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Sensitivity-based Gradients for Parameter
Estimation in Nonlinear Mixed Effects Models
with Deterministic and Stochastic Dynamics
HELGA KRISTÍN ÓLAFSDÓTTIR
Department of Signals and Systems
Chalmers University of Technology

Abstract
Nonlinear Mixed Effects (NLME) modelling has for a long time been used for mod-
elling individuals of a population that behave by the same qualitative mechanisms
but with quantitative differences between individuals. This kind of modelling in-
creases for example knowledge on the effects of drugs on the body, which is important
in drug development when deciding dosing regiments.

An important part of NLME modelling involves estimating the parameters of the
model for a given dataset. This is often done using gradient based methods, where
the gradients are traditionally approximated using finite differences. This approxi-
mation might cause longer execution times and numerical problems leading to failure
at estimating parameters.

This thesis investigates the robustness of parameter estimation using the method S-
FOCE, where gradients of the optimisation algorithm are computed exactly instead
of using numerical approximations. This is done for NLME models with determinis-
tic dynamics. The comparison was performed by estimating parameters of simulated
data from pharmacokinetic and pharmacodynamic models using both a parameter
estimation program that uses the exact gradients and an industry standard parame-
ter estimation software, NONMEM, that partly uses finite difference approximations
to compute the gradients. This thesis also shows how the S-FOCE method could
be extended for a general NLME model with stochastic dynamics. This involves
deriving the first and second order sensitivities of the Extended Kalman Filter.

The results show that for a simple model with no failure in parameter estimation
using finite differences, the S-FOCE method performs equally well. However, models
where the finite difference method had lower success frequency, the S-FOCE method
suggests significant improvement in robustness in terms of the frequency of successful
estimates of parameters and their uncertainties as. The quality of the uncertainty
estimates was similar for all methods.

Keywords: Nonlinear Mixed Effects, sensitivity equations, pharmacokinetics, phar-
macodynamics, NONMEM, parameter estimation, Population Likelihood, First Or-
der Conditional Estimation
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1
Introduction

This chapter introduces the background and motivation for this thesis, declares the
main contributions and gives an overview of the thesis.

1.1 Background and Motivation
Many processes occurring within individuals of a population operate by the same
qualitative mechanisms in every individual but with quantitative aspects differing
from one individual to another. These processes could for example be how drug
gets absorbed and later eliminated from the body or how an individual responds to
insulin when treated for diabetes. Nonlinear mixed effects (NLME) modelling [13] is
a powerful tool for quantifying the existence of such population variability. NLME
models describe individual observations that depend on a continuously changing
state of each individual. The dynamics of the state are described using differential
equations.

NLME modelling has for a long time played a dominant role in fields like clinical
pharmacology when modelling processes called population pharmacokinetics (PK)
and pharmacodynamics (PD), which describe what happens to drugs in the body
and what response the drug triggers in the body, respectively. There, understand-
ing what happens from dose to response gives important information when deciding
suitable dose and dosing regiments. Although widely used within pharmacology, the
method is also applicable to other fields as well and novel applications are still be-
ing found, as illustrated by its recent use in single-cell systems biology studies [1, 10].

In order to model the behaviour of the population, the non-varying parameters de-
scribing the population as well as the parameters describing individual variability
have to be estimated. Parameter estimation in NLME models is a challenging task,
often suffering from both long run-times and numerical instability, and it is fre-
quently the bottleneck of the modelling work-flow. Using gradient-based methods
requires computing derivatives of a function that is not explicitly defined. The tradi-
tional way is to compute the derivatives using finite difference approximations. The
use of gradient-based optimisation with exact gradients computed using so called
sensitivity-equations instead of computing the gradients using the finite difference
approach has shown great potential for addressing the above issues [2]. The exact
derivative of a function that is the solution of a differential equation is then obtained
by creating a new differential equation that has the derivative as a solution.

1



1. Introduction

For random variables that depend on a set of parameters, the likelihood is the
probability of a set of observations of the random variables, given certain parameter
values. This can be used as a measure of how well certain parameters fit an observed
set of data. One approach to parameter estimation in NLME models is to maximise
the population likelihood. This likelihood does not have a closed form solution. In
order to estimate the parameters, approximations have to be made and the prob-
lem solved numerically. During this study, the likelihood was approximated using
First Order Conditional Estimation (FOCE). In [2] it was shown that for gradient
based optimisation of the FOCE approximation, the gradient precision and accuracy
could be improved, along with computational time, by using sensitivity equations
to compute the gradients. This parameter estimation method will be referred to as
S-FOCE. The robustness of the use of S-FOCE for parameter estimation is however
still to be analysed. This will be done by comparing the robustness of S-FOCE with
the industry standard software NONMEM [4]. Figure 1.1 displays the two different
types of parameter estimation methods that will be compared.

The robustness of parameter estimation is measured in terms of success and failure
of obtaining both a parameter estimate and its uncertainties. The parameter esti-
mation can fail during two main steps. The first failure occurs during the estimation

NLME model based on ODEs

Population likelihood

Laplace approximation

First order approximation of Hessian

FOCE

Finite differences Exact gradients gradient based
optimisation

Parameter estimate and uncertainties

Figure 1.1: Schematic figure of two variances of FOCE for parameter estimation
of NLME models based on ODEs. The traditional finite difference version (left) will
be compared to the S-FOCE version, introduced in [2] (right).

2



1. Introduction

of parameters if the optimisation algorithm does not manage to fulfil the set stop-
ping criteria. The second failure occurs if the method does not manage to obtain
an uncertainty estimate of the estimated parameters. The uncertainty estimate is
described using a covariance matrix. Both failures contribute to an unsuccessful
parameter estimation. This is shown in Figure 1.2.

Estimating
parameters

c1

Estimating
uncertainties

c2

Success

Failed
estimation step

Failed
covariance step

Failure

Parameter estimation

Figure 1.2: Schematic figure of types of failure during parameter estimation. The
conditions c1 and c2 ensure that point estimate and uncertainties of the point esti-
mate have been found. Both need to be fulfilled for the parameter estimation to be
successful.

The model for the dynamics of the individuals is often formulated in terms of or-
dinary differential equations (ODEs). This makes the state variables of the model
deterministic and all noise observed within an individual is modelled as measure-
ment noise. However, a more realistic approach with dynamical systems described
by stochastic differential equations (SDEs) has begun to appear within NLME mod-
elling [12, 17]. The use of SDEs allows distinction between measurement noise and
system noise. While making the models more realistic, this also helps with modelling
the model structure incompleteness. However, these models add another dimension
of complexity, making their analysis even more challenging.

For NLME models based on SDEs, the S-FOCE method will be extended to account
for a general NLME model with stochastic dynamics when estimating parameters.
In [12], the authors suggest the method of using symbolic differentiation for obtain-
ing gradients when optimising instead of using the approximation based on finite

3



1. Introduction

differences. This was however done by using the symbolic algebra capability in
Mathematica and the computations had to be done specifically for each model in
question. In the present study, in order to verify how this method works for a gen-
eral mixed effects model, the population likelihood gradient is derived analytically
using sensitivity equation based gradients.

1.2 Contributions and Thesis Overview
The main contributions of this thesis are the implementation of S-FOCE and com-
parison with the FOCE method of NONMEM, along with the extension of the
S-FOCE algorithm on general NLME models with stochastic dynamics.

The construction of the thesis is as follows. After the introduction, the parameter
estimation procedure and related methods for NLME models based on ordinary dif-
ferential equations are introduced. This is followed by a description of parameter
estimation for NLME models based on stochastic differential equations. The dis-
cussion ends with an extension of the S-FOCE algorithm on general NLME models
with stochastic dynamics, the first main contribution of the thesis. Thereafter, the
main ideas behind pharmacokinetic and pharmacodynamic modelling are briefly de-
scribed and the statistical tests used for robustness comparison explained. Chapter
3 introduces the software used for parameter estimation and describes how the S-
FOCE method was implemented for this study and how the programs were set up for
comparison. After that, Chapter 4 describes the models and simulated datasets cho-
sen for the comparison and discusses the approach taken for comparing the different
methods of parameter estimation. The results from the comparison and discussion
on how the exact population likelihood gradient for a general NLME model can
be derived using exact gradients are presented in Chapter 5. Finally, the main
discussion and conclusions are presented in Chapter 6.

4



2
Theory

This chapter contains a summary of the theory necessary for this thesis. It be-
gins with an introduction of Nonlinear Mixed Effects models based on ordinary
differential equations and the parameter estimation methods studied in this project.
Thereafter, an extension of the Nonlinear Mixed Effects model is introduced for
which the dynamics are described using stochastic differential equations. The chap-
ter ends with a short description of pharmacokinetic and pharmacodynamic mod-
elling, which is necessary in order to understand the models used in this study, along
with an explanation of the statistical tests used for analysing the results.

2.1 Parameter Estimation of Nonlinear Mixed Ef-
fects Models with Deterministic Dynamics

Consider a population where measurements have been collected from each individual
at a number of different time points. The measurements could for example be the
concentration of a drug or fatty acids in the plasma. These individuals have both
inter-individual and intra-individual variability, meaning that the behaviour of each
individual is slightly different, and also that the measurements are noisy. This kind
of population can be modelled using a Nonlinear Mixed Effect (NLME) model [13].
For a given NLME model and dataset, the model is fitted to the data by finding the
parameters that maximise the population likelihood. When the parameters have
been estimated, the behaviour of the population can then be simulated and studied
further.

This section describes the formulation of an NLME model based on ordinary differ-
ential equations, the population likelihood and methods to optimise the population
likelihood. A way of computing the exact likelihood gradient, by solving a system of
differential equations instead of using finite difference methods, is also introduced.

2.1.1 Nonlinear Mixed Effects Model
An NLME model can be defined by [13, 2]

yij = h(ui,xij, t,θ,ηi) + eij (2.1)

where yij,xij= xi(tji) are the j-th response and predictor vector of the i-th individ-
ual, ui is the input to the system, eij is a normally distributed noise term around

5



2. Theory

zero with covariance R(ui,xij, t,θ,ηi) and θ and ηi are parameter vectors. The
parameter vector θ consists of fixed population parameters and ηi of random ef-
fects parameters associated with individual i. The individual random parameter
vector ηi is assumed to be normally distributed around zero with variance Ω on the
population level. It is assumed that Ω is unknown and its elements are therefore
included in the fixed elements θ. The dynamics of the predictor vector xi are usually
described with an ordinary differential equation

dxi
dt

= f(ui,xi, t, ,θ,ηi)

xi(t0) = x0i(θ,ηi).
(2.2)

Two kinds of variability affect these kinds of NLME models. This is the inter-
individual variability Ω and the intra-individual variability R.

Simple Example of a Mixed Effects Model

Below is a simple mixed effects model that illustrates the role of the fixed population
parameters, individual random parameters, and measurement variability. Consider
the simple model where the state variable xi of individual i at time t is described
with the differential equation

dxi
dt

= c

xi(t0) = ηi

(2.3)

where c is a constant, and the measured output yi of individual i at time tji is

yi(tji) = xi(tji) + eij (2.4)

where ηi ∼ N(0, ω2) and eij ∼ N(0, s2). This model has the fixed population pa-
rameters θ = (c, ω, s) to be estimated and one random individual effect η.

The above differential equation (Eq. 2.3) has solution

xi(t) = c · t+ ηi. (2.5)

Hence, the individual effect ηi determines the translation of the line

y = c · t (2.6)

in the y-direction and so does the measurement error eij. The difference between
the influence of random individual effects and the measurement error can be seen
in Figure 2.1, where the variability of the population is either dominated by inter-
individual variability (Figure 2.1a) or intra-individual variability (Figure 2.1b).
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(a) High inter-individual variance ω = 0.3 and low intra-individual variance s = 0.001
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(b) Low inter-individual variance ω = 0.001 and high intra-individual variance s = 0.3

Figure 2.1: Difference between inter- and intra-individual variability for computer
generated time series data for a linear model with 20 individuals, one population
parameter c = 1, and measurements taken at eleven equispaced time points from 0
to 5.

2.1.2 Population Likelihood

Let dij be a set of observations for individuals i = 1, ..., N at times tji , ji = 1, ..., ni,
and define the residuals εij as the difference between the measurement and expected
value according to the model, i.e.

εij = dij − ŷij (2.7)

where
ŷij = E[yij]
Rij = V ar[yij].

(2.8)

The population likelihood can be written as the multiplication of the individual

7
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likelihoods yielding, as in [2]

L(θ|d) = p(d|θ)

=
N∏
i=1

p(di|θ)

=
N∏
i=1

∫
p(di|θ,ηi)p(ηi|θ)dηi

=
N∏
i=1

∫  ni∏
j=1

exp
(
−1

2ε
T
ijR

−1
ij εij

)
√
|2πRij|

 · exp
(
−1

2η
T
i Ω−1ηi

)
√
|2πΩ|

dηi

(2.9)

where d denotes all observations and di denotes all observations of individual i.
This can be further simplified by writing [2]

L(θ|d) =
N∏
i=1

∫
exp(li)dηi (2.10)

where

li = −1
2

ni∑
j=1

(
εTijR

−1
ij εij + log det(2πRij)

)
− 1

2ηiΩ
−1ηi −

1
2 log det(2πΩ). (2.11)

Hereafter, the notation L(θ) will be used to denote the population likelihood instead
of L(θ|d).

2.1.3 Sensitivity Equation-based Gradients
This subsection describes how to compute exact gradients using sensitivity equa-
tions. Consider the simplified case of state variable x, dependent on t and p, defined
by a differential equation of t. Here, p is a parameter vector. Using the differen-
tial equation, the derivatives of x with regard to pi can be found by obtaining a
differential equation for the derivatives. In order to show this, the differential equa-
tion for si(t,p) := d

dpi
x will be computed. The derivatives si are called (first order)

sensitivities [7, 2] and hence the differential equations are called sensitivity equations.

Consider the differential equation

dx(t;p)
dt

= f(t, x(t;p),p)

x(t0) = x0(p)
(2.12)

where p is a vector of parameters of length m. The derivative of x with respect to
pi cannot be computed directly since the formulation of x as a function of p is not
given. However, it holds that

d

dt
si = d

dt

(
dx

dpi

)
= d

dpi

(
dx

dt

)
= ∂f

∂pi
+ ∂f

∂x

dx

dpi
= ∂f

∂pi
+ ∂f

∂x
si (2.13)

8
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and thus the sensitivity equations can be obtained

d

dt
si(t,p) = ∂f

∂pi
+ ∂f

∂x
si

si(t0,p) = dx0(p)
dpi

.

(2.14)

Solving Eq. (2.14) gives us si(t,p) = dx

dpi
without having to approximate any

derivatives. The first order sensitivity is simply defined as the first order derivative
of x with respect to pi,

si(t,p) = d

dpi
x(t,p), i = 1, ...,m (2.15)

In the same way, the second order sensitivity can be defined as the second order
derivative etc.

2.1.4 Parameter Estimation using First Order Conditional
Estimation (FOCE)

The type of parameter estimation considered in this project depends on finding the
parameters θ∗ that maximises the population likelihood L(θ) in Eq. (2.10), i.e.
finding θ∗ such that

θ∗ = arg max
θ

L(θ). (2.16)

The likelihood function does not have a closed form solution [2]. One way of solving
this problem is to use the First Order Conditional Estimation (FOCE) method to
approximate the likelihood function. This is done by first approximating the popu-
lation likelihood function (Eq. (2.10)) using Laplace’s method [24]. The individual
likelihood function li is approximated with a second-order Taylor expansion around
the value η∗i that maximises li given θ and yields the following approximation of the
population likelihood L(θ)

L(θ) ≈
N∏
i=1

exp(li(η∗i )) det
[
−∇2li(η∗i )

2π

]−1/2
 (2.17)

where ∇2li(η∗i ) denotes the Hessian of li at η∗i [2]. After using Laplace’s method, the
likelihood function is further approximated by approximating the Hessian using a
first order approximation. The approximation ignores all terms containing a second
order derivative in the expression of the Hessian, giving

L(θ) ≈
N∏
i=1

exp(li(η∗i )) det
[
−Hi(η∗i )

2π

]−1/2
 (2.18)

where Hi is the first order approximation of ∇2li [2].
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Since the log function is strictly increasing, maximising logL(θ) is equivalent to
maximising L(θ). This is done in order to avoid numerical problems with large
numbers. The objective function to be maximised therefore becomes

logL(θ) ≈ logLF (θ) =
N∑
i=1

(
li(η∗i )−

1
2 log

∣∣∣∣∣−Hi(η∗i )
2π

∣∣∣∣∣
)

(2.19)

called the Approximate Population Likelihood (APL) [2].

Using this function, the point estimate θ∗ that maximises the APL is found during
the estimation step of the algorithm and using that estimate, its uncertainties are
computed during the covariance step. Both steps are described below.

Estimation Step

In order to maximise the APL, two types of optimisation problems, an inner problem
and an outer problem, have to be solved. The inner problem is to find η∗i that
maximises li for each individual i, given fixed parameters θ for which the APL is
evaluated. The outer problem is then to obtain the parameter estimates θ∗ such
that

θ∗ = arg max
θ

logLF (θ). (2.20)

Both problems can for example be solved using Broyden–Fletcher–Goldfarb–Shanno
(BFGS) Quasi-Newton method [16]. This is a gradient based Newton method that
uses an iteratively updated approximation of the Hessian.

Covariance Step

When the parameter estimates θ∗ that maximise the APL have been found, their
uncertainties are obtained from the Hessian of the APL at θ∗. The covariance matrix
of θ∗ can be approximated by the inverse of the negative Hessian [3, 19], i.e.

Cov(θ∗) ≈ −∇2 logLF (θ∗)−1. (2.21)

A necessary condition to be able to compute the covariance matrix is therefore that
the Hessian ∇2 logLF (θ∗) is negative definite. Computing the Hessian also gives
information whether the parameter values θ∗ result in a local minimum or a saddle
point, since the estimation step ensured that the gradient of the APL in θ∗ is close
to zero.

2.1.5 Failure in Parameter Estimation
Parameter estimation is not always successful and can either fail during the esti-
mation step or the covariance step, as shown in Figure 1.2. The estimation fails
when the optimisation algorithm does not converge within the desired settings, i.e.
failing to achieve small enough gradient and step size to fulfil the stopping criteria
of the Newton optimisation algorithm. This could for example be caused by model

10
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misspecification or insufficient data [3].

Even if the estimation step succeeds, there can still occur problems when computing
the uncertainties. This happens when the Hessian at the estimate is either singular
or not negative definite.

If the likelihood function is very flat, the Hessian becomes close to singular and
there can be numerical problems inverting the matrix. Consider an example of a
function in one variable. If the function is very flat around the estimate, the second
derivative of the function at that point will be close to zero and numerical problems
when inverting the Hessian might occur.

If the Hessian is negative definite, the estimate is a local maximum of the likeli-
hood function. The other two options are that it is a local minimum or a saddle
point. Finding a local minimum when maximising would suggest a poor optimisation
method. It is therefore more probable that the estimate is located in a saddle point.
This could for example happen when there is very small change in one dimension of
the parameter space.

2.1.6 Sensitivity-based First Order Conditional Estimation
(S-FOCE)

Gradient-based optimisation methods may be time consuming and numerically un-
stable, especially for models that require numerical integration of differential equa-
tions. In [2] a version of FOCE was introduced where the exact gradients were
computed using sensitivity equations, as explained in Section 2.1.3, instead of using
the standard finite difference approximation. Below is a pseudocode of the method
in Algorithm 1 and examples of how the derivatives are computed using this method,
taken from [2]. Further details can be found in the original article. This method
will be referred in this thesis to as S-FOCE.

Using Sensitivity-based Gradients when Calculating ∇2li(η∗i )

In order to calculate the Hessian ∇2li(η∗i ), the individual likelihood li has to be
differentiated twice, with respect to ηij and ηil. The first order approximation of the
Hessian becomes

Hikl = −1
2

ni∑
j=1

(
alBa

T
k + tr(−clck)

)
−Ω−1

kl (2.22)

where

ak =
dεTij
dηik
− εTijR−1

ij

dRij

dηik
B = 2R−1

ij

ck = R−1
ij

dRij

dηik
.

(2.23)
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Algorithm 1 S-FOCE parameter estimation algorithm
s := 0,θs := θstarting . Initialise the algorithm
for all individuals do

u := 0,ηu
s := 0

end for
repeat . Solve the outer problem

for all individuals do
u := 0
repeat . Solve the inner problem

Solve for x and the sensitivities dx/dη
Compute l and dl/dη
Update ηu+1

s according to BFGS
u := u+ 1

until η∗ is obtained
end for
for all individuals do

Set η := η∗
s

Solve for x and the sensitivities dx/dη, dx/dθ, d2x/dη2 and d2x/dηdθ
end for
Compute logLF and d logLf/dθ
Uptade θs+1 according to BFGS
for all individuals do . Set the starting values for inner problem
η0

s+1 = η∗
s + dη∗

s

dθ (θs+1 − θs)
end fors := s+ 1

until convergence of θ

What is left is to compute are the gradients dεik
dηik

and dRij

dηik
. The gradients are

calculated using the chain rule, giving

dεij
dηik

= −
(
∂h

∂ηik
+ ∂h

∂xik

dxik
dηij

)
(2.24)

and

dRij

dηik
= ∂Rij

∂ηik
+ ∂Rij

∂xik

dxij
dηik

. (2.25)

The derivatives
∂h

∂ηik
,
∂h

∂xik
,
∂Rij

∂ηik
,
∂Rij

∂xik
(2.26)

can be computed from the definition of h and R. However, since x is not explicitly
defined as a function of η, the sensitivity based approach is used to compute dxik

dηij
.

The sensitivity equations yield

d

dt

(
dxi
dηik

)
= d

dηik

(
dxi
dt

)
= ∂f

∂ηik
+ ∂f

∂xi

dxi
dηik(

dxi
dηik

)
(t0) = dx0i

dηik
.

(2.27)

The solution to Eq. (2.27) can then be used to solve Eq. (2.24) and Eq. (2.25) and
ultimately to compute the approximation of the Hessian (Eq. (2.22)).
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Higher Order Sensitivities

The algorithm also requires second order derivatives of the individual likelihoods,
li, which in turn requires the second order derivatives of the individual state values,
xi. Those are obtained from solving sensitivity equations which are created in a
similar way as shown before. An example of a sensitivity equation for a second
order derivative of xi is

d

dt

(
d2xi

dηikdθm

)
= d2

dηikdθm

(
dxi
dt

)

= ∂2f

∂ηik∂θm
+ ∂f

∂ηik∂xi

dxi
dθm

+
(

∂2f

∂xi∂θm
+ ∂2f

∂x2
i

dxi
dθm

)
dxi
dηik

+ ∂f

∂xi

d2xi
dηik∂θm(

dxi
dηik

)
(t0) = d2x0i

dηikdθm
.

(2.28)

The information in this section should suffice to understand NLME models based
on ODEs and how parameter estimation can be done by maximising the population
likelihood, either by using finite differences or exact gradients.

2.2 Parameter Estimation of Nonlinear Mixed Ef-
fects Models with Stochastic Dynamics

This section will gather the theory needed for extending the S-FOCE method to
parameter estimation of NLME models with stochastic dynamics. The section ends
with presenting the novel results from the extension, which is also the first contri-
bution of this thesis.

2.2.1 Nonlinear Mixed Effects Model based on SDEs
NLME models can be described using SDEs to describe the dynamics of x instead
of using ODEs as done in Section 2.1.1. The observations are modelled as in Eq.
(2.1),

yij = h(ui,xij, t,θ,ηi) + eij (2.29)
but Eq. (2.2) is exchanged with [12]

dxi = f(xi,ui, t,θ,ηi)dt+ Σ(xi,ui, t,θ,ηi)dWi

xi(0) = x0(θ,ηi).
(2.30)

The function f(xi,ui, t,θ,ηi) is called the drift function and the new stochastic
part, Σ(xi,ui, t,θ,ηi)dWi, is called the system noise. Here, Wi is defined as ran-
dom walk, with dWi ∼ N(0, dt). This way of formulating the NLME model give
three sources of variability in response, namely

13
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(i) measurement noise (eij)
(ii) system noise (Σ(xi,ui, t,θ,ηi)dWi)
(iii) parameter variability (η)

Using ODEs to describe the dynamics of the predictor vector xi makes the predictor
vector deterministic which causes all unmodelled variations to be classified as noise
in measurement. This is not well suited for PK/PD modelling since the distinction
lacks between measurement noise and system noise. Describing the dynamics us-
ing SDEs allows this distinction and thus gives a more realistic description of the
variability in observation. However, this is at the cost of a more complex model.

2.2.2 Approximate Population Likelihood for NLMEs based
on SDEs

Since x is a stochastic variable, each measurement dik is dependent on the previ-
ous measurements up to time tk. Let Yi(k−1) = {di1,di2, ...,di(k−1)} denote those
measurements. The residuals εij are defined similarly as in Eq. (2.7) as

εij = dij − ŷij (2.31)

except now the expected measurement value ŷij and covariance Rij are conditional
on Yi and defined as and

ŷij = E(dij|Yi(j−1),θ)
Rij = V ar(dij|Yi(j−1),θ).

(2.32)

As shown in [12], the likelihood Li for individual i becomes

Li(θ|Yini
) = p(Yini

|θ)

=
∫
p(Yini

|θ,ηi)p(ηi|θ)dηi

=
∫ (

p(dini
|Yi(ni−1),θ,ηi)p(Yi(ni−1)|θ,ηi)

)
p(ηi|θ)dηi

=
∫ p(di1|θ,ηi) ni∏

j=2
p(dij|Yi(j−1),θ,ηi)

 p(ηi|θ)dηi

(2.33)

which combined gives a population likelihood that simplifies in a similar way as Eq.
(2.10) to

L(θ) =
N∏
i=1

∫
exp(li)dηi (2.34)

where

li = −1
2

ni∑
j=1

(
εTijR

−1
ij εij + log det(2πRij)

)
− 1

2ηiΩ
−1ηi −

1
2 log det(2πΩ). (2.35)
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The FOCE approximation of the population likelihood is derived in the same way
as described in Section 2.1.4 as

logL(θ) ≈ logLF (θ) =
N∑
i=1

(
li(η∗i )−

1
2 log

∣∣∣∣∣−Hi(η∗i )
2π

∣∣∣∣∣
)
. (2.36)

2.2.3 Extended Kalman Filter
The SDEs introduce uncertainty to the state variables of the system. In order
to estimate the state variables, the Extended Kalman filter (EKF) is used, as
suggested in [12]. The EKF can be used to calculate ŷij = E(yij|Yi(j−1),θ) and
Rij = V ar(yij|Yi(j−1),θ) as noted in [17]. The continuous-discrete EKF is a state
space estimator for the continuous discrete state space models of the form intro-
duced in Eq. (2.30) [12]. It estimates the conditional expectation of the state
x̂i(j|j) = E(xitj |Yj,φ) and its covariance Pi(j|j) = E(xitj |Yj,φ). The notation is
simplified by suppressing the i and writing

x̂j|j = E(xtj |Yj,φ)
Pj|j = E(xtj |Yj,φ).

(2.37)

The linearisations of the functions f and h from Eq. (2.29) and Eq. (2.30) are
introduced as,

At = ∂f

∂xt

∣∣∣∣∣
xt=x̂t|k

Ck = ∂h

∂xt

∣∣∣∣∣
xt=x̂k|k−1

.

(2.38)

The EKF has two main steps, a prediction step and a measurement step [15]. In
the prediction step, the state variables and covariance are predicted by solving the
differential equations

dx̂t|k
dt

= f(x̂t|k,ut, t,φ), t ∈ [tk, tk+1]
dPt|k
dt

= AtPt|k + Pt|kAT
t + ΣΣT , t ∈ [tk, tk+1].

(2.39)

with initial conditions
x̂1|0 = x0

P1|0 = P0.
(2.40)

The above prediction gives the output prediction equations

ŷk|k−1 = h(x̂k|k−1,uk, tk,φ)
Rk|k−1 = CkPk|k−1C

T
k + S.

(2.41)

In the measurement step the prediction is used to compute the Kalman gain

Kk = Pk|k−1C
T
kR

−1
k|k−1 (2.42)
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which is used to update the state and its covariance

x̂k|k = x̂k|k−1 +Kkεk

Pk|k = Pk|k−1 −KkRk|k−1K
T
k

(2.43)

where
εk = yk − ŷk|k−1 (2.44)

is the prediction error which is assumed to be normal distributed with zero mean
and variance Rk|k−1 [12].

2.2.4 Optimising the Approximate Population Likelihood
As for NLME models with deterministic dynamics, the fixed parameters can be
estimated by maximising the APL from Eq. (2.36). This maximisation can be
performed in a similar way as the maximisation for NLME models based on ODEs
using sensitivity equations for computing exact gradients. The difference is how-
ever that the observations, states and their variance are no longer deterministic and
have instead been estimated using the EKF. This subsection presents the equations
needed for parameter estimation of a general NLME models based on SDEs using
the S-FOCE which is one of the main contributions of this thesis.

In order to compute the gradient of the APL for NLME models based on SDEs,
the previously introduced method of computing the gradient of the APL for NLME
models based on ODEs is extended. Since the observations, state variables and their
variance have been estimated using the EKF, it is necessary to obtain the gradients
of the EKF equations as well. The derivatives that need to be computed differently
than for the ODE case are the first order derivatives

dεk
dηij

,
dεk
dθn

,
dRi(k|k−1)

dηij
,

dRi(k|k−1)

dθn
,

dx̂i(k|k−1)

dηij
,

dx̂i(k|k−1)

dθn
(2.45)

and the second order derivatives

d2εk
dηijdθn

,
d2εk

dηijdηil
,

d2Ri(k|k−1)

dηijdθn
,

d2Ri(k|k−1)

dηijdηil
,

d2x̂i(k|k−1)

dηijdθn
,

d2x̂i(k|k−1)

dηijdηil
.

(2.46)
For a general model the derivations with regards to θ and ηi will be on the same
form, so a new parameter vector φ is introduced to represent derivations with respect
to either θ or η. Moreover, the individual notation i will from now on be dropped.
The problem then reduces to finding the first order derivatives

dεk
dφm

,
dRk|k−1

dφm
,

dx̂k|k−1

dφm
(2.47)

and the second order derivatives

d2εk
dφmdφn

,
d2Rk|k−1

dφmdφn
,

d2x̂k|k−1

dφmdφn
. (2.48)

The derivations of the results can be found in Appendix C.
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First Order Sensitivities for EKF

In order to obtain the exact gradients of the residual εk and Rk|k−1, the first order
sensitivity equations of the predicted state and the predicted state variables

d

dt

(
dx̂t|k
dφm

)
= ∂f

∂φm
+ ∂f

∂x̂t|k

dx̂t|k
dφm

, t ∈ [tk, tk+1]

dx̂t|k
dφm

(tk) = dx̂k|k−1

dφm
+ dKk

dφm
εk +Kk

dεk
dφm

(2.49)

and

d

dt

(
∂Pt|k
∂φm

)
= ∂At

∂φm
Pt|k +At

∂Pt|k
∂φm

+ Pt|k
∂At

∂φm
+ ∂Pt|k
∂φm

At

+ ∂Σ
∂φm

ΣT + Σ∂ΣT

∂φm
, t ∈ [tk, tk+1]

∂Pt|k
∂φm

(tk) = ∂Pk|k−1

∂φm

−
(
∂Kk

∂φm
Rk|k−1K

T
k +Kk

∂Rk|k−1

∂φm
KT

k +KkRk|k−1
∂KT

k

∂φm

)
(2.50)

are required. Other derivatives can be calculated explicitly as shown in Appendix
C.1

Second Order Sensitivities for EKF

In order to obtain the exact second order derivatives of the residual εk and Rk|k−1,
the sensitivity equations for the second partial derivative of predicted expected state,
the second partial derivative of predicted state variance

d

dt

(
d2x̂t|k
dφmdφn

)
= ∂2f

∂φm∂φn
+ ∂2f

∂ηj∂x̂t|k

dx̂t|k−1

dφn

+
 ∂2f

∂x̂t|k∂φn
+ ∂2f

∂x̂2
t|k

dx̂t|k
dφn

 dx̂t|k
dφm

+ ∂f

∂x̂t|k

d2x̂t|k
dφm∂φn

, t ∈ [tk, tk+1]

d2x̂t|k
dφm∂φn

(tk) = d2x̂k|k
dφm∂φn

(2.51)

and
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d

dt

(
∂2Pt|k
∂φm∂φn

)
= ∂2At

∂φm∂φn
Pt|k + ∂At

∂φm

∂Pt|k
∂φn

+ ∂At

∂φn

∂Pt|k
∂φm

+At

∂2Pt|k
∂φm∂φn

+ ∂Pt|k
∂φn

∂AT
t

∂φm
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are needed. The sensitivity equations for ∂2Pk|k−1

∂x̂k|k−1φm
and ∂2Pk|k−1

∂x̂2
k|k−1

are obtained in

the same way. In the special case of ∂
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, the equations can be simplified to
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∂2Pt|k
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∂x̂2
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(2.53)
Other derivatives can be calculated explicitly as shown in Appendix C.2. The above
calculations show how the population likelihood gradient could be obtained for a
general model. The resulting algorithm is Algorithm 2. The implementation and
testing of this algorithm was not within the scope of this thesis.

18



2. Theory

Algorithm 2 Extended S-FOCE parameter estimation algorithm for NLME models
based on SDEs
s := 0,θs := θstarting . Initialise the algorithm
for all individuals do

u := 0,ηu
s := 0

end for
repeat . Solve the outer problem

for all individuals do
u := 0
repeat . Solve the inner problem

Solve for x and the sensitivities dx̂/dη,∂P /∂η,∂P /∂x̂
Compute l and dl/dη
Update ηu+1

s according to BFGS
u := u+ 1

until η∗ is obtained
end for
for all individuals do

Set η := η∗
s

Solve for x and the sensitivities dx̂/dη, dx̂/dθ, d2x̂/dη2, d2x̂/dηdθ, ∂P /∂η, ∂P /∂θ,
∂2P /∂η2, ∂2P /∂η∂θ, ∂2P /∂x̂∂η, ∂2P /∂x̂∂θ and ∂2P /∂x̂2

end for
Compute logLF and d logLf/dθ
Uptade θs+1 according to BFGS
for all individuals do . Set the starting values for inner problem
η0

s+1 = η∗
s + dη∗

s

dθ (θs+1 − θs)
end fors := s+ 1

until convergence of θ

2.3 Pharmacokinetic and Pharmacodynamic Mod-
elling

When developing drugs, it is important to understand the interaction between the
drug and the body, e.g. in order to be able to determine correct doses. The term
pharmacokinetics (PK) describes what the body does to a drug and pharmacody-
namics (PD) describes how the drug affects the body. This chapter will describe
some of the basic elements of PK and PD modelling in order to give insight into the
models used for analysing and generating the simulated data which are described in
Section 4.1. The models and schematic figures in this section are based on [8].

2.3.1 Pharmacokinetics
There are different ways of pharmacokinetic modelling. This section will only discuss
the compartmental modelling since the models used for comparison are both based
on that method. The body can be regarded as a system and the drug as an input
into the body. Within the body are different organs that act and interact in a certain
way. In order to model this behaviour, the different systems of the body, such as
tissues, stomach and veins can be viewed as different compartments. The model
then describes the changes of drug concentration in each compartment as functions
of time. Usually, they can be described with a system of first order differential
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equations, where one equation is used for each compartment.

One-compartment Models

Consider a system with only one compartment. This could for example be the blood
or plasma in the body. Imagine that a drug enters the body by injection and then
the drug disappears from there over time. This can be modelled by considering
the drug concentration in the compartment as a function of time that is affected
by input and elimination. A simple way is to consider the elimination to be linear.
This rate of change in concentration can be described by

dC

dt
= −Cl

Vc
C (2.54)

where Cl is the clearance, defined as the volume of blood or plasma that is completely
cleared of drug per unit time [8], Vc the volume of the compartment and C the
unitless concentration of the compartment. This compartment is usually referred
to as the central compartment. Note that in Eq. (2.54), the dynamics are only
dependent on the elimination but not the input. The input could either be added
as an initial condition, representing a one time dose, or as a function of time t, I(t),
changing the concentration dynamics into

dC

dt
= I(t)− Cl

Vc
C. (2.55)

A schematic figure of a single compartment model is shown in Figure 2.2.

Central
Vc

Input

Elimination
Cl

Figure 2.2: One compartment model where the central compartment has volume Vc
and clearance Cl [8].

Two-compartment Models

Often, a single compartment is insufficient to describe the dynamics of the system.
This holds for example for systems that have drug-flow between tissues in the body.
One way of describing this increased complexity, is to add compartments to the
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model. Figure 2.3 shows a schematic figure of a two-compartment model. The
model has a central compartment with similar dynamics as the single compartment
model and an additional second compartment, so-called pheripheral compartment,
with volume Vp. The flux between those two compartments has a clearance Cld in
both directions. The model therefore looks as follows

Vc
dC

dt
= −Cl · C − Cld (C − Cp)

Vp
dCp
dt

= Cld (C − Cp) .
(2.56)

Central
Vc

Input

Pheripheral
Vp

Elimination
Cl

Cld

Cld

Figure 2.3: Two compartment model where the central compartment has volume
Vc and clearance Cl. In addition, there is a pheripheral compartment with volume
Vp connected to the central compartment. The clearance between the compartments
is the same in both directions, Cld [8].

In a similar way, more complicated models can be created by adding even more
compartments, either connecting them to the central compartment or to another
pheripheral compartment.

2.3.2 Michaelis-Menten Elimination
The law of mass action states that the rate of a chemical reaction is proportional to
the product of the masses of the reactants [18]. However, some enzyme reactions do
not follow this law and instead have a maximum reaction velocity that can be reached
at high substrate concentrations. Michaelis-Menten elimination was introduced in
order to model this kind of non-linear elimination [11]. The change in concentration
is modelled as

dC

dt
= − VmC

Km + C
(2.57)

where Vm is the maximum rate of change of concentration and Km is the Michaelis-
Menten constant.
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The behaviour of the reaction rate VmC

Km + C
can be seen in Figure 2.4. For small

concentration C, the reaction rate is nearly linear in the concentration as shown in
Figure 2.4b. As the concentration grows, the reaction rate diverges from linearity
and approaches the maximum reaction velocity Vm. This can be seen in Figure 2.4a.
The Michaelis-Menten constant Km represents the concentration that gives reaction
rate equal to Vm/2.
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(a) Reaction rate for concentration be-
tween 0 and 10.
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(b) Reaction rate for low concentration
between 0 and 0.05.

Figure 2.4: Reaction rate as a function of concentration, as described by the
Michaelis-Menten model with Km = 1 and Vm = 1.

2.3.3 Pharmacodynamics
Pharmacodynamics describes what the drug does to the body. The response of an
individual is modelled as a function of the concentration of drug. The measured re-
sponse could for example be the change of an individual’s temperature, heart rate,
blood pressure or level of fatty acids in the plasma. These are all examples of a
continuous response. The other main type of response is quantal response. Seisures,
cancer and death are examples of those responses [8]. This thesis only considers
models with continuous response.

An example of a simple response model, taken from [8] is

E = E0 −
ImaxC

IC50 + C
. (2.58)

Here, E is the pharmacological effect, E0 is the baseline value, Imax the maximum
drug-induced inhibitory effect and IC50 is the concentration at 50% reduction of
maximal effect. This can be seen in Figure 2.5.

The two types of models, PK and PD can be combined into PK/PD modelling.
These models describe what happens from drug administration to response [6].
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Figure 2.5: Example of PD response with E0 = 1, Imax = 0.8 and IC50 = 0.1.
Rmax is the maximal response.

2.4 Nonparametric Statistical Tests
In statistics, hypothesis tests are used to see if data is consistent with a statistical
hypothesis, often consisting of a statement about parameters of a population distri-
bution. The given hypothesis is then either approved or rejected using these tests.
Hypothesis tests where no parametric form for underlying distribution is assumed
are called nonparametric [20]. Among the nonparametric test are the two-sided sign
test [20], used for comparing binary data, and the Wilcoxon signed rank test [25, 21],
used for comparing real-valued data. Those are described below. For further infor-
mation on nonparametric statistical tests, see [20, 5].

2.4.1 The Two-sided Sign Test
Let (Xi, Yi) be a pair of binary observations. In order to determine if the paired
observations are significantly different, the following is done. First, a new set is
computed with elements Zi = Xi − Yi. Thereafter all elements where Zi = 0 are
removed from the set. This new set is called Z. Next, let

n = np + nn (2.59)

where np is the number of elements Zi ∈ Z where Zi = 1 and nn is the number of
elements Zi ∈ Z where Zi = −1. The hypothesis to test is

H0 : m = 0 versus H1 : m 6= 0 (2.60)

where m is the population median. The p-value [20] is

p-value =


2P{Bin(n, 0.5) ≤ nn} if nn < n

2
2P{Bin(n, 0.5) ≤ np} if nn > n

2
1 if nn = n

2

(2.61)
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where

P{Bin(n, 0.5) ≤ n0} = 0.5n
n0∑
k=0

(
n

k

)
. (2.62)

For a given percent level of significance δ, the null hypothesis is rejected if

p-value < δ (2.63)

thus strengthening the idea that the first algorithm is significantly better.

2.4.2 Wilcoxon Signed Rank Test
Let (Xi, Yi) be a pair of real valued observations. In order to determine if the paired
observations are significantly different, the following is done. From the above re-
sults, a new set of results is computed with elements Zi = Xi − Yi. Thereafter all
elements where Zi = 0 are removed from the set. This new set is called Z. Let n
be the number of elements in Z.

Next, the Zi ∈ Z are ordered from the smallest to the largest absolute value and ri
is set to be the rank of Zi. The rank ranges from 1 to n and represents where in the
sorted order the value Zi lies among all elements of Z. For elements of Z that have
the same absolute value, the rank is the average of the ranks they cover.

The hypothesis to test is

H0 : m = 0 versus H1 : m 6= 0 (2.64)

where m is the median of Z. Define T+ as the sum of the absolute values of the pos-
itive differences and T− as the sum of the absolute values of the negative differences,
i.e.

T+ =
n∑

i=1,Zi>0
sign|Zi|ri

T− =
n∑

i=1,Zi<0
sign|Zi|ri.

(2.65)

For sample sizes n > 15, the test statistics becomes

Z = T+ − n(n+ 1)/4√
2n(n+ 1)(2n+ 1)/48

(2.66)

with an approximately standard normal distribution under the null hypothesis. The
null hypothesis is rejected if

T+ ≤ C ′δ/2 ∨ T+ ≥ Cδ/2 (2.67)

24



2. Theory

where Cδ, C ′δ are defined as

Cδ = min
t : Φ

 t− n(n+ 1)/4− 0.5√
2n(n+ 1)(2n+ 1)/48

 ≤ 1− δ


C ′δ = max
t : Φ

 t− n(n+ 1)/4 + 0.5√
2n(n+ 1)(2n+ 1)/48

 ≤ δ

 (2.68)

and δ is the significance level [21].
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3
Parameter Estimation Method

Implementations

There exist numerous software for parameter estimation in NLME models. For the
comparison of parameter estimation methods, a S-FOCE method is implemented
in Mathematica and compared to two versions of the FOCE method that both use
finite differences for computing gradients during optimisation and are implemented
in a commercial software called NONMEM. This is done as a benchmark to what is
known to give good results. The NONMEM methods are referred to as NM-FOCE
and NM-SLOW-FOCE. This chapter describes the implementation of the S-FOCE
in Mathematica, the software NONMEM and its methods, and finally defines the
settings of all methods to limit the effect of other factors than the computation of
gradients.

3.1 Implementation of S-FOCE in Mathematica
For this project, a program for parameter estimation was implemented in Mathemat-
ica (MMA) [26]. Mathematica was chosen due to functionality already implemented
in Mathematica, such as numerical integration methods. It uses the built in nu-
merical solver for solving the differential equations and obtaining gradients. The
program is an implementation of the S-FOCE algorithm (Algorithm 1) based on an
existing version developed by FCC. The modifications involved

• allowing to constrain positive parameters of the search space during the co-
variance step using transformations (Section 3.1.2)

• estimating uncertainties of the untransformed parameter estimates and the
estimated variance of intra-individual effects, Ω (Section 3.1.3)

• the inclusion of a new optimisation method (Section 3.1.5)
• a generalised way of handling intra-individual variance (Section 3.1.5)
• handling runs of multiple datasets (Section 3.1.5)

and general debugging of the previous version.

The implementation of the algorithm uses an unconstrained BFGS-Quasi Newton
optimisation method developed at FCC. However, without constraints, some differ-
ential equations representing the system might become unrealistic for the models in
question. The constraints implemented for the parameter estimation involve con-
straining the covariance matrix of the individual random effects to be positive semi
definite and constraining parameters that should be positive. Both these constraints
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affect the uncertainty estimation. The implemented constraints and their effect on
the uncertainty estimation is described below.

3.1.1 Estimating Covariance of Individual Random Effects
When estimating the elements of the covariance matrix Ω of the individual random
effects, one must consider that Ω should be positive semi-definite. Note that for any
matrix Ω such that

Ω = ΛΛT (3.1)

where Λ is a lower triangle matrix, it holds that

xTΩx = xTΛΛTx = (ΛTx)T (ΛTx) = ||ΛTx||2 ≥ 0 (3.2)

showing that Ω is positive semi-definite. These are sufficient conditions for Ω to be
a covariance matrix. Moreover, Ω is a positive definite matrix if Λ is not singular.
Therefore, the model can be formulated so that it estimates the elements of the lower
triangular matrix Λ instead of the elements of Ω, ensuring a positive semi-definite
covariance matrix estimation Ω. There are no boundaries on the elements of Λ.

3.1.2 Transformation of Positive Parameters
Many physiological parameters in PK/PD models have to be positive, taking for
example the clearance. If the clearance becomes negative then unexplainable input
is introduced to the system. In order to limit the search space, the the models can be
re-parametrised by doing a log-transformation [23]. For a parameter θi that should
be positive, a new parameter θ̃i is introduced such that

θi = eθ̃i . (3.3)

For other parameters that do not have the positive constraint, let θ̃i = θi. The
likelihood function L(θ) is written as a function L(θ̃) of θ̃ and the parameters θ̃ are
estimated. From the estimated θ̃, the estimate of θ can be computed.

3.1.3 Estimating Uncertainties
Assume that the parameter vector θ̃ has been estimated using the above transfor-
mations of the covariance matrix elements and the positive parameters. Note also
that, since the elements of Ω are included in the population parameter vector θ, the
elements of Λ are included in the transformed parameter vector θ̃.

For an obtained parameter estimate, the uncertainties of the original parameters
have to be evaluated. However, computing the Hessian of L(θ̃) only gives uncer-
tainty approximations for the transformed elements θ̃. Therefore, the Hessian H
for the untransposed model also has to be computed in order to get the correct
covariance matrix of the parameter estimates.
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In order to find the Hessian H for the untransposed model, note the following

Hij = ∂2L

∂θi∂θj
= ∂

∂θi

(
∂L

∂θj

)
= ∂

∂θi

(
∂L

∂θ̃

∂θ̃

∂θj

)

= ∂θ̃

∂θi

∂2L

∂θ̃2
∂θ̃

∂θj
+ ∂L

∂θ̃︸︷︷︸
=0

∂2θ̃

∂θi∂θj

= ∂θ̃T

∂θi
H̃

∂θ̃

∂θj
.

(3.4)

The above calculations show that H can be computed from from H̃ by using θ̃ to
rescale as follows

H = JTH̃J . (3.5)

where J is the Jacobian of θ̃(θ).

In the case of a one to one dependency between θi and θ̃i for all i,

∂θ̃j
∂θi

= 0, ∀i 6= j (3.6)

and the results from Eq. (3.5) can be simplified to

Hij = H̃ij
∂θ̃i
∂θi

∂θ̃j
∂θj

(3.7)

where
∂θ̃i
∂θi

=
1 if θ̃i = θi

1/θi if θ̃i = ln θi

=
1 if θ̃i = θi

e−θ̃i if θ̃i = ln θi
.

(3.8)

For the parametrisation responding to the elements of the covariance of individual
random effects, θ̃i could depend on more than one element of θ. The Jacobian of
F−1(θ) can be found using that

JF−1(F (θ̃)) = JF (θ̃)−1. (3.9)

This way of reparametrisation is implemented in the Mathematica program for pa-
rameter estimation.

3.1.4 Hessian Computation
The Hessian in the covariance step is computed using central difference approxima-
tion in both implementations. For the S-FOCE, the exact gradients

∇ logLF = d logLF
dθ

(3.10)
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of the APL are used for the Hessian computation, yielding

Hj = ∇ logLF (θ + hj)−∇ logLF (θ − hj)
2hj

(3.11)

where Hj represents the j-th column of the Hessian, hj = hjej, ej is the j-th unit
vector and hj is the step length.

3.1.5 Other Implementation
An optimisation algorithm, developed in Mathematica by FCC was appended to
the S-FOCE implementation. It is an implementation of the BFGS Quasi-Newton
method. The optimisation algorithm takes in two parameters, one representing the
desired precision of the parameter estimates and one representing the relative digits
of the objective function. The number of relative digits is used internally in the
algorithm but does not affect the stopping conditions.

The covariance matrix of the measurement noise, R(ui,xij, t,θ,ηi), could depend
on parameters that have to be evaluated and also on states, input and time. There-
fore, the derivatives of R are also evaluated at the relevant values of ui,xij, t,θ,ηi.

Multiple datasets can be run on the same model by looping through the datasets
one by one. In order to minimise unnecessary memory leaks in Mathematica, the
variables are cleared between datasets. This can be done since the datasets are
independent of each other.

3.1.6 Method Parameters in S-FOCE Implementation
For each optimisation, two parameters have to be determined, the precision p and
relative digits r. These parameters are set specifically for each of the three different
optimisations that have to be performed; the inner optimisation to optimise the
individual likelihood li, the outer optimisation to determine the optimal population
likelihood during the estimation step and the inner optimisation to compute the
gradient of the APL during the covariance step. The constraints on the parameters
are that for each optimisation the inequality

p ≤ rd (3.12)

should hold.

3.2 FOCE Implementation in NONMEM
The software NONMEM [4] is chosen to serve as a benchmark program for compar-
ison. NONMEM is a well acknowledged software used for analysing NLME models.
It was developed by Stuart Beal, Lewis Sheinier and Alison Boeckmann. It es-
timates parameters by minimising the -2 log likelihood of the model parameters.
NONMEM has has multiple estimation methods, including first order conditional
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estimation (FOCE), first order conditional estimation with interaction (FOCEI), it-
erative two stage (ITS), Monte Carlo importance sampling (IMP), importance sam-
pling assisted by mode a posteriori (IMPMAP), stochastic approximation expecta-
tion–maximization (SAEM), and Markov chain Monte Carlo Bayesian (BAYES) [9].
In NONMEM, two different versions of the FOCE algorithm, NM-FOCE and NM-
SLOW-FOCE are considered. The NM-FOCE method uses finite difference approx-
imations when computing the second order sensitivities with respect to the random
individual parameters η. Other derivatives are computed by a mixture of finite
differences and another method. In NONMEM there exists a SLOW version of the
FOCEmethod where all gradients in the outer level of the optimisation are computed
using the finite difference approach. This is referred to as the NM-SLOW-FOCE
method.

3.2.1 Method Parameters in NONMEM
In NONMEM there are a few method parameters that have to be specified for the
FOCE method. They are NSIG, SIGL and TOL. These parameters represent the
number of significant digits that population parameters are to be evaluated at the
maximum likelihood, the number of significant digits to which the objective function
is evaluated and the number of relative significant digits precision to which differ-
ential equations are to be integrated.

The NONMEM user guide [4] suggests setting the parameters such that

SIGL ≤ TOL
NSIG ≤ SIGL/3

(3.13)

In the parameter estimations performed, this suggestion was followed and the rela-
tion

3 · NSIG = SIGL = TOL (3.14)

used.

In the user guide it was also mentioned that using higher values of SIGL and TOL
during covariance step might lead to improved success in the covariance step. During
the covariance step, the parameters SIGLcov and TOLcov are therefore set as follows

SIGLcov = TOLcov = max(6, 4 · NSIG) (3.15)

Using the above constraints of Eq. (3.14) and Eq. (3.15), the only method param-
eter to determine for parameter estimation using NONMEM is NSIG.

When computing the derivatives using finite difference approximation NONMEM
uses both forward and central differences. The forward differences are

O(θ1(1 + h))−O(θ1)
θ1h

(3.16)
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Table 3.1: Choice of h for finite differences in NONMEM.

Forward Central Forward second order Evaluating R
h SIGL/2 SIGL/3 SIGL/3 SIGL/4

and the central differences

O(θ1(1 + h))−O(θ1(1− h))
2θ1h

(3.17)

The value h is chosen as shown in Table 3.1, where R refers to the Hessian of the
APL function at the obtained parameter estimate θ∗.

3.3 Estimation Method Settings
In order to make the estimation method implementation comparable, the uncertainty
is estimated in the same way, the optimisation is constrained for all methods and
the intra-individual variability is modelled in an equivalent way. This is done as
follows.

3.3.1 Uncertainty Estimation of Estimated Parameters
As mentioned in Section 2.1.4, the standard error covariance matrix of the parameter
estimates can be approximated with the inverse of the negative Hessian computed
at the parameter point estimate. This is implemented in S-FOCE by computing the
Hessian as a derivative of the gradient of the APL using central differences as shown
in Section 3.1.4.

In NONMEM there exist three ways of computing the error covariance matrix of the
parameters estimated. One way is to compute the inverse of the HessianR evaluated
at the final estimates θ∗. The second is to compute S, the matrix obtained from the
cross product of the gradient vector and its transpose where the gradient is a vector
of first derivatives evaluated at the final estimates. The third and default way is to
compute R−1SR−1. In order to have comparable methods of estimating the error
covariance matrix of the parameter estimates, the covariance matrix is computed
using the Hessian R.

3.3.2 Constraining Fixed Population Parameters
In Mathematica, the transformation presented in Section 3.1.1 is used to ensure
positive covariance matrix of inter-individual random effects. The transformation
presented in 3.1.2 is also used, in order to ensure positivity of the parameters not
connected to the two covariance matrices. In NONMEM, the positivity of the pa-
rameters not connected to the two covariance matrices is ensured by declaring lower
bound of 10−16.
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3.3.3 Intra-individual Variability Model
Intra-individual variability is modelled with the measurement noise. The two types
of intra-individual variability used in this project are additive and combined pro-
portional and additive error.

Additive Error

The additive error is modelled in the same way in both Mathematica and NON-
MEM by adding a normally distributed variable e to the output with zero mean
and covariance Σ = [σ2]. The parameter σ is one of the parameters that have to be
evaluated.

Combined Proportional and Additive Error

The combined proportional and additive error is modelled by adding a normally
distributed variable e to the expected observation h with zero mean and covariance
Σ = [σ2

1h
2 + σ2

2]. The parameters σ1, σ2 are two of the parameters that have to be
estimated. This is done in Mathematica by defining the covariance matrix Σ and
declaring the parameters σ1, σ2. In NONMEM, the error is modelled by setting the
observation y as

y = h+ he1 + e2 (3.18)
where e1 and e2 are normally distributed with zero mean and covariances σ2

1 and σ2
2

respectively. According to the NONMEM user guide [3], the covariance of y then
becomes Σ = [σ2

1h
2 + σ2

2] as wanted.
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4
Methods

This chapter introduces the models and the simulated datasets used for method
comparison and presents the methodology behind the performed comparison.

4.1 Models and Data

Two different models are used for comparison of the estimation methods, each con-
sisting of four parts: a dynamical system described with ordinary differential equa-
tions, a model for the observations, a model for the inter-individual variability and a
computer simulated experimental design. The synthetic data is generated from each
model using Mathematica from the settings described in Section 4.1.2 and Section
4.1.3

4.1.1 Generating Simulated Data

The simulated data is generated using Mathematica. In order to generate data,
the model and the parameter values have to be defined. The model is described
by introducing the state variables of the system and ODEs to describe them along
with the initial states of the ODEs, the population parameters to be evaluated,
the inter-individual variability (IIV) of population parameters and the functions
describing both the output function and the intra-individual covariance matrix (the
measurement noise). The IIV of a parameter θm was introduced in the model by
replacing θm by

θmi
= θm · eηij (4.1)

for individual i where ηij is the j-th individual random parameter for individual i.
The parameter θm becomes a fixed population parameter. Individual random effects
could also be introduced by explicitly introducing them in the state equations, but
that is not done for the models in this study.

The values needed for data simulation are the number of individuals in the popula-
tion, the fixed population parameters and the time points at which the measurements
are taken.

35



4. Methods

4.1.2 M1 (PK)

Absorb
A

C
Vc

D
Elimination

Vm

Km+C

Figure 4.1: Schematic figure of one-compartment model with absorption compart-
ment.

This model is a one-compartment pharmacokinetic (PK) model with an absorption
compartment and non-linear Michaelis Menten elimination [14]. A schematic figure
of the model can be seen in Figure 4.1. The model describes the concentration of
a drug over time where the drug enters an absorption compartment at time zero
and gradually moves from there into the central compartment from where it gets
eliminated. The kinetics are described using the equations

dA(t)
dt

= −kAA(t)

V
dC(t)
dt

= kAA(t)− VmC(t)
Km + C(t)

A(0) = D

C(0) = 0

(4.2)

where A is the amount of drug in the absorption compartment, C the concentration
of drug in the central compartment and D an oral dose given at time zero. Note
that, although there exist both an absorption compartment and a central compart-
ment this model is considered to be one-compartmental since there are no dynamics
between the compartments, only flow from A to C and hence A can be considered
as an input factor.

The observations are modelled as

yt = C(t) + et (4.3)

with a combined error
et

i.i.d.∼ N(0,Σ)
Σ = σ2

1 + (σ2C2(t))2.
(4.4)

Data Simulation

When generating the data, two versions of M1 are considered:
a) two dose-groups of 10 individuals given 1 and 5 units of the drug, respectively,

with inter-individual variability on Vm and V ;
b) two dose-groups of 10 individuals given 1 and 5 units of the drug respectively,

with inter-individual variability on Km and V .
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Samples are taken at time points 0.5, 1, 1.5, 2, 5 and 10 for both groups in model
M1a, with an additional time point at 15 in model M1b. The parameters of M1 are
summarised in Table A.1. An example of the computer generated data can be seen
in Figure 4.2 and an example of a simulated population can be seen in Figure 4.3.
Figure 4.4 shows the effect of the Michaelis Menten eliminiation where for the lower
dose-groups, the elimination is linear since the concentration does not exceed Km,
but for the higher dose-groups the clearance reaches saturation, showing two phases
of elimination.

0 2 4 6 8 10
0

0.2

0.4

0.6

t

C

measurements
model

Figure 4.2: Example of computer generated data for a single individual for model
M1. The initial dose was 1. The dotted line shows the underlying model with the
parameter values used for the generation of data.
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(a) Time series showing concentration for model M1a.
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(b) Time series showing concentration for model M1b.

Figure 4.3: Time series showing concentration for a computer generated dataset
for model M1 with different dosing schemes.
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(a) Time series showing log of concentration for model M1a.
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(b) Time series showing log of concentration for model M1b.

Figure 4.4: Time series showing log of concentration for a computer generated
dataset for model M1 with different dosing schemes. The effect of Michaelis Menten
elimination can be seen for the higher dose-groups where the elimination has a dif-
ferent slope before and after the timepoint t = 5.
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4.1.3 M2 (PKPD)

Cp

Vc

Synt Inf

Ct

Vp

Vmax1

Km1 + Cp

Vmax2

Km2 + Cp

Cld

Cld

Figure 4.5: Schematic figure of two-compartment model with two administration
routes and two nonlinear elimination terms.

This model is a pharmacokinetic-pharmacodynamic (PKPD) model of nicotinic acid
intervention on fatty acid turnover in rats [22]. The measured values are the fatty
acids concentration R. The PD part models the change in R. Since R depends on
the unknown drug concentration, the PK part is used to model the concentration
profile based on the known inputs. It consists of the drug concentrations Cp in the
central compartment and Ct in the pheripheral compartment and is described with
the equations

Vc
dCp(t)
dt

= Synt− Vmax1

Km1 + Cp(t)Cp(t)− Vmax2

Km2 + Cp(t)Cp(t)

− Cld(Cp(t)− Ct(t)) + Inf(t)

Vt
dCt(t)
dt

= Cld(Cp(t)− Ct(t)).

(4.5)

In [22], the model also included a time dependent state variable Ag, representing the
gut to simulate uptake of oral drugs in the body. To simplify the model, individuals
only get drugs intravenously, allowing the removal of the state variable Ag from the
model. Hence, the PK part of the model simplifies to a two compartmental model
with two input rates of nicotinic acid into the central compartment, one constant
(Synt) and one time dependent (Inf(t)), and two nonlinear elimination rates. A
schematic figure of the pharmacokinetics part can be seen in Figure 4.5.

40



4. Methods

Fatty acids, R

kcap

kinI(Cp)

kout

+

−

· · ·M1 M8
ktol ktol ktol ktol

Figure 4.6: Schematic figure of fatty acid turnover, described as a feedback model
with eight moderator compartments (M1-M8). Solid lines represent fluxes and dashed
lines represent control processes [22].

The pharmacodynamic part consists of the fatty acids concentration in the measured
compartment, R, and eight other so called moderator compartments,M1,M2, ...,M8,
representing a delayed feedback. A schematic figure can be seen in Figure 4.6. The
PD part of the model is described with the equations

dR(t)
dt

= kin
1

M1(t)p I(Cp(t)) + kcap − koutR(t)M8(t)

dM1(t)
dt

= ktol(R(t)−M1(t))

dMi(t)
dt

= ktol(Mi−1(t)−Mi(t)), i = 2, 3, .., 8

(4.6)

where

I(Cp(t)) = 1− Imax
Cp(t)γ

ICγ
50 + Cp(t)γ (4.7)

is the inhibitory drug function, kin the turnover rate, p the amplification factor, kcap
the formation of fatty acids in capillaries, and kout the fractional turnover rate. Imax,
IC50, and γ are the maximum drug-induced inhibitory effect, plasma concentration
at 50% reduction of maximal effect (potency), and sigmoidicity factor. Finally, ktol
is a fractional turnover rate constant [22]. The initial conditions are

Cp(0) = 0
Ct(0) = 0
R(0) = R0

Mi(0) = R0.

(4.8)

The observations are modeled as

yt = R(t) + et (4.9)

with additive error
et

i.i.d.∼ N(0,Σ)
Σ = σ2.

(4.10)
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Data Simulation

The synthetic data consists of 36 individuals, divided into three groups of twelve
individuals, receiving infusion of 5, 10 and 51 µmol kg−1, respectively, over 300 min-
utes. Samples are taken after 0, 20, 60, 150, 240, 300, 310, 320, 340, 360, 400, 460
and 500 minutes for every individual.

The parameters of M2 are summarised in Table A.2. An example of the computer
generated data can be seen in Figure 4.7 for a single individual and in Figure 4.8
for a population of 36 individuals.

0 100 200 300 400 500

0.7

0.75

0.8

0.85

0.9

0.95

t

R

measurements
model

Figure 4.7: Example of computer generated data for a single individual for model
M2. The dotted line shows the underlying model with the parameter values used for
the generation of data.
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Figure 4.8: Time series showing concentration for a computer generated dataset
for model M2 with different dosing schemes.
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4.2 Robustness Comparison
The robustness of parameter estimation is investigated in two ways. One way is
to run parameter estimation on various datasets of the same model to investigate
general robustness. The other way is to perform parameter estimation on the same
dataset multiple times using different initial values for the optimisation. The ro-
bustness of uncertainty estimates is also compared between methods. The types
of analysis done for each model, along with relevant result sections are presented
in Table 4.1. The comparison methods, along with the initial values and method
parameters used, are described below.

Table 4.1: Comparison types done for different models and relevant result sections.

Model Various datasets Multiple Uncertainty
>50 <20 initial values coverage

M1a 5.1.1 5.1.5
M1b 5.1.2 5.2 5.1.5
M2 5.1.3

4.2.1 Initial Values for Optimisation
The optimisation during parameter estimation requires initial values of the popu-
lation parameters. They are chosen by either of the two following ways. The first
way is to set the initial value to the parameter values used to generate the synthetic
data. These kind of initial values are referred to as true values. Note that although
the values are called true values they do not have to be the ones that maximise the
likelihood since the computer generated data is sparse and thus does not manage to
describe the model with the set values exactly. The true values should, however, be
close to the optimal ones. The second way is to choose initial values from a random
perturbation around the true value. These kinds of initial values are referred to as
random values. If θm is the value used for generating the synthetic dataset, the
initial value θgm for each parameter θm is randomised by

θgm = θm ·Xm (4.11)

where Xi ∼ lnN (0, (ln(2)/1.96)2) is a log normal variable.

The perturbation of the elements of Ω could result in a non-positive definite matrix.
If that happens, the perturbation of those elements is repeated until the covariance
matrix is positive definite. This approach is chosen instead of making use of the
feature of the lower triangle matrix, since doing perturbation on the values of the
triangular matrix results in accumulated perturbations on the elements of Ω down
the diagonal, which is considered less realistic.

4.2.2 Various Datasets
In order to investigate the general robustness of the algorithms on the models, var-
ious datasets are generated from each model by using the same parameter settings.
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Parameter estimation is then performed for the different estimation methods on each
dataset. Two types of initial values are chosen for each dataset to be fitted, both
true and random values. The successes of individual steps are computed as well
as the overall success of the estimation. For each dataset and method the results
state the success of the estimation of the parameters and their uncertainties with
the values 1 and 0 representing success and failure, respectively. When comparing
success of two parameter estimation methods on various datasets, a pair (Xi, Yi) of
binary values is computed for every dataset i. In order to see if the success frequen-
cies of the methods are significantly different, the two sided sign test is used, as
described in Section 2.4.1. For the test, five percent level of significance is required
and therefore, the value δ = 0.05 is used.

4.2.3 Multiple Initial Values
The sensitivity to initial guess is investigated by performing parameter estimation
on the same dataset using multiple different random initial values. Using the success
results from each parameter estimation, the success frequency of each method for a
dataset can be computed and reported as a real value between 0 and 1. By repeat-
ing this for multiple datasets, two parameter estimation methods are compared by
creating a pair (Xi, Yi) of the success frequency of each method for every dataset
i. The significance of the difference is then estimated using the Wilcoxon signed
rank test as described in Section 2.4.2, requiring five percent level of significance
and using the value δ = 0.05.

4.2.4 Robustness of Uncertainty Estimation
In order to compare the parameter and uncertainty estimates, confidence intervals
(CIs) are computed by using the standard deviation from the covariance matrix
obtained during the covariance step.

For an estimated parameter vector θ∗ with estimated covariance matrix C = −H−1,
the CI for the i-th parameter becomes the interval[

θ∗i − s
√
Cii,θ

∗
i + s

√
Cii

]
. (4.12)

where s = 1 for 68% CI and s = 1.96 for 95% CI. For estimations on multiple
datasets, the fraction of 68% and 95% CIs that include the true parameter value
are computed for each method. This is done in order to see if the methods over- or
underestimate the uncertainty of the estimated parameters.

4.2.5 Method Parameter Settings
Since the programs NONMEM and Mathematica do not have the same method-
parameters, the aim is to set each program to its optimal settings. The optimal set-
tings are found using the NONMEM guidelines and by manual testing of reasonable
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amount of different integer valued parameter settings (e.g. setting NSIG = 1, 2, 3).
The method-parameters used for the different models can be seen in Table 4.2 for
S-FOCE and in Table 4.3 for NM-FOCE and NM-SLOW-FOCE.

Table 4.2: Method-parameter values used for S-FOCE for the different models

Model pout rout pinn rinn pcov rcov

M1a 3 6 6 6 8 8
M1b 3 6 6 6 8 8
M2 3 6 6 6 6 6

Table 4.3: Method-parameter values used for S-FOCE for the different models.

Model NSIG NM-FOCE NSIG NM-SLOW-FOCE
M1a 2 2
M1b 2 2
M2 2 2
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Results

5.1 Analysis of Various Datasets
For the one compartmental models M1(a-b), 100 synthetic datasets are simulated
as described in Section 4.1.2. The population likelihood function is optimised using
the three methods S-FOCE, NM-FOCE and NM-SLOW-FOCE. The initial values
of the numerical minimisation are set in two ways; as true and random values, as
described in Section 4.2.1.

5.1.1 Success Analysis of M1a of Different Datasets
Not all NLME models are hard to estimate, as can be seen in Figure 5.1 that
shows the success frequency when performing parameter estimation for 100 differ-
ent datasets of model M1a. This model seems to be fairly easy to estimate with the
success frequency of the estimation step and the covariance step close to one for the
S-FOCE methods as well as for both NONMEM methods.

Table 5.1: Successful runs of model M1a for S-FOCE, NM-FOCE and NM-SLOW-
FOCE when starting from different initial value settings.

(a) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for true
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 100 0 0 0
No 0 0 0 0

(b) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for random
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 98 0 1 0
No 1 0 0 0

An estimation is considered successful if both the estimation and the covariance
steps are successful. In order to compare the results of one dataset using different
parameter estimation methods, Table 5.1 is generated. The table shows the divi-
sion of datasets between different combination of success and failure for the three
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(a) Estimation success rate for S-FOCE, NM-FOCE and NM-SLOW-FOCE.
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(b) Covariance success rate for S-FOCE, NM-FOCE and NM-SLOW-FOCE.

Figure 5.1: Success frequency for the three methods S-FOCE, NM-FOCE and NM-
SLOW-FOCE when estimating parameters for model M1a. Parameter values are
estimated for 100 different computer generated datasets using both true and random
initial values.

methods. In the table, yes represents successful datasets while no represents failed
datasets. The two rows of the table represent the number of datasets for which
the S-FOCE algorithm was successful and unsuccessful, respectively. The success of
NM-FOCE can be found by adding the values of the first two columns of the table
and the success of NM-SLOW-FOCE can be found by adding the values of columns
one and three. The total sum of the table is equal to the number of datasets. Table
5.1 shows that there is not a significant difference between the three methods for
this model with almost perfect success frequency.

5.1.2 Success Analysis of M1b of Different Datasets
The computed success frequency of obtaining parameter estimation and in obtaining
parameter uncertainties for 100 different datasets generated from the one compart-
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mental model M1b is shown in Figure 5.2.
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(a) Estimation success rate for S-FOCE, NM-FOCE and NM-SLOW-FOCE.

S-FOCE NM-FOCE NM-SLOW-FOCE
0

0.2

0.4

0.6

0.8

1

method

co
va

ria
nc

e
su

cc
es

s
ra

tio

true rand

(b) Covariance success rate for S-FOCE, NM-FOCE and NM-SLOW-FOCE.

Figure 5.2: Success frequency for the three methods S-FOCE, NM-FOCE and NM-
SLOW-FOCE when estimating parameters for model M1b. Parameter values were
estimated for 100 different computer generated datasets using both true and random
initial values.

All three methods perform similarly in obtaining the parameter values as shown
in Figure 5.2a. Moreover, the choice of starting guess does not seem to affect the
success. Figure 5.2b suggests that the covariance step, performs similarly for the
methods NM-FOCE and NM-SLOW-FOCE but the S-FOCE is the most successful
method. The starting value does not seem to have a significant effect on the success
frequency.

While comparing success frequencies between methods on the same 100 datasets can
give an idea on their performance, it does not show if the methods are significantly
different or not. In order to evaluate the significance between two different meth-
ods, the number of runs where both, either and neither methods were successful is
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computed. From this information, the significance is evaluated using the sign test,
described in Section 2.4.1.

The results from runs on different datasets are shown in Table 5.2. Using these
results, the sign test is performed on pairs of algorithms. The p-values are shown in
Table 5.3. The table shows that the null hypothesis that there is not a significant
difference in success of NM-FOCE and S-FOCE should be rejected, even with one
percent level of significance. The same holds for the pair NM-SLOW-FOCE and S-
FOCE. However, the null hypothesis that there is no significant difference between
NM-SLOW-FOCE and NM-FOCE cannot be rejected.

Table 5.2: Successful runs of model M1b for S-FOCE, NM-FOCE and NM-SLOW-
FOCE when starting fom different initial value settings.

(a) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for true
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 45 8 6 31
No 5 2 1 2

(b) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for random
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 41 9 9 22
No 8 5 2 4

Table 5.3: P -values as described with the sign test for comparison of success of
different algorithms of model M1b. Two cases are considered, both when starting
from true initial guess and random initial guess.

Algorithms p-value true p-value rand
S-FOCE NM-FOCE 5.3·10−6 9.6·10−3

S-FOCE NM-SLOW-FOCE 5.4·10−7 1.5·10−3

NM-FOCE NM-SLOW-FOCE 0.63 0.69

5.1.3 Success Analysis of M2 of Different Datasets
In order to test the methods on a more complex model, parameter estimation is
performed on 15 computer generated datasets of the model M2 with true initial
guesses as well as random initial guesses. Since parameter estimation for each of
these datasets takes several hours it is not considered feasible to do a statistical
approach using this model. The success frequency of estimate steps and covariance
steps can be seen in Figure 5.3 and the results from runs of different datasets is
shown in Table 5.4. For this model, only S-FOCE managed to succeed in both
the estimation and the covariance step. Therefore, it is also investigated how the
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algorithms differ during the estimation step only. The results from estimation step
for different datasets are shown in Table 5.5. There is not sufficient data to be able
to reject any hypothesis about equivalent methods, except in the case of successful
runs when starting from a true value. Then S-FOCE and NM-FOCE are significantly
different and so are S-FOCE and NM-SLOW-FOCE. This can be seen from the p-
values displayed in Table 5.6. In order to see difference for the runs starting from a
random value, more runs are probably needed.
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(a) Estimation success rate for S-MMA, NM-FOCE and NM-SLOW-FOCE.
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(b) Covariance success rate for S-MMA, NM-FOCE and NM-SLOW-FOCE.

Figure 5.3: Success rate for the three methods S-MMA, NM-FOCE and NM-
SLOW-FOCE when estimating parameters for model M2. The estimates were found
for 15 different computer generated datasets using both true and random initial val-
ues.

When investigating when the NM methods failed during estimation, one can see that
the gradient eventually increases and the algorithm terminates with large elements
on the gradient and a message stating that the minimisation has been terminated
due to rounding errors. Moreover, some successful estimation steps terminate with
the message that the estimate should not be trusted unless the covariance step is
successful, which is not the case. This is possibly due to cancellation errors when

51



5. Results

Table 5.4: Successful runs of model M2 for S-FOCE, NM-FOCE and NM-SLOW-
FOCE when starting fom different initial value settings.

(a) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for true
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 0 0 0 6
No 0 0 0 9

(b) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for random
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 0 0 0 3
No 0 0 0 12

Table 5.5: Successful estimation steps of model M2 for S-FOCE, NM-FOCE and
NM-SLOW-FOCE when starting fom different initial value settings.

(a) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for true
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 2 0 2 7
No 1 2 0 1

(b) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for random
starting values.

NM Yes NM NO
NM SLOW yes NM SLOW no NM SLOW yes NM SLOW no

S-FOCE Yes 0 0 0 5
No 0 2 0 8

estimating gradients using finite difference approximation, suggesting even further
the benefits of exact gradients.
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Table 5.6: P -values as described with the sign test for comparison of success of
different algorithms of model M2. Two cases are considered, both when starting
from true initial guess and random initial guess.

(a) Successful runs for S-FOCE, NM-FOCE and NM-SLOW-FOCE for true
starting values.

Algorithms p-value true p-value rand
S-FOCE NM-FOCE 0.031 0.25
S-FOCE NM-SLOW-FOCE 0.031 0.25

NM-FOCE NM-SLOW-FOCE 1 1

(b) Successful estimation steps for S-FOCE, NM-FOCE and NM-SLOW-FOCE
for random starting values.

Algorithms p-value true p-value rand
S-FOCE NM-FOCE 0.15 0.45
S-FOCE NM-SLOW-FOCE 0.070 0.063

NM-FOCE NM-SLOW-FOCE 1 0.5

5.1.4 Parameter Estimate Distribution
In order to compare how the three different methods estimate parameters for the
models M1a and M1b, the distribution of the parameter estimates is plotted. Com-
parison is not done for M2 due to insufficient amount of found estimates. The
estimated parameter values for Ω12 when using the three methods S-FOCE, NM-
FOCE and NM-SLOW-FOCE to estimate parameters on the 100 datasets of models
M1a and M1b can be seen in Figure 5.4 and Figure 5.5. Other estimated parameter
distributions can be found in Appendix B.

For model M1a, where all the runs are successful, the parameter estimate distri-
butions are almost identical for the three methods. For the less successful model,
M1b there is a difference in the distributions, with S-FOCE having the most fo-
cused peak around the true value. Figure 5.5a also suggests that there is more than
one optimum for this parameter. For the model M1b there is one outlier successful
parameter estimate when using the NM-SLOW-FOCE method and starting from
random initial values. All figures show that the found estimate is close to the true
value, although the might not necessarily be the optimum value as suggested with
the slightly shifted distribution curve.
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(a) Estimated parameter distribution for
M1a with true starting values
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(b) Estimated parameter distribution for
M1a with random starting values

Figure 5.4: Estimated parameter distribution for model M1a using S-FOCE, NM-
FOCE and NM-SLOW-FOCE. Estimates found during a successful estimation step
are dashed and the estimates that succeeded in both the estimation and the covariance
step are shown with a solid line. The true value of the parameter is shown in black.
There is not a distinguishable difference of estimates between the methods.
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Figure 5.5: Estimated parameter distribution for model M1a using S-FOCE, NM-
FOCE and NM-SLOW-FOCE. Estimates found during a successful estimation step
are dashed and the estimates that succeeded in both the estimation and the covariance
step are shown with a solid line. The true value of the parameter is shown in black.
Note that S-FOCE is more focused around the true value and seems to distinguish
a local value in the left figure.
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5. Results

5.1.5 Evaluation of Uncertainty Estimation
The coverage frequency of true values when using 68% estimated confidence interval
for both M1a and M1b is shown in Figure 5.6 for true initial values and Figure 5.7
for random initial values.
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(b) Coverage of estimated 68% confidence intervals for model M1b

Figure 5.6: Coverage of estimated 68% confidence intervals for models M1a and
M1b using true initial values. The expected coverage is shown with a dashed line.
All three methods have coverages close to the expected coverage. For M1b, the NM-
SLOW-FOCE seems to be underestimating the uncertainties.

The coverage is rather consistent for every parameter for all three methods. There
cannot be seen any differences between the different kinds of initial values for model
M1a. However, for model M1b, the NM-SLOW-FOCE seems to be underestimat-
ing the uncertainties. We also see that the overestimation of uncertainties for the
Ω values on M1b is slightly less for both S-FOCE and NM-FOCE for the random
initial values.

The coverage of the 95% CIs, shown in Figure 5.8 was similar to the coverage of
the 68% CIs. The conclusion is therefore that all three methods evaluate their
uncertainty of parameters in a reasonable manner and that the transformation for
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(b) Coverage of estimated 68% confidence intervals for model M1b

Figure 5.7: Coverage of estimated 68% confidence intervals for models M1a and
M1b using random initial values. The expected coverage is shown with a dashed line.
The coverage is generally slightly lower than for true initial values.

constraining the fixed population parameters done in the S-FOCE implementation
(Section 3.3.2) does not affect the quality of the uncertainties.
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Figure 5.8: Coverage of estimated 95% confidence intervals for models M1a and
M1b using true initial values. The expected coverage is shown with a dashed line.
All three methods have coverages close to the expected coverage. For M1b, the NM-
SLOW-FOCE seems to be underestimating the uncertainties.

5.2 Analysis of Multiple Initial Values

For the one compartmental model M1b, 30 synthetic datasets are computed and
estimated parameters from them using 30 different random initial guesses for each
dataset. From this, the success frequency, f , is computed for each dataset, stating
the frequency of runs that are successful for both the estimation and the covariance
step. The distribution of success frequency can be seen in Figure 5.9.

In order to evaluate the difference of success frequency between the methods, the
difference of success frequency for each dataset is considered. Figure 5.10 shows
the difference for the three pairs of methods that are compared. The method has
almost always higher success frequency than both of the methods NM-FOCE and
NM-SLOW-FOCE. The difference of success frequency between NM-FOCE and NM-
SLOW-FOCE is not as distinct for one method. However, NM-FOCE seems slightly
better on average. The significance of difference between these three methods can
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Figure 5.9: Success frequency distribution for the three for the three methods S-
FOCE, NM-FOCE and NM-SLOW-FOCE when estimating parameters for model
M1b. Parameter values were found for 30 different computer generated datasets
each starting from 30 random initial values.

be evaluated using the Wilcoxon rank test, as described in Section 2.4.2. The results
can be seen in Table 5.7, suggesting that the null hypothesis, that there is not a
significant difference in success, should be rejected when comparing the algorithm
S-FOCE to NM-FOCE and S-FOCE to NM-SLOW-FOCE. However, the null hy-
pothesis cannot be rejected for comparison of NM-FOCE to NM-SLOW-FOCE.

Taking the mean of the success frequency yields similar results as in Section 5.1.2,
as expected. These results also show that there does not seem to be any specific
types of datasets of this model that some methods handle significantly better than
other.

Table 5.7: P -values as described with the Wilcoxon signed rank test for comparison
of success of different algorithms of model M1b. Two cases are considered, both when
starting from true initial guess and random initial guess. The p-values were found
using a z-table in [20].

Algorithms T+ T− n p-value
S-FOCE NM-FOCE 464 1 30 < 10−3

S-FOCE NM-SLOW-FOCE 465 0 30 < 10−3

NM-FOCE NM-SLOW-FOCE 204.5 120.5 25 0.26
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(a) Success frequency difference for S-FOCE and NM-FOCE. S-FOCE is better for almost
every dataset.
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(c) Success frequency difference for NM-FOCE and NM-SLOW-FOCE. The methods do
not differ significantly, but overall, the NM-FOCE seems slightly more successful.

Figure 5.10: Success frequency difference for pairs of parameter estimation methods
on model M1b. Parameter values were found for 30 different computer generated
datasets each starting from 30 random initial values.
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5. Results

5.3 Population Likelihood Gradients for NLMEs
based on SDEs

For a general NLME model based on SDEs, the exact gradient of the APL can be
computed in a similar way as for the a NLME model based on ODEs. These results
have already been presented in Section 2.2.4. However, doing this for a specific
model could yield a number of simplifications. Therefore, it could be feasible to at
least partly do the computations for the specific model instead of a general model.
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6
Conclusion and Future Work

This chapter gathers the main conclusion from this study and discusses potential
future work.

6.1 Conclusion
When estimating parameters for NLME models, the method used has to be robust.
This means that the method has to be able to find a parameter estimate and also
uncertainties of the estimate with low probability of failure. The robustness was
measured both in terms of success frequency for parameter estimates on multiple
datasets of the same model as well as sensitivity to the initial values of the opti-
misation. The results suggest significantly more robust parameter estimation when
using S-FOCE compared to the two finite difference approaches NM-FOCE and
NM-SLOW-FOCE in NONMEM.

For this project, models with a low number of state variables and population param-
eters were chosen in order to have computational times that would allow multiple
runs for statistical analysis of the results. This in turn led to a challenge in find-
ing models that were possible to estimate without being too simple. However, the
models that were easy in the sense that the parameter estimation was almost always
successful served as a control that the methods worked in a similar way and not ran-
domly. Comparison of the distribution of parameter estimates between methods for
the slightly less successful simple model showed that the S-FOCE method manages
to get closer to the optimum than NONMEM without failing in the covariance step.

When judging the quality of the uncertainty estimates by looking at the coverage
frequency of true values for confidence intervals, the parameters for all methods
were consistent and close to the expected coverage. However, for model M1b, the
NM-SLOW-FOCE seemed to slightly underestimate the uncertainty of parameters.

The model M2 proved to be difficult without being impossible and suggested a
difference between NM-FOCE and NM-SLOW-FOCE. Moreover, when estimating
parameters for the M2 model using NONMEM one can observe cases where the
estimation step fails with large elements in the gradient. This might imply that the
exact gradient method would be able to improve the success of parameter estimation
on that model.
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The theoretical derivations of sensitivities needed for the computation of the exact
gradient of the APL for NLME models based on SDEs showed that this can be
done for a general model. The S-FOCE method could therefore be implemented in
a similar way for NLME models based on SDEs as it was done for NLME models
based on ODEs. However, it might be feasible in practice to simplify the calculations
from the start by considering a particular model of interest.

6.2 Future Work
A thorough statistical analysis of model M2 did not fall within the scope of this
project due to long execution times for parameter estimation on a single dataset.
The results obtained from the model seem however promising for supporting the
benefits of exact gradient computing for parameter estimation of NLME models.
Future work could involve a statistical analysis of the model, which could further
support the notion that some failure of parameter estimation is indeed directly con-
nected to the way of gradient computing during optimisation. To make sure that
the choice of benchmark models is representative, the analysis should also be done
on at least a third model, preferably a model chosen from literature that has been
proven to be difficult to solve.

For being able to do such long computations, the code running the S-FOCE method
should also be optimised further, parallelising code and optimising memory use.
This could either be done within Mathematica or using other faster programming
languages.

For the NLME models based on stochastic differential equations, the results can
be analysed further for practical purposes in terms of the order and overhead of
multiplications of matrices. It is possible that the general approach is not practical
and the parameter estimation would benefit from initial simplifications based on the
type of model used.
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A
Model Parameters

Table A.1: M1 parameters and their interindividual variability (IIV)

Parameter Unit Value IIV1 M1a IIV1 M1b
kA t−1 1 - -
Vm t−1 1 20 20
Km L−1 1 - 20
V L 1 20 -
σ1 - 0.01 - -
σ2 - 0.1 - -

Corr(Vm, Km) - -0.25 0 0
1 IIV measured as

√
ω2 · 100%

I



A. Model Parameters

Table A.2: M2 parameters and their interindividual variability (IIV)

Parameter Unit Value IIV1

V ∗max1 µmol min−1 kg−1 0.0871 92.7
K∗max1 µmol L−1 0.235 -
V ∗max2 µmol min−1 kg−1 7.09 29.1
K∗max2 µmol L−1 74.5 -
V ∗c L kg−1 0.393 -
V ∗t L kg−1 0.172 -
Cl∗d L min−1 kg−1 0.000852 -
Synt∗ µmol min−1 kg−1 0.00355 109
R0 mmol L−1 0.741 19.7
kout L mmol−1 min−1 0.290 71.4
ktol min−1 0.0245 -
kcap mmol L−1 min−1 0.0245 -
k∗in = (koutR2

0 − kcap)Rp0 mmol L−1 min−1 0.0940 -
p - 1.20 -
I∗max - 1 -
IC50 µmol L−1 0.0820 129
γ - 2.16 -
σ - 0.0110 -

Corr(R0, kout) - 0 -
Corr(R0, IC50) - 0 -
Corr(kout, IC50) - 0 -
1 IIV measured as

√
ω2 · 100%

∗ not estimated
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B
Parameter Estimates for M1
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Figure B.1: Estimated parameter distribution for M1a using S-FOCE, NM-FOCE
and NM-SLOW-FOCE starting with true starting values found during a successful
estimation step (dashed) and during both successful estimation and covariance steps
(solid). The true value is shown in black.
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Figure B.2: Estimated parameter distribution for M1a using S-FOCE, NM-FOCE
and NM-SLOW-FOCE starting with random starting values found during a success-
ful estimation step (dashed) and during both successful estimation and covariance
steps (solid). The true value is shown in black.
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Figure B.3: Estimated parameter distribution for M1b using S-FOCE, NM-FOCE
and NM-SLOW-FOCE starting with true starting values found during a successful
estimation step (dashed) and during both successful estimation and covariance steps
(solid). The true value is shown in black.
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Figure B.4: Estimated parameter distribution for M1b using S-FOCE, NM-FOCE
and NM-SLOW-FOCE starting with random starting values found during a success-
ful estimation step (dashed) and during both successful estimation and covariance
steps (solid). The true value is shown in black.
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C
Derivation of EKF Sensitivities

C.1 First Order Sensitivities
We need to determine dεik/dηij and dRi(k|k−1)/dηij. Using the chain rule we get:

dεik
dηij

= d(yik − ŷi(k|k−1))
dηij

= −dŷi(k|k−1)

dηij

= −
(
∂h

∂ηij
+ ∂h

∂x̂i(k|k−1)

dx̂i(k|k−1)

dηij

) (C.1)

and

dRik

dηij
= ∂Ri(k|k−1)

∂ηij
+ ∂Ri(k|k−1)

∂x̂i(k|k−1)

dx̂i(k|k−1)

dηij
(C.2)

The derivatives

∂h

∂ηij
, and ∂h

∂x̂i(k|k−1)
(C.3)

can be found directly from the definition of h. However, we need to find the deriva-
tives

dx̂i(k|k−1)

dηij
,
∂Ri(k|k−1)

∂ηij
,
∂Ri(k|k−1)

∂x̂i(k|k−1)
(C.4)

In further calculations, the individual index i will be supressed.

C.1.1 Differentiating Predicted Expected State Variables

Let us start by considering dx̂i(k|k−1)

dηj
. This derivative can be obtained by solving

the sensitivity equation

d

dt

(
dx̂t|k
dηj

)
= ∂f

∂ηj
+ ∂f

∂x̂t|k

dx̂t|k
dηj

, t ∈ [tk, tk+1]

dx̂t|k
dηj

(tk) = dx̂k|k
dηj

(C.5)
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C. Derivation of EKF Sensitivities

where

x̂k|k = x̂k|k−1 +Kkεk (C.6)

and thus
dx̂k|k
dηj

= dx̂k|k−1

dηj
+ dKk

dηj
εk +Kk

dεk
dηj

(C.7)

C.1.2 Deriving Predicted State Variance

Now consider the other two remaining derivatives, ∂Rk|k−1

∂ηj
and ∂Rk|k−1

∂x̂k|k−1
.

We have
Rk|k−1 = CkPk|k−1C

T
k + S (C.8)

so

∂Rk|k−1

∂ηj
= ∂Ck

∂ηj
Pk|k−1C

T
k +Ck

∂Pk|k−1

∂ηj
CT
k +CkPk|k−1

∂CT
k

∂ηj
+ ∂S

∂ηj
(C.9)

We can get ∂S/∂ηj and ∂Ck/∂ηj from the definition of S and h. Therefore we
only need ∂Pk|k−1/∂ηj.
By definition,

P1|0 = P0 (C.10)

so
∂P1|0
∂ηj

= ∂P0

∂ηj
(C.11)

can be calculated from expression. For positive integers k, we get the following
sensitivity equation for Pk+1|k

d

dt

(
∂Pt|k
∂ηj

)
= ∂At

∂ηj
Pt|k +At

∂Pt|k
∂ηj

+ Pt|k
∂AT

t

∂ηj
+ ∂Pt|k

∂ηj
AT
t

+ ∂Σ
∂ηj

ΣT + Σ∂ΣT

∂ηj
, t ∈ [tk, tk+1]

∂Pt|k
∂ηj

(tk) = ∂Pk|k
∂ηj

(C.12)

where

∂Pk|k
∂ηj

= ∂Pk|k−1

∂ηj
−
(
∂Kk

∂ηj
Rk|k−1K

T
k +Kk

∂Rk|k−1

∂ηj
KT

k +KkRk|k−1
∂KT

k

∂ηj

)
(C.13)

In the same way as for ∂Rk|k−1

∂ηj
we get the equations for ∂Rk|k−1

∂x̂k|k−1
by replacing ηj

with x̂k|k−1.
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C.1.3 Deriving the Kalman Gain
In above cases, we need to compute the derivative and partial derivative of the
Kalman gain Kk. This can be done by first noting that

dKk

dηj
= ∂Kk

∂ηj
+ ∂Kk

∂x̂k|k−1

dx̂k|k−1

dηj
(C.14)

and then calculating the derivative of Kk with respect to ηj as follows
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(
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T
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∂CT
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∂ηj
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kR
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=
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)
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In the same way it follows that

∂Kk

∂x̂k|k−1
=
(
∂Pk|k−1

∂x̂k|k−1
CT
k + Pk|k−1

∂CT
k

∂x̂k|k−1
−Kk

∂Rk|k−1

∂x̂k|k−1

)
R−1
k|k−1 (C.16)

Moreover, the derivative of Kk with respect to θ is calculated in the same way as
the derivative with respect to η.

C.2 Second Order Sensitivities

We need to compute the derivatives

d2εk
dηjdθn

and d2Rk|k−1

dηjdθn
. (C.17)

Note that in the following calculations, θn can be replaced by ηl in order to obtain
the derivatives

d2εk
dηjdηl

and d2Rk|k−1

dηjdηl
. (C.18)
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We get

d2εk
dηjdθn

= − d

dθn

(
∂h

∂ηj
+ ∂h
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dηj
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= −
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dθn

+
 ∂2h
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+ ∂2h
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k|k−1
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dηj

+ ∂h
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dηjdθn

)
(C.19)

and

d2Rk|k−1

dηjdθn
= d

dθn

(
∂Rk|k−1

∂ηj
+ ∂Rk|k−1

∂x̂k|k−1

dx̂k|k−1

dηj

)
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(C.20)

C.2.1 Second Derivative of Predicted Expected State

d

dt

(
d2x̂t|k
dηjdθn

)
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where

d2x̂k|k
dηj∂θn
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C.2.2 Second Derivative of Predicted State Variance
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With
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where
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The derivatives ∂2Rk|k−1

∂ηj∂x̂k|k−1
, ∂2Rk|k−1

∂x̂k|k−1∂θn
and ∂2Rk|k−1

∂x̂2
k|k−1

are calculated in the same

way. In the special case of ∂
2Rk|k−1

∂x̂2
k|k−1

, the equations can be simplified to
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With
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C.2.3 Second Derivative of the Kalman Gain

In both above cases, we need to compute the second parial derivative of the Kalman
gain Kk. This can be done as follows
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The derivatives ∂2Kk
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