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Gamma Gaussian inverse-Wishart Poisson
multi-Bernoulli Filter for Extended Target Tracking

Karl Granström, Maryam Fatemi and Lennart Svensson
Chalmers University of Technology, Gothenburg, Sweden. E-mail: firstname.lastsname@chalmers.se.

Abstract—This paper presents a gamma-Gaussian-inverse
Wishart (GGIW) implementation of a Poisson multi-Bernoulli
mixture (PMBM) filter for multiple extended target tracking.
The GGIW density is the single extended target conjugate prior
assuming a Poisson distributed number of Gaussian distributed
measurements, and the PMBM density is the multi-object conju-
gate prior assuming Poisson target measurements, Poisson clutter,
and Poisson target birth. Specifically, the Poisson part of the
GGIW-PMBM multi-object density represents the distribution of
targets that have not yet been detected, and the multi-Bernoulli
mixture part of the GGIW-PMBM multi-object density represents
the distribution of targets that have been detected at least once.

The update and the prediction of the GGIW-PMBM density
parameters are given, and the filter is evaluated in a simulation
study. The results show that the GGIW-PMBM filter outperforms
PHD and CPHD filters for extended target tracking.

I. INTRODUCTION

Multiple target tracking (MTT) is the processing of sets
of measurements obtained from multiple sources in order to
maintain estimates of targets’ current states. In an MTT context
an extended target is defined as a target that potentially gives
rise to more than one measurement at each time step, where
the set of measurements are spatially distributed around the
extended target state [1]. Extended targets occur in scenarios
where the resolution of the sensor, the size of the target, or
the distance between target and sensor, are such that multiple
resolution cells of the sensor are occupied by single targets.
Examples of such extended target scenarios include vehicle
tracking using automotive radars, tracking of sufficiently close
airplanes or ships with ground or marine radar stations, and
person tracking using laser range sensors.

A common extended target measurement model is the
inhomogeneous Poisson Point Process (PPP), proposed in [2],
[3]. At each time step, a Poisson distributed random number
of measurements are generated, spatially distributed around
the target. Several different alternative models for the spatial
distribution have been presented, e.g., the random matrix
model [4], [5] and the random hypersurface model [6]. The
random matrix model, which is used in this paper, assumes
that the measurements are Gaussian distributed around the
target’s center of mass. For a Poisson number of measurements
with Gaussian spatial distribution the gamma-Gaussian-inverse
Wishart (GGIW) distribution is conjugate prior for single
extended target tracking [4], [5], [7].

Random Finite Sets (RFS) and Finite Set Statistics (FISST)
[8], [9] is a theoretically elegant and appealing approach to
the MTT problem where the targets and the measurements

are modelled as sets of random variables. Computationally
feasible RFS filters include the Probability Hypothesis Density
(PHD) filters [10], the Cardinalized PHD (CPHD) filters [11],
and the various multi-Bernoulli (MB) filters, see e.g. [12], [13].
For the PPP extended target model of [2], [3], a PHD filter
was presented in [14], a CPHD filter was presented in [15],
[16], and labelled multi-Bernoulli (LMB and GLMB) filters
were presented in [17], [18]. GGIW implementations of the
extended target PHD, CPHD and LMB filters can be found in
[16]–[21]. Comparisons have shown that for multiple extended
target tracking the (G)LMB filters outperform the CPHD filter,
which in turn outperforms the PHD filter, see [16]–[18].

For extended target MTT the GLMB distribution is a con-
jugate prior for the multi-object probability density function
[18]. For point target MTT, at least two types of RFS conjugate
priors have been presented: a GLMB conjugate prior [13], and a
PMBM conjugate prior [22]. The PMBM conjugate prior allows
an elegant separation of the set of targets into two disjoint
subsets: targets that have been detected, and targets that have
not yet been detected; and the PMBM has already given
rise to computationally efficient algorithms [22]. Recently, an
extended target PMBM conjugate prior was presented [23],
which is similar to the point target PMBM [22]. Note that while
the GLMB and PMBM conjugate priors are theoretically exact,
in practice approximations of the data association problem are
required.

In this paper we present a GGIW implementation of the
extended target PMBM filter [23]. The update and the pre-
diction of all involved parameters are presented, and we also
outline steps for the necessary complexity reduction. Further,
the resulting GGIW-PMBM tracking filter is evaluated in a
simulation study where its performance is compared to GGIW
implementations of the PHD, CPHD, and LMB filters [16]–[21].

II. PROBLEM FORMULATION

Let ξik denote the state of the ith target at discrete time step
k, and let the target set be denoted as

Xk =
{
ξik
}Nxk
i=1

. (1)

The target set cardinality |Xk| = Nx
k is a time-varying discrete

random variable, and each target state ξik is a random variable.
The set of measurements obtained at time step k is denoted

as

Zk =
{
zjk

}Nzk
j=1

, (2)



where Nz
k = |Zk| is the cardinality of the measurement

set at time k. There are two types of measurements: clutter
measurements and target originated measurements, and the
measurement origin is assumed unknown. Note that the sets
above are without order and the set indexing is arbitrary; the
particular choices i = 1, . . . , Nx

k and j = 1, . . . , Nz
k are only

used for notational simplicity and convenience.
The ultimate objective is to approximate the multi-object

distribution at time step k given the union of all measurement
sets up to and including time step k, denoted fk|k(Xk|Zk),
where Zk denotes all measurement sets Zm from m = 0
up to, and including, m = k. In MTT the multi-object
density fk|k(Xk|Zk) is often approximated by a particle
representation or a parametric density, and the involved single-
object densities are in turn approximated by particle rep-
resentations or parametric densities. In this paper the set
density fk|k(Xk|Zk) is approximated by a PMBM density,
and the single-object densities are approximated by GGIW
densities. The GGIW-PMBM is a conjugate prior, and thus it is
possible to compute the posterior density exactly, given enough
computational resources.

Given the PMBM and GGIW assumptions, estimating the
multi-object distribution fk|k(Xk|Zk) corresponds to the up-
date and the prediction of the GGIW-PMBM parameters. The
problem considered in this paper is to present the update and
the prediction of the GGIW-PMBM parameters under standard
modelling assumptions, and to find suitable approximations
such that the GGIW-PMBM filter can be implemented using
limited computational resources.

Notation is given in Table I, note the following important
differences between a partition P of the set Z, and a disjoint
set of I subsets {Vi}Ii=1 whose union is the set Z:
• The cells C in a partition P are always non-empty,

whereas a subset Vi may be empty.
• The number of cells in a partition range from one (all

measurements in one cell) to |Z| (each cell contains one
unique measurement), whereas the number of subsets is
determined by I , and we may have I > |Z|.

III. POISSON RANDOM MATRIX SINGLE-TARGET
MODELING

Each extended target is modeled using the PPP model [2],
[3] and the random matrix model [4], [5]. In this model
the target shape is approximated by an ellipse, and at each
time step a Poisson distributed number of measurements are
spatially distributed around the target. The Poisson process has
unknown rate and the spatial distribution is a Gaussian with
unknown mean and covariance.

The extended target state ξk is the combination of the scalar
γk, the vector xk and the matrix Xk. The random vector
xk ∈ Rnx is the kinematic state, which describes the target’s
position and its motion parameters (e.g., velocity, acceleration
and turn-rate). The random matrix Xk ∈ Sd++ is the extent
state and describes the target’s size and shape, and d is the
dimension of the extent (typically d = 2 or d = 3). Lastly, the

TABLE I
NOTATION

• Rn is the set of real n-vectors, and Sn++ is the set of symmetric positive
definite n× n-matrices.

• |X|: set cardinality, i.e., number of elements in set X.
• Z\Y, where Y ⊆ Z, denotes set difference, i.e., Z\Y contains the

elements in Z that are not in the subset Y ⊆ Z.
• Im: identity matrix of size m×m.
• 〈a; b〉 =

∫
a(x)b(x)dx: inner product of a(x) and b(x)

• Φnm denotes the set of mappings

α : {1, . . . ,m} → {0, . . . , n} (3a)

subject to

{1, . . . , n} ⊆ α ({1, . . . ,m}) (3b)
α(i) > 0, i 6= `⇒ α(i) 6= α(`) (3c)

• P∠Z denotes that P partitions the set Z into non-empty subsets C
(called cells), such that

∪C∈P C = Z (4a)
Ca ∩Cb = ∅, ∀Ca,Cb ∈ P : Ca 6= Cb (4b)

• {Vi}Ii=1 : ]Ii=1Vi = Z denotes a disjoint set of I possibly empty
subsets Vi, in other words

∪Ii=1 Vi = Z (5a)
Vi1 ∩Vi2 = ∅, ∀i1 6= i2 (5b)

random variable γk > 0 is the measurement model Poisson
rate.

The measurement likelihood for a single measurement z is

φ(zk|ξk) = N (zk ; Hkxk, Xk) , (6)

where Hk is a known measurement model. The single-target
conjugate prior for the Poisson random matrix model is a
gamma-Gaussian-inverse Wishart (GGIW) distribution [5], [7],

fk|k (ξ) =G
(
γk ; αk|k, βk|k

)
N
(
xk ; mk|k, Pk|k

)
× IWd

(
Xk ; vk|k, Vk|k

)
, (7)

where αk|k and βk|k are the Gamma distribution’s shape and
rate, mk|k and Pk|k are the mean and covariance of the
Gaussian distribution, and vk|k and Vk|k are the degrees of
freedom and shape matrix of the inverse Wishart distribution.
The gamma distribution is the conjugate prior for the unknown
Poisson rate, and the Gaussian-inverse Wishart distributions
are the conjugate priors for Gaussian distributed detections
with unknown mean and covariance. We also use the short
hand notation

fk|k (ξk) = GGIW
(
ξk ; ζk|k

)
, (8)

where ζk|k =
{
αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k

}
is the set of

GGIW density parameters.
The updated parameters ζk|k, and the corresponding pre-

dicted likelihood, for a GGIW distribution with prior parame-
ters ζk|k−1 that are updated with a set of detections W under
the linear Gaussian model (6) are given in Table II. For further
discussions about the measurement update within the random
matrix extended target model see, e.g., [4], [5], [24].



TABLE II
GGIW UPDATE

Input: ζk|k−1 and set of detections W
Updated GGIW parameters

ζk|k =



α
k|k = α

k|k−1
+ |W|,

β
k|k = β

k|k−1
+ 1,

m
k|k = m

k|k−1
+K

k|k−1
ε
k|k−1

,

P
k|k = P

k|k−1
−K

k|k−1
HkPk|k−1

,

v
k|k = v

k|k−1
+ |W|,

V
k|k = V

k|k−1
+ N̂

k|k−1
+ Zk

where

z̄k = 1
|W|

∑
z
(i)
k
∈W

z
(i)
k ,

Zk =
∑

z
(i)
k
∈W

(
z

(i)
k − z̄k

)(
z

(i)
k − z̄k

)T

X̂
k|k−1

= V
k|k−1

(
v
k|k−1

− 2d− 2
)−1

,

ε
k|k−1

= z̄k −Hkmk|k−1
,

N
k|k−1

= ε
k|k−1

(
ε
k|k−1

)T

,

S
k|k−1

= HkPk|k−1
HT
k +

X̂k|k−1

|W| ,

K
k|k−1

= P
k|k−1

HT
k

(
S
k|k−1

)−1
,

N̂
k|k−1

=
(
X̂
k|k−1

)1/2 (
S
k|k−1

)−1/2
N
k|k−1

×
(
S
k|k−1

)−T/2 (
X̂
k|k−1

)T/2

Predicted likelihood

Lk =
(
π|W||W|

)− d
2

∣∣∣Vk|k−1

∣∣∣ vk|k−1
−d−1

2

∣∣∣V
k|k

∣∣∣ vk|k−d−1

2

Γd

(
v
k|k−d−1

2

)
Γd

(
v
k|k−1

−d−1

2

)

×
∣∣∣X̂k|k−1

∣∣∣ 12∣∣∣S
k|k−1

∣∣∣ 12
Γ
(
αk|k

)(
βk|k−1

)α
k|k−1

Γ
(
α
k|k−1

)(
β
k|k

)α
k|k

Output: ζk|k and likelihood Lk

For the kinematics state, the extent state, and the measure-
ment rate, the motion models are

xk+1 = f (xk) + wk (9)
Xk+1 = M(xk)XkM(xk)T (10)
γk+1 = γk. (11)

where wk is Gaussian process noise with zero mean and
covariance Q, and M(xk) is a transformation matrix. For
these motion models the predicted parameters ζk+1|k for a
GGIW distribution with posterior parameters ζk|k are given in
Table III. For longer discussions about prediction within the
random matrix extended target model, see, e.g., [4], [5], [25].

IV. RFS MULTI-TARGET MODELING

This section first presents a review of random set theory;
specifically the PPP and the MB process. Next the standard ex-
tended target measurement and motion models are presented.

A. Review of random set modeling

1) Poisson point process: A PPP is a type of RFS with pdf

f(X) = e−µ
∏
ξ∈X

µf(ξ) (12)

TABLE III
GGIW PREDICTION

Input: ζk|k
Predicted GGIW parameters

ζk+1|k =



αk+1|k =
αk|k
ηk

,

βk+1|k =
βk|k
ηk

,

mk+1|k = f
(
mk|k

)
,

Pk+1|k = Fk|kPk|k
(
Fk|k

)T
+ Q,

vk+1|k = 2d+ 2 + e−Ts/τ
(
vk|k − 2d− 2

)
,

Vk+1|k =
(
vk+1|k − 2d− 2

) (
vk|k − 2d− 2

)−1

×M
(
mk|k

)
Vk|kM

(
mk|k

)T
where

Fk|k = ∇xf(x)|x=mk|k

Output: ζk+1|k

The cardinality is Poisson distributed with Poisson rate µ
and each target is independent identically distributed (iid)
with spatial distribution f(ξ), and D(ξ) = µf(ξ) is the PPP
intensity function.

2) Multi Bernoulli process: A Bernoulli RFS Xi is a type
of RFS that is empty with probability 1−ri or, with probability
ri, contains a single element with distribution f i(ξ). The
cardinality is Bernoulli distributed with parameter ri and the
pdf of Xi is

f(Xi) =

 1− ri Xi = ∅
ri · f i(ξ) Xi = {ξ}

0 |Xj | ≥ 2
(13)

A typical assumption in MTT is that the targets are indepen-
dent, see e.g. [26]. A MB RFS X is the union of a fixed number
I of independent Bernoulli RFSs Xi, X =

⋃I
i=1 X

i and is
defined by the set of existence probabilities and distributions
{ri, f i(·)}Ii=1. Here I is the maximum number of targets that
the MB RFS can represent. The MB pdf for a set X can be
expressed as

f(X) =

{ ∑
α∈Φ

|X|
I

∏I
i=1 f

i(Xα(i)) if |X| ≤ I
0 if |X| > I

(14)

Xα(i) =

{
∅ if α(i) = 0
{ξ} if α(i) > 0

(15)

where the mapping Φ, defined in Table I, describes all possible
ways to assign exactly one Bernoulli estimate onto each target
in Xd

k, and (any) remaining Bernoulli estimates onto an empty
set [22].

An MB mixture (MBM) is an RFS whose pdf is a normalized
weighted sum of MB pdfs f j(X),

fmbm(X) =
∑
j

Wjf j(X) ,
∑
j

Wj = 1 (16)

where the weights may correspond to, e.g., different data
association sequences.



B. Standard multiple extended target measurement model

The set of measurements Zk is the union of a set of clutter
measurements and a set of target generated measurements;
the sets are assumed independent. The clutter at time k is
modelled as a PPP with rate λ and spatial distribution c(z),
and κ(z) = λc(z) is the clutter PPP intensity function.

An extended target with state ξ is detected with state
dependent probability of detection pD(ξ), and, if it is detected,
the target measurements are modelled as a PPP with state
dependent Poisson rate γ and spatial distribution φ(z|ξ). For
a non-empty set of measurements (|Z| > 0) the conditional
extended target measurement set likelihood is denoted

`Z(ξ) =pD(ξ)p(Z|ξ) = pD(ξ)e−γ
∏
z∈Z

γφ(z|ξ) (17)

Note that this is the product of the probability of detection
and the PPP pdf. The extended targets are assumed to generate
measurements independent of each other.

The effective probability of detection for an extended target
with state ξ is pD(ξ)(1− e−γ) where 1− e−γ is the Poisson
probability of generating at least one detection. Accordingly,
the effective probability of missed detection, i.e., the proba-
bility that the target is not detected, is

qD(ξ) = 1− pD(ξ) + pD(ξ)e−γ (18)

Note that qD(ξ) is the conditional likelihood for an empty set
of measurements, i.e., `∅(ξ) = qD(ξ) (cf. (17)).

C. Standard multiple object dynamic model

The existing targets—both the detected and the
undetected—survive from time step k to time step k+ 1 with
state dependent probability of survival pS(ξk). All targets that
are present in the surveillance area are assumed to follow the
same dynamic motion model. Further, it is assumed that each
target evolves over time independently of all other targets.
New targets appear independently of the targets that already
exist. The target birth is assumed to be a PPP with Poisson
rate µbk+1 and spatial density f bk+1(ξ), i.e., the intensity is
Db
k+1(ξ) = µbk+1f

b
k+1(ξ). In this work target spawning is

not taken into account, for work on spawning in an extended
target context see [27].

V. THE GGIW-PMBM FILTER

In this section the main result of the paper is presented: a
GGIW-PMBM filter. The PPP describes the distribution of the
targets that are thus far undetected, while the MBM describes
the distribution of the targets that have been detected at least
once. Thus, the set of targets can be divided into two dis-joint
subsets,

Xk = Xu
k ∪Xd

k (19)

corresponding to undetected targets Xu
k and detected targets

Xd
k. The PMBM set density at time k can be expressed as

fk|k(Xk|Zk) =
∑

Xd
k⊆Xk

fuk|k(Xk\Xd
k|Zk)fdk|k(Xd

k|Zk) (20a)

The PPP set density for undetected targets

fuk|k(Xk\Xd
k|Zk) =e−µ

u
k|k

∏
ξ∈Xk\Xd

k

µuk|kf
u
k|k(ξ) (20b)

has Poisson rate µuk|k and spatial density fuk|k(ξ). The MBM
set density for detected targets

fdk|k(Xd
k|Zk) =

Jk|k∑
j=1

Wj
k|kf

d,j
k|k(Xd

k|Zk) (20c)

has Jk|k MB set densities. The jth MB density is defined as

fd,jk|k(Xd
k|Zk) =

∑
αj
k|k∈Φ

|Xd
k
|

I
j
k|k

Ij
k|k∏
i=1

f j,ik|k

(
X
αj
k|k(i)

k

)
(20d)

where X
αj
k|k(i)

k is defined analogously to (15), f j,ik|k (·) are
Bernoulli set densities, defined in (13), and the association
mapping Φ is defined in Table I. There are Jk|k MB com-
ponents, the jth component has Ijk|k Bernoulli estimates, and
the probability of the jth MB component is Wj

k|k. All of the
involved single-target densities, e.g., f(ξ) in (12), f i(ξ) in
(13), and f bk+1(ξ), are assumed to be GGIW densities.

The GGIW-PMBM filter propagates in time the GGIW-PMBM
density parameters, using a recursion that consists of an update
and a prediction. The assumptions are listed in Table IV.
The assumptions about the probabilities of detection and
survival hold trivially if pD(·) and pS(·) are constants, and
the assumptions are expected to hold when pD(·) and pS(·)
are sufficiently smooth functions within the uncertainty area
of the estimate. Note that the assumptions of GGIW mixture
intensities for the birth PPP and the initial undetected PPP result
in all single target densities in the PMBM filter being GGIW
densities, due to the conjugacy property.

A. Update
Assuming that the predicted multi-object density at time k is

a GGIW-PMBM of the form (20), the updated density is GGIW-
PMBM. The updated MBM is given in (25) at the top of the
next page, and contains an updated MB component for each
predicted MB component and each possible data association.
In (25), for the jth MB component, the data association is
broken down into three parts
• A separation of the set of measurements Z into a set Y

with measurements from clutter or previously undetected
targets, and a set Z\Y with measurements from previ-
ously detected targets.

• Given Y, a partition of P of Y into non-empty cells C,
where each cell contains measurements from one source
(either clutter or a single target).

• Given Z\Y, a set of subsets {Vj,i}i, where the j, ith
subset contains measurements that are associated to the
ith Bernoulli estimate in the jth MB component.

The updated Bernoulli parameters for the detected targets, and
the updated PPP parameter for the undetected targets, are given
in the following subsections.



fdk|k(Xd
k|Zk) =

Jk|k−1∑
j=1

∑
Y⊆Z

∑
P∠Y

∑
{Vj,i}i

]iVj,i=(Z\Y)

Wj,P,{Vj,i}i
k|k f

d,j,P,{Vj,i}i
k|k (Xd

k|Zk) (25a)

Wj,P,{Vj,i}i
k|k =

Wj
k|k−1LPL{Vj,i}i∑Jk|k−1

j=1

∑
Y⊆Z

∑
P∠Y

∑
{Vj,i}i

]iVj,i=(Z\Y)

Wj
k|k−1LPL{Vj,i}i

(25b)

1) Undetected targets: The PPP for undetected targets has
updated Poisson rate

µuk|k =µuk|k−1

〈
fuk|k−1; qD

〉
= µuk|k−1

Nuk|k−1∑
j=1

qu,jD (26)

where qD(·) was defined in (18) and

qu,jD =1− pD

(
ξ̂

(u,j)
k|k−1

)
+ pD

(
ξ̂

(u,j)
k|k−1

) β
(u,j)
k|k−1

β
(u,j)
k|k−1 + 1

α
(u,j)

k|k−1

(27)

is the estimated effective probability of missed detection. The
updated spatial density is

fuk|k(ξ) (28)

=

∑Nuk|k−1

j=1

(
1− pD

(
ξ̂

(u,j)
k|k−1

))
wu,jk|k−1∑Nu

k|k−1

j′=1 qu,j
′

D wu,jk|k−1

GGIW
(
ξk ; ζ

(u,j)
k|k−1

)

+

∑Nuk|k−1

j=1 pD

(
ξ̂

(u,j)
k|k−1

)(
β
(u,j)

k|k−1

β
(u,j)

k|k−1
+1

)α(u,j)

k|k−1

wu,jk|k−1∑Nu
k|k−1

j′=1 qu,j
′

D wu,jk|k−1

× G
(
γk ; α

(u,j)
k|k−1, β

(u,j)
k|k−1 + 1

)
×N

(
xk ; m

(u,j)
k|k−1, P

(u,j)
k|k−1

)
IWd

(
Xk ; v

(u,j)
k|k−1, V

(u,j)
k|k−1

)
Note that the updated weights sum to unity, and the updated
density is indeed a proper density.

We see that for each GGIW component in the undetected
mixture we get two new updated GGIW components; this is due
to the fact that there are two ways for a target to results in an
empty measurement set. The first corresponds to the detection
process modeled by pD(·), which may result in a missed
detection. The second corresponds to the Poisson number
of detections governed by the parameter γ, i.e., the Poisson
random number of detections is zero. Note that the Gaussian
and inverse Wishart parameters are identical in both cases,
it is only the gamma parameters that differ. Using gamma
mixture reduction [7], the bi-modality of the γk estimate can
be reduced to a single mode such that fuk|k(·) has Nu

k|k−1

GGIW components instead of 2Nu
k|k−1 components.

TABLE IV
ASSUMPTIONS

• The birth PPP intensity is a GGIW mixture with known parameters,

Dbk+1 = µbk+1

Nbk+1∑
j=1

w
(b,j)
k+1 GGIW

(
ξk+1 ; ζ

(b,j)
k+1

)
(29)

• The initial undetected PPP intensity is a GGIW mixture with known
parameters,

Du0 = µu0

Nu0∑
j=1

w
(u,j)
0 GGIW

(
ξ0 ; ζ

(u,j)
0

)
(30)

• Empty initial PMBM: µu
0|0 = 0 and J0|0 = 0.

• The state dependent probabilitites of detection and survival can be
approximated as

pD(ξ)f (ξ) ≈pD(ξ̂)f (ξ) pS(ξ)f (ξ) ≈pS(ξ̂)f (ξ) (31)

where ξ̂ = E[ξ] =
∫
ξf (ξ)dξ.

• The clutter Poisson rate λ is known and the spatial distribution is
uniform, c(z) = A−1, where A is the volume of the surveillance
region.

2) Targets detected for the first time: A target that is
detected for the first time, resulting in a set of detections C,
has existence probablity

rC =

{
1 if |C| > 1
LC

κC+LC
if |C| = 1

(32a)

The spatial distribiution,

fC(ξ) =

∑Nuk|k−1

j=1 wu,jk|k−1L
(u,j,C)
k GGIW

(
ξ ; ζu,j,Ck|k

)
∑Nu

k|k−1

j=1 wu,jk|k−1L
(u,j,C)
k

(32b)

is multimodal, with one mode for each of the GGIW compo-
nents in the predicted undetected spatial density fuk|k−1. The

updated parameters ζu,j,Ck|k and predicted likelihoods L(u,j,C)
k

are computed as outlined in Table II. Mixture reduction can
be used to reduce this to a uni-modal GGIW density [7], [28].
The predicted likelihood is the weighted sum of the predicted
likelihoods corresponding to each GGIW component in the
predicted undetected spatial density,

LC =µuk|k−1

Nuk|k−1∑
j=1

wu,jk|k−1L
(u,j,C)
k (32c)



3) Existing MB estimate: The ith Bernoulli estimate, in the
jth MB component, updated with a non-empty set Vj,i 6= ∅
has probability of existence

r
j,i,Vj,i

k|k = 1 (33)

because, if the target was detected, then trivially it must exist.
The updated spatial density and predicted likelihood,

f
j,i,Vj,i

k|k (ξ) =GGIW
(
ξ ; ζ

j,i,Vj,i

k|k

)
(34)

LVj,i
=rj,ik|k−1L

j,i,Vj,i

k (35)

are computed as outlined in Table II.
If instead the ith Bernoulli estimate, in the jth MB compo-

nent, was updated with an empty set Vj,i = ∅, the probability
of existence is

r
j,i,Vj,i

k|k =
rj,ik|k−1q

j,i
D

1− rj,ik|k−1 + rj,ik|k−1q
j,i
D

(36)

where

qj,iD =1− pD

(
ξ̂

(j,i)
k|k−1

)
+ pD

(
ξ̂

(j,i)
k|k−1

) β
(j,i)
k|k−1

β
(j,i)
k|k−1 + 1

α
(j,i)

k|k−1

(37)

In this case the probability of existence is computed as the
relative probability that the target either exists but was not
detected, rj,ik|k−1q

j,i
D , or does not exist, 1−rj,ik|k−1. The updated

state distribution is bi-modal,

f
j,i,Vj,i

k|k (ξ) =
1− pD

(
ξ̂

(j,i)
k|k−1

)
qj,iD

GGIW
(
ξk ; ζ

(j,i)
k|k−1

)

+

pD

(
ξ̂

(j,i)
k|k−1

)(
β
(j,i)

k|k−1

β
(j,i)

k|k−1
+1

)α(j,i)

k|k−1

qj,iD

× G
(
γk ; α

(u,j)
k|k−1, β

(u,j)
k|k−1 + 1

)
×N

(
xk ; m

(u,j)
k|k−1, P

(u,j)
k|k−1

)
× IWd

(
Xk ; v

(u,j)
k|k−1, V

(u,j)
k|k−1

)
(38)

where the first mode corresponds to the case that the target was
not detected, the second mode corresponds to the case that the
target generated an empty set of measurements. Using gamma-
mixture reduction, see [7], the bi-modal GGIW distribution can
be reduced to a uni-modal GGIW distribution. The predicted
likelihood is

LVj,i
=1− rj,ik|k−1pD

(
ξ̂

(j,i)
k|k−1

)
+ rj,ik|k−1pD

(
ξ̂

(j,i)
k|k−1

) β
(j,i)
k|k−1

β
(j,i)
k|k−1 + 1

α
(j,i)

k|k−1

(39)

4) Predicted likelihoods: The predicted partition likelihood
and predicted MB likelihood are used to compute the weights
of the MBM components in (25b), and are expressed as

LP =
∏
C∈P
|C|>1

LC ×
∏
C∈P
|C|=1

(
κC + LC

)
(40a)

L{Vj,i}i =
∏
i

LVj,i
(40b)

B. Prediction

Let the posterior multi-object density at time k be a PMBM
of the form (20). Then the predicted multi-object density at
time k + 1 is PMBM.

1) Undetected targets: The predicted PPP for the unde-
tected targets has Poisson rate

µuk+1|k =µbk+1 +
〈
fuk|k; pS

〉
µuk|k = µbk+1 + µuk|kP

u
S (41)

where

PuS =

Nuk|k∑
j=1

w
(u,j)
k|k pS

(
ξ̂u,jk|k

)
(42)

The predicted spatial distribution is

fuk+1|k(ξk+1) (43)

=
µbk+1

µbk+1 + PuSµ
u
k|k

Nbk+1∑
j=1

w
(b,j)
k+1 GGIW

(
ξk+1 ; ζ

(b,j)
k+1

)
(44)

+
µuk|k

µbk+1 + PuSµ
u
k|k

Nuk|k∑
j=1

w
(u,j)
k|k pS

(
ξ̂u,jk|k

)
GGIW

(
ξ ; ζ

(u,j)
k+1|k

)
where the predicted parameters ζ

(u,j)
k+1|k are computed as

outlined in Table III. The updated spatial distribution has
N b
k+1 +Nu

k|k GGIW components.
2) Detected targets: The predicted MBM for detected tar-

gets has weights and number of componentsWj
k+1|k =Wj

k|k,
Jk+1|k = Jk|k and Ijk+1|k = Ijk|k. The probability of existence
and spatial distribution are

rj,ik+1|k =pS

(
ξ̂j,ik|k

)
rj,ik|k (45)

f j,ik+1|k(ξk+1) =GGIW
(
ξ ; ζj,ik+1|k

)
(46)

where the predicted parameters ζ(j,i)
k+1|k are computed as out-

lined in Table III.

C. Complexity reduction

The number of components in the MBM increase rapidly
[23], thus approximations are necessary. This section outlines
some approximations that are based on clustering of the
measurements, standard MTT ellipsoidal gating, and maximum
likelihood association. Gating is commonly used in MTT to
reduce the computational cost, see e.g. [26]. Clustering has
previously been used sucessfully in extended target MTT, see
e.g. [16], [18], [20], [21]. Note that other alternatives to



reduce the complexity may exist, a topic for future work is
to investigate the pros and cons of different methods.

For each MB component in the MB mixture the following
is performed:
• Standard ellipsoidal gating is used to group measurements

and targets. Given the gating decisions, the gating-groups
are assumed to be statistically insulated such that they can
be treated independently.

• Any gating-group with only measurements is only a
candidate for new targets. Multiple different partitions
are considered, computed using the Distant Partitioning
method [19], [20]. Each partition gives a potential MB
density with target estimates detected for the first time,
and a corresponding likelihood can be computed. Of the
multiple MB densities, only the maximum likelihood MB
density is returned.

• Any gating-group that contains both measurements and
targets is treated as follows:

– Multiple partitions are considered, computed using
the Distant Partitioning method [19], [20].

– For each partition, all possible associations of the
cells to previously undetected targets or previously
detected targets are considered. If there are N cells,
this gives 2N alternatives.

– Nearest neighbour association for the target estimates
and the cells associated to detected targets.

• For each gating group this creates multiple updated MBs;
these are truncated to only contain the alternatives that
correspond to 99% of the likelihood.

An updated MB-mixture is obtained by considering all possible
ways to combined the alternative updated MBs for the gating
groups. This updated MB-mixture is pruned by discarding the
MB-components with low weights. This procedure yields a
low computational complexity, without sacrificing estimation
performance.

VI. SIMULATION STUDY

In this section the results from a Monte Carlo simulation
study are presented. The kinematic state is xk = [pk, vk]

T ∈
R4 and describes the target’s position pk ∈ R2 and velocity
vk ∈ R2. The random matrix Xk ∈ S2

++ is two dimensional.
The motion model f(·) and process noise covariance Q are

f(xk) =

[
I2 TsI2

02 I2

]
xk, Q = Gσ2

aI2G
T, G =

[
T 2
s

2 I2

TsI2

]
(47)

where Ts is the sampling time and σa is the acceleration
standard deviation. Because the kinematic state motion model
is constant velocity, the extent transformation function M is
an identity matrix, M(xk) = I2.

A scenario with 27 targets was randomly generated, see
Figure 1. The scenario has 100 time steps, and the targets
appear in, and disappear from, the surveillance area at different
time steps. The probability of detection is set to pD = 0.90 and
the probability of survival is set to pS = 0.99. The birth spatial
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Fig. 1. Tracking scenario with 27 targets that each originate from one of four
locations.

density consists of four GGIW components, with positions in
[±75 , ±75]T. Extended target Poisson rates were randomly
sampled in the interval γ ∈ [7, 9] and the clutter Poisson rates
was λ = 20. An estimate of the set of targets is obtained by
taking the mean vector of all Bernoulli estimates with exis-
tence probability larger than 0.5 from the MB component with
largest MB weight. This simple method for target extraction
work reasonably well for the scenario considered here and,
more importantly, the same extraction method can be used
in all of the compared tracking filters. However, note that
alternative target extraction methods are available that may
improve performance in certain circumstances, see, e.g., [29].

Average estimated cardinality distribution and OSPA are
shown in Figure 2 and Figure 3, where the GGIW-PMBM
filter is compared the GGIW-PHD, GGIW-CPHD and GGIW-LMB
filters [7], [16], [18], [21]. The PMBM filter has lower variance
than the three other filters, especially the PHD filter. Further, if
a cardinality estimate is extracted by taking the most probable
cardinality at each time step, then the PMBM filter has a lower
estimation error than the other filters.

VII. CONCLUDING REMARKS

The paper presented a Gamma Gaussian inverse Wishart
implementation of the Poisson Multi-Bernoulli Mixture con-
jugate prior for multiple extended target tracking. The imple-
mentation is derived for the standard extended target models,
and both the update and the prediction equations are given.
Further, approximations that simplify the complexity of the
filter were suggested. A simulation study shows better perfor-
mance compared to other extended target filters.
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