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Abstract—In this paper, recent results on the evaluation of information matrix. It has been shown that the M-BCRB is

the Bayesian Craner-Rao bound for jump Markov systems are at |east as tight as the BCRB, but it is much more complex to
presented. In particular, previous work is extended to jump evaluate

Markov systems where the discrete mode variable enters into In thi f th luati f the BCRB
both the process and measurement equation, as well as where'"" 1S Paper, we locus on thé evaluation or the pro-

it enters exclusively into the measurement equation. Recursive POs€d in [12]. In particular, this bound is useful in sitoat
approximations are derived with finite memory requirements as when it is tighter than the EBCRB and when computational

well as algorithms for checking the validity of these approxima- resources are not available for evaluating the M-BCRB or M-
tions are established. The tightness of the bound and the validity EgcRRB, The main contributions are as follows. We generalize
of its approximation is investigated on a couple of examples. . .

the approach presented in [12] to the important cases, where
the discrete mode variable enters either exclusively in® t
measurement model or into both the process and measurement

Jump Markov systems (JMSs) are nowadays widely usedrntmdels, see e.g. [13], [15]-[17] and [18], [19] for applicat

model systems in various disciplines, such as target tngckiexamples. For both cases we additionally derive recurdimms
[1], [2], econometrics [3] and control [4], [5] to name only aapproximately computing the BCRB. These recursions depend
few. Compared to the nonlinear filtering framework, estongat on a conditional independence assumption between temporal
for JMSs have to additionally estimate the discrete state (@ndom variables within a certain time interval that hasnbee
mode) of a Markov chain that allow a switching betweenhosen in [12] empirically. We present recursive algorghm
different state-space models, for which various estinmatiavith linear in time complexity that can be used to specifithi
algorithms have been proposed e.qg. [2], [6]-[9]. time interval.
The computation of performance bounds for JMSs has alshe rest of the paper is organized as follows. In Sectiorhd, t
evolved over the past few years. To date, various Bayesigystem model is presented together with some definitiond use
Craner-Rao bounds (BCRBs) for JMSs have been proposedthe paper. Section Ill gives a brief background overview
that generally differ from each other in terms of tightnesd a on the BCRB, and Section IV provides the main results
computational complexity. The perhaps least computaliypnafor computing the BCRB. The algorithms for conditional
complex bound for JMSs is the enumeration BCRB (EBCRBindependence assumption verification are presented imo8ect
It is derived from a bound on the mean square error (MSE) and the simulation results are summarized in Section VI.
conditioned on the entire mode sequence, and an uncoralitioBection VIl finally concludes this work.
bound is generally obtained by averaging over all possible
mode sequences [1], [10]. A bound that is at least as tight ] ] . ] ]
as the EBCRB, but which is significantly more computational Consider the discrete-time JMS, that is described by the
complex to evaluate since it relies on running particleriiies  following process and measurement equation
the marginal EBCRB (_M-EBCRB). The M-EBCRB is derived X = o1 (Xp— 1, Ts V1) (1a)
from the same principles as the EBCRB, but evaluates a
different information matrix, see [11] for the details. Airth 2k = b (3, 70, W), (1b)
bound that is directly bounding the unconditional MSE hasherez; € R": is the measurement vector at discrete time
been presented in [12], and is hereinafter termed BCRB. Thistantk andx;, € R"= is the state vector ankl_; andh;, are
bound cannot be related in terms of tightness to the EBCRiBbitrary nonlinear functions. The process and measuremen
or M-EBCRB via an inequality, as explained in [12], [13]noise vectorsv,_; € R™ and wp € R" are assumed
However, its computation is in many cases (e.g. nonlinearutually independent white processes, with noise dessitie
models or time varying models) only slightly more complexy ., (vi—1) and pyw . (wy) that are assumed known. The
than the computation of the EBCRB. Another bound that hasode variabler;, denotes a discrete-time Markov chain with
been proposed in the literature, is the so-called margi@®B s states and transition probability matriX with elements
(M-BCRB) [14]. It is also directly bounding the uncondit@n m;; = Pr{r, = j|ry_1 = i}. At time instancest = 0 and
MSE but similar to the M-EBCRB evaluates a different = 1, prior information about the state, and moder;

I. INTRODUCTION

Il. SYSTEM MODEL



is available in terms of the probability density functiord{p switching structure and the BCRB for this case was presented
Px, (x0) and probability mass function (pmf)} = Pr{r; = in[22]. In this paper, only algorithms for computing the BBR

1}. The initial statex, and moder; are mutually independent for Model 1 and 2 are presented. The reader interested in the
and also independent &f; andv;_1. BCRB for Model 3 is referred to [12].

In the following, let xp, = [xJ,...,x;]T and z;., = The approach followed in this paper for computing the BCRB
[z{,...,z]]T denote the collection of states and measuré to numerically evaluate the BIMo.; of the complete state
ment vectors up to time:. Furthermore, letxg.x(z1.x) = trajectoryxg., using Monte Carlo methods. In many cases, the
(%3 (z1.%),-..,%} (z1.1)]" denote the estimator of the stateexpression inside the expectation of (3) is difficult to e
sequence, and let the sequence of mode variables atitimdirectly and it may then be easier to evaluate the equivalent
be given byri, = (ri,ri,...,r%), wherei = 1,...,s*. expression
Whenever possible, and when there is no risk of ambiguity, v (oses Z0)] [T
the estimator’'s dependency on the measuremantss omit- Joik = Ep(xcop,z1.0) { X0 D1 X0:k 1:’; } . (6)
ted in the following. Let us further introduce the gradient P(Xo:k; Z1:k)

operatorVy = [9/ds1,...,0/9s,]" and Laplace operator If the mode variable enters only into one of the system
AL =V V[ for any vectorss andt, and letE,,){-} denote equations, structure inherent in the BIM can be exploited. |
expectation with respect to the pdf (or pmf)z). these cases, it is convenient to decompose the BIM as follows

[1l. BACKGROUND ONBCRB Jok = Ixo + Jz1p (7)
Tbe BCRB provides a_lowerAbound on the M_SE mam{?vhereJ denotes the BIM of the prior and process model:
M(%X0.x(2z1.1)) Of any estimatorxg.r(z1.). Assuming that
suitable regularity conditions hold [20], the BCRB for esti 3 _E [V o P(X0:0)] [T
mating the state sequengg.;, is defined as the inverse of the Xo:e = Ep(xo:k) p(X0.1)2
Bayesian information matrix (BIMY.,, bounding

M(Xo:k) 2 Epxegrznn) Lok (Z1:6) — Xo0ue] [T} > [Jou] L

X0:k

®)
andJ,, , denotes the BIM of the data:

vx . P\Z1:k |X0: 17
(2) le:k _ Ep(x():k,zl:k) {[ o.k( ( l|k| O)I;)H] } (9)
where [A][]" stands for[A][A]T and where the matrix in- P\Z1:k | X0:k
equality A > B means that the differenc& — B is a positive In particular, different algorithms will be provided on how
semi-definite matrix [21]. The BIM is defined as Jo or Jx,, and J,,, can be evaluated for the different
. models presented in Table I. The results can be then used
Joik = Epiou iz {- A logp(xou, 1), (B) g compute the BCRB for the current statg according to
with dimension given byk + 1)n, x (k + 1)n,. (4). The general algorithmic structure for computing théBlI
In the following, we are interested in computing the BCRHo.x for the different models is presented in Algorithm 1.
of the MSE matrix for estimating;. Generally, this can be
achieved by taking thén, x n,) lower-right submatrix of Algorithm 1 Computation of the BIMJ.;, for different JIMS
[Jo.x] !, which can be expressed mathematically#or 1 as models
. . 1) Attime k = 0, generatex’ ~ p(xo) for i = 1,..., N,
M . :E XL .7 . — 'T ( X N 0 ) )
(Xk) _IJP.(A/I;&Al:k);([I)j’]:_(Zl.k) xk|[']" } and definex?) — x.
N XO:I; T A ) — For each, evaluatevxo:op(xé%) = onp(xff)) and
> U [Jox] " UT = 3] 7, @) p(xy) = p(x().
— Compute the initial BIMJ, = Jy, and store the
results ofJy,.

with mapping matrix

U=10,L,], () (2 Fork=1,2,..., do:
and wherel,,_ is the (n, x n,) identity matrix ando is a - |f( l;? =1, gene(r?teﬂgl) ~ Pr{r,}, otherwise generate
matrix of zeros of appropriate size. The matix is denoted r ~Pr{rglr,” }fori=1,...,N
as the filtering information matrix, whose inverse gives the — Compute the BIMJg.:
BCRB for estimatingx;, we seek to derive. x Model 1: from (6) using Algorithm 2

IV. COMPUTING THE BCRB *x Model 2: from (7) by determining:

- Jx,.. using Algorithm 3
A. Jump Markov System Models - 3, using Algorithm 4
Z1:k
Depending on how the mode variablg enters into the « Model 3: from (7) by determining:
system equations, different IMSs will result. In totalgthdif- -3 see (23)-(29) in [12]
ferent system models can be identified which are summarized ) JXM’ see (9) in [12]
Z1:k

in Table I. When both the process and measurement model are
independent ofr;, we arrive at systems without Markovian




TABLE |
JuMP MARKOV SYSTEM MODELS

[k = foma e—1, s vim1) | Xk = Feo1 (Ke—1, Vi—1)

Zp = hk(kak,wk) Model 1 Model 2
zy, = hyp(x, wi) Model 3, see [12] [22]
B. BIM Computation for Model 1 Algorithm 2 Computation of BIMJy,.;, for Model 1 andk > 1

For nonlinear JMSs as given by (1) closed-form solutlongl) Fori=1,. G , IV do: (i) (i)
for computingJo., generally do not exist. In the following, ° Gi’;erate(’f)k ~ p(x’f‘?‘)k LT ) angj ??t Xok =
Monte Carlo integration is used to approximate (6) [Xo k—1:X; |. Generatez;’ ~ p(zk\xk ,7,") and set

(4) ()]_

i i zlki[zlk 12y
Vo P 230 e (1) (i)
Jou ~ Z 0:k 7\ 0:k 0 )1 k 7 (10) o If k=1, then evaluate the quantitipéx,.;,z; ’|r1 ) and
i=1 (XOk 7 1)) Vxo. 1p(xO 1,z1)\r1) using (11).
, o If k £ 1, thenu date the stored quantiti®s{r
where XSL and Zggc, 7 = N are |ndepen_ # (i) p q { k— 1}

Vo 1P(X0k: 1’Z1k 1|rk—1) and p(xézgc 17Z§3c 1

dent and identically distributed (||d) vectors such ttha Irx_1), using (12) and

(xé}c,zgi) ~ p(xo0:k,21:%). We introduce the intermediate
quantities p(xo.x, z1.1|7x) and Vi, ,p(Xo.x, z1.%|7x) Which Prirc} = > Prirklre_1} Pri{ri_1}.
can be computed recursively as shown in the following lemma. Tho1

Lemma 1. For JMSs as given by Model 1 in Table I, the pdf , Evaluatep(x(()zgc,zgzk) andVy,, kp(x(() L,zg 2) as follows:
P(Xo:k, Z1:1|7) @nd the gradienV, , p(Xo:x, z1:x|7%) can be

updated recursively as follows: p(X((> L z), k ZP Xo k> Z11k|r’€)Pr{r/€}
If £ =1: Tk
v (4) , (4) v, (i) 7 (i) P
p(XO:th‘Tl) :p(Z1|X177“1) (X1|X0,7”1) ( ) (11a) OAP(XOk zl k) Z[ O:Icp(XO.k Zl.k‘{rk)] I'{’l"k}

Tk

Vo P(X0:1,21|71) = [[on;lp(ZﬂXuﬁ)}p x1[x0,71) (2) Evaluate the BIMJ,.;, according to (10).

+ p(21[x1,71) [V, P(X11%0,71)] | P(%0)

+ p(z1[x1,71) p(x1[x0, 1) [Vio, P(%0)]. (11b) yse of (7). In fact, it is easy to verify that when the process

If k+#1: equation satisfies
P(X0:ks 21:k|7k) = P(2Zk|Xp, 1) P (X0 XR—1, 1) xp, = f1(Xp-1, V1), 13)
x Z Pr{rp_1|re}p(Xo:e—1, Z16—1|re—1), (12a) then the BIM of the priorJy,, will be independent ofr.
Th_1 More specifically, for Model 2 the state vectoy is a Markov

process, i.ep(xi|xo.x—1) = p(xx|xx—1) holds, and the BIM
of the priorJy,,, can be computed according to the following

+ Pz Xk, T0) [V g P (X1 [ K11, Tk:)ﬂ Z Pr{r,_|ry} lemma.

onz,cp(XO:k,ZLkh"k) = {[on:kp(zﬂxk,T}c)]P(XMkahTk)

k=1 Lemma 2. For a mode-independent process equation as given
X P(X0:k—1,Z1:k—1|Tk—1) + P(Zk|Xk, Tk)P(XE[XK-1,7k) by (13), the BIM of the prior can be computed according to:
X Z Pr{re—1|7x }[Vxo P(X0:k—1, Z1:6—1|7k—1)] k
Th—1 Jx e = 5k 1(171)®Jx + {(;k 1(n,n)®D}L1
(12b) 0:k + 0 n; +
12 21
wherePr{ri_i|ri} = Pr{ri|rc_1} Pri{rc_1}/Pr{ry}. + Oppr(n,n + 1) @Dy + dpga(n+1,n) @ Dy
22,a

Proof: Due to space limitations, the proof is provided in + Opa(n+Ln+1) @Dy }’ (14)

an accompanying technical report [23]. LI
Consequently, the BIMJy., can be computed recursively

which is summarized in Algorithm 2. D!t = o) L= A% log p(xp[x,—1)}, (15a)
C. BIM Computation for Model 2 D,? = EP(XU y{—A%r " log p(Xn[xn-1)} = D717,

. . 15b
For JMSs where; enters exclusively into the measurement . (15b)
equation, structure in the BIM can be exploited by making Pn " = Ep(xy.){ =A% 108 p(Xn[Xn-1)}, (15¢)



where® denotes the Kronecker product afigli, j) denotes a If k = 1:
(k x k) dimensional matrix whose elements are all zero except _
at thei-th row and thej-th column which is one. plz1,71[x0:1) = pl2afxi,m1) Prird, (182)

. VioaP(21,71(%0:1) = [V, P(z1]x1,71)] Pr{ri}  (18b)
Proof: See technical report [23].

|
The expectations in (15) generally cannot be solved anal;'jt-k 7 L
ically for nonlinear models as given by (13). In this case, th (2185 T [X0:k) = P(2Zk|Xks 1)
expectations can be converted into a different standam,for

as in (6), and then may be approximated using Monte Carlo X Z Pri{rp|ri—1}p(21:k—1, 7k-1]%0:6-1), (190)
integration, yielding Th—1
Vo P(Z 1y Tk |X0:k) = Z Pr{ry|ry_1}

N (Vo () x5 )]
N (GIGEND (162)
= K )]

N (),,.(4) (1) ,.(2)
D12 ~ ]- Z [vxn,p(x’ﬂ |Xn—1)][vxn,71p(x7l ‘Xn—l)}T +p(Zk|Xk7’l“k) [VXU:kp(lek—laTk—l‘XO:k—l)] . (19b)

X {[vxo:kp(zk |Xk7 7k)] p(zlckfla Tk—1 |x0:k71)

n YN @10 2 ’
o # [pGen =)l Proof: See technical report [23]. [ ]
=[D;] (16b)  Then, the BIM of the datd,, , can be computed recursively
1 v (i)| (ONNTRRS as summarized in Algorithm 4. Note, that a similar but
D Lo (TG )1 s . . .
n RN Z Do) g (16c) computationally more complex algorithm has appeared in our
o PG xS previous work [24].
wherexf.),, i = 1,..., N are L.i.d. vectors such th o, ~  Algorithm 4 Computation of BIM of the datd,, , for Model
p(xX0.n). A method for numerically approximatindx,.,. IS 2 andk > 1
given in Algorithm 3. @ Fori — 1,....N do:
. Generatez\” ~ p(zx\”,r?) and setzl) =
Algorithm 3 Computation of BIM of the priody,,, for Model [Z(i) z(i)]
: 1:k—1“k 1"
2 andk >1

o If k= 1,(tik)1en e\gluate. the quantitieszgi),rl \xéf)l) and
Vxo.P(z1,71]%5.1) using (18). ,

o If & # 1, update the stored quantitiqz{z(lfl._l,rk,l

x4k 1) and .on;kflp(zgfi,pTk—1|xéfi,1) using (19).

« Evaluatep(z!’, [x{}) and V,,, p(z\} [x{) ) as follows:

() Fori=1,...,N do:

— Generatex!” ~ p(x;|x\" )

— EvaluateV,, ,p(x\"x\" ), Vs p(x"x{" ) and

p(x; %)
11 12 21 22,a i
(2) EvaluateD;", D;*, D;;" andD; ™" according to (16) and @ @) @) @)
store the results. p(zg % |xp.0) = ZP(ZLkaTMXo:k)v

(3) Evaluate the BIM of the priod,,, according to (14). Tk

Vo P LX) = D Vi (20 70 ]x5)
Tk

It is easy to verify that the BIM for the prior (14) is the
same as in [22]. However, we still cannot develop a recursié
algorithm which is equally simple because of the corretatio
caused by the mode, affecting the BIM of the datd,, , .
For nonlinear models as given by (18),, , is generally not . ) )
tractable analytically. In the following, Monte Carlo igra-  The algorithm presented so far requires the computation of

tion is used to numerically approximate (9) according to: the matrix inversgJo.;] !, see (4). This approach eventually
becomes impractical in situations whéns large, due to its

) Evaluate the BIM of the datd,,, according to (17).

D. Recursive Computation of the BCRB

T ii\’: [onz,gp(zﬁilxéfi)][-]T an (fompéjtational complexity which is in the order Of(((k +
zie 7 @ 1) \1o ) )n,)?). In these situations, recursive algorithms are sought
i=1 [p(2131%0.3,)] after that avoid invertinglo...
() G . 1) Model 1: The recursive algorithm presented in [12] can
wherex,; andz,;, i = 1,..., N, are i.i.d. vectors such thatpe generalized to Model 1 as described in the following.

(x-21%) ~ p(Xo.,z1). We introduce the intermediateFor nonlinear JMSs, a recursive calculation of the filtering

quantities p(zy., rk[xo:x) and Vi, , p(z1:k, 7k[Xo:x), Which information matrixJ,, is generally not possible without intro-
can be computed recursively as stated in the following lemmgycing further approximations. This is due to the fact that t

Lemma 3. For JMSs as given by Model 2 in Table I, the pd§tate vectork,, is not a Markov processi.e. conditionally it

P(z1k, Tk [X0:k, ) an_d the gradientVy,,, p(z1.x, 7k [Xo:1) €an 1in order to obtain a Markov process, we have to augment the séattor
be updated recursively as follows: x}, With the discrete mode variabe, .



depends on the entire state sequergg_1, or equivalently recursively according to the following relations

(X Z |X VA )7é (X VA ‘X VA ) (20) Hk = I»:I22 ]Bi — I»:IIZ [ﬁll]_l |: ﬁ12 ]51 :|
P\Xk, 2k |X0:k—1,21:k—1 P\Xky 2k | Xk—1,Z1:k—1)- i (Di)T o (D}ﬁ)T k
. . (26a)
Nevertheless, it can be assumed that given the measurement
sequencez,.;_1, the dependence betweéry, z;) andx;_; With )
decreases rather quickly, especially when conditionedhen t H,, Hp,
state vector of all intermediate times,_;1..—1. Thus, it is H), = (ﬁ12)T ﬁ22
reasonable to assume that there exists an intégsuch that -
_ { Cir — BZ_iA,;llB;H, E=d+1 (26b)
P(Xk, 2k |X0:k—1, Z1:k—1) R P(Xk, 21| Xk—a:k—1, Z1:k—1), (21) Hp 1 +Cp = Cpor, k>d+1
and
i.e. (xx,zr) andxy,_; given z;.,_1 are approximately inde- ~ Bl
pendent for all > d, when we condition on the state vectorsD,, = [ ~ 4 ] , (26¢)
Xr_d:k—1- The above assumption will result in two important Dj
properties forJy.;, as stated in the following lemma. where the different matrices are defined as follows:
Lemma 4. Suppose that given the measuremesnts,_i, Ay = [Joklok—d—1x0:k—d—1, (27a)
the joint vector (xj,z;) and xq.,_q—1 are conditionally Br = [Jot]ok—d—1xk—dik—1, (27b)
independent in the sense thatxy,zy|xo0.k—1,21.6—1) = Ck S O P (27¢)
p(Xk,Zk‘Xk,d:kfl,Zl;kfl). It then follows that
= Jorlk—d—1:k—2xk—d—1:k—2, (27d)
(To:)oks —d—1xkrkr = ([Joik ey ks 0, —a—1) T = 0 (228) = [Jok)k—d—1:k—2xk—1:k—1, (27e)
[Jo:kt1]o:k—dx0:k—d = [Jo:k]o:k—dx0:k—d (22b) Ek = [Joklk—1:h—1xk—1:k—1, (27f)

and whereD1 and Hn are of dimensior(n, x n), D and

forany k and k1 such thatk > ki > d. HZ, are of d|men3|or(nx( — 1) x ng), whereasH22 is a

Proof: See technical report [23]. m  (nu(d—1) xny(d — 1)) dimensional matrix.
Here we have used the following notation Proof: See technical report [23]. ™
For the computation ofJy, it is required to compute
[Jo:kltastsxtsits = Ep(Xo:k,zl:k){_Aifﬁ;‘ log(p(%0:x, Z1:%)) }, [Jo:k]k—d—1:kxk—a—1:& at each recursion. As this is a sub-

(23) matrix of Jo.;, it can be easily computed from the techniques
where [Jo.x)i, 4, xt5:¢, denotes the submatrix of., that introduced to compute the full matriky.,. Thus, we only have
contains the rows that correspond to time and ¢, and to compute an approximation of

the columns that correspond to timg to ¢4. Note, that the XN p(x (i) () NHT
dimension of Jo.x]¢, 0 xts:tq 1S N (to—t14+1) X0y (ta—t3+1),  [Joun)k—d—1:kxb—d—1:k = — Z Vouma, k(,-) 0(’:; Lib ;
whereas that offo.;, is n.(k + 1) x ng(k +1). N = [p(x0.1.0 Z1.3)]

The above lemma basically states that the makgix becomes (28)
block tri-diagonal, a property required for developing aute  which compared to (10) requires to store and update the
sive algorithm forJy,. much shorter vectoNy, , .. kp(xgg,z@) Further, instead

of having to invert the(n,(k + 1) x ngy(k + 1)) matrix
ok, Whose dimension grows at each time step, it is only
required to invert matrices of constant size that do not estce

Proposition 1. Suppose that the conditional independenc
assumption of Lemma 4 holds. Then, thg x n,) filtering
information matrixJ; can be computed from the following

relation: (ny(d+1) x ny(d+1)). The method to recursively compute
’ the BCRB for Model 1 is summarized in Algorithm 5.
J. = E;, — D] [H,] " 'Dy, (24) 2) Model 2: For Model 2, finding a recursion fody
also requires to introduce approximations. Even though the
with state vectorx, for this model is a Markov process, i.e.

p(Xk|xX0.k-1) = p(xk|xx—1) holds, this property cannot be
By = [Tou] (253) exploited in the pdf of the current measurement given all
k O:klk:kxkiks previous states and measurements, i.e.
Dy = [Jo:k)k—dik—1xk:k (25b)
D(Xk, 2k [X0:k—15 Z1:k—1) = P(Zk|X0:k, Z1:6—1)P (X [Xp—1)
where E;, and Dy have size(n, x n;) and (n.d x n,), 7# P(2k Xk, 21k 1) P(Xk Xk 1)
respectively. Then,d x n,d) matrix H, can be updated (29)



Algorithm 5 Recursive computation of BCRB of Jo.x as Lemma 4, it follows that both lemmas will yield
(1) Attime k =0 do: the same recursion as given in Proposition 1. ]

« Compute the initial filtering information matrid,, see Hence, the algorithm to recursively compute the BCRB for
Algorithm 1, and its inverseJo]~! which gives the Model 2 is essentially the same as for Model 1, which is
BCRB for estimatingx. summarized in Algorithm 5.

(2) Fork=1,2,...,d, do:
o Compute the full BIMJy.; using Algorithm 1.

V. ALGORITHMS FORCONDITIONAL INDEPENDENCE

« ComputeU|[Jo.;,]~'UT which gives the BCRB for esti- ASSUMPTIONVERIFICATION
mating xy. In Section IV. D approximations have been introduced that
o If & = d, then extract fromJ,.;, the submatrices\, = allow a recursive computation of the filtering informatiomm
[Jo:klok—1x0:6—1 and By = [Jo.x]o:k—1xk:x @nd store trix Jy, for different depthsi. In the following, algorithms are
them. presented to quantify such that the conditional independence
(3) Fork=d+1,d+2,...,do: approximation in (21) and (30) hold.

« Compute the Bayesian information submatrbA Model 1
[Jo:k)k—d—1:kxk—d—1:k USINng Algorithm 1, but replace "™
Vo BY Vo aie In order to find a metric to quantifg, we decompose the
« Extract the matrice€y, C, Dy, Dy, E, andE,, which conditional density as follows
are defined in (25) and (27) and store them.
o EvaluateH, from (26b).
« EvaluateH; from (26a) and store the result.
« EvaluateJ; from (24), and compute the inversa,] !
which gives the BCRB for estimating,. Of  particular importance is the probability
Pr{rk|x0.k—1,21.5—1), Which tells us how wellr; can
be predicted based on the information that is contained in
However, we can assume that given,_, the dependence the past statesc,.,—1 and measurements;.,_,. For the
betweenz;, andx;,_; decreases rather quickly, especially whefPProximation introduced in (21), a similar expression ban
conditioned onx;_;;1.—1. Thus, we can assume that therélerived which is given by
exists an integed, such that

P(Xk, Z| X0k -1, Z1:k—1) = Zp(zk\xk, k)
Tk

X p(xk|xgp—1,7k) Pr{ry|xo.x—1,21.6-1}. (32)

P(Xks 2k |[Xk—dik—1, Z1:k—1) = ZP(Zk\le Tk)
Tk

p(Zk\Xo;k,ZLk—ﬂ R‘p(zk\xk—d:kazhk—l)’ (30)

. . . . X p(Xp|xp—1,7%) Pr{ry|Xp—a:k—1,21:6—1}, (33)
i.e.zp andxy,_; givenz.,_; are approximately independent

for all [ > d, when we condition ox;_g4.%. i.e. the two expressions differ only in their prediction Ipro
The above assumption results again in favorable propddies abilities. We introduce the abbreviatio3(¢) £ Pr{r, =
Jo.. as stated in the following lemma. lx0:k—1,21:6—1} @nd Q(0) £ Pr{ry = {|Xp—ak—1,Z1:5—1},

, and define an average Kullback-Leibler type divergence
Lemma 5. Suppose that given the measuremesnts,_i, (AKLD)

the current measuremert, and xg.,_q_1 are condition-
ally independent in the sense thatzy|xo.x—1,21.6-1) = Dax (P||Q) &

_d:kyZ1:x—1)- It then follows that

Plasxh—dk, Z14-1) /DKL(PHQ)p(XO:k—l,Zo:k—l)dXo:k—1 dzy.x-1 (34)
Jorlok—a—1xkibs = ([Joklkrbyxoky—a—1)" =0 (318)
[Jokr1]ok—axo:k—a = [Jo:r]o:k—dx0:k—d (31b) with

P
for any k and k; such thatk > k; > d. Dy (P||Q) = > _ P(0)log (()) : (35)
J4

QL)
Proof: See technical report [23].

[ | I -
The conditional independence assumption of Lemmav\g"Ch is equal _to zero when the probabl_htles are equal. Note
results in thatJy., has a block tri-diagonal structure that iéhat we have introduced an average divergence in order to

needed for a recursive evaluation of the filtering informati 9 rid of the conditional dependency q®o.—1,20:-1).
matrix J,. We further introduce the average Jensen-Shannon divezgenc

(AJSD), which is defined as

Proposition 2. Suppose that the conditional independence

assumption of Lemma 5 holds. Then, the x n,) filtering Dpss(P||Q) =0.5 - Daxc (PI[(P + Q)/2)
information matrixJ; can be computed from the recursion +0.5- Dakc (QI(P +Q)/2).  (36)

presented in Proposition 1. In contrast to the AKLD, the AJSD is symmetric and bounded

Proof: Since Proposition 1 requires Lemma 4 to holés0 < Dajs(P||Q) < 1, but requires that (35) is defined with
and Lemma 5 contains the same conditions on the structuespect to the binary logarithm, and is used in the following



to quantify the depthl of the BCRB recursions. and approximatep(Xg—_q—1,7k—d—1|2%1:k—a—1) Using Rao-
The AJSD generally cannot be computed in closed-form, dgéackwellized particle filters (RBPFs), for details see][23
to the integral in the expression for the AKLD. We therefore

resort to Monte Carlo integration techniques to approxdmatB' Model 2
N Similarly to Model 1, we can decompose the conditional
1 )11 densitiesp(zx|xo:x, z1:—1) and p(zx|Xx—_a:k, z1.6—1) t0 Ob-
Dai (P ~—3SN" Dy (PD|0® 37) Uensiiesp(zi|Xo:k; Z1:k—1 P(Zk | Xk —d:ks Z1:k—1
Ak (PlIQ) N; ke 179 (37) tain expressions depending dPr{r|xo.x—1,2Z1.x—1} and

, ) , , Pr{ri|Xx—d:k—1,21.5—1}. Hence, we can use AJSD to quan-
with PO £ Pr{r, = f|¥é€2717?¥3€71} and Q") defined ac- tify the depthd. The prediction probabilities can be computed
cordingly, and wheréx!'} |,z{) |),i=1,...,N, areiid. from Lemma 6 and Lemma 7, with the exception that we
vectors such thatx{/s |, z\") ) ~ p(xox_1,21:%_1). For have to replace(x, |x,, r,) with p(xn[x,). Sincep(x,|x,)
the evaluation of the AKLD, it is required to have closedafior @PPears in both numerator and denominator and is independen
expressions for the prediction prifs{ry|xo.x 1,211} and O 7, the densityp(x, |x,) cancels out, and the expressions
Pr{ry|Xs_a:x—1,21.6—1}. These probabilities can be com-Simplify accordingly, see [23] for further details.

puted recursively using the following two lemmas. VI. SIMULATION RESULTS

Lemma 6. The prediction pmPr{ry|xo.x—1,z1:.k-1} can be  We assume the following jump Markov linear Gaussian

computed fom = 1,...,k — 1 from the following recursion system
PI‘{Tn_H‘Xo:n, zl:n} = x, =Fxi_1+ Vk(Tk), (413)
Z Pr{r7z+1 |T7L}p(zﬂ,|x’na T?z,)p(xn|xn—17 Tn) Zp = H(Tk) X + Wi (rk)7 (41b)
X Pr{rn|XO:n—1a Zl:n—l}

Tn ., with mapping matrice¥ andH(r;), process noise distributed
Z Z ( Pr{r1]rn}p(zn|Xn, 7n)p(%n X0 -1, n) ) according tovy(ry) ~ N(p,(rx), Q(rx)) and measurement
X Pr{rn[xXom—1,21m-1} noise distributed according ta (r,) ~ N (g, (r), R). We
(38) investigate for each model (i.e. Model and Model2) an
example, and assume that for both examples, the discrete mod
r, evolves according to @-component time-homogeneous
Proof: See technical report [23]. m Markov chain with initial mode probabilities = 7 = 0.5,
and transition probability matrikl with elementsr;; = 7oy =
0.95. We further assume that the initial state for both examples
is zero-mean Gaussian distributed ~ N(0,Pgo) with
covariance matrixP |, = diag([0.5, 0.5]).
Pr{rpi1|Xk_dim, Z1n} = \1/\)/eocotmpa}r?_|tthe (follc'Jv'wSirIIEg bouno)ls[g]nd[zfg'][erz)pelrf(t)rma?ces:
ptimal filter (in sense , , nteracting
3 ( Pr{r"j ‘;ﬁp (T;"X"’T”)pz(x”""?l’”) ) multiple model Kalman filter (IMM-KF) [2], [7], 3) M-BCRB
T Xk-din—1, Blin—1 using a RBPF with optimal importance density aNg = 50
Z Z ( Pr{rp41|rm }p(Zn|Xn, 7)) p(Xn|Xn—1, ) ) " particles [14], 4) enumeration BCRB (EBCRB) [1], [10], and
X Pr{rp|Xk—dn—1,21:n-1} 5) BCRB computed from Algorithm 1 (BCRB(hon-recursive))

Tnil Tn

which is initialized withPr{r;|xo,z1.0} = Pr{r}.

Lemma 7. The prediction pmPr{ry|x;_d.x—1,%1.k—1} €an
be computed fon =k —d+1,...,k— 1 from the following
recursion

Tn

e (39) and Algorithm 5 (BCRB(recursive)). We perform in total

S _ N = 50.000 Monte Carlo runs (100.000 for Model 2) and

which is initialized wWithPr{ry _q41|Xx—a,Z1:x—a}- compute the root mean square error (RMSE) according to
Proof: See technical report [23]. [ ]

The only unknown in the latter recursion is the _
I S ) RMSE;
initial pmf Pr{ri_qi1|Xkx—d,21.k—a}, Which is obtained
by integrating out the past statexg. 41 from _ : ) .
Pr{ry_as1|Xo:k—d,2Z1.x_a}. For nonlinear JMSs, (:Ios;ed-V‘f'th true itatexk = [z1k,22]" and estimated state;, =

WE

(16 — B10)% + (28 — B2k)2, (42)
=1

not exist. However, we can rewrite the square root of the trace of the correspondiggx 2)
BCRB matrix. We further compute the AJSD using a RBPF
Pr{ry—ay1|Xk—d, Z1:1—a} with optimal importance density [26] and,, = 50 particles

Z Z Pr{re_as1|re—a} Pr{rr_a|re—a_1} from N = 10.000 Monte Carlo runs (even though 1.000 runs
already yielded acceptable results).
Model 1) We assume the following mapping matrix

F:{l 0.632}7 (43)

Thk—dTk—d—1
><p(Zk—d|Xk-—d77’k—d)/p(Xk—d|Xk—d—177"k—d)

X P(Xk—d—1, Th—d—1|Z1:k—d—1) AXk—d—1 (40) 0 0.368
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Fig. 1. Simulation results for the two examples. RMSE vs. tinep ét for the different bounds and algorithms are shown in (a) fordblol and in

(d) for Model 2. A comparison of BCRB approximations with zooniedRMSE scale is shown in (b) for Model 1 and in (e) for Model heTaverage
Jensen-Shannon divergence (logarithmic scale) vs. timeksfep different recursion depthg is shown in (c) for Model 1 and in (f) for Model 2.

20 25

and process noise with mean vectar (1) = [0,—0.1]7 whereas for other problem instances the reverse is trus. Thi
and p,(2) = [0,0.1]7, and covariance matrixQ(1) = depends on the informativeness of the model as was explained
diag([0.5,1]) and Q(2) = diag([0.35,0.35]). The measure- in [12], [13]. Even though the M-BCRB is the tightest bound
ment model is defined by a mode-dependent mapping ma-this example, its computation requires to run a RBPF for
trix H(1) = diag([1,1]) and H(2) = diag([0.8,0.5]), and each Monte Carlo trial, which is much more expensive than
measurement noise with mean vecjoy, (1) = [0,0]T and the computation of the BCRB and EBCRB using Monte Carlo
i, (2) =[0.2,0.5]T, and covariance matriR = diag([1,1]).  integration. In Fig. 1(b) the recursive BCRB approximasion
Model 2) We assume a mode independent process mod@l different depthsd using Algorithm 5 are compared to
(41a), with mapping matri¥ defined as in (43) and processhe BCRB obtained from Algorithm 1 (note the different

noise with mean vectop, = 0 and covariance matrix RMSE scale compared to Fig. 1(a)). It can be seen that even
Q = diag([0.4,0.4]). The measurement model is modeehoosingd = 2 yields a fairly well approximation of the
dependent with mapping matrix BCRB. However, differences to the BCRB are clearly visible.

1 —029 08 0 Increasing the depthl yields better approximations of the
H(1) = [ 0 05 } , H(2)= { 0 05 } . (44) BCRB, with less differences, which is also reflected in the
AJSD as shown in Fig. 1(c). Note, that the AJSD curves for

and measurement noise with mean vegtqr(1) = [0,0]" % < d+ 1 are not shown since in this case the prediction pmf

and p,,(2) = [0,0.25]T, and covariance matrix given byand its approximation are equivalent, i.e. AISM. AJSD
R = diag([1, 1]). values of10~2 seem to be insufficient to obtain an excellent

The simulation results for both examples are summarize@proximation of the original BCRB. However, the more we
in Fig. 1. For Model 1, we can observe that the differenicreasel, the better this approximation becomes and an AJSD
bounds fail to predict the performance of the optimal fils&e value smaller thar - 10~* (or d = 10) seems to be an
Fig. 1(a), i.e. all bounds are rather loose. Here, the M-B@RBappropriate choice for this example. In order to obtain aebet
the tightest bound, followed by the BCRB and the EBCRB. linderstanding of the AJSD, consider a true probabjlignd

is worth noting that tightness relations between the M-BCR&n approximatiory which is 1% smaller in probability thamp
and BCRB have been established [13], [14], i.e. the M-BCR®.g.p = 0.45 and ¢ = 0.44), then the JSD averaged over all
is at least as tight as the BCRB. Such tightness relationsotanpossiblep is JSDyg. &~ 1.94 - 10~%. Similarly, if we assume
be established in general between the EBCRB and the Watq is 0.1% smaller in probability thamp (e.g.p = 0.45 and
BCRB or BCRB, i.e. there are certain problem instances wheje-= (.499), then ISRy ~ 1.7-1076.

the EBCRB is tighter than the M-BCRB and/or the BCRB,



For Model 2, we can observe that the different bounds arg4] F. GustafssonAdaptive Filtering and Change Detection New York,

rather loose bounds since they are relatively far away fioen t _ NY; USA: John Wiley & Sons, 2000. , ,
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in the previous example, the M-BCRB is the tightest bound Heyde, P. Jagers, and T. G. Kurtz, Eds. London, UK: Sprivgeiag,
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shown in Fig. 1(e), conclusions similar to that of Model 1970.
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algorithm for systems with Markovian switching coefficighttEEE
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d in order to obtain an excellent approximation of the BCRBJ8] S. McGinnity and G. W. Irwin, “Multiple model bootstrap ti#r for
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