
Development of a motion tracking algo-
rithm using a non-depth sensing cam-
era to assist in rehabilitation of stroke
and COPD patients
Master’s thesis in Biomedical Engineering

HENRIK FRANSSON & TOBIAS PETRÉN

Department of Signals & Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016:88

Development of a motion tracking algorithm
using a non-depth sensing camera to assist in
rehabilitation of stroke and COPD patients

HENRIK FRANSSON & TOBIAS PETRÉN

Department of Signals & Systems
Chalmers University of Technology

Gothenburg, Sweden 2016

Development of a motion tracking algorithm using a non-depth sensing camera to
assist in rehabilitation of stroke and COPD patients
HENRIK FRANSSON & TOBIAS PETRÉN

© HENRIK FRANSSON & TOBIAS PETRÉN, 2016.

Supervisor: PhD. Artur Chodorowski, Department of Signals and Systems
Examiner: Prof. Fredrik Kahl, Department of Signals and Systems

Master’s Thesis 2016:88
Department of Signals & Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 (0)31 772 1000

Cover: frame from video sequence showing the tracking algorithm in action

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Development of a motion tracking algorithm using a non-depth sensing camera to
assist in rehabilitation of stroke and COPD patients

HENRIK FRANSSON & TOBIAS PETRÉN
Department of Signals & Systems
Chalmers University of Technology

Abstract
Stroke and chronic obstructive pulmonary disease (COPD) are two common diseases
and the patients suffering from them are in need of rehabilitation to improve their
life quality. In order to facilitate the rehabilitation process, motion controlled com-
puter games can be used, as studies suggest. This thesis involves the development
of a tracking algorithm, used in such games, able to track the hands and head of a
person in real time with a non-depth sensing camera, such as those found in laptops
and tablets.

The resulting algorithm consists of four main parts: background subtraction, skin ex-
traction using the RGB and HSV color spaces, classification of hands and head with
a convolutional neural network (CNN) and tracking of the classified body parts with
a Kanade-Lucas-Tomasi (KLT) tracker. Running the algorithm on video recordings
obtained from a common motion pattern shows that the algorithm is able to cor-
rectly track the three body parts in approximately 88.9% of the 800 frames recorded
at 30 FPS and the computation time is roughly 0.48 seconds per frame. The al-
gorithm is able to recover from a situation in which not all body parts are tracked
correctly and it can handle occlusions. Furthermore, the algorithm needs some pre-
conditions, such as good lightning and no skin-colored background or clothes, to
fully function.

It is concluded that the current algorithm can potentially be used for motion con-
trolled games. However, the current implementation is too slow to function in real
time and it requires some preconditions. Implementing the algorithm in a faster
language than MATLAB and enhancing the algorithm to discard some of the pre-
conditions could potentially make the system usable for motion controlled games.

Keywords: rehabilitation, motion controlled game, stroke, COPD, visual tracking,
background subtraction, skin extraction, CNN, KLT

v

Acknowledgements
We would like to thank our supervisor at Chalmers, Artur Chodorowski, for his
support. Furthermore, we would like to thank Olof Enqvist for his support when
the work stalled and Saudin Botonjic for his guidance in developing the CNN. Last
but not least we would like to thank Alkit Communications for the opportunity to
perform this work.

Henrik Fransson & Tobias Petrén, Gothenburg, August 2016

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Purpose . 2
1.2 Scope . 3
1.3 Thesis outline . 3

2 Theory 5
2.1 Tracking overview . 5
2.2 Background subtraction . 8

2.2.1 Adaptive . 8
2.2.2 Non-adaptive . 8
2.2.3 Enhancing background subtraction 8

2.3 Color extraction . 11
2.3.1 Color spaces . 11

2.4 Supervised learning . 12
2.4.1 Support vector machine . 12
2.4.2 Convolutional Neural Network 15

2.5 Kanade-Lucas-Tomasi tracker . 26
2.5.1 Interest point extraction . 26
2.5.2 Feature tracking . 27

2.6 Additional theory . 30
2.6.1 Histogram of oriented gradients 30
2.6.2 Viola-Jones algorithm . 30
2.6.3 Kinect tracking algorithm . 32

2.7 Related work . 33

3 Methods 35
3.1 Software . 35
3.2 Hardware . 35
3.3 Implementation of algorithm . 35

3.3.1 Object detection . 36
3.3.1.1 Background subtraction 36
3.3.1.2 Skin extraction . 37

3.3.2 Head and hand classification 38

Contents

3.3.2.1 SVM . 38
3.3.2.2 CNN . 39

3.3.3 Object tracking . 40
3.3.4 Entire algorithm . 41

3.4 Rejected approaches . 44

4 Results 45
4.1 Object detection . 45

4.1.1 Background subtraction . 45
4.1.2 Skin extraction . 47

4.2 Head and hand classification . 49
4.2.1 SVM . 49
4.2.2 CNN . 50

4.3 Object tracking . 52
4.4 Entire algorithm . 53

5 Discussion 57
5.1 Object detection . 57

5.1.1 Background subtraction . 57
5.1.2 Skin extraction . 57

5.2 Head and hand classification . 58
5.2.1 SVM . 58
5.2.2 CNN . 59

5.3 Object tracking . 59
5.4 Entire algorithm . 60
5.5 Comparison to Kinect . 62
5.6 Contributions . 62
5.7 Future work . 63

6 Conclusion 65

Bibliography 67

A Tracking sequences I

B Threshold levels V
B.1 Background subtraction . V
B.2 Skin extraction . V

Acronyms I

x

List of Figures

1.1 Illustration of the motion patterns that this thesis will aim to detect. . 3

2.1 Illustration of different object representations [12]. (a) Single point
(b) Multiple points (c) Rectangular patch (d) Elliptical patch (e) Part-
based multiple patches (f) Object skeleton (g) Object contour (h) Ob-
ject silhouette [12] . 5

2.2 Illustration of five different groups that describe most object trackers.
The T-boxes are the representation of appearance and/or shape of the
target (tracked object) for the given object tracker while the B-boxes
represent background models and C-boxes represent candidate targets.
(a) Matching (b) Matching using extended representation of the object
(c) Matching using constraints (d) Discriminative classification (e)
Discriminative classification using constraints. [13] 7

2.3 Morphological dilation on a binary image which sets the value of the
output pixel to 1. This since one of the underlying pixels has the value
1. [17] . 9

2.4 Conical representation of the HSV color space [20]. 11

2.5 Red and green data points in a two-dimensional room being sepa-
rated by a linear one-dimensional hyperplane. Support vectors (seen
as filled dots) are marked with the denotation SV. 13

2.6 Red and green data points in a two-dimensional room not separable
with a linear hyperplane. 13

2.7 Three landmarks, L1,2,3, in a two-dimensional room. 14

2.8 Basic illustration of an architecture of a CNN designed for MNIST
(hand written letters) classification [25]. 15

2.9 Illustration of the activations made from the first convolutional layer
of the MNIST CNN, after training. It can be seen that the network
has successfully picked up characteristics that are unique to different
input images. [25] . 16

xi

List of Figures

2.10 Illustration of the difference between a classical three layered neural
network and a three layered CNN. As can be seen in one of the layers,
the CNN arranges its neurons in three dimensions (width, height,
depth). In the example given, there is a colored image as input which
means its width and height is the dimensions of the image and its
depth is three due to the three color channels. Therefore, it can be
seen as a 3D volume which is transformed into a 3D volume of neuron
activations (illustrated in green). [26] 17

2.11 Illustration of how a convolutional layer works. The filter in the mid-
dle is convolved with the upper left part of the input, marked in red,
creating a value which a neuron holds on to, illustrated to the right. . 17

2.12 (a) Sigmoid (b) Rectified linear unit activation functions [26]. 19
2.13 Illustration of how dropout works. (a) A standard network that has

two FC layers. (b) An example of a thinned net that has been created
by applying dropout on the network in (a). Crossed units are those
that have been dropped. [29] . 20

2.14 Example network. It has an input layer, X, of size 2, FC layer of
size 3 and output layer of size 1. W (1) denotes the weights between
the input and the FC layer. Z(2) denotes the activity of the second
layer holds the relationship Z(2) = XW (1). At the same time, a(2) is
the activations of Z(2) and holds the relationship a(2) = f(Z(2)) where
f(x) is the sigmoid activation function. Furthermore, Z(3) = a2W (2)

is the activity of the third layer while Ŷ = f(Z(3)) is the output of the
network. [31] . 21

2.15 The right part illustrates the relationship between Z(3) andW (2)
II , where

the slope is simply a(2)
I . The left part of this figure illustrates where

in the network the variables are located. [33] 22
2.16 The right part illustrates the relationship between Z(3) and a(2)

II , where
the slope is simply W (2)

I I. The left part of this figure illustrates where
in the network the variables are located. [33] 23

2.17 The right part illustrates the relationship between Z(2) andW (1)
II , where

the slope is simply X. The left part of this figure illustrates where in
the network the variables are located. [33] 24

2.18 (a) Illustration of what could happen if the learning rate is too large.
The green dots indicate values that an arbitrary weight takes and how
that corresponds to the loss function of the weight. I.e. having too
large learning rate could make it difficult for the network to find the
optimal solution, minimizing the loss. (b) Illustration of what the
loss curves may look like over several epochs, depending on how the
learning rate is chosen. [27] . 25

2.19 Illustration of how the dataset could be divided. 4/6 should become
the training set, 1/6 the validation set and 1/6 the test set. [26] . . . 25

2.20 Illustration of the difference between interest points extracted using
KLT (left) and SIFT (right) [12]. 26

2.21 An example of an image intensity function within a small window in
an image [35]. 28

xii

List of Figures

2.22 Two image intensity pieces, obtained from a window, from consecutive
images (left) and their cross section in the image gradient. Here,
∆ represents the projection of the displacement vector, d, along the
image gradient g. [35]. 28

2.23 Illustration of the aperture problem. The area, A, of the edge, E, that
is studied is small which makes it impossible to determine the motion
of the edge in any other direction than c. [36]. 29

2.24 (a) HOG obtained from cells, the figure does not show the blocks used
for normalization. (b) Histograms of the blocks concatenated into a
feature vector. [38] . 30

2.25 Haar features used in the Viola-Jones algorithm [39]. 31
2.26 The sum of the pixels within rectangle D can be computed with the

four array references. The value, in the integral image, at location 1
is the sum of the pixels in rectangle A, the value at location 2 is A +
B, the value at location 3 is A + C and the value at location 4 is A
+ B + C + D. With these values the sum within D is computed as 4
+ 1 - (2 + 3). [39] . 32

2.27 Known speckle pattern that is projected onto the scene [40]. 33

3.1 Silhoutte obtained by background subtraction, to the left. Silhoutte
filled with original image, to the right. 37

3.2 Illustration of a basic structure of a CNN used in this thesis. What
is not illustrated in this image is the ReLu, dropout and loss layers.
The ReLu layers are situated directly after each convolutional and FC
layer while the dropout layers (with a dropout rate of 0.5) are placed
strictly before each of the FC layers. Finally, the loss layer is placed
last and is of the softmax type. 39

3.3 Illustration of the more deeply structured CNN used in this thesis.
Not illustrated in the image are ReLu layers which are present directly
after each of the convolutional and FC layers. There are also dropout
layers with a drop out rate of 0.5 before each of the FC layers. Finally,
softmax is used as the final loss layer in this structure as well. 40

3.4 Flowchart of the proposed algorithm. Main loop marked with a red
dashed line. 43

4.1 Background subtraction with a background of easy difficulty. 45
4.2 Background subtraction with a background of medium difficulty. . . . 46
4.3 Background subtraction with a background of hard difficulty. 46
4.4 Background subtraction with a background of easy difficulty in which

a piece of clothing is sometimes considered to belong to the background. 46
4.5 Background subtracted image to the left. Shadow removal to the right.

(a) Standing 10 cm from the wall (b) Standing 20 cm from the wall
(c) Standing 30 cm from the wall. 47

4.6 Skin extraction with a background of easy difficulty. 48
4.7 Skin extraction with a background of hard difficulty. 48
4.8 Skin extraction on objects of different colors. 48
4.9 Successful skin extraction. Equal sized boxes are sent to classification. 49

xiii

List of Figures

4.10 Images classified by the produced SVM along with posterior probabili-
ties. The upper and lower numbers represents the posterior probabil-
ities that the image is a hand respectively a head. 49

4.11 (a) Loss curve for the basic structure of the CNN. The lowest valida-
tion data error rate is 1.13%. (b) Resulting weights of the filters in
the convolutional layer for the basic structure. 50

4.12 Images classified by the produced basic CNN along with posterior prob-
abilities. The upper and lower numbers represents the posterior prob-
abilities that the image is a hand respectively a head. 50

4.13 Loss curve for the more deeply structured CNN. The lowest validation
data error rate is 0.99%. 51

4.14 (a) Filters in the first convolutional layer of the deeper CNN. (b)
Filter in its second convolutional layer. 52

4.15 Images classified by the deeper CNN along with posterior probabilities.
The upper and lower numbers represents the posterior probabilities
that the image is a hand respectively a head. 52

4.16 Illustration of how interest points are extracted from the image on the
left and then removed if they do not lie on the object that is being
tracked. The removed interest points are marked as red in the image
to the right. 53

4.17 Example of a tracking sequence over three frames. In the last frame,
additional interest points are extracted to make sure that the objects
are reliably tracked. The boxes surrounding each object illustrates the
area where new, if any, interest points will be extracted in. 53

4.18 Example showing how a hand lost behind the back and then found
again. In the frame to the right, the points are green, indicating that
they have all been detected in this frame. 54

4.19 Example showing how partial occlusion when a hand is over the head
is handled. In the frame to the right, the points are green, indicating
that they have all been detected in this frame. 55

4.20 Example showing how partial occlusion when one hand is over the
other is handled. In the frame to the right, the points are green,
indicating that they have all been detected in this frame. 55

A.1 Video sequence recorded with 30 FPS. White crosses represent interest
points. I

A.2 Video sequence recorded with 30 FPS. White crosses represent interest
points. III

xiv

List of Tables

4.1 Estimated execution times for the four parts of the algorithm. The
time for the classification includes the time to run the CNN as well
as the time to extract the correct regions. The tracking time represents
the time to track all the points, remove bad points and move the boxes.
The times for classification and tracking represents the time to track
and classify all three objects. 53

4.2 Evaluation of how the algorithm performs on a relatively normal move-
ment pattern. This table was created by applying the algorithm to a
video recorded at 30 FPS. To simulate a lower FPS, frames were re-
moved from the video in respective patterns. 54

B.1 Threshold levels used in the background subtraction. V
B.2 Threshold levels used in the skin extraction. H̄, S̄ and V̄ are the mean

values on the skin color obtained from the Viola-Jones algorithm. . . . VI

xv

List of Tables

xvi

1
Introduction

In Sweden alone, around 30 000 people are affected by stroke each year [1]. Stroke
is the most common physical cause to the need of long-term care and the annual
cost of stroke for the Swedish society is approximately 20 billion SEK. A frequent
outcome in the aftermath of a stroke is a decrease in muscle strength and muscle
control for the affected. The impact that stroke currently has on the society, as
well as on personal lives, must be reduced and one way to do this is through giving
stroke patients access to an efficient rehabilitation process. [2], [3]

Chronic obstructive pulmonary disease (COPD) is another disease, but which affects
the lungs. It is also one of Sweden’s most common diseases In Sweden alone, about 2
500 people die yearly as a direct cause of COPD and the disease is estimated to cost
the society nine billion SEK every year. Clearly, this is also an issue which must be
addressed in order to reduce the impact that it has on society. One way to do this is,
as with stroke, through rehabilitation in order to slow the progress of the disease. [4]

Currently, most rehabilitation for both stroke and COPD patients is done by per-
forming exercises at a physiotherapist [2], [5], [6]. However, patients do perform their
exercises at home as well [7]. Although this home-based rehabilitation has quite low
adherence due to it being dull and it might also lack efficiency in due to it being
unsupervised [7]. In order to decrease the amount of travelling to a physiotherapist
as well as increase the adherence there is a need for a home-based rehabilitation
system that is simple to use, due to the fact that most patients are elderly, as well
as enjoyable. Moreover, the system must also aid in the rehabilitation process and
it must have some kind of supervision.

By using a visual based tracking system, an augmented reality environment, which
the user can interact with, can be generated. This type of gaming environment has
been proven to aid in the rehabilitation process as well as satisfy the patients’ needs
[8], [9]. As an example, research has been made using a Kinect-based system in
rehabilitation of stroke patients. The researchers used four different types of games,
three controlled by the torso and one by upper limb movement. The results from
this study was that, out of 40 patients with a mean age of 63, 93% found it enjoy-
able, 80% helpful and 88% thought it was something they would want to include in
their therapy. Furthermore, improvements was seen in several functional outcome
measures amongst the patients. [10]

Alkit Communications (hereinafter referred to as Alkit) is a Swedish research and

1

1. Introduction

development company currently taking part in research to create rehabilitation en-
vironments for stroke and COPD patients. It is also the company at which this
thesis has been realized. Alkit is developing a system using a Kinect camera and
a screen to create a gaming environment for the patients to rehabilitate in. The
games in this environment are meant to be played as physical exercises and they are
constructed to mimic the exercises established by physiotherapists. To accomplish
this the Kinect tracks the movement of the patients body while the screen displays
the patient in a virtual environment. Different objects will then appear on the screen
and the patient is to interact with these objects by moving his or her body. The
Kinect will, by tracking, determine if, for example, the patients right hand has the
same position as the object and if this is the case a new object will appear at a
different location. For example, the objects appearing could be flowers while the
virtual environment could be a garden hence a simple game of picking flowers has
been created. The idea behind this research is to enable home-based rehabilitation.
By creating a gaming environment, patients will feel more entitled to perform the
exercises and thereby do them more often, as studies suggest [8]–[11]. Furthermore,
in this system the physiotherapists are able to see their patients during their exercise
sessions and from the sessions results are registered in order for the physiotherapists
to supervise their patients.

However, this system is relatively expensive, quite complex to install and difficult to
relocate. Therefore, Alkit wants to develop a cheaper and more mobile alternative.
Because of the abundance of laptops and tablets, which are commonly equipped
with at least one non-depth sensing camera, it would be of great interest for the
company to use them to provide a similar rehabilitation environment. Using this
alternate solution would be cheaper and also more mobile. This master’s thesis aims
to research the tracking algorithm for such a solution and develop a prototype of it.

1.1 Purpose
The purpose of this thesis is to, by using a single non-depth sensing camera, create
an algorithm able to track the human body in real time. This thesis can be seen
as a proof of concept to find out if such an algorithm can be realized on a tablet or
computer. Tracking the entire body without depth knowledge is difficult, thus the
aim is to only track the hands and the head of the body. Since most of the games
in the current system uses the position of the hands and head, tracking these three
parts will be sufficient. If the algorithm is proven to be successful, it might aid in
the rehabilitation process of primarily stroke and COPD patients.

The algorithm developed in this thesis needs to be robust as well as accurate. The
final algorithm should therefore be able to correctly detect the location, within an
error range of a few centimeters, of all the wanted limbs, with an accuracy of at least
90%, meaning that in 90% of the frames the correct body parts should be tracked.
Furthermore, the aim is that the algorithm should, in real time, be able to follow
the movements of the hands and head without losing track of them. Since there will
be no rapid movements, due to the fact that the intended patients are quite slow in

2

1. Introduction

their movements, it should be sufficient that the algorithm has a maximum latency
of 0.5 seconds.

The two key question that this thesis should answer are as follows.
• By using a single non-depth sensing camera, how can one accurately and

rapidly track the movement of the hands and head?
• Can such an algorithm achieve similar results as the algorithm used for tracking

in the Kinect?

1.2 Scope
The motion patterns that the developed algorithm focuses on tracking are shown in
Figure 1.1. As seen, the algorithm should be able to detect and track all hand and
head movements in the 2D plane perpendicular to the camera. Since a non-depth
sensing camera is used, movements outside this 2D plane is projected onto the plane.
Occlusions, such as the leftmost pose in Figure 1.1, where one hand is hiding the
other, are also handled by the algorithm.

Figure 1.1: Illustration of the motion patterns that this thesis will aim to detect.

Before the development of the algorithm begun, some limitations were set in order to
ease the development. The algorithm is to operate in a room with sufficient lightning
and a static background and it does not take lost limbs into consideration, i.e. it is
assumed that the person has two hands. Furthermore, the algorithm is developed
for the intended use of one person at a time. The camera is to be placed on a steady
object with a height of around the waist of the user. Furthermore, it should be able
to record the hands while the arms are at rest as well as record the hands when they
are raised above the head. The person is to be positioned in parallel to the camera,
i.e. facing the camera. The algorithm does not take into consideration any position
other than this. Moreover, the distance between the human body and the camera
is to be roughly three meters.

1.3 Thesis outline
The thesis is outlined as follows.

Theory
This chapter starts by presenting a general overview of how a tracking algorithm is
built. It then thoroughly describes the theory used in the developed algorithm and

3

1. Introduction

ends with describing related work and the Kinect tracking algorithm, to give the
reader an understanding of what algorithm the thesis’ algorithm is being compared
to.

Methods
In this chapter the different parts of the final algorithm are described and the imple-
mentation process is presented. A flowchart of the entire algorithm is also presented.
The hardware and software used are also present in this chapter.

Results
The result from each part of the algorithm is presented in this chapter. Moreover,
the performance of the algorithm in whole is laid out.

Discussion
In this chapter the performance of each part of the algorithm is individually dis-
cussed. The performance of the final algorithm in whole is also discussed. Finally,
a discussion of future improvements of the algorithm is presented.

Conclusion
The conclusion simply concludes this work and the knowledge obtained from the
work is briefly presented. Moreover, the key questions in Section 1.2 are answered
in this chapter.

4

2
Theory

This chapter will cover all of the underlying theory used in this thesis. It is presented
in sections that cover each of the four major parts of the algorithm. Furthermore,
additional theory used is presented at the end of the chapter. The chapter will
however begin with a brief overview of how tracking works.

2.1 Tracking overview
Following is a brief overview of the structure of a tracking algorithm in order to
give the reader a general idea of this subject. It explains the most general ways of
building a tracking algorithm.

Object representation
The first step in creating a tracking algorithm is to decide how the object to be
tracked will be represented. Objects can be represented with their shape, appearance
or both. The most common ways to represent an object’s shape are by using points,
primitive geometric shapes, silhouette or contour, articulated shape models and
skeletal models. Figure 2.1 describes these five different approaches. Image (a) and
(b) uses points, (c) and (d) uses primitive geometric shapes, (e) uses articulated
shape models, (f) uses skeletal model and (g) and (h) uses contour and silhouette.
[12]

Figure 2.1: Illustration of different object representations [12]. (a) Single point
(b) Multiple points (c) Rectangular patch (d) Elliptical patch (e) Part-based multiple
patches (f) Object skeleton (g) Object contour (h) Object silhouette [12]

The most common ways of representing appearance are by using probability densi-
ties, templates, multiview appearance models and active appearance models. Prob-
ability densities extract a certain feature from a region specified by the shape model.

5

2. Theory

Templates encodes the appearance of the object from a single view. Multiview ap-
pearance models encodes different views of an object. Appearance models uses a
number of landmarks extracted from the object and stores an appearance vector
containing information. [12]

Features to track
When a suitable object representation has been chosen, the next step is to choose
what feature or features to use for tracking the object. Below, some of the most
common features to track are described.

• Color is a commonly used feature and there are many different color spaces
that can be used, some of which are explained later in this paper.

• Edges represent strong changes in image intensity between nearby pixels and
is most commonly used when an algorithm tries to track the boundary of the
object.

• Texture is a representation of how the intensity in an image varies. To extract
the texture from an image requires a texture descriptor, which there are a
wide variety of. Two common ways of describing the texture are gray-level
co-occurrence matrix (GLCM) and local binary pattern (LBP). [12]

Representation of motion
The next step is to choose how to represent the motion of the object that is being
tracked. The most common ways to do this are briefly described below.

• Uniform search is the most basic representation in which a uniform search
around the previous known position of the object is performed.

• Probabilistic Gaussian motion uses a Gaussian distribution as weight
around the previous known position to determine the next position. The
distribution gives more weight to positions close to the previous position.

• Motion prediction uses methods like the Kalman filter or optical flow to try
and predict where the object is going to be in the next frame given the objects
behavior in the previous frames.

• Implicit motion prediction uses optimization methods to find the object
in the next frame.

• Tracking and detection uses an object detector together with the proposal
from the motion predictor, in the form of optical flow, to determine the next
position. [13]

Object detection
In order to track an object it must first be detected and located which the object
detector does. Following, commonly used object detection methods are explained.

• Point detectors find points with expressive attribute. If these points are
extracted from a specific object in an image, a feature description of this
object can be created. This description can in turn be used to detect the
sought object in subsequent frames.

6

2. Theory

• Background subtraction means subtracting the background of an image
thus leaving desired objects in the foreground. This method will be further
explained later in this paper.

• Segmentation is used to partition a given image into several regions that are
perceptually distinct from one another.

• Supervised learning can be used both for object detection and classification.
It is based on making a classifier learn different views of one or several objects
from a training set so that the classifier knows how to distinguish them. [12],
[14]

Object tracking
Once detected, the object should be tracked in each new frame. For this purpose,
an object tracker is needed. There are several different object trackers, but most fit
in one of five different groups described below as well as in Figure 2.2. [13]

Figure 2.2: Illustration of five different groups that describe most object trackers.
The T-boxes are the representation of appearance and/or shape of the target (tracked
object) for the given object tracker while the B-boxes represent background models
and C-boxes represent candidate targets. (a) Matching (b) Matching using extended
representation of the object (c) Matching using constraints (d) Discriminative clas-
sification (e) Discriminative classification using constraints. [13]

The first group, (a), is the most straightforward as it uses some form of method
to optimize the direct match of appearance and/or shape representation between a
single model of the target and the incoming image. The second group is much like
the first group, but it has several representations of the target rather than one. This
is however a major difference as it allows the object tracker to have a long term
memory of what the target looks. In the third group, an optimization of matches is
also performed, but with constraints that have been derived from various attributes
of the object, such as motion and coherence. The fourth group distinguishes itself
from the three first as it uses a background model to achieve viable tracking. In this
group, the object tracker seek to maximize the discrimination of the object from
the background rather than by matching object representations. The fifth group is
similar to the fourth, however it uses constraints (as in the third group) to determine
the location of the target. [13]

7

2. Theory

2.2 Background subtraction
By creating a background model of the scene, and finding deviations in the incoming
frames from this model, object detection can be achieved. The detected objects
belong to the so called foreground. As an example, consider a traffic camera. The
background in this scenario is the road and other static objects while the foreground
is considered to be the moving vehicles on the road. Aspects to keep in mind when
dealing with background subtraction are, amongst others, if the background is static
or not, if there are illumination changes and if there are shadows. Furthermore,
objects of interest in the foreground might temporarily become stationary. During
such an event, measures should be taken to prevent these objects from merging
into the background. In addition, since most background subtraction algorithms
are to function in real-time, they have to be computationally efficient. Background
subtraction can be divided into two categories which are described below. [12], [15]

2.2.1 Adaptive
An adaptive background subtraction adapts to changes in the background. This
means that the background model constantly needs to be updated. A simple way
of doing this is by using frame differencing in which the algorithm uses the image,
i.e. frame, at time t− 1 as the background model for the image at time t. Another,
slightly more advanced, approach is the commonly-used median filtering. Median
filtering functions by having a so called buffer with previously saved frames. This
buffer consists of frames t− n, where n ∈ N \ {0, 1}, to t− 1. From the buffer, the
background model is created by taking the median at each pixel location of all the
frames in the buffer resulting in a single background image. [15]

2.2.2 Non-adaptive
A non-adaptive approach does not adapt to changes in the background, hence its
name. It works by, in advance, creating a background model and during the run
time of the algorithm the difference between the background model and the current
image is calculated. This difference is in turn thresholded (in one or several color
spaces) in order to determine whether a pixel belongs to the background or not.
This type of background subtraction can be seen as a version of frame differencing,
but with a constant background model. [15]

2.2.3 Enhancing background subtraction
There are some basic image processing methods, presented in this section, that can
be implemented in order to reduce noise and make an overall improvement of the
background subtraction.

Morphology

Morphology is a technique involving non-linear operations on the shape (morphol-
ogy) of parts in an image. It works by taking a binary image along with a structuring

8

2. Theory

element as input and then combines these by using different set operators such as
intersection and union. The structuring element (for example a 1x3 pixel area) is
shifted over the image and at each pixel the elements of the structure element are
compared with the set of the underlying pixels, as seen in Figure 2.3. Depending
on different conditions, the pixel underneath the center of the structuring element
is set to a predetermined value (0 or 1 for binary images). There are different oper-
ations in morphology of which the most common are opening, closing, erosion and
dilation. What sets them apart are different set operators. Morphology is used for
noise reduction as well as smoothing of edges. [16]

Figure 2.3: Morphological dilation on a binary image which sets the value of the
output pixel to 1. This since one of the underlying pixels has the value 1. [17]

Median filter

A median filter is used for noise reduction in, amongst other, images. It works
by running through each pixel in the image and replacing the value of each pixel
with the median of the values of neighboring pixels. Depending on the application,
different sizes of neighbourhoods can be chosen. [18]

Shadow removal

Another way of improving background subtraction is through the use of shadow re-
moval. Shadows may distort images and cause background pixels to be misclassified
as foreground pixels. Following, a solution for shadow removal in gray scale image
sequences is explained. [19]

This method assumes that an efficient background subtraction has been performed
on the image, but shadows still remain. The method focuses on comparing pixel-
wise ratios using the background model, λ(x), and every new frame, I(x), of the
image sequence. It is assumed that the intensity Is(x) of an arbitrary pixel x in a
shadowed region can be approximated as a scaled version of the background model
plus additive Gaussian noise, meaning that

Is(x) = α(x)λ(x) + η(x), η(x) ∼ N (0, σ(x)2) (2.1)
in which α ∈ [0, 1] is related to the intensity of the shadow. Furthermore, the method
simplifies α to be constant within a small neighbourhood Ωs(x) of the shadowed
region, i.e. α(x) ≈ α. This means that the expression

9

2. Theory

R(x) = Is(x)
λ(x) = ν(x) (2.2)

where ν(x) = α + η(x)/λ(x) ∼ N (α, (σ(x)/λ(x))2), holds. In addition this means
that the mean and standard deviation of R(x), within Ωs(x), can be expressed as

µR(x) = 1
Ns

∑
uεΩ(x)

R(u) (2.3)

σR(x) =
√√√√ 1
Ns

∑
uεΩ(x)

(R(u− µR(x))2 (2.4)

where Ns is the number of pixels in Ωs. It is also assumed that ν(x) are independent
normally distributed variables, which means that the following expression holds

D(x) = R(x)− µR(x) ∼ N (0, σD(x)2) (2.5)

where

σD(x)2 = 1
N2
s

(Ns − 1)2σR(x)2 +
∑

uεΩs(x)
(u) 6=(x)

σR(x)2

 (2.6)

The model scans every pixel, x, that has been detected as foreground and computes
the standard deviation, σR(x), and mean µR(x) in a small neighbourhood Ωs(x)
which is centered at pixel x. If the pixel is in a shadowed region, then D(x) =
R(x) − µR(x) is a normally distributed random variable. Moreover, there exists a
constant ks(β), which is a function (ranging from 0 to 1) of the confidence level β,
that satisfies

Pr|D(x)| > ks(β)σD(x) < β (2.7)

Pixels that satisfy |D(x)| > ks(β)σD(x) are, at a confidence level β, most likely
not associated with shadowed pixels. Although, pixels which do not satisfy the
condition are neither guaranteed to belong to a shadowed region. However, if some
of the neighbours of pixel x belongs to a shadowed region, the probability that x
also does is increased. Therefore, let

S(x) =
{

0 if |D(x)| > ks(β)σD(x)
1 otherwise

(2.8)

which means that the pixel x will be presumed to be part of a shadow region if

Ilow ≤ µR(x) < 1 and
∑

uεΩ′
s(x)

S(u) > Ts (2.9)

is satisfied. Here, Ilow will prevent very dark pixels from being presumed to be
shadows and Ts is the least number of pixels, within a neighbourhood Ω′s, which
must trigger the "shadow test", described by equation 2.8. [19]

10

2. Theory

2.3 Color extraction
Objects can be detected by extracting and isolating their color (or colors). To ac-
complish this there is a need to mathematically represent colors with numbers. This
mathematical representation is achieved by the use of color spaces. By using color
spaces, single colors can be isolated and extracted from an image by thresholding.
Extracting skin colored objects has for instance been used in face detection. [12]

2.3.1 Color spaces
Three different color spaces are presented below.

RGB

The RGB (red, green, blue) color space is an additive color space meaning that
its components are combined in different ways to create various colors. The three
components, also referred to as channels, are represented by 256 discrete levels
ranging from 0 (dark) to 255 (bright). As an example, red has the combination
(255, 0, 0) while yellow has the combination (255, 255, 0). Worth noting is that the
RGB color space is not very robust with changes in light conditions. [20]

HSV

A representation of the HSV (hue, saturation, value) color space is seen in Figure
2.4. Hue is the angle around the central vertical axis and it refers to the color type,
such as red or green. Hue takes values from 0 to 360 but is often normalized to
range from 0-100%. Saturation is the distance from the central vertical axis and it
refers to the purity of the color. Value is the distance along the axis and refers to
the brightness of the color. Both saturation and value ranges from 0-100%. [20]

Figure 2.4: Conical representation of the HSV color space [20].

The transformation between the HSV and RGB color spaces is nonlinear and is
defined by the following equations in which R,G,B ∈ [0, 1], i.e. normalized values
of R, G and B are used. [20]

H = arctan
(

R−G
−R−G+ 2B

)
(2.10)

11

2. Theory

S =

√√√√(− R√
6
− G√

6
+ 2B√

6

)2

+
(
R√

6
− G√

6

)2

(2.11)

V = R

3 + G

3 + B

3 (2.12)

H,S, V = 0 when R,G,B = 0. The HSV color space is more sensitive to noise
compared to the RGB color space [12].

YCbCr

Colors are in this color space specified in terms of luminance (the Y component)
and chrominance (the Cb and Cr components). Cb represents the value of the blue
color component while Cr represents the value of the red color component. The
transformation between the YCbCr and RGB color spaces is linear and is defined
by the following equations in which R,G,B ∈ [0, 255]. [20]

Y = 16 + 1
256(65.738R + 129.057G+ 25.064B) (2.13)

Cb = 128 + 1
256(−37.945R− 74.494G+ 112.439B) (2.14)

Cr = 128 + 1
256(112.439R− 94.154G− 18.285B) (2.15)

2.4 Supervised learning
Supervised learning is a subgroup of machine learning methods. It is based on
learning from known datasets to make predictions about unknown data. There are
two main categories of supervised learning algorithms.

• Classification algorithms that separates the data into different classes using
labels

• Regression algorithms for continuous-response values
In other words, the output from a classification algorithm is some kind of discrete
label while the output of a regression algorithm is a continuous number. To evaluate
a supervised learning algorithm, two rates can be used. These are the validation
data error rate, which is the amount (measured in percent) of misclassified validation
data and the test data error rate, which is the amount of misclassified test data.
The test data error rate is also referred to as misclassification rate. [21]

2.4.1 Support vector machine
A support vector machine (SVM) can be used for both classification and regression
and is based on statistical learning. SVM is mainly used for binary classification,
i.e. in determining between two classes, but multi-class classification using SVMs
has been achieved in recent years as well. [22]

Suppose that a number of n-dimensional data points represented by features (short

12

2. Theory

for feature vectors) in an n-dimensional room are given and each of these data points
belong to a certain group, i.e. class. The purpose of the SVM is to, given these
data (training) points, determine which class a new n-dimensional data point be-
longs to. In order to do so there is a need to separate the training points with a
(n-1)-dimensional hyperplane. There are many such possible hyperplanes but the
hyperplane that will result in the best SVM is the hyperplane with the largest mar-
gin between the two classes, i.e. the two clusters of data points in the n-dimensional
room. The margin is defined as the maximal width of the space parallel to the
hyperplane that contains no data points. The data points that are located on the
border of the aforementioned space are known as support vectors. In Figure 2.5 an
example of a two-dimensional room with a one-dimensional hyperplane separating
the red and green classes is shown. [22]

Figure 2.5: Red and green data points in a two-dimensional room being separated
by a linear one-dimensional hyperplane. Support vectors (seen as filled dots) are
marked with the denotation SV.

When a hyperplane has been found, a new n-dimensional point can be categorized
into a class depending on which side of the hyperplane the point is. Figure 2.5 shows
an example in which a hyperplane is able to separate the two classes entirely, i.e. it
can separate all the data points. The above example is a case of linear classification,
meaning that there is a simple linear hyperplane able of separating the classes.
However, this is not always the case. Consider Figure 2.6 in which there are two
different classes in a two-dimensional room. Clearly they can not be separated with
the use of a linear hyperplane. [22]

Figure 2.6: Red and green data points in a two-dimensional room not separable
with a linear hyperplane.

To solve such a problem there is a need to create a non-linear hyperplane. One way
to do this is by creating a set of polynomial functions such as those in equation

13

2. Theory

2.16. These polynomial functions will, for example, predict that a new data point
at position (x1, x2) belongs to the green class if

θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 + . . . ≥ 0 (2.16)

in which θ0,...,n are constants obtained from training the SVM. Equation 2.16 can
also be written in terms of features

θ0 + θ1f1 + θ2f2 + θ3f3 + . . .

with the features f1 = x1, f2 = x2, f3 = x1x2 . . .
(2.17)

However, such features quickly become complex and computationally expensive in
high dimensional spaces. Therefore there is a need for better features. By using
so called kernels (also referred to as similarity functions) as features, the computa-
tional load can be decreased. Consider Figure 2.7 in which there are three so called
landmarks in a two-dimensional room. [23]

Figure 2.7: Three landmarks, L1,2,3, in a two-dimensional room.

These landmarks are obtained from the training points. Given a new point (x1, x2)
in the two-dimensional room new features can be computed depending on the points
proximity to the landmarks. So given a point (x1, x2), denoted as a vector ~x, features
can be expressed as follows, where σ is a constant. [23]

fn = similarity(~x, ~Ln) = exp

−‖~x− ~Ln‖2

2σ2

where n ∈ {1, 2, 3} (2.18)

The exponential term in equation 2.18 is the kernel, i.e. similarity function, and in
the current form it is specifically a Gaussian kernel1. From equation 2.18 it can be
seen that if ~x ≈ Ln then fn ≈ 1 and if ~x is far from Ln then fn ≈ 0. With the use
of kernels a new prediction can be made similar to that of equation 2.16, i.e. a data
point at position (x1, x2) is considered to belong to the green class if

θ0 + θ1f1 + θ2f2 + θ3f3 ≥ 0 (2.19)

with f1,2,3 as in equation 2.18 and θ0,...,3 as constants. From equation 2.19 a decision
boundary, i.e. non-linear hyperplane, can be created. When the decision boundary
has been created it can be determined which class a new data point belongs to,
therefore a classification algorithm has been created. If there is a need for a value

1There are of course other kernels.

14

2. Theory

determining "how much" the new data points belongs to a certain class posterior
probabilites for the data point belonging to each class can be calculated. [23]

Worth noting is that when training a SVM there is a risk of overfitting it. Overfit-
ting means that the SVM is given to many training points resulting in classes being
clustered together, i.e. there is no easy distinguishing of different classes. [22]

2.4.2 Convolutional Neural Network
Artificial neural networks (ANNs) have during recent years been used more and
more within the field of machine learning. These networks are, as the name sug-
gests, inspired by how the human brain works and tries to implement this in order
to recognize and classify different types of data. Convolutional neural networks
(CNNs) are a type of ANN that has proven to be useful in solving difficult image
recognition problems. As an example of this, a CNN developed at the New York
University in the USA managed to win first prize in the 2015 fingerprint liveness
detection competition, where competitors were to determine if fingerprint images
were from real fingers or not, with an accuracy of 95.5% [24]. [25]

Neural networks consists of many simple processing units, called neurons, and
weighted connections between these neurons. Each connection carries information
between the two connected neurons where the connecting weight is either inhibitory
or excitatory. Each neuron has a propagation function which receives the output of
other neurons and transforms them in consideration to the connecting weights, cre-
ating a network input net, which in turn can be processed by the activation function.
The activation function determines if a neuron has become activated or not, i.e. if
the input given to it has caused the neuron to create such a great response (given the
weighted connections) that its output is worth passing forward to the next neuron.
Following are explanations of the different parts that makes up a CNN. [25]

General architecture

A CNN consists of three different major layers, convolutional layers, pooling layers
and fully-connected (FC) layers. Figure 2.8 illustrates a simplified basic architecture
of a CNN designed for MNIST (hand written letters) classification. [25]

Figure 2.8: Basic illustration of an architecture of a CNN designed for MNIST
(hand written letters) classification [25].

15

2. Theory

The input layer is simply the image to be classified, as illustrated in Figure 2.8. After
this layer there is a convolutional layer which consists of a set of filters. These filters
are all convolved with the entirety of the input image and seeks to produce large
activation values when certain types of features appear at some spatial position in
the input image. Following this, there is a rectified linear unit (ReLu) which applies
an activation function to the output of the previous layer, causing some activations
that were too small to be dropped. The pooling layer will then reduce the number of
parameters within the activation by downsampling the output of the ReLu. Finally,
the FC layer will attempt to produce scores for each class that the output can
take, where the largest score will be given to the most probable classification of the
input image. Figure 2.9 illustrates some example activation maps made by the first
convolutional layer of the MNIST CNN on different input images, after training.
It is possible to see how some of the filters try to find different characteristics for
different inputs in order to have unique activations depending on the input. [25]

Figure 2.9: Illustration of the activations made from the first convolutional layer
of the MNIST CNN, after training. It can be seen that the network has successfully
picked up characteristics that are unique to different input images. [25]

A major advantage that CNNs have over classical ANNs is that the number of
weights (filter values) used in just one neuron in is far less. For classical ANNs, for a
colored 64x64 input image, this number is 12,288 (64x64x3) while for the CNNs the
same number is 108 (6x6x3) if a typical 6x6 filter is used. This is due to that classical
ANNs use fully connected layers. Having fully connected layers does not only mean
larger computational complexity, but it also means that the neuron does not take
into consideration the spatial structure of the data. In other words, pixels that are
far apart are treated in the same way as those that lie close to each other. This is
something that is not realistic for images in which features can be very localized.
Clearly CNN is the better choice when classifying images. Figure 2.10 illustrates
the difference between a convolutional layer and a FC layer. [25]

16

2. Theory

Figure 2.10: Illustration of the difference between a classical three layered neural
network and a three layered CNN. As can be seen in one of the layers, the CNN ar-
ranges its neurons in three dimensions (width, height, depth). In the example given,
there is a colored image as input which means its width and height is the dimensions
of the image and its depth is three due to the three color channels. Therefore, it can
be seen as a 3D volume which is transformed into a 3D volume of neuron activations
(illustrated in green). [26]

Convolutional layer

The convolutional layer is the core of a CNN. It consists of a set of learnable filters
which are commonly chosen to be spatially small in comparison to the input. When
the input is passed through the convolutional layer, each filter is convolved across
the entirety of the input creating a large 2D activation map. The activation maps
from all the filters are then stacked along the depth dimension to form the full
output volume of the convolutional layer. Figure 2.9 illustrates examples of what
an activation map can look like. The filters are trained to "fire" when a certain
type of feature is present in the input image, something that is commonly known as
activations. Figure 2.11 illustrates an example of what a convolution with a filter
may look like. The convolution is performed by first both vertically and horizontally
flipping the filter and then placing it over the input area, marked in red. Each
number in the filter is then multiplied with the corresponding number underneath.
All of these multiplications (a total of 9 for this filter) are then summed together
and the result is what the neuron holds on to. [25]

Figure 2.11: Illustration of how a convolutional layer works. The filter in the
middle is convolved with the upper left part of the input, marked in red, creating a
value which a neuron holds on to, illustrated to the right.

An advantage with CNNs is that there in general are few parameters to tune, in
comparison to other feature recognition methods. This makes CNNs relatively at-
tractive to use. The parameters that can be chosen for the convolutional layers

17

2. Theory

include filter size, depth of output volume, zero-padding, weights and stride. The
depth parameter is chosen depending on the depth of the input data . So if the
input data is an RGB image, the depth of the convolutional layer will be three.
Decreasing the depth will reduce the number of neurons that are connected to the
same region of the input. Although this reduces computational complexity, it also
reduces the pattern recognition capabilities of the layer. Zero padding is, like the
name suggests, the adding of zeros around the border of the input volume. This
parameter is chosen in order to control the size of the output volume, but also to
guide the filters to treat the entire input data equally, including the borders. The
weights, which is the part of the filter that will be taught and successfully improved
during the training of the network, should be initialized with care for deep (multi-
layered) networks. They should be initialized smaller the more input connections
a layer has as this will ensure that all activations have the same variance, i.e. no
activation will only be able to find a small set of features, while others can find a
large set of features. Stride is the parameter that determines how many pixels that
the filter should "jump" after every filtering cycle. For example if the input is a
30x30 gray scale image, the filter size is 5x5 and the stride is 2, the first pixel that
the filter will be centered around will be at location (2,2) and the second location
will be (2+2,2). [25], [27]

Pooling layer

In order to further reduce the number of parameters and computational complexity
of the model, pooling layers are used. They are often placed after convolutional lay-
ers and they operate over each activation map through the use of "MAX" functions.
This has given them the name of max-pooling layers. They most often have the
dimensionality of 2x2 with a stride of 2 along the spatial dimension of the input,
preserving its depth. This reduces the size of the input to 25% of its original size.
[25]

Fully-connected layer

In FC layers, all neurons are directly connected to each other, as shown in Figure
2.10. FC layers have high computational complexity, but they are needed in the
end of a CNN in order to let all the processed data be reduced to a few output
parameters. In order to make the output of the last FC layer readable as a posterior
probability, a loss function layer of the type softmax is often used. This layer
converts its input vector to a probability vector where the sum of all elements is
one and each individual element lies between 0 and 1. Since each element in the
input vector represents one category, the output vector of the softmax contains the
probabilities to which category that the input data to the CNN belongs to. [25],
[28]

Activation functions

There are two commonly used activation functions that are used to suppress certain
outputs from different layers in a network. These are the Sigmoid and ReLu which

18

2. Theory

are illustrated in Figure 2.12. Of the two, the ReLu is far more wider used as it has
proven to be less computational expensive and stochastic gradient decent (explained
later) converges faster than Sigmoid. [26]

Figure 2.12: (a) Sigmoid (b) Rectified linear unit activation functions [26].

Dropout layer

Overfitting is a serious problem in neural networks. It is created when noise is
present in the training data leading to a complicated relationships between input
and output that is only present in the training data, but not in the real data. To
reduce overfitting and the impact of noise, dropout can be used. [29]

In the ideal case, the best way to regularize a CNN, i.e. reduce the overfitting,
would be to average the prediction of all settings of all possible parameters of the
network, weighting each setting (given the training data) with its posterior probabil-
ity. In other words, use all possible combinations of the parameters in the network to
find the optimal value for them. Another ideal approach to retrieve a more reliable
output from a CNN for a given problem is to combine several different CNNs and
average their output. [29]

However, the above mentioned approaches are only applicable if we have near infi-
nite amount of computational power and huge amounts of training data. Dropout is
a method that addresses the issues with both of the ideal approaches. The method
is illustrated in Figure 2.13. It drops units/neurons at random, i.e. some units
input and output connections are temporarily removed. Each unit is retrained with
a probability of p, which is often set to 0.5 as this is the optimal for most networks.
Using dropout in the network can therefore be seen as training 2n (where n is the
number of units in the network) networks with extensive weight sharing where each
of these networks rarely gets trained. The units that are removed are only removed
during the training of one image, and after that the dropout is performed once again.
During testing, the dropout is completely removed (p is set to 1). By doing so, it is
the same as combining 2n networks with shared weights into one network. [29]

19

2. Theory

Figure 2.13: Illustration of how dropout works. (a) A standard network that has
two FC layers. (b) An example of a thinned net that has been created by applying
dropout on the network in (a). Crossed units are those that have been dropped. [29]

Training methods

Using gradient decent is a common way of training CNNs. However, there are
three methods of performing gradient decent, namely the batch, mini-batch and
on-line methods. In the batch training method, the changes the that weights make
are accumulated over a presentation of all the training data (an epoch) before it
is applied. The on-line training method on the other hand updates the weights
after every presentation of each training example (instance). Furthermore, there is
another alternative that is known as the mini-batch method in which the weights
changes are accumulated over a set number of instances before the weights are
updated. If the update frequency, often referred to as batch size, is set to one, it is
the same as on-line training and if it is set to be as large as the entire training set,
it is the same as batch training. Many researchers are divided between which of the
three methods that is deemed as the most effective. [30]

Gradient descent

A common approach to teaching the weights after every iteration, so that they
produce a better result, is gradient descent. To understand how it works, consider a
network with only one weight. In order to find the best value for this weight which
will minimize the loss, it is possible to test, say, 1000 different values for this weight
and simply pick the value that gives the lowest validation data error rate, i.e. lowest
loss value. However, doing this is rather computationally expensive and performing
the same brute force search for a network with 3 weights would need to testing
of 1000 × 1000 × 1000 = 1 000 000 000 different combinations of weights, which
is obviously not computationally efficient. Consider the network with one weight
again, but this time two different values for the weight are tested, both relatively
close to the current value of the weight, but one value being larger and the other
smaller. For the resulting loss values which these different values for the weight

20

2. Theory

produces, gradients can be computed. In this way, the direction in which the loss
decreases can be found. By allowing the weight to step wise take a value along the
direction in which the loss curve decreases, until the lowest value of the loss function
is reached, is known as gradient descent. The length of the step in which the weight
descends the loss curve is commonly known as learning rate and is explained more
later. The problem of calculating the gradient for all weights still remains. Consider
the simple regression network in Figure 2.14. [31], [32]

Figure 2.14: Example network. It has an input layer, X, of size 2, FC layer of
size 3 and output layer of size 1. W (1) denotes the weights between the input and the
FC layer. Z(2) denotes the activity of the second layer holds the relationship Z(2) =
XW (1). At the same time, a(2) is the activations of Z(2) and holds the relationship
a(2) = f(Z(2)) where f(x) is the sigmoid activation function. Furthermore, Z(3) =
a2W (2) is the activity of the third layer while Ŷ = f(Z(3)) is the output of the
network. [31]

The loss/cost function is denoted as

J =
∑ 1

2(Y − Ŷ)2 =
∑ 1

2(Y − f(f(XW (1))W (2)))2 (2.20)

where Y is the real value of the output data. To calculate the gradient of J with re-
gards toW is the same as asking "How does J change whenW (1) andW (2) change?".
If this gradient is negative, it means that the loss function is going downhill, and the
other way around for a positive gradient. When the gradient reaches a low value,
preferably zero, the global minima has been found for the loss function, and the
network has been optimized. The sum in equation 2.20 is the number of training
data which is used to improve the weights. Consider the situation when only one
training data is used, this yields the gradient, with regards to W (2)

dJ

dW (2) =
d1

2(Y − Ŷ)2

dW (2) (2.21)

21

2. Theory

Now, consider the chain rule which states

dz

dx
= dz

dy

dy

dx
(2.22)

which means that equation 2.21 can be evaluated as

dJ

dW (2) = −(Y − Ŷ) dŶ

dW (2) = −(Y − Ŷ) dŶ

dZ(3)
dZ(3)

dW (2) (2.23)

Given that Ŷ = f(Z(3)) it is possible to express this as

dJ

dW (2) = −(Y − Ŷ)f ′(Z(3)) dZ
(3)

dW (2) (2.24)

The last term in the above equation can be seen as in Figure 2.15. I.e. for each
synapse/connection, dZ(3)

dW (2) is the activation a on the synapse. Equation 2.25 illus-
trates this. [32], [33]

Figure 2.15: The right part illustrates the relationship between Z(3) and W
(2)
II ,

where the slope is simply a(2)
I . The left part of this figure illustrates where in the

network the variables are located. [33]

dZ(3)

dW (2) =
 a

(2)
II a

(2)
I2 a

(2)
I3

a
(2)
2I a

(2)
22 a

(2)
23

a
(2)
3I a

(2)
32 a

(2)
33

 (2.25)

What happens here is a backpropagation of the error. I.e. the weight that contribute
more to the error, will have larger activations, yield larger dJ

dW (2) values and will
be changed more when the gradient decent is performed. To express this more
mathematically, consider expressing δ(3), the backpropagation error, as

δ(3) = −(Y − Ŷ)f ′(Z(3)) (2.26)

22

2. Theory

This means that it is possible to express the loss function gradient, with regards to
dW (2), as

dJ

dW (2) = δ(3)(a(2))T (2.27)

meaning that the loss curve gradient, with regards to dW (2), is the backpropagation
error times the activity of each synapse. This makes sense because it means, as
mentioned above, that the amount of learning for each weight is based on how much
it is at fault for causing an error. [33]

Consider now the first weights, dW (1). Following the same concept as for dW (2)

and applying the chain rule, the following expression for dJ
dW (1) can be concluded

dJ

dW (1) = δ(3) dZ
3

da(2)
da(2)

dW (1) (2.28)

To understand dZ3

da(2) , consider Figure 2.16. [33]

Figure 2.16: The right part illustrates the relationship between Z(3) and a(2)
II , where

the slope is simply W (2)
I I. The left part of this figure illustrates where in the network

the variables are located. [33]

Following the same reasoning as for dZ(3)

dW (2) , yet again applying the chain rule, the
following can be concluded

dJ

dW (1) = δ(3)(W (2))T da(2)

dW (1) = δ(3)(W (2))T da
(2)

dZ(2)
dZ(2)

dW (1) (2.29)

Using the same reasoning for a(2) = f(Z(2)) as was done for Ŷ = f(Z(3)), it can be
concluded that

dJ

dW (1) = δ(3)(W (2))Tf ′(Z(2)) dZ
(2)

dW (1) (2.30)

23

2. Theory

Yet again, following the same reasoning as for dZ(3)

dW (2) , but this time for dZ(2)

dW (1) , shown
in Figure 2.17, it can be concluded that

Figure 2.17: The right part illustrates the relationship between Z(2) and W
(1)
II ,

where the slope is simply X. The left part of this figure illustrates where in the
network the variables are located. [33]

dJ

dW (1) = δ(3)(W (2))Tf ′(Z(2))XT (2.31)

Expressing the backpropagation for the first weights as

δ(2) = δ(3)(W (2))Tf ′(Z(2)) (2.32)

allows the expression of the gradient for the first weights as

dJ

dW (1) = XT δ(2) (2.33)

Using equations 2.27 and 2.33, the weights can be updated in the following way:

W (1) = W (1) − Lr dJ
dW (1)

W (2) = W (2) − Lr dJ
dW (2)

(2.34)

where Lr, is the learning rate. [33]

Learning Rate

In order to train the system, the correct learning rate should be chosen. If a too
large learning rate is chosen, it can become difficult to find the optimal solution,
as shown in Figure 2.18 (a). However, choosing a too small learning rate may also
make it difficult to find the optimal solution which is illustrated in Figure 2.18 (b).
[27]

24

2. Theory

Figure 2.18: (a) Illustration of what could happen if the learning rate is too large.
The green dots indicate values that an arbitrary weight takes and how that corre-
sponds to the loss function of the weight. I.e. having too large learning rate could
make it difficult for the network to find the optimal solution, minimizing the loss.
(b) Illustration of what the loss curves may look like over several epochs, depending
on how the learning rate is chosen. [27]

Decreasing the learning rate after every epoch is usually helpful. In general, there
are three ways of doing this; step decay, exponential decay and 1/t decay. Of the
three, step decay is often preferred and simply works by decreasing the learning rate
by some factor after a few epochs. [26]

Preprocessing of data

Figure 2.19 illustrates how the data set should be divided. All of the training data
is used to train the network and fine tune the parameters of the network while the
validation data is used to evaluate the choice of architecture, learning rate etc. After
all of the parameters have been chosen and the network trained, the test data is used
to evaluate the real world performance of the network. [26]

Figure 2.19: Illustration of how the dataset could be divided. 4/6 should become
the training set, 1/6 the validation set and 1/6 the test set. [26]

Once the data has been split, it is important to normalize it to zero mean and
unit variance. This is because normalized data often makes learning problems much
better conditioned.
Furthermore, randomly shuffling the order of the data, so that all classes are mixed
together, tend to provide a better convergence for the weights in the network [34].

25

2. Theory

2.5 Kanade-Lucas-Tomasi tracker

The Kanade-Lucas-Tomasi (KLT) tracking method is based on point detection and
kernel (which in this context is a patch of an image) tracking. Interest points are
important points in images that can be used for tracking. Figure 2.20 shows the
interest points extracted from an image using the KLT method (left), in comparison
to using SIFT (right), which is a commonly used point detection method. It can
be seen that the SIFT extracts more interest points than the KLT and it has been
shown that it is generally more robust than most other point detectors. However,
more points to track and detect also means higher computational complexity. [12]

Figure 2.20: Illustration of the difference between interest points extracted using
KLT (left) and SIFT (right) [12].

In the following parts of this section the KLT method will be described more thor-
oughly, with focus on interest point extraction and tracking.

2.5.1 Interest point extraction
In order to extract the interest points, the KLT method computes the first order
image derivatives in both the x- and y-direction, (Ix, Iy). This highlights the di-
rectional intensity variations, which a second moment matrix (M) encodes, and is
computed for all pixels in a small neighbourhood. [12]

M =
(∑

I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
(2.35)

The interest point confidence, R, can then be computed from M by extracting the
minimum eigenvalue, λmin, from it. By thresholding R with some value, interest
points can be determined. The interest points that have been extracted and lie
spatially close to other interest points are removed until only spatially separated
interest points are left. Clearly, the KLT method emphasize intensity variations in
the image and is both rotation and translation invariant due to the nature of the
moment matrix. [12]

26

2. Theory

2.5.2 Feature tracking

The way that KLT tracks feature is much based on the assumption that, given an
image stream, I(x, y, t), where x and y are spatial variables and t is the time of the
image, the frame in the image stream a time τ later will be related to the image at
time t as I(x, y, t+ τ) = I(x− ξ, y− η, t). Meaning it is possible to obtain an image
taken at time t + τ by moving every point in the current image a certain amount.
This amount is called the displacement, d = (ξ, η), of the point located at (x, y)
between the two time instants t and t + τ . However, in finding this displacement,
it is often difficult to only track a single pixel. This is because the pixel can be
confused with adjacent pixels and its value can change due to noise. Therefore,
KLT tracks windows of pixels instead of single pixels. However, this implies new
complications because different points in a window can behave differently since, for
example, three-dimensional surfaces can be slanted meaning that its intensity pat-
tern can be warped from on frame to the other. Pixels can also move at different
velocities, disappear or appear anew. [35]

Tracking windows creates two problems. The correct window has to be tracked
and, when trying to determine the displacement of the window, the different veloc-
ities in the window needs to be combined in order to create a single vector. The
first problem is solved through residue monitoring, meaning that if the appearance
of a window changes too much the tracker discards it. The second problem is solved
through modeling changes through an affine map, rather than just simple transla-
tions. This way, it is possible to associate different velocities with different points
in the window. [35]

Any difference between following windows which a translation cannot describe is
considered to be an error. The displacement vector, d, is chosen for the purpose of
minimizing this residue error. Let I(x−d) = I(x−ξ, y−η, t) and J(x) = I(x, y, t+τ)
so that the image model is J(x) = I(x−d) +n(x) where n is the noise between the
images. The displacement, d, can then be chosen in order to minimize the following
residue error over the window W

ε =
∫
W

[I(x− d)− J(x)]2ωdx (2.36)

where ω is a weighting function. This poses a new problem though, namely how
to minimize the residue error. To understand how to solve this problem, consider
the intensity function within a small arbitrary window W , like the one illustrated
in Figure 2.21. [35]

27

2. Theory

Figure 2.21: An example of an image intensity function within a small window in
an image [35].

Consider making a copy of it and placing the copy over the first and move the copy
horizontally so that a small gap between them is formed. Clearly, the horizontal
width of this gap depends on the displacement between the two pieces. When mea-
suring the gap vertically, the width (or height) of the gap is simply the difference
between the pieces. For small displacements, both the horizontal and vertical widths
of the gap, at a single pixel, are related to each other via the image gradient at that
pixel. This means that there are two different ways to describe the volume of the
gap in a neighbourhood of a pixel where one way depends on the displacement. [35]

Figure 2.22 illustrates an example of a piece of an intensity function, I(x), and
the translated piece behind it. It also illustrates a cross section of the pieces along
the direction of the image gradient. [35]

Figure 2.22: Two image intensity pieces, obtained from a window, from consecutive
images (left) and their cross section in the image gradient. Here, ∆ represents the
projection of the displacement vector, d, along the image gradient g. [35].

In general, the displacement vector, d, points in a different direction than that which
the image gradient, g = (δI

δx
, δI
δy

), points. A different way of expressing the image
gradient is through its magnitude, κ, and a unit vector u meaning that g = κu. The
displacement measured along the gradient direction, ∆, can also be expressed with
the unit vector, u, by projecting d along u so that ∆ = du. Also, from the right

28

2. Theory

hand side of Figure 2.22 it can be seen that the vertical width of the gap, h = I−J ,
where J is the lower of the two intensity functions, can be expressed as h = ∆ tanα
where α is the maximum slope in the window. It follows that the tangent of α is
equivalent to the magnitude of the gradient, κ, meaning that we can write

h = ∆κ = duκ = dg (2.37)

This is an equation relating the difference between image intensities, h, the inter
frame displacement, d, and the image gradient g. The difference, h, can easily
be computed from both images while the image gradient only needs one image to
be estimated. However, due to a complication known as the aperture problem,
illustrated in Figure 2.23, it is not possible to determine the displacement, d, by
just looking at a small piece of the image edge (like the pieces illustrated in Figure
2.22). Rather, it is only possible to determine one component of d [35]. The aperture
problem states that if the motion of an edge is to be estimated by studying a small
piece of it, which is small in comparison to the entire edge, the only motion that can
be estimated is the one that is perpendicular to the local orientation of the edge, as
illustrated in Figure 2.23. [35], [36]

Figure 2.23: Illustration of the aperture problem. The area, A, of the edge, E, that
is studied is small which makes it impossible to determine the motion of the edge in
any other direction than c. [36].

However, the windowW , is larger than the small pieces of it that have been discussed
above. This might allow the computation of different components (assumed to
be constant within W) of the displacement vector inside different pieces of W .
When combining all of the estimated components it is possible to determine if an
assignment is wrong if the right hand side of equation 2.37 is not the same as the
left hand side. Choosing a displacement vector, d, which minimizes the square of
that difference, integrated over the entire window, is the best choice possible, i.e.
minimizing the weighted residue ∫

W
(h− gd)2ωdA (2.38)

with respect to d will yield the best d. However, the solution d to equation 2.37 will
often contain some error due to it only being true when d approaches zero or when
the image intensities are linear functions of the coordinates x and y. Although, an

29

2. Theory

approximation of d can still be computed and the basic step 2.37 can be repeated
on an image which have been resampled through bilinear interpolation, which is
a method making it possible to realistically scale up images to achieve sub-pixel
accuracy. After a few such iterations, d will converge. [35]
A negative property of this method is that different parts of an image contributes
with different success for tracking. For example, if the intensity pattern, I in a
part of the image is constant, the matrix of gradients, G, will be null and the
displacement, d, will be impossible to compute. [35]

2.6 Additional theory
This section presents some additional theory used in this thesis.

2.6.1 Histogram of oriented gradients
The basic idea of histogram of oriented gradients (HOG) is that the distribution of
local intensity gradients, i.e. direction of edges, often represent object shape and
appearance quite well. Obtaining the HOG is in practice done by dividing the image
into small regions called cells (often with a size of 8x8 pixels). In these regions the
local one-dimensional histograms of gradient directions over the pixels in the cell
is accumulated. In order to be more persistent to noise and illumination, the local
histograms over larger regions called blocks (usually with a size of 4x4 cells) are
obtained and the result is used to normalize the cells in the block. The normalized
histograms of the blocks are then concatenated in order to get a feature vector
describing the image. This feature vector can in turn be used for classification.
Figure 2.24 shows a simple schematic of how the HOG of an image is obtained. [37]

Figure 2.24: (a) HOG obtained from cells, the figure does not show the blocks used
for normalization. (b) Histograms of the blocks concatenated into a feature vector.
[38]

2.6.2 Viola-Jones algorithm
The Viola-Jones algorithm is an object detection framework able to detect sought
objects in real time. The incentive for the algorithm was primarily to detect faces
in images (hence this section will be about face detection) but it can be used for

30

2. Theory

other objects as well. The algorithm consists of four stages which will be described
below. [39]

Haar feature selection

The features used for training and detection makes use of the fact that human faces
share some common properties. Some of these properties are that the eye region is
darker than the upper-cheeks and that the nose bridge region is brighter than the
eye region. The Haar features rely on rectangular areas as those seen in Figure 2.25
and the value of a given feature is the sum of the pixels within the shaded rectangles
minus the sum of the pixels inside the white rectangles. These features are obtained
from training images and are sought after in following images.

Figure 2.25: Haar features used in the Viola-Jones algorithm [39].

Creating an integral image

An integral image evaluates the Haar features and computes them very rapidly. The
integral image at position (x, y) contains the sum of the pixels above and to the left
of this position and is calculated as

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′) (2.39)

in which ii is the integral image and i is the original image. By using the integral
image, one can calculate any rectangular sum with the use of four array references,
see Figure 2.26. By doing so the difference between two rectangular sums, such as
the rectangles in Haar features, can be computed with eight (or six if the rectangles
are adjacent) references. Using these references, the evaluation speed of the Haar
features is increased. [39]

31

2. Theory

Figure 2.26: The sum of the pixels within rectangle D can be computed with the
four array references. The value, in the integral image, at location 1 is the sum of
the pixels in rectangle A, the value at location 2 is A + B, the value at location 3 is
A + C and the value at location 4 is A + B + C + D. With these values the sum
within D is computed as 4 + 1 - (2 + 3). [39]

Adaboost training

To reduce training time and also increase predictive power, the AdaBoost (Adaptive
Boosting) is used. This training process selects only the features that are known to
improve the predictive power of the trained model and improves the execution time
as irrelevant features do not need to be computed. [39]

Cascading classifiers

To classify an image, a cascade of classifiers is used. This means that several bi-
nary complex classifiers are put together and the candidate image passes through
these classifiers one at a time. The complexity of the classifiers increase as the
image proceeds through the classifiers. If in any of the classifiers the image is re-
jected, the cascade is terminated. By terminating, time is saved by not invoking the
computation-intensive classifiers further down the cascade. Using a cascade of clas-
sifiers increase both the detection performance as well as reduces the computation
time. [39]

2.6.3 Kinect tracking algorithm
The Kinect tracking algorithm is presented here so that the reader understands the
basics of the algorithm which the algorithm developed in this thesis is compared to.

The Kinect consists of an IR laser projector, an IR camera and a RGB camera.
Furthermore, the tracking algorithm used in the Kinect consists of primarily two
stages. The first stage involves computing a depth map by using structured light.
Structured light means that a depth map is constructed by analyzing a known
speckle pattern, seen in figure 2.27, of infrared laser light that is present on the
wanted object. This known pattern is projected onto the scene by the IR laser pro-
jector and the pattern, which will be deformed due to different depths in the scene,
is then read by the IR camera. From this reading and deformation a depth map
can be created. To increase the precision of the depth map, the Kinect uses depth
from focus and depth from stereo. Depth from focus uses the principle that objects

32

2. Theory

appears more blurry if they are further away. Depth from stereo uses the principle
that by looking at the scene from another angle, objects being close to the camera
will be more shifted to the side than objects far away from the camera. [40]

Figure 2.27: Known speckle pattern that is projected onto the scene [40].

The second stage involves machine learning, i.e. teaching the Kinect how to inter-
pret the information obtained from the depth map. In this stage around 100 000
depth images with known skeleton models from a motion capture system are used.
From each of these depth images dozens more are rendered in order to represent a
lot of different body types. Based on these images the algorithm learns a random-
ized decision forest in order to be able to classify the skeleton model from a specific
depth image. When the depth map has been classified by the randomized decision
forest the algorithm creates a skeleton representation using mean shift. [40]

With this algorithm the Kinect is able to, at a distance of 1.6 meters, determine an
objects position with an error range of 1-2 centimeters at 31 FPS [40], [41].

2.7 Related work
Many different articles and approaches were reviewed in order to develop the algo-
rithm in this thesis. Here, two selected articles will be mentioned.

In the paper [42] the authors describe how they developed a marker-less hand/fin-
ger tracker to enable human-computer interaction. For their solution they use the
YCbCr space for both background subtraction and skin extraction. The Viola-Jones
algorithm is then used to detect and remove the face and segmentation based on
Canny edge detection is performed to distinguish the hand from head if the head
is behind the hand. As programming language they chose C#. This solution has
overcome the limitations of long sleeves, background without skin-colored objects
and hand and head not overlapping. The tracking of their algorithm is robust, but
it has some limitations of its own. For example, according to the authors, it requires
users to stand 40-100 cm from the camera and that the environment has sufficient
lightning conditions. [42]

In the article [43] an algorithm for tracking the face and arms of a human is de-
scribed. The algorithm is initiated by standing in front of the camera in a certain
pose. From this pose information such as arm length and shoulder width is extracted.
During the run time of the algorithm, hypotheses (based on the information from
the initialization) are generated in order to estimate the position of the arms and

33

2. Theory

head. Later on, these hypothesises are verified with the use of color and edge infor-
mation and the best hypothesis is assumed to be the correct position of the arms
and head. According to the article the tracking works in cluttered environments
and it does also overcome the limitation of long sleeves. However, since it needs to
be initialized with a certain pose, it might be difficult to use in rehabilitation since
certain patients might not be able to achieve this pose. [43]

34

3
Methods

Following are the different software, hardware used as well as a description of how
the algorithm was implemented. A short summary of rejected approaches is also
presented.

3.1 Software

The software used for developing the code in this thesis is MATLAB (R2015b,
MathWorks, Natick, USA). This is due to the fact that MATLAB has built in
support for working with images and is a good tool for implementing and evaluating
algorithms. [44]

3.2 Hardware
The laptop that was used for performance evaluation of the algorithm is a Lenovo
G50-80, equipped with an i5-5200U dual core processor at 2.20 GHz and 6.0 GB
RAM. This laptop is equipped with an internal web camera capable of using the
formats RGB24 and YUV with a maximum resolution of 720x480 pixels. [45]

The integrated web camera in the laptop turned out to have a permanent auto
focus feature which caused major complications during the development of a re-
liable background subtraction. This since auto focus changes pixel values in the
image resulting in a non-static background. Since this thesis is limited to dealing
with a static background, see Section 1.2, another camera without auto focus was
used instead. This camera is the external web camera Logitech HD Webcam C270
which has a maximum resolution of 1280x720 pixels [46]. The resolution used was
640x480 pixels with the format RGB24. This since such an amount of pixels proved
sufficient and dealing with more pixels would increase computation time.

3.3 Implementation of algorithm
In the following sections the major parts of the algorithm and their implementation
are described. The parts are written in their order of implementation. The theory
behind the different methods implemented is described in chapter 2. Furthermore,
in the end of this section, a flowchart of the entire algorithm is presented.

35

3. Methods

3.3.1 Object detection

First of, the object, i.e. the human, needs to be detected. It is only when the human
has been detected that its hands and head can be tracked. The detection is done
with the two major parts described below.

3.3.1.1 Background subtraction

Two different approaches for background subtraction were examined, adaptive and
non-adaptive background subtraction. Adaptive background subtraction proved to
give decent results. However, since adaptive background subtraction creates a model
of the current background, if the object to be detected is temporarily static (or has
slow movements), it might shift from the foreground to the background resulting
in a non-detectable object. Since the intended users of this algorithm are meant to
be patients with stroke or COPD who, most probably, are slow in their movements
there is thus a risk for the patients to become a part of the background. Such an
event will be difficult to handle since the patient will be a non-detectable object.

Therefore, a non-adaptive approach was selected. The main disadvantage of such
an approach is the fact that there is a need to, in advance, create a background
model with the user excluded from the scene. This inconvenience will result in a
slightly less user-friendly algorithm. However, the advantages of such an approach
is its simple implementation and the fact that the user can perform slow movements
as well as be static while still being a part of the foreground.

To get a reliable background model, 31 images of the background are captured.
The median of each pixel location throughout these images is calculated and these
median values will form the background model. By using several images instead of
a single image to model the background, random fluctuations in pixel values will
have small or no impact on the background model. Furthermore, by using median
the background model is not affected by a few abnormal values, as in opposite to
the mean. When the background model has been created it is used together with
thresholding on future frames in order to obtain the foreground. Thresholding in
both the RGB and YCbCr color space were examined.

In order to further improve the performance of the background subtraction some
additional methods are used. First of all, morphology is used to smooth edges and
reduce noise. To counteract noise even further, a median filter is used along with
a function that disregards objects with a size less than a predetermined amount
of pixels as well as a function that fills holes in detected objects. Shadow removal
was also tested in this stage. Therefore it was not included in the final algorithm.
By using the aforementioned methods a silhouette, seen in Figure 3.1, will be ob-
tained. This silhouette can then be filled with the original image and thus only the
sought object is obtained, see Figure 3.1. The remaining parts of the algorithm can
thereafter work with solely this image.

36

3. Methods

Figure 3.1: Silhoutte obtained by background subtraction, to the left. Silhoutte
filled with original image, to the right.

3.3.1.2 Skin extraction

In theory, the background subtraction will be able to extract only the human from a
scene. In order to extract only the hands and head, skin extraction is done, meaning
that only skin colored objects are extracted from the scene. Provided that the only
skin visible on the user is the head and the hands, i.e. the user is wearing long
sleeves and trousers, and that there are no clothes with colors similar to skin, the
skin extraction should, in theory, result in that everything except the hands and
head is disregarded (meaning that these pixels are set to the color black in our al-
gorithm). If this is the case, then there will, ideally, be three separated areas (given
non-occlusion and that no body part is in contact with another) that can be sent to
the classification step of the algorithm.

Thresholding in three different color spaces (RGB, HSV and YCbCr) were examined.
Combinations of these color spaces as well as only the individual color spaces them-
selves were tried and different thresholding in each individual channel was tested.
The values used for thresholding were found by examining skin-colored objects in
each color space.

In order for the algorithm to adapt to different statical conditions, such as skin
color, the skin extraction is initialized by finding the head of the user with the
Viola-Jones algorithm. When the head has been found, eleven images of the head
are captured. In these images, the median value of each color channel in the RGB
and HSV color space is calculated. From the eleven medians, a mean for each color
channel is calculated. Doing so will result in stable and correct values, regardless
of the statical conditions, for the mean values of each color channel. When these
values are obtained, skin extraction is done by thresholding around these values.

To set things up for the classification step, the areas obtained from the skin ex-
traction, referred to as bounding boxes, are all set to the same size. If less than
three bounding boxes are found, meaning most probably that one body part is oc-
cluded, the skin extraction is iterated until three or more areas are found and before
this the classification step is not initialized. Furthermore, to decrease the amount
of bounding boxes and therefore decrease the time taken by the classification step,
bounding boxes that are close to each other will be merged into a common bounding
box at a position determined by the bounding boxes being merged. This step is also
helpful as sometimes, due to lightning conditions, a body part might be detected as
two separate areas. The images in the bounding boxes are also converted to gray
scale before being sent to the classification step.

37

3. Methods

So to conclude, the input in the skin extraction step is an image ideally containing
only the users body and the output is a number of bounding boxes (three or more
with a size of 70x80 pixels) containing gray scale images with skin colored objects
that are candidates for being either a hand or a head.

3.3.2 Head and hand classification
When the bounding boxes have been obtained they are sent to the classification
step of the algorithm. The purpose of this step is to determine which boxes that
contains the hands and head. This is done by giving each box a score representing
the probability that it is a hand or a head. Two major approaches for classification
were examined, SVM and CNN. The reason for this is that the authors were unsat-
isfied with the performance of the SVM thus CNN was examined. However, it was
unknown if CNN would be able to perform in real time and therefore the SVM was
developed. It turned out that the CNN had similar computation time as the SVM
hence, in the final algorithm, CNN is used for classification.

3.3.2.1 SVM

Training a SVM can be done in many different ways. The factor with the biggest
impact is the choice of features. Other parameters with great influence on the train-
ing process are the choice of kernel and the amount of training data.

Several different features and combinations of features were examined. Amongst
the involved where HOG, LBP, different color spaces and gray scale histograms.
Different kernels were also examined and amongst the tested were linear, Gaussian
and polynomial. Furthermore, training images in different quantities were obtained
from the original images, the background subtracted images and the skin extracted
images. The quantities ranged from tens of images to hundreds of images.

Using HOG as feature vector (i.e. calculating the HOG from the images result-
ing in a feature vector in R1260) along with a linear kernel as well as 400 training
images (100 on each hand and 200 on the head) obtained from the skin extraction
gave the best results. The images were obtained by letting one of the authors pose
at a distance of about 2 m from the camera. To reflect the many possible looks of a
hand, a large variety of hand expressions, such as fist, claw and palm, were captured
in the training images for the hands. The images were captured on the side, front
and back of the hands at different positions around the body and was taken with a
resolution of 70x80. For the training images of the head, different facial expressions
as well as different tilting and rotation that always showed both eyes of the head
were captured. By using training images from the skin extraction, interferences in
the training process from clothes and background are avoided.

After training the SVM with the parameters and training images aforementioned
the trained model can predict if a new image (with the same size as the training
images) is either a hand or a head by calculating the posterior probabilities (ranging

38

3. Methods

from 0 to 1) that a new image belongs to a certain class. In order to determine the
performance of the SVM, the misclassification rate was calculated.

3.3.2.2 CNN

A major advantage with using CNN is that it does not require the extraction of
a certain feature to work properly since it basically creates its own unique feature
extraction method that best fits its purpose. There are however, as with the SVM,
a lot of parameters to be chosen. These are the structure of the network, number
of filters and filter depths, the type of striding and padding for each corresponding
block, the pooling filter size, the type of activation function, the dropout rate, the
type of loss layer and finally the structure and appearance of the data used to opti-
mize the network.

In this thesis, a network that was not only reliable, but also fast, was needed.
This meant that the most basic structures of CNN should be used (such as the one
illustrated in Figure 3.2). In the resulting CNN, the input is as aforementioned a
grayscale image of the dimensions 70x80. Furthermore a convolutional layer with
nine filters with filter size 5x5 is used to create nine different feature maps. These
feature maps are then scaled down by a factor of two through a maxpool layer and
are then processed by a FC layer. This is done so that the output layer easily
can be created through another FC layer, which has an output size of 2x1x1, i.e.
two numbers. Through the use of a softmax layer, these numbers are turned into
probabilities corresponding to one of the two classes, head and hand. Also, after
the convolutional layer and both FC layers, there are ReLu layers which are not
illustrated in the figure. After the maxpool and second ReLu layer there are also
dropout layers with a dropout rate of 0.5. Furthermore, the input data has been
preprocessed, to ensure that the CNN is optimized by changing the data type to
single and subtracting the image mean.

Figure 3.2: Illustration of a basic structure of a CNN used in this thesis. What is
not illustrated in this image is the ReLu, dropout and loss layers. The ReLu layers
are situated directly after each convolutional and FC layer while the dropout layers
(with a dropout rate of 0.5) are placed strictly before each of the FC layers. Finally,
the loss layer is placed last and is of the softmax type.

After the CNN had been created, another major task presented itself, namely how to
train the network in the most effective way. Since a CNN is trained better the more

39

3. Methods

training data it has, 1786 unique grayscale images of hands and heads were used,
where the skin had been extracted. The images were evenly distributed between the
two categories and all of the images were acquired by letting the authors pose for
pictures during a constant and sufficient lightning condition at a distance of about
2m from the camera. A resolution of 70x80 were used for these images. The hand
images were taken evenly on left and right hand as they moved around the body
and made different poses such as fist, claw or palm. These images were taken on
the front, side and back of the hands. Furthermore, the head images were taken as
the authors made different poses and looked to the sides, but always showing both
eyes. Of the images, 4/6 were used as training data, 1/6 as validation data and 1/6
as test data. Before training, the order of all of the training and validation images
was randomized to reduce overfitting. The training data was then distributed in
several batches that was used for training. A lot of time was put on fine tuning the
learning rate and batch size to achieve the smallest possible misclassification rate
and an optimal loss rate. To estimate the final misclassification rate after training,
the test data was used. Similar to the SVM, posterior probabilities are obtained in
order to classify the image.

Figure 3.3 illustrates a more complex structure than the one illustrated in Fig-
ure 3.2. This structure was used to evaluate the benefits and drawbacks of having
a deeper network in the algorithm.

Figure 3.3: Illustration of the more deeply structured CNN used in this thesis. Not
illustrated in the image are ReLu layers which are present directly after each of the
convolutional and FC layers. There are also dropout layers with a drop out rate of
0.5 before each of the FC layers. Finally, softmax is used as the final loss layer in
this structure as well.

3.3.3 Object tracking
In order to track the object, once it has been detected and classified, KLT is used.
When the location of one of the sought body parts has been found, KLT is used
to extract interest points in that region. However, since KLT is prominent to find-
ing interest points on edges, the raw image data is used rather than the one that
has been processed through background subtraction and skin extraction. The raw
image data is used in its gray scale representation to make the interest point acqui-
sition faster. Since the raw image is used, it is possible that some interest points

40

3. Methods

are acquired in the background. For example, if the hand is over a striped shirt
then some interest points may appear on these stripes, which of course is unwanted.
To solve this, the foreground and skin extracted version of the image is used to de-
termine if some interest points lie in the background, in which case they are removed.

Once the qualified interest points have been determined, they are used to initi-
ate the tracker. This tracker is then used to track the points in the image using the
recently acquired raw gray scale image. However, since it is possible that the tracker
does not perform a reliable tracking, background subtraction and skin extraction is
performed to determine if any of the points have been tracked into the background,
in which case they are removed and the tracker is reinitialized with the remaining
points. Another problem that the KLT can run into is that many of the interest
points are lost if the tracked object changes too much in appearance, such as if an
open hand turns into a fist. In order to solve this issue, new interest points are
extracted in the foreground every fifth frame. These new points are merged with
the previously tracked points and together they reinitialize the tracker. If all the
tracked interest points are lost or become too few for a reliable tracking, object
detection and classification is performed again until all three body parts have been
detected and classified. Once this happens, interest points are extracted from the
new areas which are used to reinitialize the tracker and the tracking is resumed.

Since three body parts are tracked separately, the tracking and object detection
as well as classification is performed in three different parallel pools in MATLAB.
These parallel pools allows the computers processing power to be divided evenly be-
tween the three tasks and perform them simultaneously. This may however decrease
the overall processing time.

3.3.4 Entire algorithm

A flowchart of the entire algorithm can be seen in Figure 3.4. As can be seen, the
algorithm is initiated by obtaining a background model and the main loop, marked
with a red dashed line, is entered when the hands and the head has been correctly
classified and when the tracker has been initialized with good interest points. The
main loop is iterated once for each frame. It starts by detecting skin colored areas.
From these areas, points are extracted and tracked. After this, a new iteration takes
place.

There are some diversions available from the main loop. At predetermined time
intervals, to ensure that the correct objects are being tracked, objects are to be
detected and classified again. If no hands or head are found at this stage this step
is iterated until they are found and in the meantime they are tracked at their last
known location. Not seen in the flowchart is that this continuation of tracking goes
through the normal process of removing and adding new interest points if needed.
The tracker is reinitialized with the points found in the new areas and a new iter-
ation takes place. Furthermore, in the main loop, if the number of interest points
are less than a predetermined number, more interest points are extracted and the

41

3. Methods

tracker is reinitialized. This to ensure a sufficient amount of points available for
tracking.

42

3. Methods

Figure 3.4: Flowchart of the proposed algorithm. Main loop marked with a red
dashed line. 43

3. Methods

3.4 Rejected approaches
The original approach was to use non-adaptive background subtraction for detec-
tion. The user, once detected, would initialize the tracking by placing his or hers
hands and head in three separate boxes, i.e. kernels. Different features would be
extracted from these kernels and in the next image frame a uniform search around
each kernel’s previous position would be done in order to find the new position of
the corresponding kernel. In this uniform search, features from the previous ker-
nel were to be compared, in different ways, to features in the new kernels in order
to find the best match. To avoid noise and to allow the sought objects to change
shape, the idea was to update each kernel iteratively as the frames moved on. So
the kernel template would consist of, for example, the ten previous kernels weighted
in a certain order so that the most previous kernels would have the greatest impact.

Initially, the features extracted from the kernel was the color histogram and the
LBP. The idea was that by using color and LBP, i.e. texture, one would be able
to distinguish the hand from the head and vice versa as well as both the hands
and the head from other objects. However, this proved to be difficult and other
features such as GLCM, HOG, edges, different point detectors and combinations of
these were tested as well. None of these gave satisfactory results. The features were
also compared in different ways, for example by using euclidean distance and the
Bhattacharyya coefficient. Furthermore, optical flow was tested in order to predict
in which direction to search in the next frame.

44

4
Results

Since each part of the developed algorithm is, to a large extent, individual it can be
evaluated and discussed on its own. Therefore, the results, as well as the discussion,
of this thesis will be divided into sections representing each part of the algorithm.
To wrap up, the performance of the algorithm in whole will be presented. The
results presented have been obtained by letting only the authors be the users of the
algorithm. Furthermore, the algorithm was only tested in one specific room.

4.1 Object detection

This section will cover the results from the detection step of the algorithm, i.e. the
background subtraction and the skin extraction.

4.1.1 Background subtraction

In Figures 4.1 - 4.4 the result of the background subtraction is seen. The background
subtraction used in these results is explained in Section 3.3.1.1 and the YCbCr color
space is used for thresholding1. Figures 4.1 - 4.3 show the outcome of the background
subtraction when the background model, seen as the leftmost image in each figure, is
increased in difficulty. As can be seen and as expected, the background subtractions
performs worse, i.e. the amount of visible non-human objects increase, when the
background increases in difficulty.

Figure 4.1: Background subtraction with a background of easy difficulty.

1Threshold levels found in appendix B.1

45

4. Results

Figure 4.2: Background subtraction with a background of medium difficulty.

Figure 4.3: Background subtraction with a background of hard difficulty.

In figure 4.4 there is no color difference between the t-shirt and the background (as
in figures 4.1 - 4.3 where a long sleeved shirt forms a barrier) resulting in that parts
of the t-shirt are considered to belong to the background due to its similar color.
However, as long as the background is not skin colored this will not be a problem.

Figure 4.4: Background subtraction with a background of easy difficulty in which
a piece of clothing is sometimes considered to belong to the background.

The above images have been obtained without the implemented shadow removal.
As can be seen in the rightmost image of Figure 4.1, a bit of the background is
visible due to shadows. Furthermore, the less homogeneous background the more
shadows, meaning that more background is present in the image. In Figure 4.5 the
result from the developed, but not implemented, shadow removal is shown. The
shadow removal was not implemented since it was concluded that it did not work
good enough and under certain conditions it worsened more than it helped. As can
be seen, standing closer to the wall will obviously result in more shadows and in
such a scenario the shadow removal removes a very small amount of shadows. When
moving from the wall, the shadow removal is gradually increased in performance.
When standing 30 cm from the wall, a small part of the head is considered to be
shadows and hence removed. If large portions of a head or hand are removed this
way the rest of the algorithm might become compromised.

46

4. Results

Figure 4.5: Background subtracted image to the left. Shadow removal to the right.
(a) Standing 10 cm from the wall (b) Standing 20 cm from the wall (c) Standing 30
cm from the wall.

4.1.2 Skin extraction

In Figure 4.6 and 4.7 the result of the skin extraction (applied on images obtained
from the background subtraction) can be seen for two different backgrounds. The
skin extraction used in these results is explained in Section 3.3.1.2 and a combination
of the RGB and HSV color spaces is used for thresholding2. Due to the fact that
parts of the background in Figure 4.7 has a color similar to that of skin, the skin
extractions performance is impaired.

2Threshold levels found in appendix B.2

47

4. Results

Figure 4.6: Skin extraction with a background of easy difficulty.

Figure 4.7: Skin extraction with a background of hard difficulty.

Figure 4.8 shows a number of objects with different colors. There are in total eight
different objects, in rows of four, and the top images show the object before skin
extraction while the bottom images shows the object after skin extraction. As can
be seen, certain colors are more difficult to occlude, such as yellow and brown.

Figure 4.8: Skin extraction on objects of different colors.

48

4. Results

When the skin has been successfully extracted, as in Figure 4.9, bounding boxes are
extracted, transformed to gray scale and sent to classification. The bounding boxes
for the head is not covering the entire head since all bounding boxes are set to the
same size.

Figure 4.9: Successful skin extraction. Equal sized boxes are sent to classification.

4.2 Head and hand classification
In this section the results from the the head and hand classification are presented.
Two types of classifiers were evaluated, SVM and CNN.

4.2.1 SVM
The best results were obtained for the SVM with a linear kernel and using HOG
as feature (for more details see Section 3.3.2.1). The best validation data error
rate obtained, with these parameters, was 5.0%. In Figure 4.10 a sample of images
classified with the resulting SVM and their posterior probabilities are shown. As can
be seen, all heads are classified correctly with rather high accuracy while one hand
is misclassified. The overall accuracy of the classified hands are slightly less than
that compared to the head. Moreover, the misclassification rate3 of the samples in
Figure 4.10 is 5.0%. Based on the test data, it takes on average 2.3 ms for the SVM
to classify an image.

Figure 4.10: Images classified by the produced SVM along with posterior probabil-
ities. The upper and lower numbers represents the posterior probabilities that the
image is a hand respectively a head.

3Test data error rate

49

4. Results

4.2.2 CNN
The CNN from which these results have been obtained is described in Section 3.3.2.2.
With a descending learning rate of 0.0005 to 0.0003, it was possible to achieve the
loss curve illustrated in Figure 4.11 after 5 epochs using a batch size of 100, for the
more basic network. This CNN has the lowest validation data error rate of 1.13%
and a misclassification rate of 1.645%. The resulting weights of the filters in the
convolutional layers are also illustrated in Figure 4.11.

Figure 4.11: (a) Loss curve for the basic structure of the CNN. The lowest valida-
tion data error rate is 1.13%. (b) Resulting weights of the filters in the convolutional
layer for the basic structure.

Figure 4.12 illustrates some classification examples using the basic CNN. As can
be seen, three images are misclassified. However, in theory, no images should be
misclassified and the misclassifications are due to the high difficulty of the images.
Based on the test data, it takes on average 2.9 ms for the basic CNN to classify an
image.

Figure 4.12: Images classified by the produced basic CNN along with posterior
probabilities. The upper and lower numbers represents the posterior probabilities
that the image is a hand respectively a head.

50

4. Results

The more deeply structured CNN, illustrated in Figure 3.3, was trained with a
descending learning rate of 0.005 to 0.0003 and produced the loss curve illustrated
in Figure 4.13 after 30 epochs and a batch size of 100. The lowest validation data
error rate achieved in this loss curve is 0.99% and the network has a misclassification
rate of 1.645%.

Figure 4.13: Loss curve for the more deeply structured CNN. The lowest validation
data error rate is 0.99%.

Figure 4.14 illustrates the resulting weights of both the convolutional layers of the
deeper network while Figure 4.15 illustrates some classification examples using the
deeper CNN. As with the basic CNN, images are misclassified due to high difficulty.
Based on the test data, it takes on average 3.9 ms for the deeper CNN to classify an
image. Of the two CNNs, the basic is used for the classification in the final tracking
system due to it being faster.

51

4. Results

Figure 4.14: (a) Filters in the first convolutional layer of the deeper CNN. (b)
Filter in its second convolutional layer.

Figure 4.15: Images classified by the deeper CNN along with posterior probabilities.
The upper and lower numbers represents the posterior probabilities that the image is
a hand respectively a head.

4.3 Object tracking

The tracking used to obtain these results is described in Section 3.3.3. Figure 4.16
illustrates the sequence of how the tracking algorithm, given an image with an object
to be tracked, extracts interest points and removes those that lie in the background.
When the interest points have been extracted, they are tracked, as illustrated in
Figure 4.17.

52

4. Results

Figure 4.16: Illustration of how interest points are extracted from the image on
the left and then removed if they do not lie on the object that is being tracked. The
removed interest points are marked as red in the image to the right.

Figure 4.17: Example of a tracking sequence over three frames. In the last frame,
additional interest points are extracted to make sure that the objects are reliably
tracked. The boxes surrounding each object illustrates the area where new, if any,
interest points will be extracted in.

4.4 Entire algorithm
When the entire algorithm runs it is relatively slow, as illustrated in table 4.1, in
which the average execution times for each part is shown. As long as the algorithm
is in the main loop in Figure 3.4 the times are stable and lower than the average.
However, if it deviates from the main loop and adds more interest points or tries to
detect the regions again the times are higher than the average. The average time
the entire algorithm takes per frame is about 0.475 seconds.

Background subtraction Skin extraction Classification Tracking
Time (s) 0.133 0.083 0.012 0.250

Table 4.1: Estimated execution times for the four parts of the algorithm. The time
for the classification includes the time to run the CNN as well as the time to extract
the correct regions. The tracking time represents the time to track all the points,
remove bad points and move the boxes. The times for classification and tracking
represents the time to track and classify all three objects.

53

4. Results

Given the execution time of the algorithm, the FPS in real time will be about two.
Table 4.2 evaluates how the algorithm performs for different FPS. In order to test
this, a video recorded at 30 FPS was used and to simulate a lower FPS frames
were removed from the video stream accordingly. In other words, to evaluate the
algorithm at 15 FPS every other frame of the 30 FPS video was removed. Clearly
the algorithm is currently too slow to work properly in real time. For an FPS down
to 15, the performance of the algorithm is good, but starts to get problems with
certain parts of the movement below that. When the FPS is as low as 1.875 the
algorithm can no longer track the body parts when they move.

FPS Performance
30 Good
15 Good
7.5 Problems with hand twisting
3.75 Larger problems with hand twisting and objects moving fast
1.875 The tracking is completely compromised

Table 4.2: Evaluation of how the algorithm performs on a relatively normal move-
ment pattern. This table was created by applying the algorithm to a video recorded at
30 FPS. To simulate a lower FPS, frames were removed from the video in respective
patterns.

A big challenge to overcome was the handling of occlusions. Figure 4.18-4.20 il-
lustrate how hand behind back, hand over head and hand over hand occlusion is
handled, respectively. From the figures it can be seen that the general solution to
occlusion is to keep tracking during the time of the occlusion and when the occlu-
sion has ended (i.e. when all body parts are found again), run the classification and
reinitialize trackers again.

Figure 4.18: Example showing how a hand lost behind the back and then found
again. In the frame to the right, the points are green, indicating that they have all
been detected in this frame.

54

4. Results

Figure 4.19: Example showing how partial occlusion when a hand is over the head
is handled. In the frame to the right, the points are green, indicating that they have
all been detected in this frame.

Figure 4.20: Example showing how partial occlusion when one hand is over the
other is handled. In the frame to the right, the points are green, indicating that they
have all been detected in this frame.

In appendix A longer tracking sequences on offline video recordings, meaning that
a video was recorded in beforehand and then the algorithm was allowed to process
each frame, can be seen. These sequences are obtained from an video recording
containing 800 frames recorded at 30 FPS with a resolution of 640x480 pixels. The
algorithm correctly tracks in 88.9% of these frames (meaning that in these frames
the correct body parts are tracked) with a computation time of 0.475 seconds per
frame. When the algorithm correctly tracks, the interest points lie exactly on the
location of the head and hands, meaning that the error range is zero. This can be
seen in most of the frames in A.2. However, when it incorrectly tracks as seen in
frame 15 in A.2, the error range is very large. During such situations, the error
range varies a lot and a value on it can not be determined.

55

4. Results

56

5
Discussion

As with the results, each part of the algorithm will be discussed separately and there
will be a mutual discussion for the entire algorithm. Additionally, future work and
improvements on the algorithm will be discussed.

5.1 Object detection
What can be said about the detection in general is that it requires certain circum-
stances in order to function properly. Even if these circumstances are not present
the detection is able to function but the result obtained might impede the rest of
the algorithm hence lowering its performance.

5.1.1 Background subtraction
With a homogeneous background scene with good lightning conditions the perfor-
mance of the background subtraction is very good. However, as background homo-
geneity decreases so does the performance. Basically, more objects in the background
scene means a larger risk of shadows and since there is no functioning shadow re-
moval this results in visible shadows. However, the shadow removal developed (but
not implemented due to it sometimes worsening more than helping) showed promis-
ing results and it should be further developed.

Furthermore, having clothes with a color similar to that of the background will
result in parts of the clothes to be considered as background. This is due to the
thresholding performed. However, this is not an issue as there is no need to detect
the clothes.

5.1.2 Skin extraction
Given the right preconditions the skin extraction is able to perform reasonably well.
The person tracked should wear a long sleeved shirt and trousers to ensure that
the only skin colored objects are the hands and the head. Also, clothes with colors
similar to skin (such as yellow, pink, brown and certain shades of red) should be
avoided as these colors might be extracted as well, as seen in Figure 4.8. The reason
to why these colors are extracted is due to the fact that it is very difficult to isolate
a single color, such as skin, while still allowing variations in it (skin color varies
a lot depending on body part and lightning conditions). Hence, in order to allow

57

5. Discussion

variations, other colors are allowed as well. To further ease the skin extraction, skin
colored objects in the background should be avoided.

By studying Figure 4.3 and 4.7 it can be seen that the skin extraction aids the
background subtraction in removing background objects. Background objects not
merged with the hands or the head that are left after the skin extraction should
pose no threat (other than negligible time delay) in performance since these objects
will, in the classification step, simply be disregarded. Examples of such objects are
the objects in the lower parts of the two middle images in Figure 4.7. In both of
these images four kernels will be sent for classification and the kernel containing
background will be disregarded. However, in the same figure in the rightmost im-
age, an example of an object merging with a hand can be seen. Such an event will
be troublesome for the classification since the bounding box sent to classification
will consist of part hand and part background resulting in a difficult classification
problem.

In theory, the skin extraction should work for different lightning conditions and dif-
ferent skin colors due to the fact that Viola-Jones is used to, in advance, calculate
the skin color. However, the algorithm has not been tested under such conditions
since it has only been tested on the authors in one room.

An issue with the skin extraction step is that under some certain circumstances
a hand might disappear. This is most often due to lightning. For example, if a hand
is placed directly beneath a light source the color of it may become too bright hence
the color is not extracted. However, as this is quite rare and since the hands are to
be in almost constant movement, the hand is bound to emerge sooner or later.

5.2 Head and hand classification

The differences in classification time for the two developed CNN and the developed
SVM is small. However, as expected since CNN is more complex, it has a slightly
higher computation time. The simpler CNN is, on average, 0.6ms or 26% slower than
the SVM. However, due to its complexity, the CNNs are able to perform slightly
better with a misclassification rate of 1.645% while the SVM lies at 5% when tested
on individual test data, i.e. data obtained from the author on which they were
trained. Although, when tested on the same data (i.e. data from both authors), it
was still found that the CNNs outperformed the SVM. For these reasons the CNN
is a better choice in the classification step.

5.2.1 SVM

As mentioned above, a misclassification rate of 5.0% was obtained when using SVM.
A hand can have a large number of variations in shape, in difference to a head which
is quite constant, leading to data points with a wide spread in the feature space.

58

5. Discussion

Therefore, if the SVM is trained with images that are not representative1, some
data points of the hand might be placed in vicinity of the data points for the head
making it hard to distinguish the two sets with a hyperplane.

Even though the SVM is only trained on images from one person it should, most
probably, perform equally good on other people. This since the feature chosen
(HOG) is quite invariant amongst different people due to the fact that hands and
heads are quite similar in their outlines.

5.2.2 CNN
Both of the CNNs created are found to have the same misclassification rate. How-
ever, the more basic one is used because it was found to be faster. Although, if it
is possible to increase the speed of the system, by rewriting the code in some faster
language thus making it more effective or by using a GPU, a more complex CNN
could be used. This CNN could use three classes (hand, head and background)
instead of just two. This would allow the system to tell if the skin and background
subtraction has failed and rerun them, perhaps with different parameters, to find
the hands and head.

Using the 1786 images to train, validate and test the CNNs did give satisfying
results when running the entire algorithm. However, using more images could im-
prove the misclassification rate even further. Although, since this thesis is simply
a proof of concept, the 1786 images were considered to be a good representation of
the different appearances of the body parts.

The loss curves for both CNNs are indeed quite strange looking, according to the
theory. We believe that this is a consequence of the classification being rather
simple as there are only two classes to recognize and therefore minimizing the error
is a task that goes rather fast, resulting in what looks like a jump for the loss curves.

In difference to the SVM, the CNN is trained on two people which should make
it even better in classifying hands and head from other people.

5.3 Object tracking
The tracking algorithm performs well given that the skin extraction only extracts
the three correct objects. However, an important issue with using interest points
to track objects is that the points can be blocked out of the image, such as when a
hand turns and twists. Even though we try to add more interest points when some
are lost, it is still difficult to track the hand when it is moving fast and twists and
turns a lot. Another large issue of the KLT tracker is that it is, of course, highly
dependant on the FPS of the system. We noticed that if the FPS is too low and
the object moves too fast, it will loose track of it rather quickly. This is an issue

1Worth noting is that a large training set increase the risk of such images.

59

5. Discussion

that most likely all trackers face and really the only solutions to it is to either try
to make the system faster or rely more heavily upon object detection, as it is not
dependant on the FPS at all (in most cases).

5.4 Entire algorithm
With an execution time of approximately 0.475 seconds per frame, the algorithm
is too slow to be useful in real time. It is hard to tell if this slow execution time
is due to MATLAB or due to the algorithm itself. Our theory is that is it mostly
due to MATLAB since it is known to be quite a slow programming language. More
specifically, it is believed that the parallel loops used in the tracking is the largest
factor decreasing the speed. Therefore, to most probably increase the speed, it could
be rewritten in another, faster, language such as C or C++. Without rewriting the
code it is difficult to say how fast it could become and how demanding the rewriting
process will be. However, we have found sources saying that the speed could be
increased by a factor of 10-100 by rewriting in it C or C++. Thus, as an example,
if the speed would be increased by a factor of 50, the new execution time would be
around 10 milliseconds per frame resulting in that the algorithm would theoretically
be able to run in 100 FPS instead of 2 FPS as it currently does. This increase
in FPS would greatly improve the overall performance of the algorithm. By using
MATLAB Coder, which generates C or C++ code from MATLAB code, the rewrit-
ing could be eased. Yet, by using MATLAB Coder, it is unknown how much of the
rewriting would be eased since some functions and toolboxes used in the algorithm
might not be supported by MATLAB Coder. Furthermore, if a real system used in
rehabilitation is to be created using this algorithm, it has to be kept in mind that
it should preferably work with the computing power of a tablet (since a tablet is
more mobile than a laptop). However, most modern tablets have equal, or better,
computing power as the laptop used in this thesis so this should not be a problem.
Moreover, most tablets have cameras with a resolution better than 640x480 pixels
so the resolution used in this thesis is not a problem.

The algorithm has been evaluated by using recorded videos. From this, it can
be said that the algorithm, given the right circumstances, performs rather well. It
is able to, in 88.9% of the frames, track the three sought parts and when it loses
track of one part it is able to detect and track it again rather fast. Since we have
an algorithm which detects and tracks iteratively the algorithm is able to handle
such situations well. Furthermore, due to this approach, the algorithm handles
occlusions such as those seen in Figure 4.18-4.20 well. This is something that is
crucial for a tracking algorithm since occlusions might arise quite often. The algo-
rithm has a hard time tracking when the hands changes appearance, if for example
a hand is flipped. In such an event lots of interest points are lost due to the fact
that the object now looks different from before. However, as mentioned, if a hand
is lost during such an event it will eventually be found again. In recorded videos,
the algorithm is able to detect both slow and fast movements of the three body parts.

In Section 1.1 it is stated that the algorithm should be able to detect the location of

60

5. Discussion

each body part within an error range of a few centimeters and with an accuracy of
at least 90%. Furthermore, in the same section it is stated that the algorithm should
have a maximum latency of 0.5 seconds. The developed algorithm has an accuracy
of 88.9% and an error range of zero during these 88.9%. However, in the incorrectly
tracked 11.1% the error range is large. Furthermore, the algorithm has an execution
time of 0.48 seconds per frame. Thus it can be said that these goals were nearly
achieved. However, an execution time of 0.5 seconds per frame and hence an FPS
of 2 proved to be insufficient in order to perform a reliable tracking in real time.
Regarding the accuracy and error range, the achieved results will most probably be
sufficient to use in a simple rehabilitation system. This since even though the right
hand might not be tracked during some frames it will eventually, rather fast if the
execution time is increased, be tracked again and the user will probably not perceive
this in a gaming environment.

Since the algorithm has only been tested on the authors and in one room, it is
difficult to say how well it would perform at other locations and with other test
subjects. In theory it should work as long as certain conditions are fulfilled. These
conditions are a homogeneous background without skin colored objects, a test sub-
ject whose only visible body parts are the hands and head and who does not wear
clothes with colors similar to that of skin. One disadvantage with the current Kinect-
based system is that it is difficult to relocate, therefore it would be advantageous
if a new system was easier to relocate. To ease relocation it would be preferred if
the system could work during various circumstances, such as different backgrounds,
which is something our algorithm is limited in. Hence, if this algorithm were to
be used by patients it will be less user friendly than the Kinect-based system since
patients would need certain clothes and a certain background. However, these con-
ditions set aside, the algorithm can be seen as user friendly since the only thing that
needs to be initialized is the capturing of images for the background model.

There are a lot of special cases that can arise during tracking. An example of
such a case is the hand being split due to lightning conditions in the sequence in
Figure A.2. Another example is in the same sequence where in one frame a piece of
the shirt is, for some unknown reason, given a higher probability that it is a head
than the actual head. Most of these events have implemented code that should deal
with them. However, as the special cases differ greatly it is difficult dealing with all
of them and this algorithm is not able to take care of them all. But, once again, since
the algorithm detects and tracks iteratively, such situations are eventually resolved.

Since each part of the algorithm is very broad a lot of work can be put into each part
to improve it. There are plenty of different approaches for each part of the algorithm
and a lot of parameters to vary in each part. With this in mind, none of the parts
of the algorithm has been developed to its full potential meaning that the overall
performance of the algorithm is restricted. Since the parts in the algorithm depend
on each other it is of importance that each part has a satisfactory performance. If
this is not the case then the algorithm in whole will be impaired.

61

5. Discussion

As of now, the algorithm is not optimized for use in the rehabilitation process of
specifically stroke and COPD patients. Currently, the only part of the algorithm
directly aimed to this rehabilitation process is the use of a non-adaptive background
subtraction in order for slow or still patients to stay a part of the foreground. A
limitation in this sense is the inability to differentiate between the left and right
hand. This would be advantageous in a rehabilitation gaming environment since
then the game could be focused on mainly performing movements with one specific
hand. The reason to why this is needed is that stroke patients often have a weak side
that requires more training. So to conclude, this algorithm has been developed with
the purpose of tracking hands and head of a person that is not necessarily a stroke
or COPD patient. However, the intended users of this algorithm are such patients.
Anyhow, the developed algorithm might be of use in other areas than rehabilitation.

5.5 Comparison to Kinect
Currently, the developed algorithm is outperformed by the algorithm of the Kinect
which is described in Section 2.6.3. The Kinect is able to track the entire body of
the user with an error range of 1-2 cm. Our algorithm can match this error range in
the 88.9% of the frames that are correctly tracked whilst in the other frames it can
not. Furthermore, the Kinect is able to track at 31 FPS while our is only capable
of tracking at 2 FPS. However, while our system has some limitations as to what
type of background that can be used, so does the Kinect. As an example, during
our master’s thesis we got to try out the Kinect at a location that was somewhat
crowded in the background and as a result, the Kinect had difficulties locating and
tracking the user. If the FPS of our algorithm is improved it could be possible to
use it as a complement to the current Kinect-based system which is used for stroke
and COPD rehabilitation. For example, since the Kinect system is quite difficult to
relocate and it is important that the patients perform their exercises on a regular
basis it could be possible to use our algorithm to allow for patients to continue
playing, somewhat simpler, rehabilitation games while they are travelling.

5.6 Contributions
Considering the first marker-less tracking solution for human-computer interaction
mentioned in Section 2.7, our algorithm brings back the limitation of long sleeves
and keeps the limitation of sufficient lightning condition. However, our algorithm is
capable of tracking both hands and head.

The second marker-less tracking solution seems superior to our solution since it can
handle cluttered environments and it does not have the limitation of long sleeves.
However, it might not be well suited in the sense of a rehabilitation system.

After reviewing a lot of literature (of which some is mentioned in Section 2.7) about

62

5. Discussion

different approaches of creating tracking algorithms it is clear that there are ex-
tremely many ways of developing a successful tracker. Each approach has its own
benefits and drawbacks. Common approaches to use are background subtraction
as well as skin extraction. The use of a KLT tracker seems quite common as well.
However, we found no tracking algorithm that made use of a CNN or a SVM to
classify and identify the regions of interest in a real time application. Therefore, the
main contribution in the field of motion tracking of this thesis is the introduction of
CNN and SVM for human body tracking.

This thesis does not contribute much to the field of rehabilitation of stroke and
COPD patients. This mainly due to the fact that the developed algorithm has not
been tested on such patients hence no contribution can be determined. However, as
mentioned in Section 1, rehabilitation based on motion tracking and playing games
seems to be a successful approach. Therefore, if the developed algorithm were to
be improved and implemented in rehabilitation it would most probably be able to
contribute in the rehabilitation of stroke and COPD patients (and quite possibly
other patients as well).

5.7 Future work
If this algorithm is to be used in a real system, future development is needed. The
most important step in this future development is to rewrite the algorithm to an-
other language in order to increase its speed. If the speed is satisfactory after such
a rewriting, the algorithm could be further developed and improved. Except from
rewriting the algorithm, one way that might improve the speed (which has not been
examined) is to lower the resolution and hence the amount of pixels that are to be
processed. However, lowering the resolution also lowers the amount of detail in the
image leading to less accuracy. If the speed can not be increased, this algorithm will
not be of any use in a real system.

The speed set aside, more work can be put into each part of the algorithm. Of most
importance is to improve the background subtraction and skin extraction since if
these fail, the following steps will have a hard time performing well. The main thing
to focus on in these steps is to implement a functioning shadow removal as well as,
if possible, improve the skin extraction so that less colors are extracted. To prevent
situations when the hand is split into two, as seen in Figure A.2, the skin extraction
could make it easier for pixels adjacent to extracted regions to be classified as skin.
For example, if half a hand has been extracted the other half could be found by ex-
amining the neighborhood (in the original image) with a lower requirement on the
color. Furthermore, the algorithm should be tested on persons with a different skin
color than the authors in order to see if the skin extraction works as it theoretically
should. If the background subtraction and skin extraction are improved and the
speed is increased, a usable algorithm might very well be achieved.

There is also more work needed on the object tracking and classification. As men-
tioned in the discussion, the biggest problem that the tracking faces is when the

63

5. Discussion

hands change appearance, hence more work is needed to try to improve the tracking
during such events. One solution to this could be to extract more interest points
more often. Currently, in the developing world of CNNs, a new, extremely fast,
network type has been created [47]. The type is called fully convolutional network
and is specialized at semantic segmentation, which means segmenting the image into
different regions and classifying each of these regions. It is capable of doing this for
entire images 114 times faster than the state of the art while keeping a comparable
accuracy. Using such a network, hands and head could possibly be classified faster,
without the need for background subtraction and skin extraction. An alternative
to a fully convolutional network is to add a new class to the current CNN. This
class should be background and hence the CNN will be able to differentiate between
hand, head and background and not just hand and head. In order to do this there is
a need to train the CNN on a large amount of different backgrounds. If successful,
such an approach will be able to work as a safety net if the skin extraction has
failed and bounding boxes containing background or a combination of background
and hand have been sent to the classification step.

If the algorithm is to be implemented in a real system used in rehabilitation there
is also a need for the algorithm to be able to differentiate between the left and
right hand as previously discussed. This could be achieved if we have a CNN that
is trained to do so. However, it is possible that such a network would need to be
deeper than the one we currently use to achieve a satisfying misclassification rate.

64

6
Conclusion

This thesis has developed a tracking algorithm able to track the hands and head of
a person. The algorithm is divided into three major parts, detection, classification
and tracking. Detection is done with background subtraction and skin extraction.
The result from this step is, ideally, an image containing solely two hands and one
head. A CNN is used for classifying objects in the image obtained in the detection
step and when classification has been completed a KLT tracker is used to track the
three body parts.

The developed algorithm is too slow to work in real time having an execution time of
around 0.48 seconds per frame. Moreover, to fully be able to perform the algorithm
needs some preconditions on the environment as well as on the person. Since the
algorithm is slow it is troublesome to evaluate the performance (speed set aside) of
it. However, by allowing the algorithm to run on recorded videos it can be said that
it performs rather well with an accuracy of 88.9%. There is still a lot of future work
to be done on all the parts of the algorithm in order for it to be implemented in a
system used for rehabilitation. Particularly, there is a need to make the algorithm
faster. This can most probably be done by rewriting the algorithm in a faster lan-
guage.

To conclude this report, consider the key questions in Section 1.1. The approach
used makes the algorithm able to, with the right preconditions, quite accurately
track the movement of the hands and head. However, work is needed to improve
accuracy. Regarding efficiency, since the algorithm is unable to track in real time, it
fails. As of now, the algorithm is not able to achieve similar results as the algorithm
used for tracking in the Kinect. This is mainly due to its slow speed but also due
to its restricted performance. It will probably be possible to increase the speed and
hence the performance of the algorithm, as previously discussed, but the algorithm
will probably still be inferior to the Kinect tracking algorithm. This does not come
as a surprise since the Kinect tracking algorithm has been developed by a huge com-
pany during a large time span and with the use of a depth camera while this work
has been a simple proof of concept during a few months. However, as discussed in
Section 5.5, if the speed of the developed algorithm is increased it might be possible
to use it as a complement to the Kinect-based system.

65

6. Conclusion

66

Bibliography

[1] Socialstyrelsen. (n. d.). Statistikdatabas för stroke, [Online]. Available: http:
//www.socialstyrelsen.se/statistik/statistikdatabas/stroke. [Col-
lected: 10 feb. 2016].

[2] Hjärt-Lungfonden. (2010). Stroke, [Online]. Available: https://www.hjart-
lungfonden.se/Documents/Skrifter/Skrift_stroke_2012.pdf. [Col-
lected: 10 feb. 2016].

[3] A. Stuart, “Arm and hand exercises for stroke rehab”, WebMD, 2010. [Online].
Available: http://www.webmd.com/stroke/features/arm- and- hand-
exercises-for-stroke-rehab, [Collected: 21 dec. 2015].

[4] Hjärt-Lungfonden. (Aug. 2010). Hjärt-Lungfondens KOL-rapport, [Online].
Available: https://www.hjart- lungfonden.se/Documents/Rapporter/
KOL-rapporten%202012.pdf. [Collected: 12 feb. 2016].

[5] STROKE - Riksförbundet. (n. d.). Rehabilitering, [Online]. Available: http://
www.strokeforbundet.se/show.asp?si=460&sp=442&go=Rehabilitering.
[Collected: 12 feb. 2016].

[6] KOL. (n. d.). Träning vid kol, [Online]. Available: http://www.kol.se/
diagnos-behandling/traening-vid-kol/. [Collected: 21 dec. 2015].

[7] NeuroOptima. (2016). Vår rehabiliteringsmetod, [Online]. Available: http://
www.neurooptima.com/se/metod-och-forskning/neurorehabilitering-
med-spraktraning/. [Collected: 19 aug. 2016].

[8] H. Sveistrup, “Motor rehabilitation using virtual reality”, Journal of Neu-
roEngineering and Rehabilitation, vol. 1, no. 1, pp. 10–17, Dec. 2004. doi:
10.1186/1743-0003-1-10.

[9] R. Kizony, N. Katz, P. L. Weiss, “Adapting an immersive virtual reality system
for rehabilitation”, The Journal of Visualization and Computer Animation,
vol. 14, no. 5, pp. 261–268, Dec. 2003. doi: 10.1002/vis.323.

[10] K. Bower et al., “Clinical feasibility of interactive motion controlled games for
stroke rehabilitation”, Journal of NeuroEngineering and Rehabilitation, vol.
12, no. 1, pp. 63–77, 2015. doi: 10.1186/s12984-015-0057-x.

[11] R. Wardini et al., “Using a virtual game system to innovate pulmonary re-
habilitation: Safety, adherence and enjoyment in severe chronic obstructive
pulmonary disease”, Canadian Respiratory Journal, vol. 20, no. 5, pp. 357–
361, Sep. 2013.

[12] A. Yilmaz, O. Javed, M. Shah, “Object tracking: A survey”, ACM Computing
Surveys (CSUR), vol. 38, no. 4, 13–es, Dec. 2006. doi: 10.1145/1177352.
1177355.

67

http://www.socialstyrelsen.se/statistik/statistikdatabas/stroke
http://www.socialstyrelsen.se/statistik/statistikdatabas/stroke
https://www.hjart-lungfonden.se/Documents/Skrifter/Skrift_stroke_2012.pdf
https://www.hjart-lungfonden.se/Documents/Skrifter/Skrift_stroke_2012.pdf
http://www.webmd.com/stroke/features/arm-and-hand-exercises-for-stroke-rehab
http://www.webmd.com/stroke/features/arm-and-hand-exercises-for-stroke-rehab
https://www.hjart-lungfonden.se/Documents/Rapporter/KOL-rapporten%202012.pdf
https://www.hjart-lungfonden.se/Documents/Rapporter/KOL-rapporten%202012.pdf
http://www.strokeforbundet.se/show.asp?si=460&sp=442&go=Rehabilitering
http://www.strokeforbundet.se/show.asp?si=460&sp=442&go=Rehabilitering
http://www.kol.se/diagnos-behandling/traening-vid-kol/
http://www.kol.se/diagnos-behandling/traening-vid-kol/
http://www.neurooptima.com/se/metod-och-forskning/neurorehabilitering-med-spraktraning/
http://www.neurooptima.com/se/metod-och-forskning/neurorehabilitering-med-spraktraning/
http://www.neurooptima.com/se/metod-och-forskning/neurorehabilitering-med-spraktraning/
http://dx.doi.org/10.1186/1743-0003-1-10
http://dx.doi.org/10.1002/vis.323
http://dx.doi.org/10.1186/s12984-015-0057-x
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1145/1177352.1177355

Bibliography

[13] A. Smeulders, R. Cucchiara, A. Dehghan, “Visual tracking: An experimental
survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 7, pp. 1442–1468, Jul. 2014. doi: 10.1109/TPAMI.2013.230.

[14] H. Bay et al., “Speeded-Up Robust Features (SURF)”, Computer Vision and
Image Understanding, vol. 33, no. 16, pp. 2094–2101, Dec. 2012. doi: 10.
1016/j.cviu.2007.09.014.

[15] S. S. Cheung, C. Kamath, “Robust techniques for background subtraction in
urban traffic video”, Visual Communications and Image Processing, vol. 5308,
no. 1, pp. 881–892, Jan. 2004. doi: 10.1117/12.526886.

[16] P. Soille, Morphological Image Analysis: Principles and Applications. Springer
Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-05088-0.

[17] SDSU Library. (n. d.). Understanding dilation and erosion, [Online]. Available:
http://www-rohan.sdsu.edu/doc/matlab/toolbox/images/morph4.html.
[Collected: 1 July 2016].

[18] Kungliga Tekniska Högskolan. (n. d.). Median filtering, mode filtering, and
rank leveling, [Online]. Available: http://medim.sth.kth.se/6l2872/F/F7-
1.pdf. [Collected: 22 june 2016].

[19] C. Jung, “Efficient background subtraction and shadow removal for monochro-
matic video sequences”, IEEE Transactions on Multimedia, vol. 11, no. 3,
pp. 571–577, 2009. doi: 10.1109/TMM.2009.2012924.

[20] J. M. Chaves-González et al., “Detecting skin in face recognition systems: A
colour spaces study”, Digital Signal Processing, vol. 20, no. 3, pp. 806–823,
May 2010. doi: 10.1016/j.dsp.2009.10.008.

[21] MathWorks. (n. d.). Supervised learning, [Online]. Available: http://se.
mathworks.com/discovery/supervised-learning.html. [Collected: 4 april
2016].

[22] I. Steinwart, A. Christmann, Support vector machines, 1:st; ser. Information
science and statistics. New York: Springer, 2008.

[23] beaglef tk, Support Vector Machines Kernels I, YouTube, 2014. [Online]. Avail-
able: https://www.youtube.com/watch?v=HwQQXs4Nyjo, [Collected: 26 may
2016].

[24] R. Nogueira, R. Alencar Lotufo, R. Campos Machado, “Fingerprint liveness
detection using convolutional neural networks”, IEEE Transactions on In-
formation Forensics and Security, vol. 11, no. 6, pp. 1206–1213, 2016. doi:
10.1109/TIFS.2016.2520880.

[25] K. O’Shea, R. Nash, “An introduction to convolutional neural networks”,
CoRR, vol. abs/1511.08458, 2015. doi: arXiv:1511.08458.

[26] A. Karpathy. (n. d.). Convolutional neural networks for visual recognition
(CNNs / ConvNets), [Online]. Available: http://cs231n.github.io/. [Col-
lected: 18 May 2016].

[27] S. Bell. (n. d.). Convolutional neural networks, [Online]. Available: http://
www.cs.cornell.edu/courses/cs4670/2015sp/lectures/lec32_cnns_
web.pdf. [Collected: 19 may 2016].

[28] S. Warren, C. Sarle. (Mar. 2014). What is a softmax activation function?,
[Online]. Available: http://www.faqs.org/faqs/ai-faq/neural-nets/
part2/section-12.html. [Collected: 19 may 2016].

68

http://dx.doi.org/10.1109/TPAMI.2013.230
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1117/12.526886
http://dx.doi.org/10.1007/978-3-662-05088-0
http://www-rohan.sdsu.edu/doc/matlab/toolbox/images/morph4.html
http://medim.sth.kth.se/6l2872/F/F7-1.pdf
http://medim.sth.kth.se/6l2872/F/F7-1.pdf
http://dx.doi.org/10.1109/TMM.2009.2012924
http://dx.doi.org/10.1016/j.dsp.2009.10.008
http://se.mathworks.com/discovery/supervised-learning.html
http://se.mathworks.com/discovery/supervised-learning.html
https://www.youtube.com/watch?v=HwQQXs4Nyjo
http://dx.doi.org/10.1109/TIFS.2016.2520880
http://dx.doi.org/arXiv:1511.08458
http://cs231n.github.io/
http://www.cs.cornell.edu/courses/cs4670/2015sp/lectures/lec32_cnns_web.pdf
http://www.cs.cornell.edu/courses/cs4670/2015sp/lectures/lec32_cnns_web.pdf
http://www.cs.cornell.edu/courses/cs4670/2015sp/lectures/lec32_cnns_web.pdf
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-12.html

Bibliography

[29] N. Srivastava et al., “Dropout: A simple way to prevent neural networks from
overfitting”, Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[30] D. Wilson, T. Martinez, “The general inefficiency of batch training for gradient
descent learning”, Neural Networks, vol. 16, no. 10, pp. 1429–1451, 2003. doi:
10.1016/S0893-6080(03)00138-2.

[31] Welch Labs,Neural Networks Demystified [Part 2: Forward Propagation], YouTube,
2014. [Online]. Available: https://www.youtube.com/watch?v=UJwK6jAStmg,
[Collected: 01 July 2016].

[32] ——, Neural Networks Demystified [Part 3: Gradient Descent], YouTube, 2014.
[Online]. Available: https://www.youtube.com/watch?v=5u0jaA3qAGk,
[Collected: 01 July 2016].

[33] ——, Neural Networks Demystified [Part 4: Backpropagation], YouTube, 2014.
[Online]. Available: https://www.youtube.com/watch?v=GlcnxUlrtek,
[Collected: 01 July 2016].

[34] A. Y. Ng et al. (n. d.). Ufldl tutorial, [Online]. Available: http://ufldl.
stanford.edu/tutorial/. [Collected: 30 june 2016].

[35] C. Tomasi, T. Kanade, “Shape and motion from image streams: A factorization
method - Part 3: Detection and tracking of point features”, Computer Science
Department, Pittsburgh, PA, Tech. Rep. CMU-CS-91-132, Apr. 1991.

[36] S. U. E. Hildreth, “The measurement of visual motion”, Trends in Neuro-
sciences (Regular ed.), vol. 6, pp. 177–179, Jan. 1983. doi: 10.1016/0166-
2236(83)90081-4.

[37] D. Navneet, B. Triggs, “Histograms of oriented gradients for human detec-
tion”, IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 886–893, 2005. doi: 10.1109/CVPR.2005.177.

[38] National Instruments. (Jun. 2015). Feature extraction, [Online]. Available:
http://zone.ni.com/reference/en-XX/help/372916T-01/nivisionconcepts/
feature_extraction/. [Collected: 8 June 2016].

[39] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple
features”, Computer Vision and Pattern Recognition, vol. 1, pp. 511–518, 2001.
doi: 10.1109/CVPR.2001.990517.

[40] J. MacCormick. (2011). How does the Kinect work?, [Online]. Available: http:
//users.dickinson.edu/~jmac/selected-talks/kinect.pdf. [Collected:
10 june 2016].

[41] A. Mobini, S. Behzadipour, M. S. Foumani, “Accuracy of Kinect’s skeleton
tracking for upper body rehabilitation applications”, Canadian Respiratory
Journal, vol. 9, no. 4, pp. 344–352, 2014. doi: 10.3109/17483107.2013.
805825.

[42] H.-S. Yeo, B-G. Lee, H. Lim, “Hand tracking and gesture recognition system
for human-computer interaction using low-cost hardware”, Multimedia Tools
and Applications, vol. 74, no. 8, pp. 2687–2715, 2015. doi: 10.1007/s11042-
013-1501-1.

[43] CM. Huang, YR. Chen, LC. Fu, “Visual tracking of human head and arms
using adaptive multiple importance sampling on a single camera in cluttered

69

http://dx.doi.org/10.1016/S0893-6080(03)00138-2
https://www.youtube.com/watch?v=UJwK6jAStmg
https://www.youtube.com/watch?v=5u0jaA3qAGk
https://www.youtube.com/watch?v=GlcnxUlrtek
http://ufldl.stanford.edu/tutorial/
http://ufldl.stanford.edu/tutorial/
http://dx.doi.org/10.1016/0166-2236(83)90081-4
http://dx.doi.org/10.1016/0166-2236(83)90081-4
http://dx.doi.org/10.1109/CVPR.2005.177
http://zone.ni.com/reference/en-XX/help/372916T-01/nivisionconcepts/feature_extraction/
http://zone.ni.com/reference/en-XX/help/372916T-01/nivisionconcepts/feature_extraction/
http://dx.doi.org/10.1109/CVPR.2001.990517
http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf
http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf
http://dx.doi.org/10.3109/17483107.2013.805825
http://dx.doi.org/10.3109/17483107.2013.805825
http://dx.doi.org/10.1007/s11042-013-1501-1
http://dx.doi.org/10.1007/s11042-013-1501-1

Bibliography

environments”, IEEE Sensors Journal, vol. 14, no. 7, pp. 2267–2275, Jul. 2014.
doi: 10.1109/JSEN.2014.2309256.

[44] Mathworks. (n. d.). Image processing toolbox, [Online]. Available: http://
se.mathworks.com/products/image/. [Collected: 22 june 2016].

[45] Lenovo. (n. d.). Lenovo g50-80, [Online]. Available: http://shop.lenovo.
com/us/en/laptops/lenovo/g-series/g50-80/#tab-tech_specs. [Col-
lected: 20 jan. 2016].

[46] Logitech. (n. d.). Hd webcam c270, [Online]. Available: http://www.logitech.
com/sv-se/product/hd-webcam-c270. [Collected: 3 mars 2016].

[47] J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for semantic
segmentation”, Computer Vision and Pattern Recognition, pp. 3431–3440, Jun.
2015. doi: 10.1109/CVPR.2015.7298965.

70

http://dx.doi.org/10.1109/JSEN.2014.2309256
http://se.mathworks.com/products/image/
http://se.mathworks.com/products/image/
http://shop.lenovo.com/us/en/laptops/lenovo/g-series/g50-80/#tab-tech_specs
http://shop.lenovo.com/us/en/laptops/lenovo/g-series/g50-80/#tab-tech_specs
http://www.logitech.com/sv-se/product/hd-webcam-c270
http://www.logitech.com/sv-se/product/hd-webcam-c270
http://dx.doi.org/10.1109/CVPR.2015.7298965

A
Tracking sequences

Figure A.1 shows nine frames from a video sequence. The sequence is recorded in 30
FPS and in the figure each tenth frame is shown meaning that the time difference
between each frame is 1/3 of a second. The sequence shows an event with rather
fast movement and also an event in which the hand drastically changes appearance.
As can be seen in the fourth frame there are very few interest points left, however, in
the fifth frame more have been added and therefore the algorithm is able to handle
the situation.

Figure A.1: Video sequence recorded with 30 FPS. White crosses represent interest
points.

I

A. Tracking sequences

Figure A.2 shows 24 frames from a video sequence. As with the first sequence it is
recorded in 30 FPS with each tenth image shown. In this sequence the movement
is slower than in the previous sequence. In the fifteenth and sixteenth image of the
sequence, the left hand is detected as two separate objects resulting in that two
parts of that hand is tracked and no part of the right hand is tracked. This is due to
a faulty skin extraction and such events should be dealt with as described in Section
3.3.1.2. However, as seen, it is not working in this sequence. In the seventeenth
frame, a piece of the shirt has passed through the skin extraction (probably due to
shadows) and is hence a candidate for classification. It has in this frame been faulty
classified with a higher score than the real head thus it is considered to be a head
and is therefore tracked. As can be seen, eventually this faulty tracking is resolved
and the correct objects are tracked in the eighteenth frame.

II

A. Tracking sequences

Figure A.2: Video sequence recorded with 30 FPS. White crosses represent interest
points.

III

A. Tracking sequences

IV

B
Threshold levels

B.1 Background subtraction

In table B.1 the threshold levels used in the background subtraction can be seen.
Y, Cb and Cr ranges from 0-255. The thresholds work so that if the difference in
Y-, Cb- and Cr-value between the background model and current scene at a certain
pixel is less than 16, 6 and 4, respectively, then the pixel is determined to belong to
the background. If not, the pixel is determined to be in the foreground. The values
were experimentally obtained using independent data set and a single environment.
The criterion was that all potential foreground pixels should be detected, i.e. a high
sensitivity to the user.

Color Value
Y 16
Cb 6
Cr 4

Table B.1: Threshold levels used in the background subtraction.

B.2 Skin extraction

In table B.2 the threshold levels used in the skin extraction can be seen. R, G and
B ranges from 0-255 and H, S and V ranges from 0-1. A pixel is determined to be
of skin color if all of its color components (R, G, B, H, S and V) are within the low
and high values given in table B.2. The values were experimentally obtained using
independent data set and a single environment. The criterion was that all potential
skin pixels should be detected, i.e. a high sensitivity to skin.

V

B. Threshold levels

Color Low High
R 0 -
G 30 -
B 10 -
H H̄ - 0.2 H̄ + 0.2
S S̄ - 0.2 S̄ + 0.3
V V̄ - 0.3 V̄ + 0.3

Table B.2: Threshold levels used in the skin extraction. H̄, S̄ and V̄ are the mean
values on the skin color obtained from the Viola-Jones algorithm.

VI

Acronyms

CNN - Convolutional Neural Network
COPD - Chronic Obstructive Pulmonary Disease
GLCM - Gray-Level Co-occurrence Matrix
HOG - Histogram of Oriented Gradients
KLT - Kanade-Lucas-Tomasi
LBP - Local Binary Pattern
SVM - Support Vector Machine

I

	List of Figures
	List of Tables
	Introduction
	Purpose
	Scope
	Thesis outline

	Theory
	Tracking overview
	Background subtraction
	Adaptive
	Non-adaptive
	Enhancing background subtraction

	Color extraction
	Color spaces

	Supervised learning
	Support vector machine
	Convolutional Neural Network

	Kanade-Lucas-Tomasi tracker
	Interest point extraction
	Feature tracking

	Additional theory
	Histogram of oriented gradients
	Viola-Jones algorithm
	Kinect tracking algorithm

	Related work

	Methods
	Software
	Hardware
	Implementation of algorithm
	Object detection
	Background subtraction
	Skin extraction

	Head and hand classification
	SVM
	CNN

	Object tracking
	Entire algorithm

	Rejected approaches

	Results
	Object detection
	Background subtraction
	Skin extraction

	Head and hand classification
	SVM
	CNN

	Object tracking
	Entire algorithm

	Discussion
	Object detection
	Background subtraction
	Skin extraction

	Head and hand classification
	SVM
	CNN

	Object tracking
	Entire algorithm
	Comparison to Kinect
	Contributions
	Future work

	Conclusion
	Bibliography
	Tracking sequences
	Threshold levels
	Background subtraction
	Skin extraction

	Acronyms

