
Smartphone Based Automatic Incident
Detection Algorithm and Crash Notifica-
tion System for All-Terrain Vehicle Drivers

Using Smartphones to Automatically Notify Emergency Contacts of
Accidents

Master’s thesis in Systems, Control and Mechatronics

Gabriel Matuszczyk
Rasmus Åberg

Department of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden 2016

Master’s thesis 2016:73

Smartphone Based Automatic Incident
Detection Algorithm and Crash Notification

System for All-Terrain Vehicle Drivers

Using Smartphones to Automatically Notify
Emergency Contacts of Accidents

Gabriel Matuszczyk
Rasmus Åberg

Department of Signals and Systems
Division of Automation and Mechatronics
Chalmers University of Technology

Gothenburg, Sweden 2016

Smartphone Based Automatic Incident Detection Algorithm and Crash Notifica-
tion System for All-Terrain Vehicle Drivers
Using Smartphones to Automatically Notify Emergency Contacts of Accidents
Gabriel Matuszczyk
Rasmus Åberg

c© Gabriel Matuszczyk and Rasmus Åberg, 2016.

Supervisor: Leif Sandsjö, University of Bor̊as/MedTech West
Examiner: Stefan Candefjord, Department of Signals and Systems/MedTech West

Master’s Thesis 2016:73
Department of Signals and Systems
Division of Automation and Mechatronics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

ii

Acknowledgements

As our work has progressed during this spring, certain people, without personal
gain, have provided invaluable help. Kjell and Kristina Åberg, Tomasz and Josefa
Matuszczyk, and Andréa Bergqvist helped us log data we’ve used throughout this
project. They have given us a dataset with more variation.

We would like to thank the volunteer ATV drivers who, out of interest in our field,
provided a previous project with a large dataset used also in our research.

Our examiner Stefan Candefjord and supervisor Leif Sandsjö have given us guid-
ance and feedback from day one until the very end, inspiring us to find new solu-
tions to difficult problems, while allowing us to work autonomously.

Gabriel Matuszczyk and Rasmus Åberg, Gothenburg, June 2016

i

Abstract

All-Terrain Vehicle (ATV) drivers face a different sort of danger than
posed by most other means of travel. An ATV is mainly designed to travel
forests and unpaved areas. It is a versatile vehicle often used only by one
person at a time; thus, if an accident occurs far out in the wilderness help
is hard to come by, especially if the driver is incapacitated. As a result of
the prevalence of GPS-enabled smartphones, an application for them imple-
menting an accurate Incident Detection Algorithm (IDA) could save even
an unconscious driver, via an automatic message to an In Case of Emer-
gency (ICE) contact. This thesis investigates the possibility of designing
such an application, as well as the feasibility of running it in real time on a
smartphone.

A dataset containing 55 hours of logged normal ATV driving motion data
was available, of which approximately 21 hours were of high quality. Two
logs were omitted due to their content of abnormally erratic motion data.
Machine learning methods (specifically One Class Support Vector Machines
(OC-SVM)) were used in order to create an IDA that can satisfactorily
identify several types of accidents. Motion data was collected containing
20 abnormalities in the form of a test person falling and rolling in several
directions, in order to simulate a number of crash scenarios. Together with
Accident Confirmation Criteria (ACC) to cancel false positives, and a deci-
sion tree within the IDA, few false alarms are raised while alarms do occur for
all incidents simulated in the crash dataset. Overall, the trained OC-SVM
classified normal driving with a precision of 99.39%, and correctly identi-
fied all 20 simulated accidents; thus, the OC-SVM obtained an estimated
F1-score of 99.69%.

A design for a smartphone application to enable this automatic alarm is
proposed in the form of a flow chart. Investigations of required functionality
support the claim that a smartphone is capable of running the IDA in real
time and with low battery consumption.

With the limited amount of normal driving data, and only simulated
crash data, further investigations must be performed in order to ensure no
overfitting has taken place. The next step in the development would be for a
test group consisting of regular ATV drivers to evaluate the performance of
the IDA in real life situations. It is the authors’ opinion that with additional
trials and tweaking of parameters, a well-functioning smartphone application
could be released to the public and potentially serve as a life saver, perhaps
even for other vehicles, in cases where the driver is otherwise helpless.

Keywords: Machine learning, Support vector machines (SVM), Incident detec-
tion algorithm (IDA), All-terrain Vehicle (ATV), Smartphone, eSafety.

ii

iii

Contents

Glossary ix

1 Introduction 1

1.1 Background . 2

1.2 Purpose . 5

1.3 Aim . 5

1.4 Scope and Limitations . 5

1.5 Feasibility Studies of Machine Learning Methods and Smartphone
Performance . 6

2 Theory 7

2.1 Machine Learning Methods for Classification 7

2.2 Evaluation of Algorithm Performance 7

2.3 Large-Margin Binary Classification Using Support Vector Machines 8

2.3.1 Understanding the Power of Support Vector Machines 9

2.3.2 Understanding The Kernel Trick 11

2.4 One-Class Support Vector Machines for Data Description and Anomaly
Detection . 12

2.4.1 Using Samples From One Class to Distinguish Between Two 13

2.4.2 Tuning the OC-SVM Decision Boundary Using Regularisation 15

2.5 Using the Smartphone Application LogYard for Data Collection . . 17

iv

2.6 Medical Considerations . 18

2.6.1 Patient Response Resulting From Accidents Involving Trauma
to the Brain . 18

2.6.2 Movability Following a Serious Accident 18

2.7 Smartphone Application . 19

2.8 Smartphone Application Development: Apple iOS 19

2.8.1 Apple iOS and Swift Programming 19

2.8.2 Using Apple’s Accelerate Framework For Optimised Digital
Signal Processing . 20

2.8.3 Built-in Activity Classification Algorithms in iOS 20

2.9 Smartphone Application Development: Google’s Android 21

2.9.1 Theory Behind API-level . 21

2.9.2 Built-in Activity Classification Algorithms in Android 22

3 Method 23

3.1 Previously Available Dataset . 23

3.2 Data Evaluation and Classification 23

3.2.1 Removal of Accidentally Logged Walking Data: Preprocess-
ing of Data . 25

3.2.2 Removal of Accidentally Logged Walking Data: Removal of
Data . 26

3.2.3 Using the Matlab Function fitcsvm to Train an OC-SVM . 26

3.2.4 Training an OC-SVM Classifier on Normal Driving Data . . 27

v

3.2.5 Collection of Simulated Crash Data 28

3.2.6 Collection of Potentially Problematic Data 30

3.2.7 Summarisation of Data . 31

3.3 Notification of Emergency Services in Case of Accident 31

3.4 Smartphone Application Development: General Idea of Program
Operations . 32

3.5 User Smartphone Interaction and Undesired Triggering of Alarms . 35

3.6 Smartphone Application Development: Apple iOS 37

3.6.1 Sensor, Activity Detection and Calculation Performance Test-
ing Application . 37

3.6.2 Automatic ICE Notification in Apple iOS 40

3.7 Smartphone Application Development: Google’s Android 40

3.7.1 Choosing of API-level . 40

3.7.2 Built-in Activity Classification Algorithms in Android 41

3.7.3 Automatic ICE Notification in Android 43

4 Results 45

4.1 The Incident Detection Algorithm 45

4.2 IDA Performance During Walking 47

4.3 IDA Performance During Mounting/Dismounting an ATV 49

4.4 IDA Performance During Wheelie Accidents 51

4.5 IDA Performance During Sudden Stops and Roll Over Accidents . . 53

vi

4.6 IDA Performance During Normal Driving 55

4.6.1 Inspecting Datasets with the Highest Levels of False Alarms 55

4.6.2 Estimated F 1-Score for the OC-SVM During Normal Driving 59

4.7 IDA Performance Summarised . 59

5 Discussion 61

5.1 The Three Classification Methods Used in the IDA 61

5.2 Cellular and Data Coverage in Rural Areas 61

5.3 Notification of Emergency Services in Case of Accident via Text
Message . 62

5.4 IDA Performance . 62

5.4.1 Walking . 63

5.4.2 Mounting/Dismounting an ATV 63

5.4.3 Simulated Accidents . 63

5.4.4 Normal Driving . 64

5.5 Ethical & Privacy Considerations 64

5.6 Self-fulfilling Prophecies & Psychological Considerations 65

6 Conclusion 67

7 Future Development Suggestions 69

vii

Glossary

ACC - Accident Confirmation Criteria to prevent false alarms, several con-
firmation criteria has to be fulfilled in order for an accident to be taken
seriously. These criteria are defined as ACC throughout this report.

Algorithm evaluations of an input are carried out, and depending on the input’s
content a certain output is reached. An algorithm follows predefined rules
and steps to determine the output and can often run autonomously on a
computer.

Android the operating system developed by Google for smartphones, imple-
mented by several different smartphone manufacturers.

ATV - All-Terrain Vehicle also known as quadricycle, four-wheeler or quad
bike. A vehicle with a high center of gravity and high ground clearance,
the latter making it easier to drive in rough terrain.

Feature extraction the process of selecting parts of data to use for training a
classifier, in order to decrease the number of variables (features) that the
classifier must consider. For example, if several parts of the data are corre-
lated, it could be possible to merge them into one feature in order to increase
classifier performance while retaining classification accuracy.

GPS - Global Positioning System with a receiver (built-in in most smart-
phones) signals from GPS satellites can be used to obtain coordinates for
longitude and latitude.

ICE - In Case of Emergency common term to identify who to contact for ex-
ample in a person’s contact list if that person has been part of an accident
or similar.

IDA - Incident Detection Algorithm used to describe the whole process of
the decision making process. Starts with analysing data, make a decision
regarding if an anomaly (incident) has occurred, if so, trigger an alarm and
cancel alarm if new data indicates it was a false alarm. Worth noting is that
the IDA doesn’t notify an ICE, it simply determines whether an incident has
occurred, and whether the incident should trigger an alarm or be classified
as a false alarm.

viii

IDE - Integrated Development Environment a computer program used to
program other software programs, often include libraries, debugger, compiler
etc.

Incident when the IDA is running a lot of data is collected from different sensors,
for normal driving all sensor values should be within a normal driving space.
If a sensor’s value exits this space an anomaly occurs, these are the incidents
that require further investigation by the IDA.

iOS the operating system used by, and developed for, Apple’s smartphone model;
iPhone.

OC-SVM - One Class Support Vector Machine like SVM, it is a machine
learning method. However it uses only one class to define the limitation in
space.

RC - Rejection Criteria similar to ACC, but instead of confirming an accident,
they confirm false alarms. If a rejection criterion is fulfilled within a certain
time limit, then the incident is discarded as a false alarm.

SDK - Software Development Kit a set of tools to develop software programs
for specific hardware and/or operating systems, often available in the IDE
and chosen before a new project is started.

SVM - Support Vector Machine a machine learning method, which uses sam-
ples of each class to create a decision boundary between the classes, which
maximises the distances between outermost samples from each class and the
boundary. often in a higher dimension than that of the samples.

User smartphone interaction refers to the common case where the smartphone
is interacted with in such a way that the motion sensors detect erratic move-
ments. Such an event could be the driver placing it in a pocket or altering
its position in a pocket. These scenarios create sensor readings which can be
quite similar to incident sensor readings.

VRU - Vulnerable Road User a group of people using roads by means of travel
that offer little to no protection, most commonly thought of is pedestrians
and cyclists.

ix

1 Introduction

Vulnerable Road Users (VRUs) include almost everyone not traveling by car, truck
or bus on common roads, most commonly thought of is people travelling on foot
or biking on or near the road. Two other vulnerable road users are motorcyclists
and All-terrain vehicle (ATV) drivers. Compared to the protective capacity of
modern cars, all subgroups of VRUs are at a significant disadvantage. Lately, the
focus of traffic safety has shifted from passively protecting car users in a crash,
to actively avoid crashes altogether, and also to develop new safety equipment for
VRUs. One such piece of safety equipment is Hövding, a modern helmet for cyclist
that inflate when an accident is imminent. It is essentially an airbag for cyclists
which envelops the head and generally provides better protection compared to
conventional helmets [1].

ATV drivers face another problem than just being vulnerable compared to car
drivers; their vehicle is by design very versatile and is used in unpaved areas for
both work and pleasure. If an accident occurs in a seldom travelled area (such as a
forest) the driver has to manage the situation by him or her self, since the likelihood
of a passerby appearing generally is small. Even on the assumption that the driver
is able to contact emergency services on his or her own, relating the location can
be problematic since forests rarely possess any road signs or discernible landmarks.

Machine learning algorithms, with their relatively high computational performance
requirements, have greatly increased in popularity, fuelled by increases in computer
performances and decreases in hardware prices. New areas where these algorithms
are imagined to work well are constantly explored. This report documents precisely
such an exploration: a machine learning algorithm is trained using smartphone
sensor data, to detect anomalies in order to detect incidents while driving ATVs.
The algorithm, running within a smartphone application, should trigger a message
(preferably containing GPS coordinates) to an emergency contact if an anomaly
(i.e. an incident) is detected.

1

1.1 Background

The Specialty Vehicle Institute of America (SVIA) defines an ATV as a motorised
off-highway vehicle designed to travel on four low-pressure tires, having a seat
designed to be straddled by the operator and handlebars for steering control; fur-
thermore, the SVIA defines two subgroups, Types I and II, where Type I ATV’s
are designed to carry only the driver and Type II ATV’s can carry both the driver
and one passenger, situated behind the driver [2].

In Table 1 accident data on Swedish roads for 2015 is presented [3]. ATVs may
be registered under different categories depending on their use and performance,
or not registered at all if they are used in an enclosed area. Of the three possible
categories in Table 1 (Motorcycle, Moped rider and Other) that ATVs fall under,
two of them, by percent, has the highest death and severe accident rate. For all
road user groups the goal is of course to avoid accidents altogether and keep the
severity at a minimum if unavoidable, meaning improvement is needed.

Table 1: Statistics of accident severity for different groups of road users in Sweden
during 2015 [3].

Severity Car Motor- Moped Cyclist Pedestrian Other Total
cycle rider

Light 12850 663 756 1604 1153 172 17198
Severe 1534 248 110 241 271 41 2445

Deadly 159 44 5 17 28 6 259
Total 14543 955 871 1862 1452 219 19902
Percent of accident per severity level and road user group [%]

Light 88.36 69.42 86.80 86.14 79.41 78.54 86.41
Severe 10.55 25.97 12.63 12.94 18.66 18.72 12.29

Deadly 1.09 4.61 0.57 0.91 1.93 2.74 1.30

From a report published by the Swedish Transport Administration [4] some inter-
esting data can be found. During the years 2000-2003 around 3000 new ATVs were
registered per year, for the years 2011-2012 this number had risen to 11000 and at
the beginning of 2013 just over 91000 ATVs were registered (this figure does not
include unregistered ATVs or ATVs registered as tractors, so total ATVs in use
is likely higher). In the same report accident data presented estimates that 7000
persons visited emergency rooms between 2007 and 2010 for ATV related injuries.
Other data for the period 2001-2012 is presented in Table 2. For the on road -row
in the table is it worth mentioning that 90 % of fatal accidents were single vehicle
accidents and that for 20 % of the cases where the ATV overturned, the deceased
driver was still beneath the ATV when found.

2

Table 2: Deadly ATV accidents during 2001-2012 and how many involved an over-
turned ATV [4].

Location Killed Overturned ATV [%]
On road 42 70
Off road 27 60

Due to the high rate of single-vehicle accidents combined with drivers often trav-
eling alone, an automatic safety system could help lower the death toll. What
this automatic system should be able to do is to detect incidents using an algo-
rithm without any direct input from the user. Commonly this kind of system is
known as an Incident detection algorithm, or IDA; IDA’s use collected data (from
for example accelerometer sensors) to automatically evaluate if an incident has
occurred. Smartphones have become such common gadgets, and their increasing
quality regarding sensor readings and computational power could provide a very
attractive platform to run such an IDA on, both for the developers and for users.

Smartphones have become everyday objects, between 76 and 89 percent of Swedes
aged 16-54 have utilised a smartphone outside of their homes [5]. Since smart-
phones are so widespread and apps are easily distributed through official channels,
a successful application may be an important contribution towards providing med-
ical assistance to victims sooner.

Similar IDA’s have been produced before, which found that the quality of the built
in sensors in common smartphones is good enough to detect accidents while riding a
bike as well as for horse riders. For the development of the bike IDA [6], simulations
were made with a smartphone on a crash dummy and a bike to collect data, the
dummy was mounted and the bike pushed in order to gain speed and crashed into
objects to simulate an accident. For the horse riders [7], similar simulations were
obtained by means of researchers allowing themselves to be thrown off a mechanical
bull. Data of this type can be impractical or expensive to collect in many other
incident detection applications, such as ATV accidents.

The United States Consumer Product Safety Commission (CPSC) found after
analysing 71 400 ATV-related injuries, that in 68.5% of the cases the driver was
the only rider [8]. Thus, if severe accidents happen, the driver is alone and help
won’t arrive until someone misses the driver or he or she is found by a passerby.
If the driver is able to contact emergency services, conveying an exact location
can be difficult for several reasons. The driver may not know where he or she
is, cellular services may be poor, which would make triangulation hard, and can

3

also cause a phone call to cut off. If the driver has a GPS signal, problems may
arise since there are several similar standards to convey coordinates. A short text
based message including a specific standard of GPS-coordinates (which generally
has much better coverage [9] than cellular services [10]), could be delivered in its
entirety to an in case of emergency (ICE) contact and provide useful information
for a search and rescue team. In short, there is a need for an IDA which can
autonomously detect an incident, and quickly relay all necessary information to
another person; the problem, and potential application of an IDA to solve it, is
illustrated in Figure 1.

Figure 1: A dangerous situation, for which the risk could be reduced by use of an
autonomous IDA to facilitate expeditious search and rescue. The series of images
depict an ATV driver during a normal drive, who is suddenly subjected to a crash;
however, the driver’s smartphone is running the proposed IDA which detects the
crash and notifies an ICE contact.

4

1.2 Purpose

The primary long-term purpose of the project is to save lives, and to minimise
the effects of injuries in ATV-related accidents, by offering a means of obtaining
fast emergency medical attention in cases where the driver cannot him- or herself
summon such aid. Another purpose is to evaluate what is actually possible to iden-
tify using the sensors in today’s smartphones, how well the information captured
represents the real world and if it is possible to filter out disturbances well enough
that the obtained information is useful. General research on sensor accuracy and
fields of use could uncover opportunities not previously thought of.

1.3 Aim

The primary aims are:

1. to create an IDA which can identify accidents and crashes.

2. Optimise the IDA in order to obtain a high F1-score and

3. release it as an application through official distribution channels, such as the
Google and Apple online application stores.

No other hardware than the smartphone’s stock sensors should be used as input
for the IDA. The application should create some sort of distress signal, such as a
text message, in case an incident or crash has occurred.

1.4 Scope and Limitations

Some uncertainty surrounds the collected volunteer data (see Section 3.2). In some
cases volunteers seem to have forgotten about the running logging after dismount-
ing the ATV, and inadvertently logged other data, such as walking. Evaluation
will be conducted and as much as possible of incorrectly logged data will be re-
moved. Although there is no way of knowing with full certainty that the remaining
data is only ATV driving, it will be assumed that it is.

No real life evaluation will be conducted since it would either require the expensive
employment of professional stunt men, or be unreasonably dangerous for the test

5

person. Simulation of crashes and general unusual data (such as just dropping the
phone from a low height) will however be collected and evaluated with the IDA to
see how it classifies these scenarios.

1.5 Feasibility Studies of Machine Learning Methods and
Smartphone Performance

Machine learning methods have already been used extensively in smartphone ap-
plications. Specifically of interest to this project, a report from 2012 documents the
use of multi-class support vector machines for smartphone-based human activity
recognition using accelerometer data [11], and another report from 2014 describes
the use of machine learning to filter out smartphone magnetometer disturbances
in Pedestrian Dead Reconning for indoor localisation [12]. Furthermore, two more
reports documented the use of machine learning in smartphones: the first report,
from 2012, for detection of Freeze of Gait prevalence in the everyday lives of pa-
tients suffering from advanced Parkinson’s Disease with more than 95 % accuracy
and specificity [13]. The second report, from 2009, documents the implementation
of machine learning in a smartphone application, which detects whether an indi-
vidual falls, as well as said individuals response to the fall, and subsequently sends
an SMS to one or more pre-specified social contacts [14]. Many other smartphone-
based applications using machine learning have been reported as well, even fish
species recognition using computer vision and multi-class support vector machines
in smartphones as a step towards allowing Chinese fish farmers to diagnose fish
disease using their smartphones [15]. The work of David M. J. Tax, 2001, shows
that it is possible to use SVM’s to differentiate between two classes even though
only one of the classes can be sampled [16]; something that had also already been
confirmed by Schölkopf et al in 1999 [17].

6

2 Theory

To understand some of the decisions made later on in the report, some theoretical
background is necessary. Also included in this section is explanations to some
terminology and differences for methods.

2.1 Machine Learning Methods for Classification

The general idea of Machine Learning is to use a computer’s capability to re-
peatedly and quickly calculate (complex) equations, and with the guidance of an
optimisation equation find the best parameters and/or function for the problem
evaluated. Machine learning’s true strength lies within computers ability to do the
same calculation with slightly altered values back-to-back without any fault. They
can therefore be used in applications where a lot of data exists and an abstract
solution is prominent.

Machine learning can be used for other purposes than classification [18] but in
this thesis it is a case of accident or no accident. Several different methods exists
for classifications, each with its different strengths and weaknesses depending on
preconditions and goals set by the developer/researcher [19]. In the present study,
a lot of data exists of only one class (no accident data exists, see Section 3.2.5 for
simulated crash data), the data consist of twelve sensor values in each sampling
instance and no need for fast training exist. With these preconditions Support Vec-
tor Machine (SVM) for anomaly detection is a fitting method [20]. Furthermore,
in a 2003 study examining the possibility to identify traffic incidents in an arterial
network found that SVM classifiers offered a lower misclassification rate, higher
correct detection rate, lower false alarm rate and slightly faster detection time
than Multi-Layer Feed forward neural network and probabilistic neural network
models [21].

2.2 Evaluation of Algorithm Performance

When evaluating the performance of a binary (i.e two-class) classification algorithm
such as an SVM classifier, it is necessary to consider both accuracy in detecting
datapoints belonging to a target class, as well as accuracy in detecting datapoints
belonging to the outlier class. This is especially important when the numbers of

7

available datapoints from each respective class differ greatly. For example, if 90
datapoints are available from the target class, and 10 datapoints are available from
the outlier class, and a classifier classifies all datapoints as belonging to the target
class, the resulting accuracy would be 90% even though all outlier datapoints were
misclassified. One well-known performance measure for binary classification is the
F1-score.

The F1-score is based on two parameters; namely, precision and recall. The pre-
cision of a classifier is given by the number of correct positive classifications, i.e
target class datapoints classified correctly, divided by the total number of positive
classifications, i.e all datapoints classified as belonging to the target class. The
recall of a classifier is obtained identically but concerns negative classifications, i.e
outlier class datapoints classified correctly out of the total number of datapoints
classified as belonging to the outlier class. The F1-score is a weighted average of
the precision and recall, as defined in Equation (1), which reaches its best value
at 1.

F1 = 2 · (precision) · (recall)

(precision) + (recall)
(1)

In the example described in the previous paragraph, the classifier precision would
be 100 %; however, since the classifier misclassified all outlier datapoints, the recall
would be 0 % and the F1-score, calculated by Equation (1), would also be 0 %.

2.3 Large-Margin Binary Classification Using Support Vec-
tor Machines

In order to understand SVM’s, consider the data set created by Ronald Fisher with
the objective of solving the taxonomic problem of distinguishing iris flower species
Iris Setosa from Iris Versicolor and Iris Virginica by observing four parameters:
sepal length, sepal width, petal length and petal width [22]. While Fisher used
traditional statistical methods and manual calculations as an attempt to find co-
efficients which could be used to classify the species, using SVM’s it is possible to
automatically find a classifier which accurately identifies the species of iris flower.

8

2.3.1 Understanding the Power of Support Vector Machines

Considering only sepal length and sepal width as parameters and plotting each
observed iris flower as a data point based on the two parameters, an SVM will find
the straight line which separates the data points of two classes with the largest pos-
sible margin of separation. It can be readily seen in Figure 2 that Iris Setosa data
points are indeed linearly separable from Iris Versicolor in Fisher’s dataset, with
great classification accuracy; however, the same cannot be said for the randomly
generated data in Figure 3a. An adjustment is necessary to distinguish between
classes that are not linearly separable. This is handled by SVM’s by mapping
non-linearly separable data into a higher dimension where it is possible to obtain,
instead of the optimal separating line, the optimal separating hyperplane [23][24].
From the higher dimension this hyperplane is mapped back to the original dimen-
sion to obtain a non-linear separator even though only linear methods have been
used. This method is called the Kernel trick, where Kernel refers to the function
used to map the data points to the higher dimension (worth noting is that during
training of the SVM a non-linear kernel is used, but when the training is finished
only linear methods are used to classify data). The non-linear separator shown in
Figure 3b is the result of classification using the Kernel trick.

4 4.5 5 5.5 6 6.5 7
Sepal Length (cm)

2

2.5

3

3.5

4

S
e
p
a
l
W

id
th

 (
c
m

)

Iris Setosa
Iris Versicolor
Support Vectors

Figure 2: Classification of Iris Setosa versus Iris Versicolor using an SVM classi-
fier. Generated using Fisher’s Iris data set.

9

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Class 1
Class 2
Support Vectors

(a) SVM using Linear Kernel.

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Class 1
Class 2
Support Vectors

(b) SVM using Radial Basis Function Kernel.

Figure 3: Visualisation of the results of using the ”Kernel trick”, in order to
separate linearly unseparable data using an SVM.

10

2.3.2 Understanding The Kernel Trick

As mentioned in Section 2.3.1, SVM’s provide non-linear decision boundaries by
mapping non-linearly separable datapoints into a higher dimension where they are
linearly separable. A step-by-step visual description of how the Kernel Trick works
is displayed in Figure 4. In Figure 4a two datasets containing two-dimensional dat-
apoints are represented in a Cartesian plane. Clearly, the two datasets can easily
be separated by a straight line, as illustrated by the dotted line drawn between
them. Figure 4b shows a case where the datapoints contained in each dataset are
distributed in such a way that it is not possible to separate them with a straight
line. The dotted line drawn in the figure would give rise to misclassifications if used
as a decision boundary. This is where the Kernel Trick comes in handy: in Fig-
ure 4c, the datapoints of both datasets are mapped into a three-dimensional space
using the same non-linear function, termed the ”Kernel”, and it turns out that it
is possible to find a plane in 3D which optimally separates the datasets. Using
the same Kernel function to map the optimal separating plane back to the original
dimension provides the non-linear separator drawn as a dotted line in Figure 4d.
Use of the Kernel Trick is not limited to low-dimensional classification problems
such as the ones described in this section – it handles much higher dimensions
using the same approach.

11

X

Y

(a) Linearly separable 2D datasets.

X

Y

(b) Non-linearly separable datasets.

X

Y

Z

(c) Mapping of datapoints into higher dimen-
sion (3D).

X

Y

(d) Non-linear decision boundary after map-
ping back to 2D.

Figure 4: Step-by-step description of how SVM’s produce non-linear decision
boundaries.

2.4 One-Class Support Vector Machines for Data Descrip-
tion and Anomaly Detection

Binary classification using SVM’s usually involves supplying training data from
two or more different classes. In Section 2.3, the classes were different species of
iris flowers, as well as some randomly generated datapoints, and training data was
available from each class; however, one might consider the case where the goal is
to obtain an SVM classifier algorithm which can differentiate between two classes,
but where there is little or no data describing one of them. An example of this
case, as described by Tax and Duin in 2004 [24], is a machine monitoring system
in which the current condition of a machine is examined and an alarm is raised

12

when there is an anomaly. Measurements of normal working conditions are usually
cheap and easy to obtain; however, measurements of abnormal operation would
require the destruction of the machine in all ways that are desirable to detect. The
solution proposed by Tax and Duin is to use data from the well-sampled class and
define it as the target class and thus define any other data-point, which does not
classify as part of the target class, as an outlier, or anomaly [24]. This is called
Support Vector Data Description (SVDD) or One-Class Support Vector Machines
(OC-SVM).

2.4.1 Using Samples From One Class to Distinguish Between Two

Reviewing the Fisher Iris problem of Section 2.3, consider the case in which Fisher
had only measured a large number of Iris Setosa flowers, but did not have access to
any measurements from Iris Versicolor. Using an OC-SVM classifier, it is possible
to obtain a defined area in the datapoint space which is isolated and defined as
the target class. Any samples which occur outside of this space will be considered
outlier data; in this case, target data will be Iris Setosa and any datapoint outside
the defined separator will be classified as Iris Versicolor. This is illustrated in
Figure 5. For illustrative purposes, the same method has been used to describe
one of the classes of randomly generated data of Figure 3; the results of training a
one-class SVM on only the positive examples (represented as ”+”) are displayed
in Figure 6.

13

4.5 5 5.5 6 6.5 7
Sepal Length (cm)

2

2.5

3

3.5

4

S
e
p
a
l
W

id
th

 (
c
m

)

Iris Setosa
One-Class separator
Iris Versicolor

Figure 5: Using OC-SVM to distinguish between Iris Setosa and Iris Versicolor
using only Iris Setosa samples for training. Generated using Fisher’s Iris data set.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Known OC Datapoints
One-Class separator
Outliers

Figure 6: Using OC-SVM to distinguish between the two randomly generated, lin-
early unseparable classes.

14

2.4.2 Tuning the OC-SVM Decision Boundary Using Regularisation

As shown in Figure 6, the decision boundary does not enclose all known dat-
apoints perfectly. This is due to the OC-SVM having been regularised during
training. Regularisation is a way of ensuring that the resulting classifier does not
only recognise all datapoints it has previously seen, but also generalises well to
new datapoints from the same class. In OC-SVM training, this is performed by
adding a regularisation term, denoted by the Greek letter ν (nu), which adjusts
the penalty for misclassifications during training. The value of ν can be varied
between zero: non-inclusive, and one: inclusive. By setting a small ν, misclassifi-
cations are heavily penalised and the OC-SVM will try to find a decision boundary
which includes as many as possible of the training datapoints. If there should be
unlikely or highly unusual datapoints in the set, it could be better if the OC-SVM
ignored these; increasing ν allows disregarding of some misclassifications and pro-
duces a simpler classifier. Figure 7 shows the results of two OC-SVM classifiers.
Figure 7a shows a highly overfitted decision boundary as a result of a small ν. On
the other hand, Figure 7b shows an underfitted decision boundary, resulting from
a ν set too high.

15

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Known OC Datapoints
One-Class separator
Outliers

(a) ν close to zero.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Known OC Datapoints
One-Class separator
Outliers

(b) ν close to one.

Figure 7: OC-SVM classification results with different levels of regularisation.

16

2.5 Using the Smartphone Application LogYard for Data
Collection

A smartphone application called LogYard [25] was used to perform all data logging
both during the writing of this thesis, and during a prior project [26] which resulted
in data used for this thesis. LogYard works by constantly sampling data from
a smartphone’s 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer and
GPS location and estimated speed, and saving each sample to the smartphone’s
system storage. The sampling rate is set to 100 samples per second. Data is
stored in the form of Comma-Separated Value (CSV) files and each log is denoted
by an anonymous numerical user ID. CSV-files can be imported and parsed into
spreadsheet form by both Matlab and most spreadsheet applications; a typical
output of a LogYard logging session is illustrated in Figure 8, where the CSV-file
in question was parsed by the application Numbers [27]. Each file also contains
metadata detailing, e.g, device model, sensor ranges and which unit system was
used for the measurements. Data logging is started and stopped manually by the
user and, thus, the logs invariably contain motion data produced by smartphone
interaction in the beginning and end sections.

Figure 8: The CSV-file output of a LogYard logging session, parsed into spreadsheet
form by the application Numbers.

17

2.6 Medical Considerations

Aspects of the human body should be taken into consideration in the development
of the algorithm. More specifically, how different accidents will affect the drivers
ability to summon help and also expected actions he or she will take.

2.6.1 Patient Response Resulting From Accidents Involving Trauma
to the Brain

A study presented in 1998 found that the most common injuries in ATV accidents
in the United States were orthopedic, 53.2 % of the drivers were afflicted by (at
least) one such injury. Second most common were head injuries, 40.8 % of all
drivers hurt their head in some way (scalp wound, concussion etc.) [28]. Both
these type of injuries can leave the driver unable to move or otherwise incapable
of contacting emergency services. Concussions are particularly dangerous; some
of its symptoms are: dizziness, seizures, trouble walking, weakness, numbness,
decreased coordination, confusion and slurred speech [29]. These symptoms may
not be instant, meaning that the driver may function normally for a short time
period after the accident but later on become dizzy and fall or crash again. A
specific danger with this kind of injury is that the driver may cancel the alarm
raised by the smartphone application and/or inform the ICE that it was a false
alarm and later on lose consciousness.

2.6.2 Movability Following a Serious Accident

Following any accident involving high velocity and sudden stops, broken bones
are a common complication [30]. If a driver crashes several scenarios are possible,
some involving broken bones, for the more extreme versions it is possible the driver
can’t walk at all, can’t manipulate hands and fingers, puncture a lung or the skin.
Most of these (extreme version) injuries result in a driver not capable of getting
him- or herself the help needed.

18

2.7 Smartphone Application

Since one aim is to release an application containing the finished IDA (see Sec-
tion 1.3) investigations into smartphone application programming is needed as
well. Several smartphone Operating Systems (OS) exist; Google’s Android and
Apple’s iOS are the two largest smartphone markets [31], and online resources
offer good support for novice application programmers and are therefore chosen.

2.8 Smartphone Application Development: Apple iOS

The development of applications for Apple iOS devices is done using Objective-C
or Swift. Available and relevant functionality incorporated in the software devel-
opment kit (SDK) are mentioned and briefly described in the following sections.

2.8.1 Apple iOS and Swift Programming

While traditionally Objective-C has been used to develop for the Apple range of
operating systems, namely iOS, watchOS, tvOS and macOS; however, since 2014, it
is also possible to program for said systems in the Apple-developed language called
Swift. Swift builds upon Objective-C and C but has many simplifications which
improve readability and makes programming easier, in particular for beginners.
Swift programming in the Apple-supplied IDE, Xcode, supports the use of so called
Playgrounds which evaluate each line of code written in real time so that it is
possible to troubleshoot blocks of code in an isolated and controlled environment to
see how it works [32]. A Playground example is illustrated in Figure 9. In the right
margin of the playground, the resulting output from evaluating each line of code
is shown and reevaluated in real time as the user writes or changes code. While
programming in Xcode, an application may be executed on any connected iPhone
which will communicate real time energy impact, CPU and memory consumption,
and disk and network usage to Xcode so that app performance may be analysed
[33].

19

Figure 9: An Apple Xcode Playground for running Swift code.

2.8.2 Using Apple’s Accelerate Framework For Optimised Digital Sig-
nal Processing

The SDK for Apple’s iOS includes an optimised package for Digital Signal Pro-
cessing (DSP) called vDSP [34]. This package provides mathematical functions
for, e.g, vector and matrix algebra, statistical analysis, and frequency analyses
using Fast Fourier Transforms, and is part of an Apple-developed and computa-
tionally efficient C-based general framework for advanced mathematics known as
Accelerate [35].

2.8.3 Built-in Activity Classification Algorithms in iOS

The iOS SDK already includes code for activity classification in a class called CM-
MotionActivity designed to identify the following activities: stationary, walking,
running, automotive, cycling and unknown. The activity classifications also come
with a three-parted level of confidence associated with the classification. When an

20

activity is detected, a flag for that specific activity is set and the confidence level
for the detection can be accessed. Several flags can be set at once, e.g if the user is
driving a vehicle, the automotive flag will be set, and if said user stops the vehicle
but does not get out, both the automotive and stationary flags will be set [36].

2.9 Smartphone Application Development: Google’s An-
droid

Android application development is done in Java, and several IDEs exist support-
ing Android packages. For this application, Google’s Android Studio will be used
since it is easily set up and developed specifically for Android development.

2.9.1 Theory Behind API-level

Since several different companies produce smartphones with Android as its OS, a
system with different API-levels is used. When new functionality is introduced
(such as communication with smart watches) with a major update of the Android
software the API-level is raised. This is done for mainly two reasons:

1. Manufacturers design and produce phones according to demands placed on
them by the API-level they want to fulfill, and can use the API-level to de-
termine what hardware is needed, for example a company’s flagship model
containing all new functionality and some predicted for future updates gen-
erally has a higher API-level than the company’s budget model.

2. Software developers choose for which API-level they develop their applica-
tion, i.e. how old phones (and consequently, how many) they want to be
able to run their application, a lower API-level will make the application
available for more smartphones, but limit functionality for the application.

This means every Android phone has an API-level and every application has one
too. If you combine one Android smartphone and one application, they will be a
successful combo if the API of the smartphone is equal or greater that of the ap-
plication. Android users of course doesn’t need to do this comparison themselves,
but will be notified if they try to install an incompatible application.

21

2.9.2 Built-in Activity Classification Algorithms in Android

Available via Google is a method for activity classification, which can predict the
user’s activity. The activities that the method is able to identify are: in vehicle,
on bicycle, on foot, walking, running, still, tilting and unknown. If this method is
called different results can be returned, for example the programmer can choose to
only obtain the most likely activity in return, or all activities with a corresponding
confidence. Activities are not mutually exclusive for several reasons, one being
that some are versions of other (walking and running are a version of on foot)
and another is that they are possible to combine in real life as well (i.e. to walk
around in a bus, which would result in both on foot and in vehicle having high
confidence) [37].

22

3 Method

Two main areas in this report are Matlab programming and smartphone appli-
cation development. Matlab is used to both train and evaluate an IDA, before
implementing it in an application. Since the algorithm will run on smartphones,
some Matlab functionality can’t be used, and how data is handled has to be
taken into account when both training and evaluating the algorithm, since it is
done on collected data in Matlab but will run in real time on the smartphones.

3.1 Previously Available Dataset

Prior to the start of this thesis, about 55 hours of normal ATV driving data from
20 different ATV drivers had been collected in another project [26]. Using the
smartphone application LogYard, detailed in Section 2.5, data was collected by
a group of 20 volunteer drivers using ATV’s in their work (e.g in farming and
forestry), or in their spare time. LogYard constantly samples and saves data from
available motion sensors, i.e gyroscopes and accelerometers, as well as orientation
and position sensors, i.e magnetometers and GPS. Data is generally sampled at a
rate of about 100 samples per second; however, due to the way smartphone CPU
time is divided between applications, the sampling rate may fall well below this
level. The previous study found that approximately 8 of the 55 hours had to be
omitted due to inconsistencies, leaving 47 hours of data to be analysed. Out of
these 47 hours of data logs, about 15.5 hours of logs were found to be affected by
file corruption or inconsistencies, leaving 31.5 hours of data logs available in total
for this thesis.

3.2 Data Evaluation and Classification

LogYard samples twelve different sensors, as mentioned in Section 2.5, however
not all sampled sensor values were used for this project. Several different smart-
phone models has been used to collect normal driving data and, from visually
analysing data from different sensors, some conclusions were drawn concerning
sensor aptitude for the application;

• Magnetometer sensor quality seems to differ greatly among manufacturers.
Quality of sensor values varies with such a degree, that using it as an input

23

to the OC-SVM might cause misclassifications dependent on the smartphone
model and therefore aren’t used. Also, magnetometers are sensitive to mag-
netic fields generated even by small nearby electronic devices.

• GPS locations (longitude and latitude coordinates) are important in case an
accident has occurred, but otherwise too uncertain. Sometimes the signal is
lost completely, other times the estimated position is off by several hundred
meters, GPS location is only used to communicate an accident location.

• Estimated speed (derived from the GPS data) is as uncertain as GPS data
itself. Due to sometimes being off by hundreds of meters and sometimes
losing the signal, improbable speed changes occur in the data; thus, estimated
speed by GPS data isn’t used as an input the OC-SVM.

• Accelerometer sensors are generally robust and not prone to disturbances,
they are therefore quite independent of the smartphone model that the driver
has. A lot of information about the drive can be found in the accelerometer
values and are one of the most important inputs to the OC-SVM.

• Gyroscope sensors, like accelerometers, are robust enough not to depend on
smartphone model; however, they do usually produce a bias term in their
signal which must be filtered out to obtain accurate measurements. Due
to the nature of a normal drive, only certain events can be found within
gyroscope values. However, a roll accident logged by a gyroscope sensor has
a quite unique pattern and the sensor is a valuable input to the OC-SVM.

Some feature extraction from accelerometer and gyroscope data is done as well,
see Section 3.2.4 for more information about input parameters to the OC-SVM.

Due to the fact that LogYard starts logging immediately after a user manually
enables it in the smartphone application, and that it continues up until the point
when the user manually stops it, unwanted data is unintentionally included in
every log. Unwanted data is composed mainly of motion data resulting from
smartphone interaction related to starting and stopping the logging, and of motion
data resulting from the user mounting or dismounting their ATV. Since neither
of these cases are similar to normal driving, it is undesirable to train a normal
driving classifier on these.

Labels for the data don’t exist, and it is most likely that other activities besides
ATV driving have been logged, which has to be handled somehow. A likely activity
to be among the data is walking, since it is necessary to get to and from the ATV
in order to drive it.

24

3.2.1 Removal of Accidentally Logged Walking Data: Preprocessing
of Data

Since it was desirable to train on largely pure driving data, it was necessary to
attempt to remove data that weren’t driving data, such as data created when
drivers forgot to turn off data logging after getting off their vehicles. The absence of
labels corresponding to the activities logged in the dataset lead to the identification
and removal of irrelevant data being left up to the authors.

In order to facilitate removing of data, different preprocessing methods were tried:

Preprocessing method 1 (not used): Although the data mentioned in Sec-
tion 3.1, was assumed to be of sufficient quality, some evaluation of the data was
also required. With the help of Matlab, data with too low sampling frequency
was removed (varying thresholds were tried in the interval 40− 60 Hz). Also sam-
ples where too many sensors, or one sensor for a too long time, aren’t updating
their values, are scrapped (here, also, variations were tried, the best seemed to be
all sensors locked up or one sensor for 100 ms). A window length was also imple-
mented, meaning that if a continuous area of good data was too short it were also
scrapped. Every logged drive were evaluated and data sections not fulfilling the
demands were removed, meaning a single logged drive could be split into several
datasets, since most drives fit more than just a window length of continuous data.
A segment of bad data means that the data before the first bad sample is saved as
one interval and the first good sample after the bad segment is the first of a new
interval.

Preprocessing method 2 (used): To assist the method, 200 seconds of data
were removed from both start and end of each logged drive as it was assumed that
the likelihood of the drive having started was high after 200 seconds. This data
trimming was done for several reasons; to remove abnormal samples originating
from the driver turning on/off logging, removing areas of uncertain activity, such
as mounting/dismounting the ATV for example and train on longer datasets. This
left 21 hours of data from the 31.5 hours mentioned in Section 3.1, which around
1.5 hours were used for training and the rest for testing.

25

3.2.2 Removal of Accidentally Logged Walking Data: Removal of Data

Removal method 1 (not used): It was assumed that most or all of the irrelevant
data would consist of short periods of walking until the drivers realised that logging
was still taking place; therefore, an algorithm was developed to identify and classify
walking data only. About 80 minutes of walking data was collected using LogYard
with varying positioning of the smartphone (trouser pocket, shirt pocket and in
a handbag) and subsequently screened to remove sections of the data with low
sampling rates. This dataset was known to contain only walking and was used to
develop the classification algorithm. However the classification algorithm proved
to remove too much data, leaving only a fraction for training. Examining the
results, it seemed small groups or single samples were removed here and there in
the datasets, resulting in other criteria failing later on in the evaluation process.

Removal method 2 (not used): A signal to noise ratio (SNR) approach was
also tried, with the help of accelerometer data and Fast Fourier Transform (FFT)
on this data. Lower frequencies were considered signal, and remaining frequencies
noise, since walking typically is a low frequency activity. All frequencies below a
certain threshold were summarised and considered the signal, while the remaining
also were summarised but considered noise instead. To determine whether the cur-
rent sample was walking or not, the ratio between signal and noise were calculated
by dividing the signal with the noise, and if this ratio reached a certain level it
was considered walking. Similar to previous methods, too much data seemed to be
removed from the normal driving dataset, most likely due to miss-classification.

Removal method 3 (used): It was assumed that the preprocessing procedure
would suffice, since the volunteer drivers had been expressly told to collect driving
data [26]. The parameter ν (see Section 2.4.2) was adjusted during OC-SVM
training in iterations. In every iteration, the OC-SVM was used to classify test
data to see how much of it was considered normal driving. The method is detailed
in Section 3.2.4.

3.2.3 Using the Matlab Function fitcsvm to Train an OC-SVM

In Matlab’s Statistics and Machine Learning Toolbox the function fitcsvm could
be used to train an SVM from a set of training observations containing different
features and a vector with labels for each row (i.e. sample). Training an OC-SVM
in lieu of the default two-class SVM involved labeling all observations equally, e.g as

26

belonging to the only available class, and tuning parameters exclusively intended
for one-class learning. Barring Kernel selection, i.e selecting and/or modifying
the non-linear Kernel function, which is essential in both two-class SVM and OC-
SVM training, the main parameter to tune in one-class learning is the level of
regularisation in training, here symbolised by the Greek letter ν (nu). A small ν
heavily penalises misclassifications during training, i.e observations which do not
fall within the class boundaries, which may lead to overfitting. In turn, a large ν
produces simpler solutions with possibly better generalisation abilities; however,
this may lead to underfitting, i.e that the trained SVM does not properly classify
new cases (See Section 2.4.2). Fine tuning the ν parameter is essential for the final
SVM to produce satisfactory classifications.

Experimentation with training an OC-SVM on example observation sets generated
by a known mathematical function and subsequently using the trained OC-SVM
to classify equivalent observation sets with different levels of added noise showed
several important points. Firstly, training an OC-SVM on raw data produced
much higher misclassification rates than on data which was scaled, either by mean-
variance normalisation or by mapping the values of each feature to similar ranges
and, secondly, that large differences in the ranges of features undermined the
effect of ν-parameter tuning. Also, the experiments confirmed that increasing ν at
training time resulted in a larger tolerance for noise in the classifications, as well
as increasing the acceptance of observations generated by different mathematical
functions. The Kernel used throughout was the Radial Basis Function (RBF)
Kernel which is commonly used, and is advocated as a primary alternative by a
2010 report [38].

3.2.4 Training an OC-SVM Classifier on Normal Driving Data

Due to time constraints and the large amount of observations available (around
21 hours), an OC-SVM was trained on a small fraction of the total available data
(around 1.5 hours). However, in order to avoid training only on one or a few
sets of user data, and to avoid training on breakpoint areas between logs, a script
was developed which produced an adequate training set. Concisely, the script
first loaded all user data, categorised by user and log number. Then, a short
period of time was clipped from the start and end of each log as mentioned in
Section 3.2.1. The resulting logs were examined in order to produce feature vectors
for each observation, using mean-variance normalisation to obtain adequate value
ranges for each feature. Each new observation was added to a larger dataset
which would include all observations. Finally, the observations’ orders in the large

27

dataset were randomised several times, using a randomisation script built around
the Matlab random number generator. A fraction (1.5 hours) of the randomised
set was reserved as training data, while the other, much larger (19.5 hours), fraction
was saved as a test set to act as observations not before seen by the OC-SVM.

Several different variations to the method were tested, among others: feature se-
lection, historical sample influence on features, as well as the number of historical
samples to consider. However, the parameter which governed at training time was
the ν-parameter described in Section 3.2.3. Additional parameters were imple-
mented post-training in order to simplify individual run-time adaptation within
the later smartphone application. One such parameter is a feature weighting vector
which can tweak the run-time sensitivity to certain scenarios.

In the final OC-SVM solution, the input feature vector was comprised of data from
accelerometers, and gyroscopes, both ”current” and historical. Accelerometer and
gyroscope data was preprocessed, separately for each axis of the 3-axis data. An
estimated derivative of the gyroscope data is also included in order to let the
OC-SVM specifically keep track of quick turns, and a historical measure for each
parameter was saved as a new feature which would also go into the OC-SVM
feature vector. Five seconds of history is used in an attempt to balance the two
goals of catching inconsistencies in the short time leading up to an incident, while
not drowning these inconsistencies in large amounts of historical data. A ν value
of 0.75 was found to be a rough optimum in that it produced the lowest false alarm
rates for the normal driving datalogs while still detecting all simulated accidents
described in Section 3.2.5.

3.2.5 Collection of Simulated Crash Data

In order to obtain data for evaluation purposes, a number of abnormal movement
patterns were realised while collecting sensor data in a smartphone. The initial
experiment consisted of placing the smartphone in a rucksack and subsequently
subjecting it to impacts, falls and rolling, separated by short periods of rest or
carrying the rucksack around. A video was recorded during testing and the dif-
ferent events were later identified and marked in the sensor data by comparing
the timestamps in the data with the elapsed times pertaining to each event in the
video.

A second experiment was also realised, where an operator performed a number of
abnormal movements with two smartphones placed on their person, one in a trouser

28

pocket and one in a chest pocket, both simultaneously collecting sensor data.
The goal of this experiment was to collect a larger timeseries of approximately
naturalistic data, i.e. having a real person perform movements similar to accidents
rather than subjecting a rucksack to extreme movements, in order to evaluate the
performance of the IDA. The simulated events were as follows:

1. Tipping to the side and being caught underneath the vehicle.

2. Being thrown over the handle.

3. Rolling off the vehicle to the side.

4. Rolling off the vehicle in a forward direction.

5. Unintentionally performing a wheelie and falling backwards.

The different motions, apart from the backwards fall, were performed using a chair
placed on a lawn, see Figure 10. The acts of falling off towards the sides, as well as
being thrown forward, were simulated by an operator throwing their body in either
direction from a sitting position in the chair, landing flat on the grass and laying
still for a short period of time. Tipping and rolling were simulated by tipping or
rolling off of the chair, and by rolling a few times on the grass. The backwards
fall was simulated by sitting on a stool placed in front of a mattress. An operator
sat on the stool with their back towards the mattress, and also slightly elevated
above the mattress, and subsequently let themselves fall backwards onto the mat-
tress. These experiments were also filmed to allow for later event identification
and marking in the data. Sadly, data collected by the smartphone in the trouser
pocket were deemed poor, due to long sequences where no sensor’s value were
updated, probably due to a higher priority application running simultaneously.

29

(a) Tipping to the side and being caught un-
derneath the vehicle.

(b) Being thrown over the handlebar.

(c) Rolling off the vehicle to the side. (d) Rolling off the vehicle in a forward direc-
tion

(e) Unintentionally performing a wheelie and
falling backwards.

Figure 10: Simulated accidents, how they were performed and which type of acci-
dent they simulate.

3.2.6 Collection of Potentially Problematic Data

An experiment was done with the goal of evaluating the possibility to avoid false
alarms during common actions which may seem abnormal to the IDA (i.e. not
normal driving). Such actions include mounting and dismounting the ATV, as well
as interacting with the smartphone running the IDA. As some form of smartphone
interaction is captured per definition in the beginning and end sections of all data,
no more smartphone interaction motion data was collected; however, data was
collected for the act of mounting and dismounting several times from different
directions. As an ATV was not available, a stone wall of similar height and width
was used in order to obtain approximately naturalistic data. The motions were
performed with two smartphones simultaneously collecting sensor data, one in a
trouser pocket and the other in a chest pocket. The experiment was filmed in

30

order to later identify and mark each event in the data. As with the simulated
crash data, the trouser pocket data where deemed poor for the same reason.

3.2.7 Summarisation of Data

In Table 3 a summarisation of data used in this project can be seen. All data
presented in the table has been subject to vetting, i.e. segments of deficient data
has been removed.

Table 3: Summarisation of good quality data used in this project.

Type of data Quantity Usage Comment
Normal ∼21 hours Train the Collected by several
driving OC-SVM volunteers.

Simulated 20 accidents Evaluate IDA 20 accidents occurring
accidents performance back-to-back.

Problematic 4 mountings Evaluate IDA Simulated using a
movements & 4 dismounts performance stone wall.

Walking ∼80 minutes Evaluate IDA Originally collected for a
performance separate algorithm to remove

accidentally logged data.

3.3 Notification of Emergency Services in Case of Accident

In Sweden a project started in 2006 that lets people with limited hearing and/or
speaking abilities register their mobile phone with the national emergency service
provider, SOS Alarm [39], which lets individuals and emergency operators commu-
nicate with each other via text message. This service is not available for everybody,
since the project is still in an early stage and communicating emergencies via text
messages has turned out to take longer time than a regular phone call. For this
project, the optimal solution would of course be to send a text message directly
to SOS Alarm with last known location and other vital information. However, the
infrastructure used to receive text messages is dedicate for those with disabilities
and a smartphone application that can automatically send text messages could
potentially overload the system.

31

In order to actually communicate the accident information, the driver must choose
an ICE before the application can be used. This ICE will receive a message (note:
not necessarily a text message) with the appropriate information together with the
task of contacting emergency services and/or finding the driver.

3.4 Smartphone Application Development: General Idea
of Program Operations

To easier grasp how an application would work a flow chart is presented here, see
Figure 11. Some steps are not included and others require further explanation.

This list explains functionalities of different boxes in Figure 11, the bold words
corresponds with the label of one or more boxes in the figure.

Application launched User launches the application, but the IDA isn’t launched.

Wait for IDA to be started (by user) It should be possible to start the appli-
cation without running the IDA, if the user wants to change some settings
for example. Is the IDA stopped for some reason (turned off by the user)
but the application is still running, this becomes the ”active” state.

Is the screen off? (left column) An assumption was made that the driver isn’t
using the smartphone actively while driving, so if some interaction is detected
(here in the form of a lit screen) the IDA shouldn’t be running.

Wait for d1 sec To reach this box, the user has recently interacted with the
smartphone but now stopped, and in order to avoid generating a false alarm
from the driver mounting the ATV a delay of d1 seconds was added.

Is SVM triggered? The first step of the IDA is an OC-SVM which, since it
is trained with high sensitivity as a priority, results in some false positive
predictions (preferred over false negatives which would mean missing an in-
cident). If the OC-SVM isn’t triggered an interaction check is made.

Start timer1 As a positive prediction is made, a timer is started to limit how
long it takes to confirm the prediction.

Is ACC triggered? If the ACC1 are not fulfilled in less than x1 seconds the IDA
starts to check the OC-SVM predictions again.

1The ACC will not be described in this report.

32

Start timer2 After a positive confirmation of the prediction a second timer is
started, because the potential alarm might still be rejected.

RC triggered? If the prediction is confirmed there still remains scenarios where
an alarm isn’t suitable. The RC must be triggered in less than x2 seconds
for the alarm to be canceled.

Wait for d2 sec In order to give the IDA time to collect a sufficient amount of
data for the next step a delay is implemented.

Walking detected? Since alarms shouldn’t occur if the driver dismounts the
ATV and starts walking, a continuous check is made if walking is detected
and the IDA is paused until the driver stops walking.

Is the screen off? (right column) This check is an extra rejection criteria, if
all other predictions indicate an accident, a last check to see if the driver is
interacting with the phone is made before continuing.

Notify user, Start timer3 In order to give the driver a chance to cancel a false
alarm, the phone starts to notify the driver that it is about to send an alarm.
A timer is also started to limit the notification period.

Any user input? If the driver interacts with the application (note: application,
not smartphone), the notification is stopped. Depending on the input two
different actions are executed.

Ask for feedback In case of a false alarm, the driver is asked to give feedback
on the situation in order to further improve the IDA. A possible automatic
improvement could be to alter thresholds depending on this feedback.

Send alarm This box is reached if there is no interaction from the driver, or if
manually pressed by the driver. A message is transmitted containing vital
information (such as last known location, time stamp, and some suggestions
of actions) to an ICE.

Post alarm mode After an alarm has been sent, further actions can benefit both
the driver and emergency personnel. One possibility is to send messages with
fixed intervals to get the attention of the ICE (if the first message failed to
do this), also GPS positions may vary and a more accurate position might
have been acquired. Another possible action is to make the phone sound to
draw the attention of passerby to the site (or, if the phone is dropped by the
driver this would indicate where it is).

33

Figure 11: Flow chart of general smartphone application.

34

3.5 User Smartphone Interaction and Undesired Trigger-
ing of Alarms

By choosing smartphones for motion data collection (rather than a separate unit)
a problem arises due to the multipurpose machine a smartphone is. Regular usage
of a smartphone, such as texting, answering phone calls and playing games, cre-
ates sensor motion patterns that are closely related to incidents and crashes (for
instance, large acceleration under short periods of time).

To counter this implementation issue, a test program (for Andriod) was created to
determine which sensors and parameters could be used and how. Seen in Figure 12
is a screen shot of said test program, two sensors (both located on the front of
the smartphone) and two parameters set by the OS are sampled and their values
presented:

• Lum corresponds to the light sensor on the phone and is presented in lux.

• Prox represents the proximity sensor, which the phone mainly uses to deter-
mine where the phone is during a telephone conversation (close vs not close
to the head), and are presented in cm.

• Locked is the first parameter, in Android it is possible to extract if the phone
is locked or not (even if no password is needed to access the smartphone, a
”lock screen” exists).

• Screen is the second parameter and shows whether the screen is lit or not.

35

Figure 12: Test program for different sensors used to determine user action.

Enclosed in red rectangles are six different scenarios, they are as following:

1. The phone is unlocked and rests in an operator’s hand, exposed to normal
office light with a lit screen and nothing is close to the proximity sensor.

2. From the previous state the phone is raised up to the head, to mimic the
placement during a phone call.

3. In the same position, the screen is manually turned off. A specific setting of
this smartphone is that it isn’t locked immediately after the screen is turned
off.

4. The phone is placed in a trouser pocket.

5. Still in the pocket, the screen is turned on but remaining locked.

6. The smartphone is brought out of the pocket, with the screen lit while still
locked.

All these different scenarios create unique sets of sensor and parameter combina-
tions. Other possibilities include, e.g, the same scenarios, but in a dark room.
However, for a first version of a commercial application just a few things are

36

necessary, to be able to identify when the smartphone is placed in a pocket and
when the user interacts with the phone (which is simplistically represented by a
lit and unlocked screen). So with the four sensors and parameters listed, enough
information is extractable to handle user smartphone interaction.

3.6 Smartphone Application Development: Apple iOS

In order to evaluate the feasibility of an SVM-based IDA running in real time on
an Apple iPhone, a simple application was designed to incorporate some of the
functionality which would likely be necessary or valuable to the final app.

3.6.1 Sensor, Activity Detection and Calculation Performance Testing
Application

A simple iOS application was built to sample sensor data at a rate of 100 Hz and
display sensor values in real time as well as the results of built-in activity recog-
nition data. The application displayed current, max and min values of each axis
of the accelerometer and gyroscope, respectively, as well as for the absolute values
calculated at each sampling instance for the accelerometer and gyroscope axes,
respectively. A set of switch icons in the application showed which of the following
activity flags were set: Walking, Running, Cycling, Automotive, Stationary and
Unknown. The built-in level of confidence for the current activity state was also
displayed in the application, next to the set of switches. A screen shot taken with
the device, an iPhone 6, lying still on a desk is displayed in Figure 13a.

In order to assess the performance of the built-in activity recognition, an operator
brought the device onto a tram, travelled for two stops, and then got off. This
was documented using screen shots, the first of which, as seen in Figure 13b,
depicts activity states when the operator was on the moving tram. The activity
recognition estimated, with a high level of confidence, that the operator was in
a vehicle. In the subsequent case seen in Figure 13c, the tram was stationary at
a tram stop. The activity recognition correctly estimated that the operator had
not moved off the tram and was thus inside a stationary vehicle; however, the
confidence level was at a lower level. Seconds after the tram started moving again,
the screen shot of Figure 13d was captured, which shows clearly that the activity
recognition correctly determined that the vehicle was moving again. Finally, when
the screen shot of Figure 13e was taken, the operator had just gotten off the tram

37

and had taken a few steps towards the booth at the tram stop, thus leading the
activity recognition to estimate that the operator was walking, albeit with initially
low confidence.

Initial testing showed that an iPhone 6 had no problem running the application
and updating the sensor values in real time; in fact, historical activity recognition
results are available regardless of whether the application is running, as the device
actually already collects and saves historical data by default [40]. Accounting for
the possibility that frequency analysis would improve performance of the IDA,
a modified version of the application ran a FFT in real time at every sampling
instance, normalised the results and subsequently located and printed the value
of the highest peak. Running the application with the device connected to the
Xcode programming environment showed that battery consumption classified as
low, which suggests that sensor monitoring and frequency analysis will not seri-
ously impact battery life.

38

(a) Phone was lying still on a
desk.

(b) Riding the tram. (c) Tram stationary at a tram
stop.

(d) Tram moving again after
having stopped.

(e) Just getting off the tram.

Figure 13: Testing of the built-in activity recognition of an Apple iPhone 6, using
a test application developed in this thesis.

39

3.6.2 Automatic ICE Notification in Apple iOS

In iOS it is not possible to automatically send neither a text message or an e-mail.
It is possible to display a message composition view with populated recipient,
subject and message body fields, but actually sending the message requires user
interaction [41]. However, the CFNetwork library supports both open and authen-
ticated communication over HTTP and FTP; thus, an external server can be used
to handle sending of text messages and e-mails [42].

3.7 Smartphone Application Development: Google’s An-
droid

Before the IDA could be implemented some test applications were programmed.
Some served the purpose to try different functionalities that most likely would
be incorporated in the final application, others were used to evaluate existing
functionality and if it could be used instead of creating similar methods, thus
saving time.

3.7.1 Choosing of API-level

Which API-level the application should be developed for is the first decision when
programming for Android (see Section 2.9.1). Regularly (about once a month)
Google collects information of devices visiting the Google Play Store and presents
different statistics, one of which is the ratio of API-levels [43]. At the writing
moment, an API-level of 15 will cover 97.3 % of all Android devices that visit the
Google play store, and is chosen as this project’s API-level. In perspective, the
API-level was raised to 15 on December 16, 2011 as a second update to the Ice
cream sandwich package [44]. On October 5, 2015 the API-level was updated to
23 [45] with the Marshmallow package, which is the highest level so far. If possible,
the API-level might be lowered in order to support more devices, although this is
only possible if new functionality in API-level 15 isn’t used.

40

3.7.2 Built-in Activity Classification Algorithms in Android

Activity classification in Android is dynamically updated. This means that a pro-
grammer can’t obtain activity classification information at any given time. Instead,
a request has to be sent, and a result is returned once the activity classification
determines it has useful/trustworthy information. A simple application was made,
which displayed the current classifications as on/off switches next to their respec-
tive confidence levels. A timer also displayed how long it had taken to reach the
current classification and how much time had passed since it was updated (see
Figure 14 for a screen shot of the application). In experiments conducted using
this built-in classification, requests were sent asking for results as soon as possible,
which were obtained every 2 to 40 seconds. If the activity exercised by the operator
was constant and continuous, updates came every 3 seconds on average, however
if the activity changed (for example the operator stopped walking and just stood
still) a new update could take up to 40 seconds to arrive, and often with a low
confidence of the new activity (barely over 50 %).

In Figure 14 a series of screen shots taken demonstrate how a bus stopping at a
station is classified. Before the screen shot presented in Figure 14a ”In vehicle”
was (correctly) classified with a confidence of 98 % and rather quickly updated to
the result presented in Figure 14a when the bus stopped at a bus stop. This result
is still correct, but fails to identify that the bus has stopped. In Figure 14b a
more correct assessment of the situation is presented, however with low confidence
meaning without knowledge of prior results it is not that trustworthy. Figure 14c
presents a more trustworthy and correct situation, however a long time (27 seconds)
is needed to get a confidence barely over 50 %. After a long update (such as the
one presented in Figure 14c) a more confident result will quickly be updated (if
the new activity is continued), as seen in Figure 14d, meaning the classification
algorithm seems to have trouble dealing with quick changes. When the bus starts
to move again a new update, Figure 14e, is acquired which has failed to catch the
change of activity (or rather, failed to identify the new activity since ”Still” has
a low confidence, which is correct). After another rather long time (20 seconds) a
correct result is presented, as seen in Figure 14f.

41

(a) Bus stopped at station. (b) First update after stop. (c) Second update after stop.

(d) Third update after stop. (e) Bus starts to move again. (f) First update after moving
again.

Figure 14: Testing of the built-in activity recognition of an Android Smartphone,
using a test application developed in this thesis.

42

3.7.3 Automatic ICE Notification in Android

To contact an ICE with relevant information about a possible accident, some sort of
communication is necessary. Rural areas, such as forests, sometime lack coverage
for cellular services, so a minimally demanding transfer protocol is desired. Of
those text based communications available for Android programmers, regular text
messages require the least from the network. To use the text message functionality
permission from the user is needed [46], which is acquired before the application
is installed. Therefore is it possible to compose a message containing information
such as last known location, time stamp, battery level etc. and send it to the
previously chosen ICE contact without any user interaction. Before the application
can be used, an ICE must be chosen and the application shouldn’t be functional
if no ICE exists.

43

44

4 Results

Figure 15: Flow chart of the
IDA.

Three different algorithms make up the IDA;
OC-SVM, ACC and RC, the RC is however de-
pendent on real-time running methods on the
smartphone, and can therefore not be evaluated
on previously collected data. So, here OC-SVM
and ACC are evaluated for different datasets
and their results presented. Worth mentioning
is that all user smartphone interaction should
be handled by sensors not logged during data
collection, meaning that these samples will not
be handled by either OC-SVM or ACC and
therefore occur as false alarms in all datasets.

4.1 The Incident Detection Algo-
rithm

Tests with the OC-SVM proved it to be insuf-
ficient as an IDA on its own, what it uses as
input can be found in Section 3.2.4. However,
no accidents were missed (which is very desir-
able) so if the extra predictions, those that are
false positives, could be cancelled based on ad-
ditional sensor information, an accurate IDA
would have been achieved. Thus, following a
positive prediction from the OC-SVM, all Ac-
cident Confirmation Criteria (ACC) must be
fulfilled within a limited time, see Figure 15 for
an overview of how the IDA works. This proved
very successful and, during the test cases, all
false positives were canceled; however, two sce-
narios existed that still caused problems. The
first was the short periods of time where the
user interacted with their phone, and the sec-
ond was the act of mounting/dismounting an
ATV. These motion patterns have the poten-
tial to both trigger the OC-SVM and fulfill all

45

ACC. Both mounting and initial smartphone interaction could be handled with
a delayed start of the IDA, based on the assumption that the user starts the
application while mounted on, or shortly before mounting, an ATV. In order to
handle dismounting, the IDA checks for Rejection Criteria (RC). The RC are
based on the built-in activity classification systems in Android and iOS. If a nor-
mal activity, such as walking, is identified with a high level of confidence, this is
a good indicator that an accident hasn’t occurred. If none of the RC are fulfilled
within a specific timeframe, it is likely that an accident has occurred; however,
as mentioned, abnormal data can be generated when the user interacts with the
smartphone. Therefore, one last check is done to rule out this false alarm possi-
bility by checking whether the system detects user interaction, such as the screen
being lit and the proximity sensor detecting that the smartphone is not near any-
thing (such as the inside of a pocket), before proceeding. If user interaction is not
detected, the anomaly is classified as an accident, see Figure 15.

46

4.2 IDA Performance During Walking

When the driver dismounts an ATV, the application should be manually stopped
by the driver. However it seems likely that it sometimes will be left on, by purpose
or accident, and in that case no alarm should be sent. If the application constantly
generates false alarms due to walking, the driver will most likely stop using the
application completely. So in order to be able to release a viable application,
walking shouldn’t generate false alarms.

In Figure 16 it can be seen how OC-SVM handles walking data, both in the
beginning and end there are some concentrations of alarms as well as some around
sample 0.5 · 104 and one almost at 2 · 104. Since no manipulation has been done to
the raw file, the concentrations in the beginning and end consist of user smartphone
interaction, i.e, when the user starts and stops the logging, respectively. The other
occasions are false alarms, and are succeeding the two highest spikes of the absolute
acceleration, with the exception of during user smartphone interaction.

For the same dataset the ACC is evaluated, and the result can be seen in Fig-
ure 17. Only during user smartphone interaction is anything considered as an
accident, meaning that the false positives the OC-SVM generated are cancelled,
as is desirable.

47

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 2 4 6 8 10
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 16: Samples labeled as accidents by OC-SVM during a walk, false alarms
are raised at sample 0.5 · 104 and 2 · 104.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 2 4 6 8 10
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 17: Samples labeled as accidents by ACC during a walk, no false alarms are
confirmed.

48

4.3 IDA Performance During Mounting/Dismounting an
ATV

Included in the dataset are several mountings and dismounts, see Table 3, all logged
by a smartphone placed in a breast pocket. Several false positives are raised by the
OC-SVM, as can be seen in Figure 18. However, most of these should be handled
by the methods discussed in Section 3.4; for mounting a delayed start of the IDA,
and for dismounting the RC is used.

With a temporally altered ACC to accommodate the dataset, while still being
representative, false alarms are raised as seen in Figure 19, which further motivates
the need for RC.

49

1

2

3

4

5

6

7

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 1000 2000 3000 4000 5000 6000 7000 8000
Sample [k]In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 18: Samples labeled as accidents by OC-SVM during mounting/dismounting
an ATV, several false alarms are raised in this dataset.

1

2

3

4

5

6

7

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 1000 2000 3000 4000 5000 6000 7000 8000
Sample [k]In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 19: Samples labeled as accidents by ACC during mounting/dismounting an
ATV, from sample 1400 false alarms are raised for a period of ∼241 samples.

50

4.4 IDA Performance During Wheelie Accidents

A wheelie accident happens when the ATV lift its forward wheels of the ground and
continue this motion until the ATV falls over backwards, having rotated around
the rear wheel axis. In Figure 20 six wheeling accidents are logged, which are the
peaks located on or about sample 0.5, 0.8, 1.05, 1.34, 1.55 and 1.8·104. All of these
are identified by the OC-SVM, and some false alarms are raised by the operator
standing up, as can be seen just before sample 0.9 ·104. These false alarms are not
considered in the performance evaluation of the IDA since it doesn’t reflect the
proceedings of the IDA, which can be seen in Figure 15. The two concentrations
in the beginning and end are user smartphone interactions.

All accidents correctly labeled by the OC-SVM are confirmed by the ACC, see
Figure 21, while no false alarms are raised.

51

1

2

3

4

5

6

7

8

9

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 0.5 1 1.5 2
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 20: Samples labeled as accidents by OC-SVM during wheeling simulations,
accidents occurring around sample 0.5, 0.8, 1.05, 1.34, 1.55 and 1.8 · 104.

1

2

3

4

5

6

7

8

9

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 0.5 1 1.5 2
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 21: Samples labeled as accidents by ACC during wheeling simulations, ac-
cidents occurring around sample 0.5, 0.8, 1.05, 1.34, 1.55 and 1.8 · 104.

52

4.5 IDA Performance During Sudden Stops and Roll Over
Accidents

To evaluate the IDA for forward crashes (involving hitting objects straight on, such
as trees) and flying over the handle bars, rolling over to the side of the ATV (for
example if one side suddenly falls into a ditch, throwing the driver off) or rolling
over forward, which could happen if the driver turns to sharply and the ATV
looses grip. These three types of accidents are present in the dataset presented
in Figure 22, further information about the positive predictions are presented in
Table 4, there is some user smartphone interaction in the beginning and end of
the set as well.

Table 4: Explanations for positive incident predictions in Figure 22.

Generated by Location ·104 [-] Type
Forward crash 0.85, 1.2, 1.5, 1.9, 2.15 Accident
Roll over: side 2.75, 2.9, 3.1, 3.3, 3.45 Accident

Roll over: forward 3.94, 4.56, 4.8, 5.17 Accident
Placing chair 0.6 False alarm

Sitting down fast 1.35, 1.67 False alarm
Leaning over 3.72, 4.44 False alarm

Compared to OC-SVM, ACC performs better, all false alarms presented in Table 4
are canceled while accidents are confirmed, as seen in Figure 23 (worth noting
is that locations of the peaks etc. are slightly shifted from the value presented
in Table 4 due to the nature of the ACC). Omitting the known problem areas
containing user smartphone interaction, there were 42 instances of false alarms over
all crash scenarios; however, 13 of these were generated by the operator initiating
a fall, but stopping suddenly and aborting the fall. Thus, only 29 false alarms
were caused by completely irrelevant events.

53

1

2

3

4

5

6

7

8

9

10

11

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 1 2 3 4 5 6
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 22: Samples labeled as accidents by OC-SVM during sudden stops and roll
over simulations.

1

2

3

4

5

6

7

8

9

10

11

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 1 2 3 4 5 6
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 23: Samples labeled as accidents by ACC during sudden stops and roll over
simulations.

54

4.6 IDA Performance During Normal Driving

Although the OC-SVM was trained on a small fraction of the available data
(about 1.5 hours), owing to the randomised observation structure described in Sec-
tion 3.2.4, the resulting precision on the large test set (the remaining ∼20 hours)
was high. For the case including all observations in the dataset, shown in the
second row of Table 5, 99.29% of observations were classified correctly. However,
some of the individual logs produced rather worse results than others; therefore,
these were examined more closely.

Table 5: Results when letting the OC-SVM classify all observations in the dataset.

Case Number of Number of Precision
samples examined samples ”normal”

All 7807604 7751903 99.29 %
observations (∼ 21 h 41 min 16 s) (∼ 21 h 31 min 59 s)

Barring 7569697 7523585 99.39 %
abnormal logs (∼ 21 h 1 min 37 s) (∼ 20 h 53 min 56 s)

4.6.1 Inspecting Datasets with the Highest Levels of False Alarms

The two individual logs producing the most false alarms had specificities (true
negative rate) of 95.90% and 96.71%, respectively, and turned out to both be from
the same driver. Examining plots of their absolute accelerations revealed erratic
values and possible lapses in sampling which proved difficult for both the OC-
SVM to classify correctly, see Figure 24, as well as having false alarms cancelled
by the ACC, see Figure 25. Possible causes of these erratic patterns are data
corruption, the driver forgetting the logging application is running and doing some
other activity, driving an ATV with the smartphone in a lose pocket/bag so that
the smartphone moves around more independently than if it were confined in a
tighter pocket.

55

1

2

3

4

5

6

7

8

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 0.5 1 1.5 2
Sample [k]

×10
5In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 24: Samples labeled as accidents by the OC-SVM in the worst observed
individual log in the original dataset.

1

2

3

4

5

6

7

8

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 0.5 1 1.5 2
Sample [k]

×10
5In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 25: Samples labeled as accidents by ACC in the worst observed individual
log in the original dataset.

56

Since it is impossible to discern why the two logs included such erratic data, and
because they did not make up a significant part of the overall test set, these were
omitted to obtain the precision in the last row of Table 5. For comparison, the log
with the worst results, barring the two aforementioned, was plotted and examined.
The OC-SVM had performed on this log with a 97.47% precision and had produced
false alarms in a few sampling instances, as visible in Figure 26; however, as shown
in Figure 27, the ACC produced no alarms and thus all false alarms produced by
the OC-SVM would have been cancelled in this case.

57

2

4

6

8

10

12

14

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by SVM

0 1 2 3 4 5 6 7 8
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 26: Samples labeled as accidents by the OC-SVM in the worst observed
individual log in the modified dataset.

2

4

6

8

10

12

14

N
o
rm

.
a
b
s
o
lu

te
 a

c
c
e
le

ra
ti
o
n
 [
m

/s
2
] Normalised absolute acceleration

Classified as incident by ACC

0 1 2 3 4 5 6 7 8
Sample [k]

×10
4In

c
id

e
n
t

p
re

d
ic

ti
o
n
s

Figure 27: Samples labeled as accidents by ACC in the worst observed individual
log in the modified dataset.

58

4.6.2 Estimated F 1-Score for the OC-SVM During Normal Driving

Barring the two erratic cases described in Section 4.6.1, and not taking into ac-
count post-processing by the ACC, the OC-SVM obtains an estimated F1 score of
99.69 %. Specifically, this was calculated as shown in Equation (2), where preci-
sion is the fraction of normal driving samples correctly classified (i.e 99.39 %), and
recall is the fraction of simulated accidents that were discovered by the OC-SVM
(i.e 100 %).

F1 = 2 · (precision) · (recall)

(precision) + (recall)
= 2 · (0.9939) · (1.00)

0.9939 + 1.00
≈ 0.9969 (2)

4.7 IDA Performance Summarised

All final alarms from the IDA assume that the alarm is not cancelled by RC after
the IDA has classified the event as an incident. RC is dependent on real-time
built-in methods in the smartphone and can’t be fairly evaluated with collected
data; furthermore, user smartphone interaction related alarms are not included as
these can be handled using other methods, see Section 3.5.

The number of alarms generated by the OC-SVM and ACC, as well as the calcu-
lated number of alarms from the IDA which would have been sent, are presented
in Table 6. Alarms sent by the IDA rely on the prevalence of ACC alarms in con-
junction with OC-SVM alarms (as well as no Rejection Criteria-confirmations)
and, as such, each period of continuous alarms is viewed as one incident case. For
the OC-SVM and ACC, results represent the total number of sampling instances
where each respective classifier classified that an accident had occurred, barring
areas of user smartphone interaction. As a reference: a one-second period where
all samples are classified as accidents will approximately equal 100 samples (due
to the sampling frequency).

Note that the number of final alarms raised by the IDA to the smartphone appli-
cation was not calculated for the worst observed driving data – these numbers are
only included for the interest of the reader.

59

Table 6: Summarised performance of OC-SVM, ACC and IDA. The number of
final alarms was not calculated for the worst observed driving data nor areas of
user smartphone interaction but it is clear that both would be large. Note that
these results assume no cancellation from RC.

Dataset OC-SVM ACC IDA
Alarms Whereof Alarms Whereof Alarms Whereof
raised false raised false raised false

Walking 3 3 0 0 0 0
data
Mounting & 75 75 141 141 1 1
Dismounting
Crashes 1515 42 4962 0 14 0
Wheelie 123 3 5341 0 6 0
accidents
Worst observed 3763 3763 5568 5568 - -
driving in
original dataset*
Worst observed 47 47 0 0 0 0
driving in
modified dataset

60

5 Discussion

Several aspects of this report needs further discussion, which can be found here
as well as some topics not mentioned in any section earlier, but that significantly
affects this report’s subject.

5.1 The Three Classification Methods Used in the IDA

Initially only an SVM was going to be used to determine if an incident had oc-
curred, it proved insufficient and additions were made.

First, the ACC were added, and immensely increased the performance of the whole
IDA. However the inner workings of the ACC isn’t suitable to run continuously,
since false alarms would be raised; if it had been, the OC-SVM would’ve been
scrapped since it is outperformed by the ACC. So a hybrid was created, the OC-
SVM does a first check of the sensors’ values and if it finds an anomaly the ACC is
brought in to further analyse it. This combination works great for most cases, but
proved to be insufficient in handling mounting/dismounting. No great method to
handle those motions has been developed, and are currently handled by the RC, if
walking is detected shortly after both OC-SVM and ACC has triggered an alarm
the alarm is canceled. Mounting is currently handled by a simple delayed start of
the IDA.

5.2 Cellular and Data Coverage in Rural Areas

As anyone who owns a smartphone knows, coverage varies with a lot of things. In
an urban environment being in a building will lower the reception, and with thicker
walls the coverage decreases even more. In a rural area, the topography of the land
plays a significant role in how good coverage is available. A risk exists with varying
coverage, if an accident occurs in a white spot (an area with no coverage) there is
no way to communicate either location or the fact that an accident has occurred.

This problem can be handled by continuous updates to a server, for example an
update every five minutes from the smartphone to the server containing current
position and speed. If a certain amount of updates are missed, the server can raise
an alarm and provide a last-known-location.

61

5.3 Notification of Emergency Services in Case of Accident
via Text Message

It is not uncommon that text messages can be received unnoticed, if the user
and smartphone is in separate rooms for example. People has a tendency to con-
sciously ignore private and/or turn off notifications while at work, meaning an
accident notification might not be discovered for several hours, losing valuable
time for the hurt driver. SOS Alarm do have the technology to handle text mes-
sages, and do so for a small part of the Swedish population (see Section 3.3) but is
restricted in allowing more people the same functionality. It is understandable that
a group not capable of using a phone by conventional standards (i.e. people with
hearing/talking disabilities) has priority over an automatic text message from an
unofficial source, but other situation exists where emergency help would preferably
be communicated via text messages. A common example is threatening situations,
such as home invasions, being able to silently text emergency services instead of
calling them seems as a reasonable technological advancement. Although decreas-
ing the human contact between subject and operator has some disadvantages, it’s
harder to gather a correct picture of the situation without hearing how the subject
speaks and prank texts will undoubtedly occur. Emergency applications, such as
the one proposed in this report, would also most likely require a lot of resources.
Even though many arguments can be made for why limitation is needed for this
functionality, development should be made in order to further spread availabil-
ity; one step in this process is eCall, which requires cars to automatically contact
emergency services if an accident has occurred [47].

5.4 IDA Performance

Four main areas has been investigated for the IDA, most of which performed
satisfactory at least, further discussion of the result follows here. What proved to
be hardest was not to correctly classify normal driving and simulated accidents,
but rather making the IDA more consumer friendly by adapting it to situations
likely to occur.

62

5.4.1 Walking

An IDA that would be triggered by walking would cause great annoyance for the
user, since several scenarios can be imagined that require the driver to dismount
the ATV for a short period of time, where temporarily turning of the IDA shouldn’t
be necessary. As presented in Section 4.2, thanks to ACC no alarms are raised,
together with the RC the IDA would be paused. Just using one walk from one
person might seem as a small set to evaluate over, and yes it is. This report’s focus
however isn’t the ability to distinguish walking from driving, and is only done to
prove that it is viable for a consumer version of the IDA, where the user most
likely doesn’t want to take out his or her smartphone every time they dismount
an ATV. Therefore this simple evaluation is included since the initial goal was to
create such an application, but before an actual release further evaluation must be
conducted.

5.4.2 Mounting/Dismounting an ATV

Before a commercialised application could be released, improvements must be
done with handling of mounting/dismounting. Some major simplifications has
been made, such as that the user will only turn on the IDA shortly before mount-
ing/driving away the ATV, for example, if they would turn it on, walk around
looking for a helmet high and low in the house, an alarm could be triggered. As
with dismounting, if the driver doesn’t walk around for 30 seconds continuously,
an Android version would most likely raise an alarm (see Section 3.7.2 for expla-
nation). The smartphone application proposal presented in Figure 11 should be
able to handle the driver dismounting the ATV, walk around for a bit and then
mounting the ATV again, if the RC is triggered (i.e. the alarm aborted), otherwise
if an alarm is raised and confirmed by the ACC and the driver has time to mount
the ATV before RC cancels it, it would proceed to notify the driver unnecessarily.
For a better performing application, the motion of mounting/dismounting would
ideally be identified, so that the driver state could be monitored and the IDA
automatically paused/started.

5.4.3 Simulated Accidents

With the combination of OC-SVM and ACC all collected accidents were correctly
classified, and no false alarms raised. However, it is possible that overfitting might

63

have occurred, and to further evaluate the IDA more data must be collected,
especially crashes. While each type of accident were simulated several times, al-
ternations varied little, mostly due to insufficient protection for the operator and
limitation in time and equipment. Due to the limitations, the simulated accident
are deemed to be in the lower spectrum of severity, meaning that more realistic
accidents would probably be even more distinct and easier to identify. To get even
more variance in a future data collection, several test persons should be used in
crash simulations since individuals might handle falling off an ATV differently.

5.4.4 Normal Driving

With the OC-SVM used, the majority of all samples of normal driving were cor-
rectly classified; however, it is possible that the training set failed to capture a
certain type of driving style prevalent in the two ”worst case” logs. This could be
remedied by allowing the training set to take more observations into account or
by increasing generalisation parameters during training as well as during run-time
on the user’s smartphone.

As an additional step in the evaluation of the IDA, use of the ACC should be
included in the OC-SVM results to obtain information on how many of the false
alarms could have been canceled. For example, in the case with 97.49% accuracy
detailed in Section 4.6.1, all false alarms would have been cancelled by the ACC,
giving the IDA in this case an accuracy of 100%. Furthermore, it is impossible to
discern whether an alarm would have actually been sent, since the RC are only
applicable to run-time conditions and not possible to replicate in Matlab using
the dataset available for the project.

5.5 Ethical & Privacy Considerations

Many applications already use motion information from accelerometers, gyroscopes
and magnetometers and the success of activity tracking applications such as Run-
keeper indicate positive sentiment towards the use of these sensors. However, use
of other sensors and data could be viewed as excessively intrusive and, overall,
access to sensors and information not obviously required for the primary use of an
application may lead to user concerns about privacy. For example, when the Face-
book Messenger application required that extensive permissions be granted before
installing, this sparked an irate article in the Huffington Post about the need to

64

set a stop to excessive requirements by application developers [48]. Although there
seemed to be reasons behind each permission requirement, these were not clearly
explained to users at install time. For the purposes of improving the IDA, it could
be valuable to e.g use the microphone to listen for the starting, stopping or revving
of a combustion engine; however, this could make users hesitant about using the
application at all. The collection of the application of sensitive information such
as health data could also be problematic, although the more obvious connection
between a safety application and possessing information about e.g blood type and
age may assuage user privacy concerns in this matter.

5.6 Self-fulfilling Prophecies & Psychological Considera-
tions

As a consequence of the IDA being trained and tested on a finite number of ATV
rides, and, although SVM’s generalise quite well, a situation may arise during nor-
mal driving which, for some reason, does not classify as normal. If the subsequent
checks for confirmation and rejection criteria also indicate that there has been an
accident, this will lead to the application notifying the user that an alarm is about
to be sent. Given that the user notices this, he or she may quickly grow anxious
that his or her ICE will receive frightening news, it is conceivable that concentra-
tion on driving will waver; thus, possibly leading to an accident where none would
have occurred.

An entirely different concern is the possibility that having a safety application
running will produce a false sense of security or invulnerability with the user and
thus promote reckless driving. Although accidents occurring as a result of this
may trigger alarms and, thus, the relatively swift arrival of medical professionals,
the fact of the matter is that the accident might never have happened without the
application.

65

66

6 Conclusion

The preliminary aims were:

1. to create an IDA which can identify accidents and crashes.

2. Optimise the IDA in order to obtain a high F1-score and

3. release it as an application through official distribution channels, such as the
Google and Apple online application stores.

Regarding the first aim, all parts of the IDA has been constructed and evaluated
with good results, but no merged version exists since that only complicates things
while evaluating parameters. Also, the F1-score is high but based on simulated
crash data.

For the third aim, work has been done to evaluate the possibility of running this
type of computation in real time on smartphones, which has only generated positive
results. So, to actually release an application a lot of pieces has to be put together,
but all of the pieces are there and have been checked that they work for each
platform chosen.

Also, no other hardware other than that available in a smartphone has been used
for any purpose in the IDA or the supporting structure around it.

Even though the goals chosen at the start of the project hasn’t been fully com-
pleted, the major objectives has. A working IDA exists and functions well, it is
fully implementable on both Apple’s iOS and Google’s Android and would only
use onboard sensors and built in functions to evaluate data.

67

68

7 Future Development Suggestions

During the course of the study, several interesting ideas and theories came up.
However, not all of them were possible to realise or even test. Some of the more
interesting ideas are shortly discussed here.

Evaluation of Close Call Situations

A dataset not actively collected and evaluated is close call situations. One was
accidentally logged (when an operator begins to throw himself out of a chair, but
aborts the simulation and subsequently remains in the chair) which resulted in
13 false alarm predictions (see Section 4.5). It would however be interesting to
actively collect data that are almost accidents, but not really. The best way to
do this would of course be to drive around on a real ATV in situations deemed
problematic, such as rough terrain (driving over logs, through cairns etc.) and
also ask regular drivers about situations they consider hazardous and relatively
frequently occurring. If such a set could be collected, better evaluation of the IDA
performance would be possible.

Implement Concussion Test

In order to handle drivers that think they are fine after an accident (and thus
manually cancel the alarm), but actually quickly worsen shortly after it, the im-
plementation of a concussion test has been discussed. The general idea is that
a short questionnaire appears after a canceled alarm, see Figure 28. A possible
model for the concussion test could be that used by many athletes [49], however,
this test requires a reference test to be able to indicate whether a concussion might
have happened or not.

Another possibility is also to monitor that the driver actually is conscious during
a period after the canceled alarm, by monitoring for example changes in GPS lo-
cation, accumulated magnitude for accelerometer and/or gyroscope or just regular
speed.

69

Figure 28: Questionnaire after a canceled alarm.

Implementation of eCall Protocol

A coming future development in automatic emergency safety is something called
eCall, which is a standard for cars to communicate with emergency services if
an accident has occurred (such as an airbag deployment) [47]. By April 2018 all
new cars sold within the European union must have this functionality, however, it
seems unlikely that any other operator will be allowed to use this infrastructure
in the near future, especially smartphone applications. Without some sort of
licensing/cooperation an open access for smartphone application developers to this
service would most likely result in a high percentage of false alarms. If, however,
in the future the service is made available, it is highly attractive to implement it.

Automatic Detection of Mounting/Dismounting in Order to
Ensure Running of Algorithm

To handle the state of the driver (i.e. sitting on the ATV or not) optimally, ide-
ally each mounting/dismounting should be detected. If so, further improvement
could be done such as letting the application (but not the IDA) run in the back-
ground continuously, until a mounting motion is detected and then start the IDA.
This would also improve the handling of false alarms from dismounted drivers (as

70

discussed in Section 5.4).

Accessing Medical Information Stored on an iOS Device

Using a framework called HealthKit, which is available on Apple iOS devices, it
is possible for users to store their health information on the device for use by
authorised applications [50]. Emergency health information such as age, blood
type, illnesses and medication is viewable from the lock screen of the device so
that a passerby can better aid an unconscious user. It could be useful to include
such information in an ICE-contact message so that he or she may relay accurate
and vital information to emergency services. Naturally, this possibility would be
governed by the prevalence of users who actually fill out their emergency health
information page.

71

72

References

[1] Folksam, “Bicycle helmet test 2015,” www.folksam.se, 2015, [Accessed: 19
May, 2016]. [Online]. Available: http:
//www.folksam.se/media/folksam-bicycle-helmet-test-2015 tcm5-24933.pdf

[2] The Specialty Vehicle Institute of America. ”What is an ATV”.
www.svia.org. [Accessed: 26 June, 2016]. [Online]. Available:
http://www.svia.org/#/aboutATV

[3] Trafikanalys, “Road traffic injuries 2015,” www.trafa.se, 2015, [Accessed: 19
May, 2016]. [Online]. Available: http://www.trafa.se/globalassets/statistik/
vagtrafik/vagtrafikskador/vaegtrafikskador 2015.pdf

[4] The Swedish Transport Administration, Better Safety on Quad Bikes. Joint
strategy version 1.0 for the years 2014-2020. The Swedish Transport
Administration, 2013.

[5] Statistiska Centralbyr̊an / Statistics Sweden, “Privatpersoners användning
av datorer och internet 2015 [use of computers and the internet by private
persons in 2015],” www.scb.se, 2015, (in Swedish). [Accessed: 20 January,
2016]. [Online]. Available: http://www.scb.se/Statistik/ Publikationer/
LE0108 2015A01 BR 00 IT01BR1501.pdf

[6] S. Candefjord, L. Sandsjö, R. Andersson, N. Carlborg, A. Szakal,
J. Westlund, and B. A. Sjöqvist, “Using smartphones to monitor cycling and
automatically detect accidents - towards ecall functionality for cyclists,” In:
Proceedings, International Cycling Safety Conference 2014, 18–19 November
2014, Gothenburg, Sweden; 2014:1-9. [Online]. Available:
hhttp://bada.hb.se/handle/2320/14570

[7] L. Bergbom, C. Engelbrektsson, S. Granberg, and L. Streling,
“Säkerhetsapp för ryttare [Safety app for horse riders],” Bachelore Thesis,
Chalmers Univeristy of Technology, Gothenburg, Sweden, 2015, (in
Swedish). [Online]. Available:
http://publications.lib.chalmers.se/records/fulltext/219261/219261.pdf

[8] S. Garland, “National estimates of victim, driver, and incident
characteristics for atv-related, emergency department-treated injuries in the
united states from january 2010 – august 2010 with an analysis of victim,
driver and incident characteristics for atv-related fatalities from 2005
through 2007,” Directorate for Epidemiology, Division of Hazard Analysis,
U.S Consumer Product Safety Commission, 2014. [Online]. Available:

73

http://www.folksam.se/media/folksam-bicycle-helmet-test-2015_tcm5-24933.pdf
http://www.folksam.se/media/folksam-bicycle-helmet-test-2015_tcm5-24933.pdf
http://www.svia.org/#/aboutATV
http://www.trafa.se/globalassets/statistik/vagtrafik/vagtrafikskador/vaegtrafikskador_2015.pdf
http://www.trafa.se/globalassets/statistik/vagtrafik/vagtrafikskador/vaegtrafikskador_2015.pdf
http://www.scb.se/Statistik/_Publikationer/LE0108_2015A01_BR_00_IT01BR1501.pdf
http://www.scb.se/Statistik/_Publikationer/LE0108_2015A01_BR_00_IT01BR1501.pdf
hhttp://bada.hb.se/handle/2320/14570
http://publications.lib.chalmers.se/records/fulltext/219261/219261.pdf

https://www.cpsc.gov/Global/Research-and-Statistics/Injury-Statistics/
Sports-and-Recreation/ATVs/ATVSpecialStudyReport.pdf

[9] Everyday Mysteries. ”What is a GPS? How does it work?”. www.loc.gov.
[Accessed: 26 June, 2016]. [Online]. Available:
http://www.loc.gov/rr/scitech/mysteries/global.html

[10] Federal Communications Commission. ”Understanding Wireless Telephone
Coverage Areas”. www.fcc.gov. [Accessed: 26 June, 2016]. [Online].
Available: https://www.fcc.gov/consumers/guides/
understanding-wireless-telephone-coverage-areas

[11] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz, “Human
Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly
Support Vector Machine,” Ambient Assisted Living and Home Care, vol. 4,
2012.

[12] M. J. Abady, L. Luceri, M. Hassan, T. Chou, C, and M. Nicoli, “A
collaborative approach to heading estimation for smartphone-based PDR
indoor localisation,” 2014 International Conference on Indoor Positioning
and Indoor Navigation, 2014.

[13] S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Tröster, M. Plotnik, and
J. Hausdorff, “Online Detection of Freezing of Gait with Smartphones and
Machine Learning Techniques,” International Conference on Pervasive
Computing Technologies for Healthcare (PervasiveHealth) and Workshops,
vol. 6, 2012.

[14] F. Sposaro and G. Tyson, “iFall: An android application for fall monitoring
and response,” Engineering in Medicine and Biology Society, vol. 6, 2009.

[15] J. Hu, D. Li, Q. Duan, Y. Han, G. Chen, and X. Si, “Fish species
classification by color, texture and multi-class support vector machine using
computer vision,” Computers and Electronics in Agriculture, vol. 88, 2012.

[16] D. M. J. Tax, “One-Class Classification,” ASCI dissertation series, vol. 65,
2001.

[17] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support Vector Method for Novelty Detection,” NIPS, vol. 12, pp.
582–588, 1999.

[18] Azure Machine Learning Team. ”Microsoft Azure Machine Learning:
Algorithm Cheat Sheet”. http://azure.microsoft.com. [Accessed: 20 March,
2016]. [Online]. Available: http://aka.ms/MLCheatSheet

74

https://www.cpsc.gov/Global/Research-and-Statistics/Injury-Statistics/Sports-and-Recreation/ATVs/ATVSpecialStudyReport.pdf
https://www.cpsc.gov/Global/Research-and-Statistics/Injury-Statistics/Sports-and-Recreation/ATVs/ATVSpecialStudyReport.pdf
http://www.loc.gov/rr/scitech/mysteries/global.html
https://www.fcc.gov/consumers/guides/understanding-wireless-telephone-coverage-areas
https://www.fcc.gov/consumers/guides/understanding-wireless-telephone-coverage-areas
http://aka.ms/MLCheatSheet

[19] R. Caruana and A. Niculescu-Mizil, “An Empirical Comparison of
Supervised Learning Algorithms,” Cornell University, Ithaca, USA, Tech.
Rep., 2006.

[20] S. Omar, A. Ngadi, and H. H. Jebur, “Machine Learning Techniques for
Anomaly Detection: An Overview,” Universiti Teknologi Malaysia, Kuala
Lumpur, Malaysia, Tech. Rep., 2013.

[21] F. Yuan and R. L. Cheu, “Incident detection using support vector
machines,” Transportation Research Part C: Emerging Technologies, vol. 11,
no. 3–4, pp. 309 – 328, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X03000202

[22] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,”
Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[23] I. Steinwart and A. Christmann, Support Vector Machines, 1st ed.
Springer, 2008.

[24] D. Tax and R. Duin, “Support Vector Data Description,” Machine Learning,
vol. 54, pp. 45–66, 2004.

[25] Jalp Systems. ”Jalp – Säkerhetslösningar för oskyddade trafikanter [Jalp –
Safety solutions for vulnerable road users]”. www.jalp.se. (in Swedish).
[Accessed: 28 June, 2016]. [Online]. Available: http://www.jalp.se

[26] S. Candefjord, L. Sandsjö, and B. A. Sjöqvist, “Statistikinsamling och
automatiskt olyckslarm för trafik med fyrhjulingar via en
smartmobilplattform [Statistical collection and automatic incident alarm for
traffic by quadwheeler via a smartphone platform],” SAFER, Chalmers
University of Technology and University of Bor̊as, Tech. Rep., February
2016, (in Swedish).

[27] Apple Inc. ”Numbers for Mac”. www.apple.com. [Accessed: 29 June, 2016].
[Online]. Available: http://www.apple.com/mac/numbers/

[28] D. G. Lister, J. Carl, J. H. Morgan, M. Denning, David A amd Valentovic,
B. Trent, and B. L. Beaver, “Pediatric all-terrain vehicle trauma: a 5-year
state-wide experience,” Journal of Pediatric Surgery, vol. 33, no. 7, pp.
1081–1083, 1998.

[29] MedlinePlus. ”Concussion”. U.S. National Library of Medicine.
www.nlm.nih.gov. [Accessed: 8 Mars, 2016]. [Online]. Available:
https://www.nlm.nih.gov/medlineplus/concussion.html

75

http://www.sciencedirect.com/science/article/pii/S0968090X03000202
http://www.jalp.se
http://www.apple.com/mac/numbers/
https://www.nlm.nih.gov/medlineplus/concussion.html

[30] Thompsons Solicitors. ”Compensation Claims for Fractured Bones / Broken
Bones”. www.thompsons.law.co.uk. [Accessed: 27 June, 2016]. [Online].
Available: http://www.thompsons.law.co.uk/other-accidents/
compensation-claim-fractured-bone-broken-bone.htm

[31] IDC Research Inc. ”Smartphone OS Market Share, 2015 Q2”. www.idc.com.
[Accessed: 23 May, 2016]. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[32] Apple Inc., The Swift Programming Language, 2nd ed. Apple Inc., 2015.

[33] ——. ”Measure Energy Impact with Xcode”. developer.apple.com. [Accessed:
3 May, 2016]. [Online]. Available:
https://developer.apple.com/library/watchos/documentation/Performance/
Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html#//
apple ref/doc/uid/TP40015243-CH34-SW1

[34] ——. ”vDSP Programming Guide”. developer.apple.com. [Accessed: 25
February, 2016]. [Online]. Available:
https://developer.apple.com/library/prerelease/ios/documentation/
Performance/Conceptual/vDSP Programming Guide/About vDSP/
About vDSP.html#//apple ref/doc/uid/TP40005147-CH2-SW1

[35] ——. ”Accelerate Framework Reference”. developer.apple.com. [Accessed: 26
February, 2016]. [Online]. Available: https://developer.apple.com/library/
prerelease/ios/documentation/Accelerate/Reference/AccelerateFWRef

[36] ——. ”CMMotionActivity Class Reference”. developer.apple.com. [Accessed:
25 February, 2016]. [Online]. Available:
https://developer.apple.com/library/ios/documentation/CoreMotion/
Reference/CMMotionActivity class/

[37] Android Developers. ”ActivityRecognitionResult”. developers.google.com.
[Accessed: 27 June, 2016]. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/
location/ActivityRecognitionResult#public-methods

[38] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support
Vector Classification,” National Taiwan University, Dept. of Computer
Science, Taipei 106, Taiwan, Tech. Rep., 2010.

[39] SOS Alarm, “SMS 112 in Sweden,” www.sosalarm.se, 2010, [Accessed: 19
May, 2016]. [Online]. Available: https://www.sosalarm.se/PageFiles/1155/
SMS%20112%20Systembeskrivning EN%20 2 .pdf

76

http://www.thompsons.law.co.uk/other-accidents/compensation-claim-fractured-bone-broken-bone.htm
http://www.thompsons.law.co.uk/other-accidents/compensation-claim-fractured-bone-broken-bone.htm
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://developer.apple.com/library/watchos/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html#//apple_ref/doc/uid/TP40015243-CH34-SW1
https://developer.apple.com/library/watchos/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html#//apple_ref/doc/uid/TP40015243-CH34-SW1
https://developer.apple.com/library/watchos/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html#//apple_ref/doc/uid/TP40015243-CH34-SW1
https://developer.apple.com/library/prerelease/ios/documentation/Performance/Conceptual/vDSP_Programming_Guide/About_vDSP/About_vDSP.html#//apple_ref/doc/uid/TP40005147-CH2-SW1
https://developer.apple.com/library/prerelease/ios/documentation/Performance/Conceptual/vDSP_Programming_Guide/About_vDSP/About_vDSP.html#//apple_ref/doc/uid/TP40005147-CH2-SW1
https://developer.apple.com/library/prerelease/ios/documentation/Performance/Conceptual/vDSP_Programming_Guide/About_vDSP/About_vDSP.html#//apple_ref/doc/uid/TP40005147-CH2-SW1
https://developer.apple.com/library/prerelease/ios/documentation/Accelerate/Reference/AccelerateFWRef
https://developer.apple.com/library/prerelease/ios/documentation/Accelerate/Reference/AccelerateFWRef
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionResult#public-methods
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionResult#public-methods
https://www.sosalarm.se/PageFiles/1155/SMS%20112%20Systembeskrivning_EN%20_2_.pdf
https://www.sosalarm.se/PageFiles/1155/SMS%20112%20Systembeskrivning_EN%20_2_.pdf

[40] Apple Inc. ”CMMotionActivityManager Class Reference”.
developer.apple.com. [Accessed: 3 May, 2016]. [Online]. Available:
https://developer.apple.com/library/ios/documentation/CoreMotion/
Reference/CMMotionActivityManager class/index.html#//apple ref/occ/
instm/CMMotionActivityManager/queryActivityStartingFromDate:toDate:
toQueue:withHandler:

[41] ——. ”MFMessageComposeViewController Class Reference”.
developer.apple.com. [Accessed: 27 May, 2016]. [Online]. Available:
https://developer.apple.com/library/ios/documentation/MessageUI/
Reference/MFMessageComposeViewController class/index.html

[42] ——. ”CFNetwork Programming Guide”. developer.apple.com. [Accessed: 30
May, 2016]. [Online]. Available:
https://developer.apple.com/library/mac/documentation/Networking/
Conceptual/CFNetwork/Introduction/Introduction.html#//apple ref/doc/
uid/TP30001132-CH1-DontLinkElementID 30

[43] Google Inc. ”Android usage statistics”. developer.android.com. [Accessed: 24
Mars, 2016]. [Online]. Available:
http://developer.android.com/about/dashboards/index.html

[44] X. Ducrohet. ”Android 4.0.3 Platform and Updated SDK tools”. 11
December 2011 [Blog entry]. Android Developers Blog. [Accessed: 24 May,
2016]. [Online]. Available: http://android-developers.blogspot.se/2011/12/
android-403-platform-and-updated-sdk.html

[45] B. Rakowski. ”Get ready for the sweet taste of Android 6.0 Marshmallow”.
5 October 2015 [Blog entry]. Android Official Blog. [Accessed: 24 May,
2016]. [Online]. Available: http://officialandroid.blogspot.se/2015/10/
get-ready-for-sweet-taste-of-android-60.html

[46] Android Developers. ”SmsManager in Android documentation”.
developer.android.com. [Accessed: 27 May, 2016]. [Online]. Available: https:
//developer.android.com/reference/android/telephony/SmsManager.html

[47] European Commission. ”eCall: Time saved = lives saved”. European
Commission. www.ec.europa.eu. [Accessed: 16 February, 2016]. [Online].
Available:
https://ec.europa.eu/digital-agenda/en/ecall-time-saved-lives-saved

[48] S. Fiorella. ”The Insidiousness of Facebook Messenger’s Android Mobile
App Permissions (Updated)”. 11 August 2014 [Blog entry]. The Huffington

77

https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivityManager_class/index.html#//apple_ref/occ/instm/CMMotionActivityManager/queryActivityStartingFromDate:toDate:toQueue:withHandler:
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivityManager_class/index.html#//apple_ref/occ/instm/CMMotionActivityManager/queryActivityStartingFromDate:toDate:toQueue:withHandler:
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivityManager_class/index.html#//apple_ref/occ/instm/CMMotionActivityManager/queryActivityStartingFromDate:toDate:toQueue:withHandler:
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivityManager_class/index.html#//apple_ref/occ/instm/CMMotionActivityManager/queryActivityStartingFromDate:toDate:toQueue:withHandler:
https://developer.apple.com/library/ios/documentation/MessageUI/Reference/MFMessageComposeViewController_class/index.html
https://developer.apple.com/library/ios/documentation/MessageUI/Reference/MFMessageComposeViewController_class/index.html
https://developer.apple.com/library/mac/documentation/Networking/Conceptual/CFNetwork/Introduction/Introduction.html#//apple_ref/doc/uid/TP30001132-CH1-DontLinkElementID_30
https://developer.apple.com/library/mac/documentation/Networking/Conceptual/CFNetwork/Introduction/Introduction.html#//apple_ref/doc/uid/TP30001132-CH1-DontLinkElementID_30
https://developer.apple.com/library/mac/documentation/Networking/Conceptual/CFNetwork/Introduction/Introduction.html#//apple_ref/doc/uid/TP30001132-CH1-DontLinkElementID_30
http://developer.android.com/about/dashboards/index.html
http://android-developers.blogspot.se/2011/12/android-403-platform-and-updated-sdk.html
http://android-developers.blogspot.se/2011/12/android-403-platform-and-updated-sdk.html
http://officialandroid.blogspot.se/2015/10/get-ready-for-sweet-taste-of-android-60.html
http://officialandroid.blogspot.se/2015/10/get-ready-for-sweet-taste-of-android-60.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://ec.europa.eu/digital-agenda/en/ecall-time-saved-lives-saved

Post, The Blog. [Accessed: 26 May, 2016]. [Online]. Available: http://www.
huffingtonpost.com/sam-fiorella/the-insidiousness-of-face b 4365645.html

[49] P. McCrory, K. Johnston, W. Meeuwisse, M. Aubry, R. Cantu, J. Dvorak,
T. Graf-Baumann, J. Kelly, M. Lovell, and P. Schamasch, “Summary and
agreement statement of the 2nd International Conference on Concussion in
Sport, Prague 2004,” British Journal of Sports Medicine, vol. 39, pp.
196–204, 2005.

[50] Apple Inc. ”HealthKit Framework Reference”. developer.apple.com.
[Accessed: 1 Jun, 2016]. [Online]. Available: https://developer.apple.com/
library/ios/documentation/HealthKit/Reference/HealthKit Framework/

78

http://www.huffingtonpost.com/sam-fiorella/the-insidiousness-of-face_b_4365645.html
http://www.huffingtonpost.com/sam-fiorella/the-insidiousness-of-face_b_4365645.html
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/

	 Glossary
	Introduction
	Background
	Purpose
	Aim
	Scope and Limitations
	Feasibility Studies of Machine Learning Methods and Smartphone Performance

	Theory
	Machine Learning Methods for Classification
	Evaluation of Algorithm Performance
	Large-Margin Binary Classification Using Support Vector Machines
	Understanding the Power of Support Vector Machines
	Understanding The Kernel Trick

	One-Class Support Vector Machines for Data Description and Anomaly Detection
	Using Samples From One Class to Distinguish Between Two
	Tuning the OC-SVM Decision Boundary Using Regularisation

	Using the Smartphone Application LogYard for Data Collection
	Medical Considerations
	Patient Response Resulting From Accidents Involving Trauma to the Brain
	Movability Following a Serious Accident

	Smartphone Application
	Smartphone Application Development: Apple iOS
	Apple iOS and Swift Programming
	Using Apple's Accelerate Framework For Optimised Digital Signal Processing
	Built-in Activity Classification Algorithms in iOS

	Smartphone Application Development: Google's Android
	Theory Behind API-level
	Built-in Activity Classification Algorithms in Android

	Method
	Previously Available Dataset
	Data Evaluation and Classification
	Removal of Accidentally Logged Walking Data: Preprocessing of Data
	Removal of Accidentally Logged Walking Data: Removal of Data
	Using the Matlab Function fitcsvm to Train an OC-SVM
	Training an OC-SVM Classifier on Normal Driving Data
	Collection of Simulated Crash Data
	Collection of Potentially Problematic Data
	Summarisation of Data

	Notification of Emergency Services in Case of Accident
	Smartphone Application Development: General Idea of Program Operations
	User Smartphone Interaction and Undesired Triggering of Alarms
	Smartphone Application Development: Apple iOS
	Sensor, Activity Detection and Calculation Performance Testing Application
	Automatic ICE Notification in Apple iOS

	Smartphone Application Development: Google's Android
	Choosing of API-level
	Built-in Activity Classification Algorithms in Android
	Automatic ICE Notification in Android

	Results
	The Incident Detection Algorithm
	IDA Performance During Walking
	IDA Performance During Mounting/Dismounting an ATV
	IDA Performance During Wheelie Accidents
	IDA Performance During Sudden Stops and Roll Over Accidents
	IDA Performance During Normal Driving
	Inspecting Datasets with the Highest Levels of False Alarms
	–Score for the OC-SVM During Normal Driving

	IDA Performance Summarised

	Discussion
	The Three Classification Methods Used in the IDA
	Cellular and Data Coverage in Rural Areas
	Notification of Emergency Services in Case of Accident via Text Message
	IDA Performance
	Walking
	Mounting/Dismounting an ATV
	Simulated Accidents
	Normal Driving

	Ethical & Privacy Considerations
	Self-fulfilling Prophecies & Psychological Considerations

	Conclusion
	Future Development Suggestions

