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Abstract—In this paper, recent results on the evaluation of
the Bayesian Craḿer-Rao bound for jump Markov systems are
presented. In particular, previous work is extended to jump
Markov systems where the discrete mode variable enters into
both the process and measurement equation, as well as where
it enters exclusively into the measurement equation. Recursive
approximations are derived with finite memory requirements as
well as algorithms for checking the validity of these approxima-
tions are established. The tightness of the bound and the validity
of its approximation is investigated on a couple of examples.

I. I NTRODUCTION

Jump Markov systems (JMSs) are nowadays widely used to
model systems in various disciplines, such as target tracking
[1], [2], econometrics [3] and control [4], [5] to name only a
few. Compared to the nonlinear filtering framework, estimators
for JMSs have to additionally estimate the discrete state (or
mode) of a Markov chain that allow a switching between
different state-space models, for which various estimation
algorithms have been proposed e.g. [2], [6]–[9].
The computation of performance bounds for JMSs has also
evolved over the past few years. To date, various Bayesian
Craḿer-Rao bounds (BCRBs) for JMSs have been proposed
that generally differ from each other in terms of tightness and
computational complexity. The perhaps least computationally
complex bound for JMSs is the enumeration BCRB (EBCRB).
It is derived from a bound on the mean square error (MSE)
conditioned on the entire mode sequence, and an unconditional
bound is generally obtained by averaging over all possible
mode sequences [1], [10]. A bound that is at least as tight
as the EBCRB, but which is significantly more computational
complex to evaluate since it relies on running particle filters, is
the marginal EBCRB (M-EBCRB). The M-EBCRB is derived
from the same principles as the EBCRB, but evaluates a
different information matrix, see [11] for the details. A third
bound that is directly bounding the unconditional MSE has
been presented in [12], and is hereinafter termed BCRB. This
bound cannot be related in terms of tightness to the EBCRB
or M-EBCRB via an inequality, as explained in [12], [13].
However, its computation is in many cases (e.g. nonlinear
models or time varying models) only slightly more complex
than the computation of the EBCRB. Another bound that has
been proposed in the literature, is the so-called marginal BCRB
(M-BCRB) [14]. It is also directly bounding the unconditional
MSE but similar to the M-EBCRB evaluates a different

information matrix. It has been shown that the M-BCRB is
at least as tight as the BCRB, but it is much more complex to
evaluate.
In this paper, we focus on the evaluation of the BCRB pro-
posed in [12]. In particular, this bound is useful in situations
when it is tighter than the EBCRB and when computational
resources are not available for evaluating the M-BCRB or M-
EBCRB. The main contributions are as follows. We generalize
the approach presented in [12] to the important cases, where
the discrete mode variable enters either exclusively into the
measurement model or into both the process and measurement
models, see e.g. [13], [15]–[17] and [18], [19] for application
examples. For both cases we additionally derive recursionsfor
approximately computing the BCRB. These recursions depend
on a conditional independence assumption between temporal
random variables within a certain time interval that has been
chosen in [12] empirically. We present recursive algorithms
with linear in time complexity that can be used to specify this
time interval.
The rest of the paper is organized as follows. In Section II, the
system model is presented together with some definitions used
in the paper. Section III gives a brief background overview
on the BCRB, and Section IV provides the main results
for computing the BCRB. The algorithms for conditional
independence assumption verification are presented in Section
V, and the simulation results are summarized in Section VI.
Section VII finally concludes this work.

II. SYSTEM MODEL

Consider the discrete-time JMS, that is described by the
following process and measurement equation

xk = fk−1(xk−1, rk,vk−1), (1a)

zk = hk(xk, rk,wk), (1b)

wherezk ∈ R
nz is the measurement vector at discrete time

instantk andxk ∈ R
nx is the state vector andfk−1 andhk are

arbitrary nonlinear functions. The process and measurement
noise vectorsvk−1 ∈ R

nv and wk ∈ R
nw are assumed

mutually independent white processes, with noise densities
pv,rk(vk−1) and pw,rk(wk) that are assumed known. The
mode variablerk denotes a discrete-time Markov chain with
s states and transition probability matrixΠ with elements
πij = Pr{rk = j|rk−1 = i}. At time instancesk = 0 and
k = 1, prior information about the statex0 and moder1



is available in terms of the probability density function (pdf)
px0

(x0) and probability mass function (pmf)π1
i = Pr{r1 =

i}. The initial statex0 and moder1 are mutually independent
and also independent ofwk andvk−1.
In the following, let x0:k = [xT

0 , . . . ,x
T

k ]
T and z1:k =

[zT1 , . . . , z
T

k ]
T denote the collection of states and measure-

ment vectors up to timek. Furthermore, letx̂0:k(z1:k) =
[x̂T

0 (z1:k), . . . , x̂
T

k (z1:k)]
T denote the estimator of the state

sequence, and let the sequence of mode variables at timek
be given byri1:k = (ri1, r

i
2, . . . , r

i
k), where i = 1, . . . , sk.

Whenever possible, and when there is no risk of ambiguity,
the estimator’s dependency on the measurementsz1:k is omit-
ted in the following. Let us further introduce the gradient
operator∇s = [∂/∂s1, . . . , ∂/∂sn]

T and Laplace operator
△t

s
= ∇s∇T

t
for any vectorss andt, and letEp(x){·} denote

expectation with respect to the pdf (or pmf)p(x).

III. B ACKGROUND ON BCRB

The BCRB provides a lower bound on the MSE matrix
M(x̂0:k(z1:k)) of any estimatorx̂0:k(z1:k). Assuming that
suitable regularity conditions hold [20], the BCRB for esti-
mating the state sequencex0:k is defined as the inverse of the
Bayesian information matrix (BIM)J0:k, bounding

M(x̂0:k) , Ep(x0:k,z1:k){[x̂0:k(z1:k)− x0:k][·]
T} ≥ [J0:k]

−1,
(2)

where [A][·]T stands for[A][A]T and where the matrix in-
equalityA ≥ B means that the differenceA−B is a positive
semi-definite matrix [21]. The BIM is defined as

J0:k = Ep(x0:k,z1:k){−∆x0:k

x0:k
log p(x0:k, z1:k)}, (3)

with dimension given by(k + 1)nx × (k + 1)nx.
In the following, we are interested in computing the BCRB
of the MSE matrix for estimatingxk. Generally, this can be
achieved by taking the(nx × nx) lower-right submatrix of
[J0:k]

−1, which can be expressed mathematically fork ≥ 1 as

M(x̂k) = Ep(xk,z1:k){[x̂k(z1:k)− xk][·]
T}

= UM(x̂0:k)U
T

≥ U [J0:k]
−1 UT ∆

= [Jk]
−1, (4)

with mapping matrix

U = [0, Inx
], (5)

and whereInx
is the (nx × nx) identity matrix and0 is a

matrix of zeros of appropriate size. The matrixJk is denoted
as the filtering information matrix, whose inverse gives the
BCRB for estimatingxk we seek to derive.

IV. COMPUTING THE BCRB

A. Jump Markov System Models

Depending on how the mode variablerk enters into the
system equations, different JMSs will result. In total, three dif-
ferent system models can be identified which are summarized
in Table I. When both the process and measurement model are
independent ofrk, we arrive at systems without Markovian

switching structure and the BCRB for this case was presented
in [22]. In this paper, only algorithms for computing the BCRB
for Model 1 and 2 are presented. The reader interested in the
BCRB for Model 3 is referred to [12].
The approach followed in this paper for computing the BCRB
is to numerically evaluate the BIMJ0:k of the complete state
trajectoryx0:k using Monte Carlo methods. In many cases, the
expression inside the expectation of (3) is difficult to evaluate
directly and it may then be easier to evaluate the equivalent
expression

J0:k = Ep(x0:k,z1:k)

{
[∇x0:k

p(x0:k, z1:k)][·]T

p(x0:k, z1:k)2

}
. (6)

If the mode variable enters only into one of the system
equations, structure inherent in the BIM can be exploited. In
these cases, it is convenient to decompose the BIM as follows

J0:k = Jx0:k
+ Jz1:k

, (7)

whereJx0:k
denotes the BIM of the prior and process model:

Jx0:k
= Ep(x0:k)

{
[∇x0:k

p(x0:k)][·]
T

p(x0:k)2

}
(8)

andJz1:k
denotes the BIM of the data:

Jz1:k
= Ep(x0:k,z1:k)

{
[∇x0:k

p(z1:k|x0:k)][·]
T

p(z1:k|x0:k)2

}
. (9)

In particular, different algorithms will be provided on how
J0:k or Jx0:k

and Jz1:k
can be evaluated for the different

models presented in Table I. The results can be then used
to compute the BCRB for the current statexk according to
(4). The general algorithmic structure for computing the BIM
J0:k for the different models is presented in Algorithm 1.

Algorithm 1 Computation of the BIMJ0:k for different JMS
models

(1) At time k = 0, generatex(i)
0 ∼ p(x0) for i = 1, ..., N ,

and definex(i)
0:0 = x

(i)
0 .

– For eachi, evaluate∇x0:0
p(x

(i)
0:0) = ∇x0

p(x
(i)
0 ) and

p(x
(i)
0:0) = p(x

(i)
0 ).

– Compute the initial BIMJ0 = Jx0
and store the

results ofJx0
.

(2) For k = 1, 2, . . . , do:

– If k = 1, generater(i)1 ∼ Pr{r1}, otherwise generate
r
(i)
k ∼ Pr{rk|r

(i)
k−1} for i = 1, . . . , N

– Compute the BIMJ0:k:

∗ Model 1: from (6) using Algorithm 2
∗ Model 2: from (7) by determining:

- Jx0:k
using Algorithm 3

- Jz1:k
using Algorithm 4

∗ Model 3: from (7) by determining:

- Jx0:k
, see (23)-(29) in [12]

- Jz1:k
, see (9) in [12]



TABLE I
JUMP MARKOV SYSTEM MODELS

xk = fk−1(xk−1, rk,vk−1) xk = fk−1(xk−1,vk−1)

zk = hk(xk, rk,wk) Model 1 Model 2

zk = hk(xk,wk) Model 3, see [12] [22]

B. BIM Computation for Model 1

For nonlinear JMSs as given by (1) closed-form solutions
for computingJ0:k generally do not exist. In the following,
Monte Carlo integration is used to approximate (6)

J0:k ≈
1

N

N∑

i=1

[∇x0:k
p(x

(i)
0:k, z

(i)
1:k)][·]

T

[p(x
(i)
0:k, z

(i)
1:k)]

2
, (10)

where x
(i)
0:k and z

(i)
1:k, i = 1, . . . , N, are indepen-

dent and identically distributed (i.i.d.) vectors such that
(x

(i)
0:k, z

(i)
1:k) ∼ p(x0:k, z1:k). We introduce the intermediate

quantities p(x0:k, z1:k|rk) and ∇x0:k
p(x0:k, z1:k|rk) which

can be computed recursively as shown in the following lemma.

Lemma 1. For JMSs as given by Model 1 in Table I, the pdf
p(x0:k, z1:k|rk) and the gradient∇x0:k

p(x0:k, z1:k|rk) can be
updated recursively as follows:
If k = 1:

p(x0:1, z1|r1) = p(z1|x1, r1)p(x1|x0, r1)p(x0), (11a)

∇x0:1
p(x0:1, z1|r1) =

[
[∇x0:1

p(z1|x1, r1)] p(x1|x0, r1)

+ p(z1|x1, r1) [∇x0:1
p(x1|x0, r1)]

]
p(x0)

+ p(z1|x1, r1) p(x1|x0, r1) [∇x0:1
p(x0)]. (11b)

If k 6= 1:

p(x0:k, z1:k|rk) = p(zk|xk, rk)p(xk|xk−1, rk)

×
∑

rk−1

Pr{rk−1|rk}p(x0:k−1, z1:k−1|rk−1), (12a)

∇x0:k
p(x0:k, z1:k|rk) =

[
[∇x0:k

p(zk|xk, rk)] p(xk|xk−1, rk)

+ p(zk|xk, rk)[∇x0:k
p(xk|xk−1, rk)]

] ∑

rk−1

Pr{rk−1|rk}

× p(x0:k−1, z1:k−1|rk−1) + p(zk|xk, rk)p(xk|xk−1, rk)

×
∑

rk−1

Pr{rk−1|rk}[∇x0:k
p(x0:k−1, z1:k−1|rk−1)],

(12b)

wherePr{rk−1|rk} = Pr{rk|rk−1} Pr{rk−1}/Pr{rk}.

Proof: Due to space limitations, the proof is provided in
an accompanying technical report [23].

Consequently, the BIMJ0:k can be computed recursively
which is summarized in Algorithm 2.

C. BIM Computation for Model 2

For JMSs whererk enters exclusively into the measurement
equation, structure in the BIM can be exploited by making

Algorithm 2 Computation of BIMJ0:k for Model 1 andk ≥ 1

(1) For i = 1, . . . , N do:
• Generatex(i)

k ∼ p(xk|x
(i)
k−1, r

(i)
k ) and set x(i)

0:k =

[x
(i)
0:k−1,x

(i)
k ]. Generatez(i)k ∼ p(zk|x

(i)
k , r

(i)
k ) and set

z
(i)
1:k = [z

(i)
1:k−1, z

(i)
k ].

• If k = 1, then evaluate the quantitiesp(x(i)
0:1, z

(i)
1 |r1 ) and

∇x0:1
p(x

(i)
0:1, z

(i)
1 |r1) using (11).

• If k 6= 1, then update the stored quantitiesPr{rk−1},
∇x0:k−1

p(x
(i)
0:k−1, z

(i)
1:k−1|rk−1) and p(x

(i)
0:k−1, z

(i)
1:k−1

|rk−1), using (12) and

Pr{rk} =
∑

rk−1

Pr{rk|rk−1}Pr{rk−1}.

• Evaluatep(x(i)
0:k, z

(i)
1:k) and∇x0:k

p(x
(i)
0:k, z

(i)
1:k) as follows:

p(x
(i)
0:k, z

(i)
1:k) =

∑

rk

p(x
(i)
0:k, z

(i)
1:k|rk)Pr{rk}

∇x0:k
p(x

(i)
0:k, z

(i)
1:k) =

∑

rk

[∇x0:k
p(x

(i)
0:k, z

(i)
1:k|rk)] Pr{rk}

(2) Evaluate the BIMJ0:k according to (10).

use of (7). In fact, it is easy to verify that when the process
equation satisfies

xk = fk−1(xk−1,vk−1), (13)

then the BIM of the priorJx0:k
will be independent ofrk.

More specifically, for Model 2 the state vectorxk is a Markov
process, i.e.p(xk|x0:k−1) = p(xk|xk−1) holds, and the BIM
of the priorJx0:k

can be computed according to the following
lemma.

Lemma 2. For a mode-independent process equation as given
by (13), the BIM of the prior can be computed according to:

Jx0:k
= δk+1(1, 1)⊗ Jx0

+

k∑

n=1

[
δk+1(n, n)⊗D11

n

+ δk+1(n, n+ 1)⊗D12
n + δk+1(n+ 1, n)⊗D21

n

+ δk+1(n+ 1, n+ 1)⊗D22,a
n

]
, (14)

with

D11
n = Ep(x0:n){−∆xn−1

xn−1
log p(xn|xn−1)}, (15a)

D12
n = Ep(x0:n){−∆xn−1

xn
log p(xn|xn−1)} = [D21

n ]T,
(15b)

D22,a
n = Ep(x0:n){−∆xn

xn
log p(xn|xn−1)}, (15c)



where⊗ denotes the Kronecker product andδk(i, j) denotes a
(k×k) dimensional matrix whose elements are all zero except
at the i-th row and thej-th column which is one.

Proof: See technical report [23].
The expectations in (15) generally cannot be solved analyt-

ically for nonlinear models as given by (13). In this case, the
expectations can be converted into a different standard form,
as in (6), and then may be approximated using Monte Carlo
integration, yielding

D11
n ≈

1

N

N∑

i=1

[∇xn−1
p(x

(i)
n |x

(i)
n−1)][·]

T

[p(x
(i)
n |x

(i)
n−1)]

2
, (16a)

D12
n ≈

1

N

N∑

i=1

[∇xn
p(x

(i)
n |x

(i)
n−1)][∇xn−1

p(x
(i)
n |x

(i)
n−1)]

T

[p(x
(i)
n |x

(i)
n−1)]

2
,

= [D21
n ]T (16b)

D22,a
n ≈

1

N

N∑

i=1

[∇xn
p(x

(i)
n |x

(i)
n−1)][·]

T

[p(x
(i)
n |x

(i)
n−1)]

2
, (16c)

wherex(i)
0:n, i = 1, . . . , N are i.i.d. vectors such thatx(i)

0:n ∼
p(x0:n). A method for numerically approximatingJx0:k

is
given in Algorithm 3.

Algorithm 3 Computation of BIM of the priorJx0:k
for Model

2 andk ≥ 1

(1) For i = 1, . . . , N do:

– Generatex(i)
k ∼ p(xk|x

(i)
k−1)

– Evaluate∇xk−1
p(x

(i)
k |x

(i)
k−1), ∇xk

p(x
(i)
k |x

(i)
k−1) and

p(x
(i)
k |x

(i)
k−1).

(2) EvaluateD11
k , D12

k , D21
k andD22,a

k according to (16) and
store the results.

(3) Evaluate the BIM of the priorJx0:k
according to (14).

It is easy to verify that the BIM for the prior (14) is the
same as in [22]. However, we still cannot develop a recursive
algorithm which is equally simple because of the correlation
caused by the moderk affecting the BIM of the dataJz1:k

.
For nonlinear models as given by (1b),Jz1:k

is generally not
tractable analytically. In the following, Monte Carlo integra-
tion is used to numerically approximate (9) according to:

Jz1:k
≈

1

N

N∑

i=1

[∇x0:k
p(z

(i)
1:k|x

(i)
0:k)][·]

T

[p(z
(i)
1:k|x

(i)
0:k)]

2
, (17)

wherex(i)
0:k andz(i)1:k, i = 1, . . . , N, are i.i.d. vectors such that

(x
(i)
0:k, z

(i)
1:k) ∼ p(x0:k, z1:k). We introduce the intermediate

quantities p(z1:k, rk|x0:k) and ∇x0:k
p(z1:k, rk|x0:k), which

can be computed recursively as stated in the following lemma.

Lemma 3. For JMSs as given by Model 2 in Table I, the pdf
p(z1:k, rk|x0:k, ) and the gradient∇x0:k

p(z1:k, rk|x0:k) can
be updated recursively as follows:

If k = 1:

p(z1, r1|x0:1) = p(z1|x1, r1) Pr{r1}, (18a)

∇x0:1
p(z1, r1|x0:1) = [∇x0:1

p(z1|x1, r1)] Pr{r1} (18b)

If k 6= 1:

p(z1:k, rk|x0:k) = p(zk|xk, rk)

×
∑

rk−1

Pr{rk|rk−1}p(z1:k−1, rk−1|x0:k−1), (19a)

∇x0:k
p(z1:k, rk|x0:k) =

∑

rk−1

Pr{rk|rk−1}

×
[
[∇x0:k

p(zk|xk, rk)] p(z1:k−1, rk−1|x0:k−1)

+ p(zk|xk, rk) [∇x0:k
p(z1:k−1, rk−1|x0:k−1)]

]
. (19b)

Proof: See technical report [23].
Then, the BIM of the dataJz1:k

can be computed recursively
as summarized in Algorithm 4. Note, that a similar but
computationally more complex algorithm has appeared in our
previous work [24].

Algorithm 4 Computation of BIM of the dataJz1:k
for Model

2 andk ≥ 1

(1) For i = 1, . . . , N do:
• Generate z

(i)
k ∼ p(zk|x

(i)
k , r

(i)
k ) and set z(i)1:k =

[z
(i)
1:k−1, z

(i)
k ].

• If k = 1, then evaluate the quantitiesp(z(i)1 , r1 |x
(i)
0:1) and

∇x0:1
p(z

(i)
1 , r1|x

(i)
0:1) using (18).

• If k 6= 1, update the stored quantitiesp(z(i)1:k−1, rk−1

|x
(i)
0:k−1) and∇x0:k−1

p(z
(i)
1:k−1, rk−1|x

(i)
0:k−1) using (19).

• Evaluatep(z(i1:k|x
(i)
0:k) and∇x0:k

p(z
(i)
1:k|x

(i)
0:k) as follows:

p(z
(i)
1:k|x

(i)
0:k) =

∑

rk

p(z
(i)
1:k, rk|x

(i)
0:k),

∇x0:k
p(z

(i)
1:k|x

(i)
0:k) =

∑

rk

∇x0:k
p(z

(i)
1:k, rk|x

(i)
0:k)

(2) Evaluate the BIM of the dataJz1:k
according to (17).

D. Recursive Computation of the BCRB

The algorithm presented so far requires the computation of
the matrix inverse[J0:k]

−1, see (4). This approach eventually
becomes impractical in situations whenk is large, due to its
computational complexity which is in the order ofO(((k +
1)nx)

3). In these situations, recursive algorithms are sought
after that avoid invertingJ0:k.

1) Model 1: The recursive algorithm presented in [12] can
be generalized to Model 1 as described in the following.
For nonlinear JMSs, a recursive calculation of the filtering
information matrixJk is generally not possible without intro-
ducing further approximations. This is due to the fact that the
state vectorxk is not a Markov process1, i.e. conditionally it

1In order to obtain a Markov process, we have to augment the state vector
xk with the discrete mode variablerk.



depends on the entire state sequencex0:k−1, or equivalently

p(xk, zk|x0:k−1, z1:k−1) 6= p(xk, zk|xk−1, z1:k−1). (20)

Nevertheless, it can be assumed that given the measurement
sequencez1:k−1, the dependence between(xk, zk) andxk−l

decreases rather quickly, especially when conditioned on the
state vector of all intermediate times,xk−l+1:k−1. Thus, it is
reasonable to assume that there exists an integerd, such that

p(xk, zk|x0:k−1, z1:k−1) ≈ p(xk, zk|xk−d:k−1, z1:k−1), (21)

i.e. (xk, zk) and xk−l given z1:k−1 are approximately inde-
pendent for alll > d, when we condition on the state vectors
xk−d:k−1. The above assumption will result in two important
properties forJ0:k as stated in the following lemma.

Lemma 4. Suppose that given the measurementsz1:k−1,
the joint vector (xk, zk) and x0:k−d−1 are conditionally
independent in the sense thatp(xk, zk|x0:k−1, z1:k−1) =
p(xk, zk|xk−d:k−1, z1:k−1). It then follows that

[J0:k]0:k1−d−1×k1:k1
= ([J0:k]k1:k1×0:k1−d−1)

T = 0 (22a)

[J0:k+1]0:k−d×0:k−d = [J0:k]0:k−d×0:k−d (22b)

for any k and k1 such thatk ≥ k1 > d.

Proof: See technical report [23].
Here we have used the following notation

[J0:k]t1:t2×t3:t4 = Ep(x0:k,z1:k){−∆t3:t4
t1:t2 log(p(x0:k, z1:k))},

(23)
where [J0:k]t1:t2×t3:t4 denotes the submatrix ofJ0:k that
contains the rows that correspond to timet1 and t2 and
the columns that correspond to timet3 to t4. Note, that the
dimension of[J0:k]t1:t2×t3:t4 is nx(t2−t1+1)×nx(t4−t3+1),
whereas that ofJ0:k is nx(k + 1)× nx(k + 1).
The above lemma basically states that the matrixJ0:k becomes
block tri-diagonal, a property required for developing a recur-
sive algorithm forJk.

Proposition 1. Suppose that the conditional independence
assumption of Lemma 4 holds. Then, the(nx × nx) filtering
information matrixJk can be computed from the following
relation:

Jk = Ek −DT

k [Hk]
−1Dk, (24)

with

Ek = [J0:k]k:k×k:k, (25a)

Dk = [J0:k]k−d:k−1×k:k, (25b)

where Ek and Dk have size(nx × nx) and (nxd × nx),
respectively. The(nxd × nxd) matrix Hk can be updated

recursively according to the following relations

Hk =

[
H̃22 D̃2

k

(D̃2
k)

T Ẽk

]
−

[
H̃T

12

(D̃1
k)

T

]
[H̃11]

−1
[
H̃12 D̃1

k

]

(26a)

with

H̃k =

[
H̃11 H̃12

(H̃12)
T H̃22

]

=

{
C̃k −BT

k−1A
−1
k−1Bk−1, k = d+ 1

Hk−1 + C̃k −Ck−1, k > d+ 1
(26b)

and

D̃k =

[
D̃1

k

D̃2
k

]
, (26c)

where the different matrices are defined as follows:

Ak = [J0:k]0:k−d−1×0:k−d−1, (27a)

Bk = [J0:k]0:k−d−1×k−d:k−1, (27b)

Ck = [J0:k]k−d:k−1×k−d:k−1, (27c)

C̃k = [J0:k]k−d−1:k−2×k−d−1:k−2, (27d)

D̃k = [J0:k]k−d−1:k−2×k−1:k−1, (27e)

Ẽk = [J0:k]k−1:k−1×k−1:k−1, (27f)

and whereD̃1
k and H̃11 are of dimension(nx ×nx), D̃2

k and
H̃T

12 are of dimension(nx(d − 1) × nx), whereasH̃22 is a
(nx(d− 1)× nx(d− 1)) dimensional matrix.

Proof: See technical report [23].
For the computation ofJk, it is required to compute

[J0:k]k−d−1:k×k−d−1:k at each recursion. As this is a sub-
matrix of J0:k it can be easily computed from the techniques
introduced to compute the full matrixJ0:k. Thus, we only have
to compute an approximation of

[J0:k]k−d−1:k×k−d−1:k ≈
1

N

N∑

i=1

[∇xk−d−1:k
p(x

(i)
0:k, z

(i)
1:k)][·]

T

[p(x
(i)
0:k, z

(i)
1:k)]

2
,

(28)

which compared to (10) requires to store and update the
much shorter vector∇xk−d−1:k

p(x
(i)
0:k, z

(i)
1:k). Further, instead

of having to invert the(nx(k + 1) × nx(k + 1)) matrix
J0:k, whose dimension grows at each time step, it is only
required to invert matrices of constant size that do not exceed
(nx(d+ 1)× nx(d+ 1)). The method to recursively compute
the BCRB for Model 1 is summarized in Algorithm 5.

2) Model 2: For Model 2, finding a recursion forJk

also requires to introduce approximations. Even though the
state vectorxk for this model is a Markov process, i.e.
p(xk|x0:k−1) = p(xk|xk−1) holds, this property cannot be
exploited in the pdf of the current measurement given all
previous states and measurements, i.e.

p(xk, zk|x0:k−1, z1:k−1) = p(zk|x0:k, z1:k−1)p(xk|xk−1)

6= p(zk|xk, z1:k−1)p(xk|xk−1).
(29)



Algorithm 5 Recursive computation of BCRB
(1) At time k = 0 do:

• Compute the initial filtering information matrixJ0, see
Algorithm 1, and its inverse[J0]

−1 which gives the
BCRB for estimatingx0.

(2) For k = 1, 2, . . . , d, do:
• Compute the full BIMJ0:k using Algorithm 1.
• ComputeU[J0:k]

−1UT which gives the BCRB for esti-
matingxk.

• If k = d, then extract fromJ0:k the submatricesAk =
[J0:k]0:k−1×0:k−1 and Bk = [J0:k]0:k−1×k:k and store
them.

(3) For k = d+ 1, d+ 2, . . . , do:
• Compute the Bayesian information submatrix

[J0:k]k−d−1:k×k−d−1:k using Algorithm 1, but replace
∇x0:k

by ∇xk−d−1:k
.

• Extract the matricesCk, C̃k,Dk, D̃k,Ek andẼk which
are defined in (25) and (27) and store them.

• EvaluateH̃k from (26b).
• EvaluateHk from (26a) and store the result.
• EvaluateJk from (24), and compute the inverse[Jk]

−1

which gives the BCRB for estimatingxk.

However, we can assume that givenz1:k−1, the dependence
betweenzk andxk−l decreases rather quickly, especially when
conditioned onxk−l+1:k−1. Thus, we can assume that there
exists an integerd, such that

p(zk|x0:k, z1:k−1) ≈ p(zk|xk−d:k, z1:k−1), (30)

i.e. zk andxk−l given z1:k−1 are approximately independent
for all l > d, when we condition onxk−d:k.
The above assumption results again in favorable propertiesfor
J0:k as stated in the following lemma.

Lemma 5. Suppose that given the measurementsz1:k−1,
the current measurementzk and x0:k−d−1 are condition-
ally independent in the sense thatp(zk|x0:k−1, z1:k−1) =
p(zk|xk−d:k, z1:k−1). It then follows that

[J0:k]0:k1−d−1×k1:k1
= ([J0:k]k1:k1×0:k1−d−1)

T = 0 (31a)

[J0:k+1]0:k−d×0:k−d = [J0:k]0:k−d×0:k−d (31b)

for any k and k1 such thatk ≥ k1 > d.

Proof: See technical report [23].
The conditional independence assumption of Lemma 5

results in thatJ0:k has a block tri-diagonal structure that is
needed for a recursive evaluation of the filtering information
matrix Jk.

Proposition 2. Suppose that the conditional independence
assumption of Lemma 5 holds. Then, the(nx × nx) filtering
information matrixJk can be computed from the recursion
presented in Proposition 1.

Proof: Since Proposition 1 requires Lemma 4 to hold
and Lemma 5 contains the same conditions on the structure

of J0:k as Lemma 4, it follows that both lemmas will yield
the same recursion as given in Proposition 1.

Hence, the algorithm to recursively compute the BCRB for
Model 2 is essentially the same as for Model 1, which is
summarized in Algorithm 5.

V. A LGORITHMS FORCONDITIONAL INDEPENDENCE

ASSUMPTIONVERIFICATION

In Section IV. D approximations have been introduced that
allow a recursive computation of the filtering information ma-
trix Jk for different depthsd. In the following, algorithms are
presented to quantifyd such that the conditional independence
approximation in (21) and (30) hold.

A. Model 1

In order to find a metric to quantifyd, we decompose the
conditional density as follows

p(xk, zk|x0:k−1, z1:k−1) =
∑

rk

p(zk|xk, rk)

× p(xk|xk−1, rk) Pr{rk|x0:k−1, z1:k−1}. (32)

Of particular importance is the probability
Pr{rk|x0:k−1, z1:k−1), which tells us how well rk can
be predicted based on the information that is contained in
the past statesx0:k−1 and measurementsz1:k−1. For the
approximation introduced in (21), a similar expression canbe
derived which is given by

p(xk, zk|xk−d:k−1, z1:k−1) =
∑

rk

p(zk|xk, rk)

× p(xk|xk−1, rk) Pr{rk|xk−d:k−1, z1:k−1}, (33)

i.e. the two expressions differ only in their prediction prob-
abilities. We introduce the abbreviationsP (ℓ) , Pr{rk =
ℓ|x0:k−1, z1:k−1} andQ(ℓ) , Pr{rk = ℓ|xk−d:k−1, z1:k−1},
and define an average Kullback-Leibler type divergence
(AKLD)

DAKL (P ||Q) ,∫
DKL (P ||Q) p(x0:k−1, z0:k−1) dx0:k−1 dz1:k−1 (34)

with

DKL (P ||Q) =
∑

ℓ

P (ℓ) log

(
P (ℓ)

Q(ℓ)

)
, (35)

which is equal to zero when the probabilities are equal. Note
that we have introduced an average divergence in order to
get rid of the conditional dependency on(x0:k−1, z0:k−1).
We further introduce the average Jensen-Shannon divergence
(AJSD), which is defined as

DAJS(P ||Q) = 0.5 ·DAKL (P ||(P +Q)/2)

+ 0.5 ·DAKL (Q||(P +Q)/2). (36)

In contrast to the AKLD, the AJSD is symmetric and bounded
as0 ≤ DAJS(P ||Q) ≤ 1, but requires that (35) is defined with
respect to the binary logarithm, and is used in the following



to quantify the depthd of the BCRB recursions.
The AJSD generally cannot be computed in closed-form, due
to the integral in the expression for the AKLD. We therefore
resort to Monte Carlo integration techniques to approximate

DAKL (P ||Q) ≈
1

N

N∑

i=1

DKL (P
(i)||Q(i)) (37)

with P (i) , Pr{rk = ℓ|x
(i)
0:k−1, z

(i)
1:k−1} andQ(i) defined ac-

cordingly, and where(x(i)
0:k−1, z

(i)
1:k−1), i = 1, . . . , N , are i.i.d.

vectors such that(x(i)
0:k−1, z

(i)
1:k−1) ∼ p(x0:k−1, z1:k−1). For

the evaluation of the AKLD, it is required to have closed-form
expressions for the prediction pmfsPr{rk|x0:k−1, z1:k−1} and
Pr{rk|xk−d:k−1, z1:k−1}. These probabilities can be com-
puted recursively using the following two lemmas.

Lemma 6. The prediction pmfPr{rk|x0:k−1, z1:k−1} can be
computed forn = 1, . . . , k − 1 from the following recursion

Pr{rn+1|x0:n, z1:n} =
∑

rn

(
Pr{rn+1|rn}p(zn|xn, rn)p(xn|xn−1, rn)

×Pr{rn|x0:n−1, z1:n−1}

)

∑

rn+1

∑

rn

(
Pr{rn+1|rn}p(zn|xn, rn)p(xn|xn−1, rn)

×Pr{rn|x0:n−1, z1:n−1}

) ,

(38)

which is initialized withPr{r1|x0, z1:0} = Pr{r1}.

Proof: See technical report [23].

Lemma 7. The prediction pmfPr{rk|xk−d:k−1, z1:k−1} can
be computed forn = k − d+ 1, . . . , k − 1 from the following
recursion

Pr{rn+1|xk−d:n, z1:n} =
∑

rn

(
Pr{rn+1|rn}p(zn|xn, rn)p(xn|xn−1, rn)

×Pr{rn|xk−d:n−1, z1:n−1}

)

∑

rn+1

∑

rn

(
Pr{rn+1|rn}p(zn|xn, rn)p(xn|xn−1, rn)

×Pr{rn|xk−d:n−1, z1:n−1}

) ,

(39)

which is initialized withPr{rk−d+1|xk−d, z1:k−d}.

Proof: See technical report [23].
The only unknown in the latter recursion is the

initial pmf Pr{rk−d+1|xk−d, z1:k−d}, which is obtained
by integrating out the past statesx0:k−d−1 from
Pr{rk−d+1|x0:k−d, z1:k−d}. For nonlinear JMSs, closed-
form expressions forPr{rk−d+1|xk−d, z1:k−d} generally do
not exist. However, we can rewrite

Pr{rk−d+1|xk−d, z1:k−d} ∝
∑

rk−d

∑

rk−d−1

Pr{rk−d+1|rk−d}Pr{rk−d|rk−d−1}

× p(zk−d|xk−d, rk−d)

∫
p(xk−d|xk−d−1, rk−d)

× p(xk−d−1, rk−d−1|z1:k−d−1) dxk−d−1 (40)

and approximatep(xk−d−1, rk−d−1|z1:k−d−1) using Rao-
Blackwellized particle filters (RBPFs), for details see [23].

B. Model 2

Similarly to Model 1, we can decompose the conditional
densitiesp(zk|x0:k, z1:k−1) and p(zk|xk−d:k, z1:k−1) to ob-
tain expressions depending onPr{rk|x0:k−1, z1:k−1} and
Pr{rk|xk−d:k−1, z1:k−1}. Hence, we can use AJSD to quan-
tify the depthd. The prediction probabilities can be computed
from Lemma 6 and Lemma 7, with the exception that we
have to replacep(xn|xn, rn) with p(xn|xn). Sincep(xn|xn)
appears in both numerator and denominator and is independent
of rn, the densityp(xn|xn) cancels out, and the expressions
simplify accordingly, see [23] for further details.

VI. SIMULATION RESULTS

We assume the following jump Markov linear Gaussian
system

xk = Fxk−1 + vk(rk), (41a)

zk = H(rk)xk +wk(rk), (41b)

with mapping matricesF andH(rk), process noise distributed
according tovk(rk) ∼ N (µv(rk),Q(rk)) and measurement
noise distributed according towk(rk) ∼ N (µw(rk),R). We
investigate for each model (i.e. Model1 and Model 2) an
example, and assume that for both examples, the discrete mode
rk evolves according to a2-component time-homogeneous
Markov chain with initial mode probabilitiesπ1

1 = π2
1 = 0.5,

and transition probability matrixΠ with elementsπ11 = π22 =
0.95. We further assume that the initial state for both examples
is zero-mean Gaussian distributedx0 ∼ N (0,P0|0) with
covariance matrixP0|0 = diag([0.5, 0.5]).
We compare the following bounds and filter performances:
1) Optimal filter (in MSE sense) [6], [25], 2) Interacting
multiple model Kalman filter (IMM-KF) [2], [7], 3) M-BCRB
using a RBPF with optimal importance density andNp = 50
particles [14], 4) enumeration BCRB (EBCRB) [1], [10], and
5) BCRB computed from Algorithm 1 (BCRB(non-recursive))
and Algorithm 5 (BCRB(recursive)). We perform in total
N = 50.000 Monte Carlo runs (100.000 for Model 2) and
compute the root mean square error (RMSE) according to

RMSEk =

√√√√ 1

N

N∑

i=1

(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2, (42)

with true statexk = [x1,k, x2,k]
T and estimated statêxk =

[x̂1,k, x̂2,k]
T. Accordingly, every bound is computed by taking

the square root of the trace of the corresponding(2 × 2)
BCRB matrix. We further compute the AJSD using a RBPF
with optimal importance density [26] andNp = 50 particles
from N = 10.000 Monte Carlo runs (even though 1.000 runs
already yielded acceptable results).
Model 1)We assume the following mapping matrix

F =

[
1 0.632
0 0.368

]
, (43)
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Fig. 1. Simulation results for the two examples. RMSE vs. time step k for the different bounds and algorithms are shown in (a) for Model 1 and in
(d) for Model 2. A comparison of BCRB approximations with zoomedin RMSE scale is shown in (b) for Model 1 and in (e) for Model 2. The average
Jensen-Shannon divergence (logarithmic scale) vs. time stepk for different recursion depthsd is shown in (c) for Model 1 and in (f) for Model 2.

and process noise with mean vectorµv(1) = [0,−0.1]T

and µv(2) = [0, 0.1]T , and covariance matrixQ(1) =
diag([0.5, 1]) and Q(2) = diag([0.35, 0.35]). The measure-
ment model is defined by a mode-dependent mapping ma-
trix H(1) = diag([1, 1]) and H(2) = diag([0.8, 0.5]), and
measurement noise with mean vectorµw(1) = [0, 0]T and
µw(2) = [0.2, 0.5]T, and covariance matrixR = diag([1, 1]).
Model 2) We assume a mode independent process model
(41a), with mapping matrixF defined as in (43) and process
noise with mean vectorµv = 0 and covariance matrix
Q = diag([0.4, 0.4]). The measurement model is mode-
dependent with mapping matrix

H(1) =

[
1 −0.2
0 0.5

]
, H(2) =

[
0.8 0
0 0.5

]
, (44)

and measurement noise with mean vectorµw(1) = [0, 0]T

and µw(2) = [0, 0.25]T, and covariance matrix given by
R = diag([1, 1]).
The simulation results for both examples are summarized
in Fig. 1. For Model 1, we can observe that the different
bounds fail to predict the performance of the optimal filter,see
Fig. 1(a), i.e. all bounds are rather loose. Here, the M-BCRBis
the tightest bound, followed by the BCRB and the EBCRB. It
is worth noting that tightness relations between the M-BCRB
and BCRB have been established [13], [14], i.e. the M-BCRB
is at least as tight as the BCRB. Such tightness relations cannot
be established in general between the EBCRB and the M-
BCRB or BCRB, i.e. there are certain problem instances where
the EBCRB is tighter than the M-BCRB and/or the BCRB,

whereas for other problem instances the reverse is true. This
depends on the informativeness of the model as was explained
in [12], [13]. Even though the M-BCRB is the tightest bound
in this example, its computation requires to run a RBPF for
each Monte Carlo trial, which is much more expensive than
the computation of the BCRB and EBCRB using Monte Carlo
integration. In Fig. 1(b) the recursive BCRB approximations
for different depthsd using Algorithm 5 are compared to
the BCRB obtained from Algorithm 1 (note the different
RMSE scale compared to Fig. 1(a)). It can be seen that even
choosingd = 2 yields a fairly well approximation of the
BCRB. However, differences to the BCRB are clearly visible.
Increasing the depthd yields better approximations of the
BCRB, with less differences, which is also reflected in the
AJSD as shown in Fig. 1(c). Note, that the AJSD curves for
k < d+1 are not shown since in this case the prediction pmf
and its approximation are equivalent, i.e. AJSD= 0. AJSD
values of10−2 seem to be insufficient to obtain an excellent
approximation of the original BCRB. However, the more we
increased, the better this approximation becomes and an AJSD
value smaller than3 · 10−4 (or d = 10) seems to be an
appropriate choice for this example. In order to obtain a better
understanding of the AJSD, consider a true probabilityp and
an approximationq which is1% smaller in probability thanp
(e.g.p = 0.45 andq = 0.44), then the JSD averaged over all
possiblep is JSDavg. ≈ 1.94 · 10−4. Similarly, if we assume
thatq is 0.1% smaller in probability thanp (e.g.p = 0.45 and
q = 0.499), then JSDavg. ≈ 1.7 · 10−6.



For Model 2, we can observe that the different bounds are
rather loose bounds since they are relatively far away from the
optimal filter performance as time increases, see Fig. 1(d).As
in the previous example, the M-BCRB is the tightest bound
in this setting followed by the BCRB and EBCRB. For the
recursive BCRB approximations with different depthsd as
shown in Fig. 1(e), conclusions similar to that of Model1
can be drawn. The AJSD values for this example are different
to that of Model1 and one should better choose a larger depth
d in order to obtain an excellent approximation of the BCRB,
as depicted in Fig. 1(f). It is worth noting that compared to
Model 1, the AJSD curves start at one time instance later,
i.e. atk = d + 2, which is a result of the fact that in Model
2 the transition pdfp(xk|xk−1) is independent of the mode
variablerk, and the corresponding pmf and its approximation
for k = d+ 1 are equivalent.
Note, that the AJSD is one indicator to assess the quality of the
bound approximations. By simulating many other examples
we found out that an AJSD value smaller than10−6 generally
yields very good approximations with almost no differences
to the original BCRB. In many other examples, values smaller
than10−4 were already sufficient to obtain excellent approx-
imations, but then other factors, such as the shape of the
mixture density (32), i.e. if the mixture components overlap or
not, play an important role. As a final remark we want to stress
that the true benefit of the proposed approach is to adaptively
change the depthd depending on the result of the AJSD value,
as we run the algorithm for the bound computations.

VII. C ONCLUSION

In this paper, we have developed algorithms to compute
the BCRB for a wide class of jump Markov systems. Our
work extends previous algorithms to models where the discrete
mode enters the measurement model. We have presented
recursive algorithms to compute the desired bound for both the
general case where the discrete mode also enters the motion
model and the special case where it does not. The calculation
of the BCRB involves a design parameter that determines an
independency approximation and we also provide a strategy
for how to select this parameter. Simulations indicate thatthe
BCRB may provide a suitable trade-off between tractability
and tightness compared to other bounds that have appeared in
the literature.
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at Linköping and Lund in Information Technology (ELLIIT).

REFERENCES

[1] B. Ristic, S. Arulampalam, and N. Gordon,Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Boston, MA, USA: Artech-
House, 2004.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan,Estimation with Appli-
cations to Tracking and Navigation. New York, NY, USA: Wiley-
Interscience, 2001.

[3] S. Chib and M. Dueker, “Non-Markovian regime switching with en-
dogenous states and time-varying state strengths,” Econometric Society,
Econometric Society 2004 North American Summer Meetings 600, Aug.
2004.

[4] F. Gustafsson,Adaptive Filtering and Change Detection. New York,
NY, USA: John Wiley & Sons, 2000.

[5] O. L. V. Costa, M. D. Fragoso, and R. P. Marques,Discrete-Time Markov
Jump Linear Systems, ser. Probability and Its Applications, J. Gani, C. C.
Heyde, P. Jagers, and T. G. Kurtz, Eds. London, UK: Springer-Verlag,
2005.

[6] G. A. Ackerson and K. S. Fu, “On state estimation in switching
environments,”IEEE Trans. Autom. Control, vol. 15, no. 1, pp. 10–17,
1970.

[7] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model
algorithm for systems with Markovian switching coefficients,” IEEE
Trans. Autom. Control, vol. 33, no. 8, pp. 780–783, 1988.

[8] S. McGinnity and G. W. Irwin, “Multiple model bootstrap filter for
maneuvering target tracking,”IEEE Trans. Aerosp. Electron. Syst.,
vol. 36, no. 3, pp. 1006–1012, 2000.
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