) 

Furthermore, it falls to the MMU to select the endianness of memory section for each 

core. The Z1 core is capable of using either big endian or little endian, while the Z0 core 

can only use big endian. 

3.2 The MPC5510 Family of Microcontrollers  

The MPC5510 family is an extensively-used set of 32-bit microcontrollers in the 

automotive embedded applications, based on e200 cores family. The family set includes a 

number of single- and dual-core cost-efficient microcontroller units (MCUs) capable of 

operating with outstanding performance at low power consumption modes. The dual-core 

members of this family are endowed with e200z1 (Z1) and e200z0 (Z0) cores. The Z1 

and Z0 cores are also known as the primary/master and secondary/slave cores, 

respectively. Both MPC5510 single- and dual-core processors provide support for Power 

Architecture Book E instruction set. A majority of the family members have a second 

core (Z0), intended to act as the Input/Output Processor (IOP). The secondary/slave core 

provides the processor with a number of powerful features. This core is brought out of 

reset by the primary/master core, and just the once it is in the functional mode it can 
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operate autonomously of the primary/master core. The secondary/slave core can carry out 

a variety of tasks such as [11],  
 

 handling I/O processing 
 

 executing gateway functionalities between communication networks  
 

 creating virtual peripherals  
 

 offloading the burden running on the master core via performing some of  
 
necessary system tasks 
 

Figure 3.2 [12], shows the high-level system units of a dual-core processor belonging to 

the MPC5510 devices.  

3.2.1 Z1 Core vs. Z0 Core 

Figure 3.1 illustrates that the e200 cores have some structural differences leading to 

different performance levels and functionality for each core. Thus, the applied dual-core 

organization in MPC5510 devices results in an asymmetric implementation. On the other  

 
 

Figure 3.2: High-level system architecture of dual-core MPC5510 processors [12] 

 

hand, there is symmetric multi-core architecture in which all cores have almost the same 

structural design and implementation, usually with identical functionalities present on 

each core. Most of the times, there is an OS running on the platform (symmetric or 

asymmetric multi-core systems) which dynamically decides how the execution of tasks 

should be allocated to the cores.  This decision is made by the OS based on the available 

system resources and also according to the time-related necessities of the running 
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application. Typically, it is not needed to run an OS on the dual-core processors of 

MPC5510 family [12]. The master core generally executes the main control loop and the 

slave core is launched to accomplish certain jobs, like gathering data from various 

external devices.  

     When it comes to the dual-core processors of MPC5510 family, such as MPC5517E, 

the Z1 and Z0 cores are involved. Subsequently, it would be beneficial to focus on the 

substantial differences between these two cores. The most important dissimilarities in Z1 

and Z0 are,  

 

 the supported instruction set by each core 

 the hardware-wise type of access to shared resources 

 the core registers 

 

The Supported Instruction Set by each Core 

As stated earlier, one of the major differences between the master core (Z1) and the slave 

core (Z0) is the type of the instruction sets that they can execute. Z1 can exploit both 

Power Architecture Book E and the extended VLE instruction sets whereas Z0 executes 

only VLE instruction set. 

 

The Hardware-wise Type of Access to Shared Resources 

The Z1 core utilizes the Harvard architecture, indicating that it has separate instruction 

and data buses, while the Z0 core makes use of Von Neumann architecture, specifying 

that it has an individual, unified instruction/data bus. There are also variants of the Z0 

core that utilize Harvard architecture, belonging to non MPC5510 family set. As 

demonstrated on Figure 3.2, the crossbar switch is in charge of managing and arbitrating 

access to the shared resources. The supplementary direct link between the Z1 core and the 

flash memory provides this core with the immediate access to the flash memory through 

bypassing the crossbar switch. This extra link decreases the access time and also 

facilitates the simultaneous access of both cores to different locations of flash memory 

[12]. Cores have their own individual interrupts set and run at the same speed supplied by 

a shared clock source which is configured in the System Integration Unit (SIU).  

 

 

The Core Registers 

The master core contains all the slave core’s registers as well as a few additional registers 

which enable it to implement specific functionalities. In [12] the differences have been 

listed as following,  
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- the Z0 core lacks the timing registers available on Z1, including the two 32-bit 

Time-Base (TBL and TBU) and the decrementer registers 

- the Z1 core has eight General Special Purpose (SPRG0 to SPRG7) and one 

User Special Purpose (USPRG0) registers, whereas Z0 core has only two 

Special Purpose registers (SPRG0 and SPRG1) 

- the Z1 core has the branch target buffer to accelerate the execution of loops, 

but the Z0 core lacks this feature  

In this project, the basic principle in the measurement of execution times is using the  

Time-Base registers on the Z1 core. 

3.3 The Used Development Tools in the Project 

There are several development tools presented by different vendors to provide embedded 

software developers with their needed tools to generate, compile and debug their program 

code or model/simulate MPC5510 MCUs. The following, taken from [9], lists the 

available tools. The software and hardware tools denoted with a check mark were used in 

this thesis work. Freescale FreeMASTER does not exist in the tools list provided by [9]. 

 Compilers 

 CodeWarrior Development Studio 

 Green Hills 

 WindRiver 

 GNU 

 Debuggers 

 Green Hills 

 Lauterbach 

 iSystem 

 P&E Microcomputer Systems USB Multilink 

 Freescale FreeMASTER  

 Simulators 

 CodeWarrior (Core only) 

 Green Hills (Core only) 

 Hardware 

 Freescale Evaluation Board (EVB) 

 Green Hills (Nexus Class 1 and Class 2+) 

 Lauterbach (Class 1 and Class 2+) 

 iSystem (Class 1 & Class 2+) 

 P&E Microcomputer Systems USB Multilink (Nexus Class 1) 

 Initialization tools  
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 RAppID Init 

 Modeling/Code generation 

 dSpace TargetLink 

 MathWorks Simulink 

3.4 The Freescale MPC5510 Evaluation Board 

Freescale Semiconductor presents an Evaluation Board (EVB) to ease hardware and 

software development processes for MPC5510 family of microcontrollers and also 

provide customers with an an easy-to-use piece of hardware to assess the capabilities of 

the processors belonging to this family of microcontrollers. The EVB is planned to be 

used in bench/laboratory applications under normal ambient tempratures [13].  Figure 3.3 

shows this EVB.  

     The main board lacks an MCU and the MCU is mounted on an MCU daughter card. 

The EVB has a modular organization in the sense that different MCU packages can be 

installed on the supporting daughter card; hence the EVB can enjoy full flexibility and 

simplicity. At present, there are three packages to be used with the MPC5510 processors 

and by the EVB as well. These package types are 208BGA, 176QFP and 144QFP. This 

mechanism allows the MPC5510 microcontrollers to be exploited with the same EVB but 

with various package types and MCU derivatives. The daughter board is interfaced with 

the EVB using high density connectors [13]. The switches, jumpers and user connector on 

the EVB make it possible to provide the hardware with a couple of different 

configurations and settings. Power supply configurations, clock sources selection, reset 

control, debug configuration, external memory configuration, CAN, RS232, LIN and 

Flexray configurations, the LED dot matrix and termination resistor control are the 

various features that can be flexibly configured according to the needs. Figure 3.4 

displays the available three daughter cards supporting the available three MCU packages.  

     The explored processor in this project (MPC5517E) uses 144OFP daughter board and 

the target hardware includes the EVB and daughter card existing in the Qorivva 

MPC5510 kit. The kit includes an EVB equipped with a Nexus connector through which  

 



 19 

 

 

Figure 3.3: MPC5510 Evaluation Board (EVB) ([13]) 

 

 

 

Figure 3.4: MPC5510 daughter cards ([13]) 

it is possible to have full debug access to the MCU. The codes are compiled using the free 

license of CodeWarrior Development Studio that limits the code size up to 128 KB. To 

upload and debug the created elf, P&E Microcomputer Systems USB Multilink interface 
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that comes with the Qorivva MPC5510 kit has been used. The MPC5517E has been 

plugged into the daughter card. This processor has the following fundamental features, 

- one e200z1 (the master core) and one e200z0 core (the slave core) 

- 1.5 MB internal program flash, 80 KB on-chip SRAM  

 

 

Figure 3.5: P&E Microsystems USB Multilink hardware interface 

     The P&E USB Multilink is the hardware interface, placed between PC and the EVB, 

in order to transfer the generated executable binary to the processor. Figure 3.5 shows the 

interface. The executable binary can be placed into flash memory or SRAM, depending 

on the code size and the size of available SRAM. 
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4 The Experimental WCET Methodology 

Our intention is to develop a measurement-based mechanism to estimate the influence on 

execution times of the task running on the master core of MPC5517E, when both master 

and slave cores access the shared resources. As stated earlier, in Chapter 2 (Section 2.4), 

measurement-based WCET techniques for multi-core processors are more promising than 

static WCET analysis methods. The developed approach in this work utilizes the features 

that are available on the investigated hardware, as well as a real-time debugging tool, to 

measure the execution times of a piece of code running on the master core. In the 

beginning, only the master core starts executing a code snippet as the baseline for 

measurement and the slave core does not start, i.e. it stays in reset mode. Then the slave 

core is brought out of reset by the master core, and starts executing a number of 

background loads. Using the real-time debugger, the impacts on the execution time of the 

piece of code running on the master core, due to concurrent operation of both cores, are 

inspected. 

4.1 Measuring Execution Time in MPC5510 Microcontrollers 

The master core in MPC5510 microcontrollers has two 32-bit registers, identified as Time 

Base (TB) registers [16]. These registers belong to the category of special purpose 

registers (spr) in the MPC5510 MCUs and they both together form a 64-bit TB register. 

Special purpose registers are not memory-mapped and they can be accessed indirectly 

through a general purpose register (gpr). Concerning an spr, there are only two 

instructions available: mtspr (move to spr) and mfspr (move from spr). The lower and 

upper 32 bits are denoted as TBL and TBU, correspondingly. Using the TB registers, it is 

possible to count the number of system clocks involved in the execution of a code 

fragment. The MPC5510 features different memory types including, internal flash, on-

chip SRAM, external flash and off-chip SRAM. The TB regiters are capable of counting 

the number of system clocks for the code executing in any of these memory types.    

     Before the TB registers start counting the number of elapsed system clocks, they must 

be enabled. There is a special puspose register in the primary core, named as Hardware 

Implementation Register 0 (spr HID0) having a bit known as Time Base Enable (TBE). 

To enable the TB registers, it is enough to set this bit. Once being enabled, the TB 

registers start counting the number of clock cycles after an initial delay owing to the 

pipelining feature. The primary core (e200z1) has a 4-stage pipelining [9]. Qorivva 

Simple Cookbook [16] has a simple example and further information to use the TB 

registers. The default system clock frequency for MPC551x processors is 16 MHz and at 

this operating frequency, it takes around 4.5 minutes that the TBL register overflows to 
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the TBU register [16]. The tasks that we are dealing with in our work have execution 

times in the range of several milli seconds. The system clock in our codes for all projects 

is set to 64 MHz, and at this clock rate it takes around 67.5 seconds for the TBL to 

overflow to the TBU. This is a rather long time and it would not be required ro take care 

of the overflowing issue. Thus, we only read the values of the TBL register in our 

measurements. 

4.2 The Basics of Execution Time Measurement Technique   

We need to come up with a method to measure the execution times of tasks running on 

the primary core (Z1) of MPC5510 dual-core devices. Assume the piece of code that we 

are interested in its execution time, is placed into a function named Z1_routine(). 

The TB registers allow us to count the number of clock cycles before and after making 

the call to Z1_routine(). As the processor’s primary core continues running, the 

number of elapsed clock cycles are stored into the TB registers. The values of the TB 

registers, before and after making a call to Z1_routine(), are stored to measure the 

execution time. The execution time for Z1_routine() can be simlpy calculated using 

the following relation, 

 

execution_time = 
end - start

PROCESSOR_CLOCK
                           (4.1) 

Where we have,  

- end:  The read value of TB register after making a call to the code snippet 

- start: The read value of TB register before making a call to the code snippet 

- PROCESSOR_CLOCK: The processor’s operating frequency  

 

The default clock for MPC5510 devices is 16 MHz and MPC5517E can be clocked up to 

80 MHz [16]. The estimated time is in microsecond since PROCESSOR_CLOCK is set 

in MHz in our measurements.           

     As the starting point, we create a single-core project, targeted at MPC5517E, using the 

CodeWarrior IDE. Figure B.1 in Appendix B shows the code listed in the 

main_master.c file (running on the master core, i.e. Z1) with a simple body for the 

user-defined Z1_routine()to illustrate the basics of our measurement technique. 

     To enable the TBL register and read its value, some source files from a formerly 

created project in Arctic Studio [17] have been integrated with the created project in the 

CodeWarrior IDE. Arctic Studio, presenetd by ARC CORE, is an open source Eclipse-

based [19] embedded software package to address AUTOSAR [8] standard. The software 
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provides a platform that includes real-time operating system, facilities to support 

communication services like CAN and LIN, memory services and also drivers for a 

number of microcontrollers used in the automotive ECUs, such as MPC5510 MCUs. The 

code listing mentioned above includes a header file named Cpu.h. This header file is 

borrowed from the created project for MPC5517E in Arctic Studio and then is added to 

the source files of our project. In the code, there is a routine as well as some defined 

macros in Cpu.h to utilize the TB registers as described below, 

- SPR_TBL_R, the macro to symbolize the lower TB register to read its 

contents 

- SPR_HID0, the macro to symbolize Hardware Implementation Register 0 (spr 

HID0) 

- get_spr(spr_nr), the function to read the contents of special purpose 

registers 

     The initSysclk() routine makes it possible to change the default operating 

frequency, i.e. 16 MHz, to our desired clock frequency. All the measurements for both 

single- and dual-core projects throughout this work are carried out at 64 MHz. 

Z1_routine()declares a volatile 32-bit integer in the SRAM and implements an 

empty nested loop which means the function performs no useful work. To achieve a 

relatively accurate measurement, the code fragment of our interest (Z1_routine() in 

our measurements) is called more than once. The NUMBER_OF_EXECUTIONS macro 

specifies how many times the piece of code executes. The project is compiled and linked, 

and the generated executable binary (elf) is transferred to the EVB using P&E USB 

Multilink hardware interface. At this stage, we find the value of execution time through 

watching execution_time variable using the existing debugger. For the 

implemented code, we obtained two execution times: 35937 and 35938 micro seconds, 

and the larger value is considered as the WCET for Z1_routine(). It should be noted 

that the code runs in the internal Flash memory. If it runs in the SRAM, the execution 

times, as we will see in Section 4.5, are larger. Freescale provides FreeMASTER [18] 

which is a powerful free and open source real-time debugger. In the rest of the work, this 

tool has been applied to facilitate our measurements. 
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4.3 Measuring Execution Time using Freescale FreeMASTER 

Three steps are taken to be able to use FreeMASTER in our application. First, its source 

files are added to our project code in the CodeWarrior IDE, then one of the eSCI ports, 

available on the EVB, is initialized, and finally, FreeMASTER user interface is installed 

on PC to interact with it through a GUI. FreeMASTER has been implemented as an open 

source communication protocol in C, therefore it is added to the embedded application 

project as a number of .c and .h files. The tool consists of two applications: the PC-side 

application and the embedded-side application. The PC-side application provides a user 

interface to watch and record the variables in real time and the embedded-side application 

acts as a server to the PC-side application to fulfill the actual real-time debugging 

process. The EVB has two serial communication interfaces known as eSCI_A and 

eSCI_B. The communication between the PC-side and embedded-side applications in our 

project is conducted through eSCI_A serial port. The routine called ESCI_A_Init()is 

added to the main_master.c on the master core, and it is called after clock 

initialization process to manage the communication between the processor and the GUI 

through the eSCI port.  

     To use FreeMASTER in our application, the main_master.c file is modified with 

making calls to the serial communication port (ESCI_A_Init()) and FreeMASTER 

(FMSTR_Init()) initialization routines. Figure B.2, in Appendix B, lists the new 

version of our code to demonstrate the measurement approach using FreeMASTER. The 

code inside the main() function consists of two parts. The first part includes the real-

time measurement using a for loop and the second part comprises an infinite while 

loop to provide FreeMASTER with an array for off-line display of the recorded 

variable(s). Here, the basic notion is that we log a variable in real time and then display 

its value off line. 

     FreeMASTER GUI lets us create oscillscope and recorder mechanism in our project to 

inspect and log up to eight variables in an application. To achieve a relatively precise 

measured value, we execute the code fragment more than once. In the code listing in 

Appendix B, Z1_routine() is called NUMBER_OF_EXECUTIONS times and each 

measured value is stored in an array with the size equal to NUMBER_OF_EXECUTIONS. 

When the first part, dealing with real-time debugging (the for loop) terminates, and the 

measurement process is over, the two FreeMASTER routines associated with the real-

time debugging, i.e. FMSTR_Record() and FMSTR_Poll()are called again infinitely 

in the second part (the while loop). The second part actually supplies the FreeMASTER 

oscilloscope and recorder tools with their required data. In fact, the endless while loop 

in the recording part enables FreeMASTER client to visualize the measured variables 

(register values) on screen forever until the system (EVB) is interrupted by user.  
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     FreeMASTER can be used in the interrupt- and poll-driven modes [18]. We use the 

poll-driven mode in all the carried out measurements in this project. Appendix A 

describes how to integrate and configure FreeMASTER in the projects that are built using 

the CodeWarrior IDE. 

4.4 The Slowdown Factor 

The execution time for a specific piece of code running on the master core, when the 

slave core is in reset mode, is considered as the baseline. Once the secondary core is 

started, the execution time of the task running on the primary core is affected, even 

though the secondary core does not execute any useful work. The slave core’s impact on 

master core is embodied as the execution time of the task running on the master core is 

stretched. 

     To come up with a quantitative criterion in order to evaluate the extent at which the 

execution time is influenced, we define a factor known as the Slowdown Factor (SDF). 

The factor is described as, 

Slowdown Factor = 
T2

T1
                           (4.2) 

In which,  

T1: Execution time of task running standalone on the master core (slave core is inactive)  

T2: Execution time of task running on the master core while the slave core is running 

In the relation above, the numerator denotes the execution time of some task running on 

the master core while both primary and secondary cores are operating concurrently, 

whereas the denominator specifies the measured execution time when the same task runs 

on the master core as the second core is in reset. To explore the influence of the slave 

core on the SDF, the master core task is kept constant (Z1 runs the same piece of code in 

all measurements) and the slave core runs an increasing load, functioning as the 

background load. The background load is gradually increased and the execution time of 

the task runnig on the master core is measured. In the CodeWarrior IDE main() and 

main_p1() are Z1's and Z0's main functions respectively. The simplest scenario is 

when the secondary core starts with a bodiless main function, i.e. an empty main_p1() 

routine. 
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5 The Experimental Results 

In this chapter we will explaine how the devised measurement technique, described in 

Chapter 4, is employed with the aim of conducting a number of experiments to estimate 

the influence on master core’s WCET from shared resources in MPC5517E. 

5.1 Exploring the Scenario Leading to the Largest Slowdown Factor 

The slowdown factor is greater than or equal to 1.0, and it increases as the background 

load increases, however there is an upper band for this factor in such a way that the 

following relation holds, 

 

1.0 ≤  SDF ≤  Upper bound                           (5.1) 

 

     To estimate the upper band for SDF, a dual-core project in the CodeWarrior IDE for 

MPC5517E device is created, and three different scenarios, described fully subsequently, 

will be explored. In the dual-core projects, each core has its own main function placed in 

a separate source file. As for the CodeWarrior IDE, these files are the main_master.c 

for Z1 and the main_slave.c for Z0.    

Scenario 1 

- Z1 runs an unvarying load 

- Z0 defines and manipulates a variable in the SRAM, Z1 does not access this 

variable 

 Scenario 2 

- Z1 runs an unvarying load and also it defines a variable in the SRAM which is 

accessible from Z0 

- Z0 accesses the variable defined in Z1  

Scenario 3 

- Z1 runs an unvarying load and also it defines a variable in the SRAM which is 

accessible from Z0  

- Z0 accesses the variable defined in Z1, and also it defines and manipulates a 

variable that is only accessible to Z0 

In these scenarios, Z1 defines a variable in the SRAM and allows Z0 to access it through 

making calls to global functions defined in Z1. The variable in Z1 is declared as a 32-bit 

integer using the int type and is preceded with the volatile keyword to ensure that it 

is stored in the SRAM. Z0 runs the background load and we will investigate its impact on 

Z1 by measuring the execution times of the unvarying load running on Z1. The largest 
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obtained values for execution times are taken into account, since we are interested in the 

WCET. 

 

Implementation for Scenario 1 

The only difference between the codes placed in the Z1’s main_master.c file in the 

Section 4.3 and this scenario is that in this scenario Z1’s main()makes a call to a 

routine, named __start_p1(), to trigger the secondary core (Z0). The created project 

here is a dual-core project to activate Z0. At startup process, Z0 is in reset and shall be 

started by Z1. The CodeWarrior stationery embeds __start_p1()routine (written in 

the PowerPC Assembly) with the project, and once this function is called it writes to the 

CRP.Z0VEC.R to initiate the Z0 core.  

     Z0 declares a variable, which is inaccessible by Z1, and increments it infinitely. The 

code is placed into a function, named Z0_routine(), and the function is called from 

main_p1(). 

 
void Z0_routine(void) 

{ 

    volatile int a1 = 0;         

     

    while (1) 

    { 

        a1++; 

    } 

} 

 

int main_p1(void) 

{ 

    Z0_routine(); 

} 

 

Implementation for Scenario 2 

A variable of integer type along with the two routines responsible for manipulating and 

reading this variable are added to the code listing of Section 4.3, i.e. to 

main_master.c file. The variable is named Z1_var_accessible_to_Z0 and is 

initialized with 0. Z1 also defines two routines to make it possible for Z0 to access and 

manipulate Z1_var_accessible_to_Z0. The calls are made within the Z0's main 

function in an infinite loop. These two routines are,   

increment_Z1_var_accessible_to_Z0() 

read_Z1_var_accessible_to_Z0(). 

Following, are the contents of the main_master.c file (running on Z1) to implement 

this scenario. 
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#include "MPC5517E.h" 

#include "Cpu.h" 

#include "freemaster.h" 

 

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */ 

#define NUMBER_OF_EXECUTIONS 50 

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000 

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1 

 

/* Prototype for PRC1 startup */ 

extern void __start_p1(); 

 

/* Measurement variables */ 

int enable, start, end; 

 

/* FreeMASTER variables */ 

float execution_time = 0, samples[NUMBER_OF_EXECUTIONS] = {0}; 

int sampling_index = 0; 

 

/* The shared variable between the two cores */ 

volatile int Z1_var_accessible_to_Z0 = 0; 

 

void ESCI_A_Init(void) 

{ 

   ESCI_A.CR2.R = 0x2000;                

   ESCI_A.CR1.B.TE = 1;                

   ESCI_A.CR1.B.RE = 1;                

   ESCI_A.CR1.B.PT = 0;                

   ESCI_A.CR1.B.PE = 0;                

   ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */ 

} 

 

void initSysclk(void)  

{  

   /* Initialize PLL and sysclk to 64 MHz */ 

   FMPLL.ESYNCR2.R = 0x00000007;      

   FMPLL.ESYNCR1.R = 0xF0000020;      

   CRP.CLKSRC.B.XOSCEN = 1;             

   while (FMPLL.SYNSR.B.LOCK != 1) {}; /* Wait for PLL to LOCK */ 

   FMPLL.ESYNCR2.R = 0x00000005;   

   SIU.SYSCLK.B.SYSCLKSEL = 2;        

} 

void Z1_routine(void) 

{ 

   volatile int i, j; 

   for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++) 

   { 

       for (j = 0; j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS;  

            j++) 

       { 

       }  

   } 
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} 

 

void increment_Z1_var_accessible_to_Z0(void) 

{ 

   Z1_var_accessible_to_Z0++; 

} 

 

int read_Z1_var_accessible_to_Z0(void) 

{ 

   return Z1_var_accessible_to_Z0;  

} 

 

int main(void)  

{ 

   initSysclk(); 

   ESCI_A_Init(); 

 

   /* Initialize FreeMASTER driver */ 

   FMSTR_Init(); 

 

   /* Start the other core by writing CRP.Z0VEC.R */  

   CRP.Z0VEC.R = (unsigned long)__start_p1; 

     

   /* Enable Time Base register (TBE) */ 

   enable = get_spr(SPR_HID0); 

   end = 0x4000; 

   enable = enable | end ; /* according to the manual */ 

   set_spr(SPR_HID0, enable); 

     

   for(sampling_index=0; sampling_index < UMBER_OF_EXECUTIONS; 

       sampling_index++) 

   { 

      start = 0; 

      end = 0; 

 

      /* Start measuring execution time */ 

      start = get_spr(SPR_TBL_R);  

      Z1_routine(); 

 

      /* Stop measuring execution time */ 

      end = get_spr(SPR_TBL_R); 

  

      /* Measure execution time using the processor clock */ 

      execution_time=(float)((end - start) / PROCESSOR_CLOCK); 

               

      /* Store the measured times in an array being used by  

         FreeMASTER Recorder Mode */ 

      samples[sampling_index] = execution_time; 

      FMSTR_Recorder(); 

      FMSTR_Poll(); 

   } 

     

   /* Record the samples using FreeMASTER Recorder Mode */ 
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   sampling_index = 0; 

   while(1) 

   { 

      FMSTR_Recorder(); 

      FMSTR_Poll(); 

      execution_time = samples[sampling_index]; 

      sampling_index++; 

 

     if(sampling_index >= NUMBER_OF_EXECUTIONS) 

         sampling_index = 0; 

   } 

} 

 

The code placed in the main_slave.c file (running on Z0) is, 
 

extern int read_Z1_var_accessible_to_Z0(void); 

extern void increment_Z1_var_accessible_to_Z0(void); 

 

int main_p1(void) 

{ 

   while(1) 

   { 

      increment_Z1_var_accessible_to_Z0(); 

      read_Z1_var_accessible_to_Z0();  

   } 

} 

Implementation for Scenario 3 

In the implementation for Scenario 3, the code executed by Z1 is exactly the same code 

that was developed for the Scenario 2. The Z0 core increments and reads a variable which 

is defined in Z1 and is accessible to this core. Z0 also manipulates a variable which is 

local to it and is not accessible from Z1. The contents of main_slave.c file for this 

scenario are, 

 
extern int read_Z1_var_accessible_to_Z0(void); 

extern void increment_Z1_var_accessible_to_Z0(void); 

 

void Z0_routine(void) 

{ 

    volatile int a1 = 0;     

    while (1) 

    { 

        increment_Z1_var_accessible_to_Z0(); 

        read_Z1_var_accessible_to_Z0(); 

        a1++; 

    } 

} 

 

 

int main_p1(void) 

{ 
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    Z0_routine(); 

} 

     To make sure that FreeMASTER does not inflict any overhead on the code fragment 

running on Z1, the measurements are performed with and without FreeMASTER for a 

very simple occasion. Z0 calls an empty main_p1() function.  FreeMASTER runs in 

the poll-driven mode and Z1 runs Z1_routine() with the following body, 

 
void Z1_routine(void) 

{ 

   volatile int i; 

   for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++) 

   { 

       for (j = 0; j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS;   

            j++) 

       { 

       } 

   } 

} 

Table 5.1 shows that both measured values using the native debugger of Code Warrior 

Development Studio and FreeMASTER tool are exactly the same. The outcome of this 

simple test is very substantial as it made us confident that FreeMASTER does not cause 

any overhead on the execution times after it is hooked to the program. Table 5.2 presents 

the results of measurements for the three surveyed scenarios. To calculate the SDF for 

each case, we need a baseline. The baseline is defined as the execution time for 

Z1_routine() when the slave core has not started yet. As it is obviously evident in 

Table 5.2, the largest SDF occurs in the Scenario 1, where the slave core infinitely 

increments an integer declared in the shared SRAM. Making calls from the slave core to a 

variable which has been explicitly shared between the two cores (scenarios 2 and 3) does 

not necessarily yield the largest execution time. 

 
 

 

No. 

 

FreeMASTER is used 

 

Execution Time (µs) 

 

1 

 

 

No 

 

35938 

 

2 

 

 

Yes 

 

35938 

 

Table 5.1: Examining the FreeMASTER impact on measurements 
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Concerning the scenarios 2 and 3, the inter-core shared variable has been declared as a 

32-bit scalar integer. This scalar variable was also declared as a static array with large 

sizes, e.g., 10000 (volatile int Z1_var_accessible_to_Z0[10000] = 

{0}), but we observed no significant effect on the SDF. 

     We focus on Scenario 1 to achieve a setting that can potentially lead to the possible 

largest execution time and therefore to the largest SDF. The background load running on 

Z0 is gradually increased by declaring more private variables in Z0_routine() to 

increase the rate at which Z0 accesses the shared memory space. First, a2 is added, the 

measurement is done and the SDF is calculated using the baseline. Then, a3 is added, the 

measurement procedure is repeated and so on. The code fragment running as the 

reference and the unvarying load on Z1 are the same Z1_routine() that we had 

before. We found it out that the largest SDF is gained for the arranged setting with nine 

defined variables in Z0. 

 

Scenario 

 

Measured Execution Time (µs) 

 
SDF 

Baseline 

 

35937 

 
1 

1 

 

38542 
1.0725 

2 

 

37022 
1.0302 

3 

 

37500 
1.0435 

 
Table 5.2: The Measurements for the surveyed scenarios to find the largest SDF 

 

We are extending the Scenario 1, therefore these variables are not accessible from the 

master core. The body of Z0_routine() is, 
 

void Z0_routine(void) 

{ 

    volatile int a1=0, a2=0, a3=0, a4=0, a5=0, a6=0, a7=0,   

                 a8=0, a9=0, a10=0;         

    while (1) 

    { 

        a1++; 

        a2++; 

        a3++; 

        a4++; 

        a5++; 
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        a6++; 

        a7++; 

        a8++;  

        a9++; 

        a10++;  

    } 

} 

     Table 5.3 lists the obtained results for a number of declared variables in 

Z0_routine(). We start with one variable and increase the number of variables, one 

by one, to explore the influence of the increasing load on the execution time of the task 

running on Z1. The measurements are carried out for both the internal flash and RAM as 

the targets of deployed executable binary. The largest SDF when the code runs in the 

internal flash is 1.1033 and it occurs when 9 variables are declared in 

Z0_routine().The   maximum SDF while the code runs in the RAM is 1.3187 with 3 

declared variables in Z0_routine(). The Largest figures for the SDF values (marked 

in red) reveal that the influence of the slave core on the execution time of the task running 

concurrently on the master core can be significant. In the explained scenario, when the 

task runs in RAM, there is a relatively noticeable impact on the WCET. The SDF is 

dependent on the pattern of accessing the shared memory and also the location of the 

running code, i.e. whether the code runs in internal flash or RAM. This implies that the 

execution times have to be measured for both cases: when the code runs in internal flash 

and when the code runs in RAM. This point should be taken into deliberate account by 

the embedded application designer at the design and verification phases of critical and 

safety critical applications. The reason is that the designer has to specify which target for 

application's code (internal flash or RAM) results in the largest SDF, and hence more 

impact on the cores. 

5.2 The Observed Bugs in CodeWarrior Development Studio       

During carrying out the experiments, two bugs, one in the compiler and one in the IDE, 

were found in the CodeWarrior Development Studio tool. The glitches were reported to 

the Freescale support team; they confirmed them and provided us with the solution to 

resolve them. 

     The first bug was a fault in the compiler, and it dealt with the dual-core projects when 

the target device was chosen as MPC5517E. For this processor, the code did not execute 

on the secondary core (Z0) when a function call was made in the Z0’s main routine, i.e. 

main_p1(), as if the Z0 core was still in reset. However, if the project was created for 

MPC5516E as the target device, there would be no problem with 
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Target for Executable Binary 

 

 

Internal Flash 

 

 

RAM 

 

 

Number of the Declared 

Variables in Z0 

 

Execution 

Time (µs) 

 

 

 

SDF 

 

 

Execution 

Time (µs) 

 

 

SDF 

 

Z0 does not start (baseline) 

 

 

35938 

 

 

1 

 

50000 

 

1 

 

 

1 

 

 

38542 

 

1.0725 

 

64583 

 

1.2917 

 

2 

 

 

38566 

 

1.0731 

 

65104 

 

1.3021 

 

3 

 

 

38945 

 

1.0837 

 

65937 

 

1.3187 

 

4 

 

 

39063 

 

1.0870 

 

65024 

 

1.3005 

 

5 

 

 

39063 

 

1.0870 

 

64844 

 

1.2969 

 

6 

 

39313 

 

1.0939 

 

65533 

 

1.3107 

 

7 

 

39353 

 

 

1.0950 

 

65278 

 

1.3057 

 

8 

 

39535 

 

1.1000 

 

65625 

 

1.3125 

 

9 

 

39649 

 

1.1033 

 

65625 

 

1.3125 

 

10 

 

39489 

 

1.0988 

 

65625 

 

1.3125 

 

Table 5.3: The measurement scenarios to approximate the largest SDF 
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making calls to functions from the Z0’s main routine. We contacted the Freescale support 

team, and they confirmed that the issue was certainly a bug in their tool. It was fixed in 

the version 2.1 of the compiler. 

 

     The second bug was related to the generated code by the IDE for dual-core projects. 

We started with a very simple scenario in which the Z1 core ran only a finite for loop 

and the Z0 core ran only a bodiless main function that does not return. In the beginning, 

to determine the baseline, the slave core was not enabled and the execution time of the 

finite for loop was measured as T1. Then, the slave core was enabled and the execution 

time was measured as T2. It is evident that T2 must be greater than, or at its best, equal to 

T1. But, amazingly enough, we observed that T2 was less than T1, as it would be there is 

some kind of unexpected speedup, opposed to facing an anticipated slowdown. The 

support team explained that the reason behind this issue is the pre-fetching feature. By 

default, the pre-fetching is enabled by the CodeWarrior IDE stationery, despite the fact 

that it should be disabled according to [22]. At the startup process, there are some 

initializing macros that affect the device behavior through writing specific values to 

different registers and memory locations of the processor. One of the macros is 

FLASH_DATA, defined in __pc_eabi_init.c. This macro is written to the PFCRP0 

register during the startup process and enables pre-fetching. To disable pre-fetching, the 

assigned value for this macro must be changed from 0x00016B55 to 0x00006B05. At 

the time of writing this report, the bug has not been fixed in the latest CodeWarrior IDE 

(version 5.9.0). To avoid the issue, the set value for the macro explained above needs to 

be manually changed to the right value to disable pre-fetching. 
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6 Conclusions and Future Work 

6.1 Conclusions 

The model of a real-time task (Figure 2.1) points out four static parameters: offset, 

deadline, period and execution time. Among these parameters, the execution time is 

the one that requires a demanding effort to determine, since it is contingent upon a 

number of influencing factors. These factors are organization of program code, 

hardware and software properties of system, initial system state and system events. It 

is an intricate process to specify the exact time that it takes for a piece of code to 

execute on a specific platform due to the mentioned affecting factors. Hence, it 

suffices to estimate the execution time of a real-time task instead of dealing with its 

exact value. Regarding sceduling algoritms for real-time systems, we always deal 

with WCET which is defined as the probable uninterrupted execution time for one 

iteration of the task.   

     In this thesis, we presented a measurement method to estimate the WCET for a 

task running on the master core of a dual-core processor. Then, we investigated the 

impact of the slave core on the execution time of tasks runing on the master core, 

using our proposed measurement technique. We defined a term known as SDF to 

characterize the influence of the second core on the execution times. Depending on 

the codes running on each core, this influence can be conspicuous and can increase 

the task execution time. Consequently, system designer should reflect on the WCET 

for the dual-core projects with respect to this slowing down factor, especially for 

critical and safety critical functionalities in real-time systems. One interesting finding 

in this project is the need for estimating the largest SDF for all memory types (such as 

internal flash, external flash, on-chip SRAM, off-chip SRAM) that are supposed to 

host a real-time application. This stipulates that the execution time of a real-time 

application should be measured (estimated) for all available type of memories that are 

supposed to host executable binaries, and that would be wrong to apply the measured 

execution time for one specific type of memory to the other memory types. 
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6.2 Future Work 

As for all the embedded projects that were implemented for the explained scenarios in 

this thesis work, the executable binaries run either in the internal flash or in the on-

chip SRAM. However, the explored processor can also support external flash and off-

chip SRAM, and one further work can be evaluating the SDF when the codes run in 

the external flash or off-chip RAM. Moreover, it will be very impressive to do some 

analytical analysis to explain the different SDF values, for example, based on the 

number of references to shared resources per time units. Of course this is not 

something trivial to achieve.  

     Another future work can be centered around AUTOSAR to develop a tool to 

automate the process of extracting all the required ports data of a Software 

Components (SWCs) [8] out of their XML specifications, in order to have an 

automatic execution estimation technique for SWCs runnables. Currently, to estimate 

the WCET or investigate how the primary core is affected by the secondary core, we 

have to manually take out the ports information and supply SWC’s input ports with 

their allowed values that are specified in their XML specification files. A tool can be 

developed to automate the entire process. 
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A Integrating FreeMASTER with CodeWarrior  

FreeMASTER is a powerful real-time debugger presented as a free and open source tool 

by Freescale Semiconductor. The tool involves PC-side and embedded-side applications, 

where the PC-side provides a GUI to visualize and record variables in real time and the 

embedded-side is a server to provide the PC-side application with real-time debugging 

capability. To use the tool it is required to pursue three steps,  

- integrate its source files with an embedded application project 

- initialize a communication interface to communicate with the tool  

- install its user interface on PC  

The embedded-side application is actually an open source communication protocol 

developed as a number of .c and .h files in C that are added to an exixting embedded 

application project to provide real-time debugging feature.  

The PC-side application has an HTML-based GUI to graphically watch the variables of 

our interest on PC side. The GUI is installed on Microsoft Windows operating systems, 

and allows the user to create oscilloscope or recorder in their FreeMASTER project and 

monitor or record the variables in real time.       

     The transferred executable binary running on the target hardware is capable of 

communicating with the PC-side application through a communication interface. In our 

measurements, we use the serial communication port available on the EVB to interact 

with the embedded-side FreeMASTER. The EVB has two eSCI ports: eSCI_A and 

eSCI_B. It is required to apply the correct jumper settings on the EVB to utilize the 

communication interfaces. For the proper jumper settings one should consult the EVB 

reference manual [13].   

     At 64 MHz, the default baud rate is 9600 (ESCI_A.CR1.B.SBR = 417). With this 

default value, the communication between the PC- and embedded-side applications was 

not handled properly and it was impossible to watch the variables designated in the 

FreeMASTER GUI. We found it out that the baud rate should be set as to the highest 

value as possible to avoid facing issues in the communication. When the processor runs at 

64 MHz, 115000 is a suitable value for the baud rate. To achieve this baud rate the 

corresponding register is initialized with the correct matching value 
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(ESCI_A.CR1.B.SBR = 34) . The following routine initializes the communication 

between the EVB and the PC via eSCI_A serial port. 

 

void ESCI_A_Init(void) 

{ 

ESCI_A.CR2.R = 0x2000;                

ESCI_A.CR1.B.TE = 1;                

ESCI_A.CR1.B.RE = 1;                

ESCI_A.CR1.B.PT = 0;                

ESCI_A.CR1.B.PE = 0;                

ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */ 

} 

 

     The above routine as well as the FreeMASTER source files are added to the project to 

provide our application with the real-time debugging capability. To come up with a tidy 

source code, the FreeMASTER files are placed in a folder with this name and a group is 

created with the same name in the CodeWarrior IDE to organize the related files under 

this group. Figure A.1 displays the project tree. To start FreeMASTER in the application, 

FMSTR_Init()routine is called and it falls to FMSTR_Record() and 

FMSTR_Poll() routines to provide real-time montitoring and recording features. To be 

able to make calls to the FreeMASTER functions, freemaster.h is the only header 

file needed to be included in the main_master.c file. In brife, the routines in below 

are added to the main_master.c file, 

- ESCI_A_Init(), to initilize communication through the eSCI_A port 

- FMSTR_Init(), to start embedded-side application 

- FMSTR_Record()and FMSTR_Poll(), to implement real-time debugging  

The serial communication driver file, freemaster_cfg.h defines the macros to set 

different configurations in the embedded-side application. One important configuration is  
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Figure A.1: CodeWarrior IDE integrated with embedded-side FreeMASTER 

the operating mode. There are three modes available, 

- short interrupt 

- long interrupt 

- poll-driven  

The following variables defined in freemaster_cfg.h should be set properly to 

determine the operating mode,  

FMSTR_LONG_INTR 0  /* complete message processing in interrupt */ 

FMSTR_SHORT_INTR 0 /* SCI FIFO-queuing done in interrupt */ 

FMSTR_POLL_DRIVEN 1 /* no interrupt needed, polling only */ 
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To determine the operating mode, the corresponding macro is set to 1 and the other two 

are set to 0. We use the poll-driven mode so the corresponding variable is set to 1 and the 

other two variables related to interrupt-driven modes are set to 0. Another important 

macro is FMSTR_REC_BUFF_SIZE that specifies the built-in buffer size in the memory 

space of the target hardware. This macro determines the size of buffer in bytes and is set 

to an appropriate value to be able to record the desired number of samples through the 

recorder interface created in the PC-side GUI.  

      

 

 

Figure A.2: Real-time display using PC-side FreeMASTER 

The GUI running on PC allows watching up to eight variables and also creating 

oscilloscope and recorder to observe the variations of watched variables graphically. 

Besides, it is capable of storing the watched data on file, manually or automatically. 

Figure A.2 shows start, end and execution_time variables in the debugging pane 

for the code listed in Chapter 4, Section 4.5 and plots the variations of 

execution_time using the oscilloscope application. Figure A.3 displays 

execution_time for 50 recorded samples.  
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Figure A.3: Displaying a recorded variable using PC-side FreeMASTER 
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B Listing of Codes 

 
#include "MPC5517E.h" 

#include "Cpu.h" 

 

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */ 

#define NUMBER_OF_EXECUTIONS 50 

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000 

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1 

 

/* Measurement variables */ 

int enable, start, end; 

float execution_time = 0; 

 

void initSysclk(void)  

{  

   /* Initialize PLL and sysclk to 64 MHz */ 

   FMPLL.ESYNCR2.R = 0x00000007;      

   FMPLL.ESYNCR1.R = 0xF0000020;      

   CRP.CLKSRC.B.XOSCEN = 1;             

   while (FMPLL.SYNSR.B.LOCK != 1){}; /*Wait for PLL to LOCK*/ 

   FMPLL.ESYNCR2.R = 0x00000005;   

   SIU.SYSCLK.B.SYSCLKSEL = 2;        

} 

 

void Z1_routine(void) 

{ 

   volatile int i, j; 

 

   for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++) 

   { 

       for (j = 0;j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS; j++) 

       { 

       } 

   } 

} 

 

int main(void)  

{ 

   volatile int i; 

 

   initSysclk(); 

 

   /* Enable Time Base register (TBE) */ 

   enable = get_spr(SPR_HID0); 

   end = 0x4000; 

   enable = enable | end ; /* according to the manual */ 

   set_spr(SPR_HID0, enable); 

   for (i = 0; i < NUMBER_OF_EXECUTIONS; i++) 

   { 

       start = 0; 
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       end = 0; 

 

       /* Start measuring execution time */ 

       start = get_spr(SPR_TBL_R);  

       Z1_routine(); 

       /* Stop measuring execution time */ 

       end = get_spr(SPR_TBL_R); 

  

       /* Measure execution time using the processor clock */ 

       execution_time = (float)((end-start)/PROCESSOR_CLOCK); 

   } 

} 

 

Figure B.1: Code listing for the basics of execution time measurement technique (Section 4.2) 
 

#include "MPC5517E.h" 

#include "Cpu.h" 

#include "freemaster.h" 

#define PROCESSOR_CLOCK 64 /* Core operating frequency in MHz */ 

#define NUMBER_OF_EXECUTIONS 50 

#define Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS 100000 

#define Z1_NUMBER_OF_INNER_LOOP_ITERATIONS 1 

 

/* Measurement variables */ 

int enable, start, end; 

 

/* FreeMASTER variables */ 

float execution_time = 0, samples[NUMBER_OF_EXECUTIONS] = {0}; 

int sampling_index = 0; 

                 

void ESCI_A_Init(void) 

{ 

   ESCI_A.CR2.R = 0x2000;                

   ESCI_A.CR1.B.TE = 1;                

   ESCI_A.CR1.B.RE = 1;                

   ESCI_A.CR1.B.PT = 0;                

   ESCI_A.CR1.B.PE = 0;                

   ESCI_A.CR1.B.SBR = 34; /* Baud rate = 115200 */ 

} 

 

void initSysclk(void)  

{  

   /* Initialize PLL and sysclk to 64 MHz */ 

   FMPLL.ESYNCR2.R = 0x00000007;      

   FMPLL.ESYNCR1.R = 0xF0000020;      

   CRP.CLKSRC.B.XOSCEN = 1;             

   while (FMPLL.SYNSR.B.LOCK != 1){};/*Wait for PLL to LOCK */ 

   FMPLL.ESYNCR2.R = 0x00000005;   

   SIU.SYSCLK.B.SYSCLKSEL = 2;        

} 

 

void Z1_routine(void) 

{ 
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   volatile int i, j; 

 

   for (i = 0; i < Z1_NUMBER_OF_OUTER_LOOP_ITERATIONS; i++) 

   { 

       for (j = 0;j < Z1_NUMBER_OF_INNER_LOOP_ITERATIONS; j++) 

       { 

       }  

   } 

} 

 

int main(void)  

{ 

   initSysclk(); 

   ESCI_A_Init(); 

         

   /* Initialize FreeMASTER driver */ 

   FMSTR_Init(); 

 

   /* Enable Time Base register (TBE) */ 

   enable = get_spr(SPR_HID0); 

   end = 0x4000; 

   enable = enable | end ; /* according to the manual */ 

   set_spr(SPR_HID0, enable); 

    

   for(sampling_index=0; sampling_index <NUMBER_OF_EXECUTIONS; 

       sampling_index++) 

   { 

      start = 0; 

      end = 0; 

 

      /* Start measuring execution time */ 

      start = get_spr(SPR_TBL_R);  

      Z1_routine(); 

      /* Stop measuring execution time */ 

      end = get_spr(SPR_TBL_R); 

 

      /* Measure execution time using the processor clock */ 

      execution_time = (float)((end-start)/PROCESSOR_CLOCK); 

               

      /* Store the measured times in an array being used by  

       FreeMASTER Recorder Mode */ 

      samples[sampling_index] = execution_time; 

         

      FMSTR_Recorder(); 

      FMSTR_Poll(); 

   } 

 

   /* Record the samples using FreeMASTER Recorder Mode */ 

   sampling_index = 0; 

   while(1) 

   { 

      FMSTR_Recorder(); 

      FMSTR_Poll(); 
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      execution_time = samples[sampling_index]; 

      sampling_index++; 

 

      if(sampling_index >= NUMBER_OF_EXECUTIONS) 

         sampling_index = 0; 

   } 

} 

 

Figure B.2: Code listing to measure execution time using Freescale FreeMASTER (Section 4.3) 
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C  List of Abbreviations 

ABS                     Anti-lock braking system 

AUTOSAR          AUTOmotive Open System ARchitecture 

BCET                   Best-case execution time 

CAN                    Controller Area Network 

DM                      Deadline Monotonic 

ECU                     Electronic Control Unit 

EDF                     Earliest Deadline First 

eSCI                     enhanced Serial Communication Interface 

EVB                     Evaluation Board 

GUI                      Graphical User Interface 

IDE                      Integrated Development Environment 

LIN                      Local Interconnect Network 

MCU                   Microcontroller Unit 

MMU                  Memory Management Unit 

OEM                   Originally Equipment Manufacturer 

RM                      Rate Monotonic 

RTE                     Runtime Environment 

SRAM                 Static Random Access Memory 

SWC                    Software Component 

TB                       Time Base 

TBL                     Time Base Lower 

TBU                     Time Base Upper 

VLE                     Variable Length Encoding 

WCET                 Worst-case execution time 
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