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Abstract

The minimization of fuel consumption has always been a desirable topic for vehicle
manufacturers. There has been research to optimize the engines in several different
ways; such as investigating different kinds of fuel, changing engine characteristics and
investigations of programmed applications which can be introduced to the engine.
There have also been investigations of which different applied injection patterns are
most effective for the emissions and engine performance. An engine can operate
either with just a main injection or a mixed injection with different setup for pre,
main and post injections.

Volvo Group Trucks Technology has decided to investigate possibilities to provide a
hardware application in the form of a measuring system for fuel estimation by using
signal processing from different sensors in the truck engine. This estimation has to
be done in both low and heavy engine-load conditions to be sure that the control is
suitable for all operating scenarios for the truck engine.

The scope of this master’s thesis is to implement a baseline hardware measuring
system using the rail-pressure signal to estimate the injected fuel amount that is
compatible with the new microprocessor (method and tool support) that will be
implemented to the new product for Volvo. The measuring system is based on using
a delta-sigma method for signal processing which is available on the microprocessor.
The benefit of using a delta-sigma method for sampling is the noise shifting charac-
teristic which provides the possibility to achieve clear results from the sampling.

In this project, several setups with different levels of fuel injection, high-pressure
target in the high-pressure part of the injection system and engine speed have been
investigated. To have an outline, the injection pattern was limited to one main
injection without pre- or post injection.

To estimate the quantity of injected fuel in each injection, which is equal to the
amount of fuel consumed during the injection, a model has been implemented in
MATLAB and Simulink to prove the possibilities of this application of the mea-
suring system. This project has also implemented a real-time system for detection
of the rail-pressure drop in Eclipse for evaluation of how the delta-sigma ADC on
the evaluation board behaved. This proof of concept opens up a basis for further



investigation of real-time system implementation.

Keywords: DSP, High speed ADC (Analog-to-Digital Converter) Micro-Processor,
Sensor sampling, Signal sensors, HW (Hardware), ECU (Engine Control Unit)
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1
Introduction

This project has been executed at Volvo Group Truck Technology (GTT) in the
Control Systems Department, ECU-Installation, which is responsible for hardware
development of electronic control units (ECUs) for engines.

Volvo GTT covers the entire process from research to final specifications for pro-
duction of vehicles. Volvo GTT is currently investigating the possibilities for new
functions, which can be implemented in their new product line. Within this new
product line, the desire is to be on the edge of the newest technology available and
to improve performance of the vehicles by having a new ECU implemented.

Effective control of diesel-engine combustion is vital for lowering the levels of pol-
lution, fuel efficiency, noise and vibrations, that are dependent on the whole engine
structure. It is therefore difficult to determine effectiveness of combustion due to the
large amount of different contributing factors. Because of this it is of great impor-
tance to have an accurate fuel-injection control. An engine is constantly operating
at changing speed and load in different ambient conditions affecting the exhausts
composition, fuel efficiency, noise and vibrations.

There are requirements and regulations on vehicles that are constantly being up-
dated and therefore it is necessary to implement a smart technology to meet these
requirements. Two of these regulations are engine emissions and fuel consumption.
To fulfill the requirements, there has to be a more precise parameter control by the
ECU. The currently new developed ECU is believed to improve performance, and
together with a measuring system possibly provide the desired level of control.

By access to a measuring system providing accurate control of the fuel consumption
and engine emissions, Volvo will have a better control of the vehicle and the engine
performance. As a result, it would be possible for Volvo to provide a better assistance
for their customers with respect to diagnostics and maintenance of the vehicles.
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1. Introduction

1.1 Thesis outline

The main purpose of this thesis project is to implement a measuring system by using
rail-pressure evaluation to control the amount of injected fuel. The rail-pressure data
is obtained from a sensor located in the common-rail in the injection system of the
engine. The measuring system may be implemented in the new ECU that will be
available for the new product line.

The reason for having the new type of ECU is to achieve a better performance
than for previous generations. The thesis scope is to investigate how the data can
be processed and evaluate if it is possible to extract more significant results than
previously possible. One of the improvements in the ECU is the access to the higher
sampling rates in the delta-sigma analog-to-digital converter ( delta-sigma ADC).
The signals obtained from an injection system are noisy and contain a lot of pressure
variations due the physical properties of the fuel injections and the pumping within
the system. Because of these properties of the injection system, it is believed that
by using the higher sampling rate and a delta-sigma ADC, it will be possible to
obtain more significant data from the injection system for estimation of the amount
of fuel injected.

The data gathered in the test rig will give an offline implementation and evalua-
tion of a software model of our measuring system. Software model investigations
and verifications of the performance of the delta-sigma ADC can be made before
integrating it onto the ECU.

By using this method, it will be possible to estimate the fuel amount through the
knowledge of rail-pressure variation. The results of this research may lead to new
data evaluations that can be used for higher accuracy in optimization of engines.

2



1. Introduction

1.2 Problem background

New engine demands such as fuel efficiency and less pollution from engines in the
EURO-regulation are becoming more strict (see table 1.1). Volvo is therefore forced
to develop new ways to keep up with the demands. In the previous ECU, the possi-
bilities of sampling with the available ADCs were restricted. The data from engines
are gathered in a noisy environment and have a noisy characteristics. As a result,
the processing of these data has been difficult. Because of the availability of the
higher sampling rate in the new ECU, Volvo has decided to investigate what can be
achieved with this kind of implementation on the new ECU. The first part of this
investigation has been assigned to this thesis project. The thesis project has investi-
gated the fundamental implementation for the new possibilities of higher sampling
speed to process the sensor data and if it can be used for accurate estimate amount
of injected fuel.
Table 1.1: The table below show the European Emission Regulation Standards [8].
Starting at year 1992 until today there have been several legislation for emissions from
heavy-duty vehicles as presented below. The emissions presented are: nitrogen oxides
(NOX), particulate matter (PM) and carbon monoxide (CO).

Year NOX mg/kWh PM mg/kWh CO mg/kWh
Euro I 1992 8000 612 4.5
Euro II 1998 7000 150 4.0
Euro III 2000 5000 100 2.1
Euro IV 2005 3500 20 1.5
Euro V 2008 2000 20 1.5
Euro VI 2013 400 10 1.5

The problem addressed by this thesis is the investigation of possibilities for imple-
menting a new method of estimating the injection timing and fuel quantity by pro-
cessing the rail-pressure sensor information. There have been previous investigations
at other companies using the rail pressure to determine fuel amount. However, the
results of these investigations are not published in the public domain. In contrast to
our work, these investigations were neither done using particularly high-speed sam-
pling nor by using delta-sigma ADC. Because of the low sampling rate, the previous
studies showed that there were difficulties in estimating small amount of fuel that
are used as pre- and post injections. The higher sampling rate and the properties
of noise shaping, which are well-known and will be explained in section 2.4.1 for
delta-sigma ADC, are believed to reduce these difficulties of processing the data
and give better results.

3



1. Introduction

1.3 Thesis objectives

As previously mentioned the purpose of the project was to investigate measurements
of rail pressure, processed by using delta-sigma ADC. Previously, the delta-sigma
ADC has not been available and due to the low sampling rate available in the ECU,
the successive-approximation ADCs have been used with the low sampling rate for
evaluation of sensor signals. The main objectives for this thesis have been:

• Implementation of delta-sigma ADC setup for achieving the rail-pressure data
evaluations in software

• Estimating the fuel temperature in order to estimate the fuel consumption

• Establishing a measurement system for the injected amount of fuel and injec-
tion timing by using rail pressure by:

- Investigating how the measured data provides information of the amount of
injected fuel

- Investigating how the measured data provides information about injection
timing (when the fuel injector is open/closed)

The first objective within this thesis project is to gather significantly valid data
from the injection test rig. Significant and correct data are determining factors in
evaluations and analysis. The rail pressure is the most important data to obtain,
but also the nozzle control valve (NCV) signal and injection-sac (SAC) pressure
are important. Both the NCV signal and SAC pressure provide more accurate
information about the injection timing than possible by only using the rail pressure,
and information about injection duration. Due to the relation between the fuel
injection timing and injection duration in the engine, there cannot be any proper
evaluation by just knowing the pressure variance. It is also necessary to know the
correlation with other additional signals.

The second objective is to establish the measuring system and implement it into
software. Configuring the Simulink model of the delta-sigma ADC provided from
the manufacturer Infineon [2] is the main part of this task. It is also necessary to
locate the pressure drop in time during the injection and not to include disturbance
oscillations into the pressure drop deterministic. The pressure drop should therefore
only be estimated during the time when the SAC pressure is active.

The third objective is to estimate the injected fuel amount by implementation of
the model in software. Once the pressure drop during the injection is determined, it
is possible to calculate and estimate the amount of injected fuel, since the pressure
drop is proportional to the amount of injected fuel.

4



1. Introduction

The final objective is to configure the delta-sigma ADC on the Infineon AURIX
starter kit TC29x [17]. By setting up the model similar to the Simulink model, the
measurement system can be implemented in hardware. An issue with implementing
the measurement system in hardware is that an actual engine does not have the
additional data information such as SAC nor the actual injected amount of each
injector that can be observed and measured from the injection test rig. However, in
Volvo’s ECU, there are models instead of sensors determining some of the necessary
parameters. These models are set up for a particular engine type and they depend of
the entire engine structure. This is not the case for the test rig since the combustion
is not included. The influence of the combustion is therefore not included in the
test rig measurements. Other parameters, such as bulks modulus (elastic properties
of the fuel), that can not be obtained by models in the engine have to be hardware
implemented. This will have some effects of uncertainty for estimating the injected
fuel amount

1.4 Method

The project work plan was divided into the presented main objectives. To be able
to achieve the first objective, a fundamental understanding of the injection system
is necessary. There are several different kinds of fuel injection systems and this
thesis project has only focused on the common-rail injection system. In common-rail
injection system, there are some physical phenomena, e.g wave propagation within
the rail, which have to be taken into consideration when determining the pressure
drop. The knowledge of the common-rail injection system has been obtained through
a literature study, which will be referred to in section 2.2.

The scenarios performed in the injection test rig were established by Volvo engineers
to reflect different true circumstances in which the engine usually operates. The
operating parameters that varied between the scenarios were: revolutions per minute
(rpm), injected fuel amount and target pressure within the rail. Since one of the
accomplishments of this project is the evaluation of the amount of fuel, several more
variations of injected fuel amount were targeted in the measurements than for the
other parameters: rpm and target pressure.

After each scenario the gathered data was saved, the settings of the next scenario
was set and the data was then stored in the same procedure as previous scenario.
To limit disturbances in the measurements, the break-out box connected to the
injection rig is bypassed and the rail-pressure signal is obtained directly from the
sensor. The data was gathered by using a Yokogawa oscilloscope[18] where the
sampling frequency is chosen for an appropriate window size.

5



1. Introduction

The Yokogawa oscilloscope stores the waveforms for each measurement scenario.
After that, to be able to handle the waveform data, it is necessary to export these
data of scenarios from Yokogawa software (Xviewer), which could later be imported
through a Volvo in-house MATLAB function into MATLAB. Once the measurement
data have been imported, the data processing and implementation of the software
measuring system can be done through MATLAB coding and the delta-sigma ADC
Simulink model to evaluate both the pressure drop and the fuel amount.

The measuring system has been modelled in software through MATLAB and Simulink.
The implementation of the evaluation board from Infineon, on which the micropro-
cessor is integrated, is set up through the free Tricore tool chain [19] based on the
Eclipse environment. In the Eclipse environment, the delta-sigma ADC needs to
be configured. Since within this stage of the thesis, the additional parameters like
rail temperature and SAC-pressure or NCV are no longer available, they have to
be analyzed through the software implementation. For a desk implementation of
the evaluation board, the rail-pressure signal had to be simulated using function
generators.

1.5 Limitations

Within the thesis project there are limitations that will not be discussed in detail.
One of the limitations in the project is that the investigation will only focus on the
rail-pressure sensor in the fuel-injection system as desirable evaluation data. The
main reason for investigating the rail pressure is that data can be obtained quickly
from the test rig and measured during other ongoing tests. In this way it does not
delay the thesis work nor interfere with Volvo’s own activities in the test rig.

The measurement data of rail pressure is also limited to one single injection pulse.
Usually the injection made is accompanied by both pre- and post-injections. The in-
jection is varied throughout the measurement scenarios from normal main-injections
down to the quantities that are used for pre-injections (pilots) and post-injections.
This limitation is applied to reduce the complexity of the input data and to improve
the interpretation of the results. Although this is not a fully efficient scenario for
the engine and is most often avoided, since injections are more often made in smaller
time periods with varied fuel amounts. This implementation of the injection will
provide an outline to what injection levels can be seen in the results, since all injec-
tions have common pressure-variation properties of the common rail. The properties
of the common rail are also properties of the whole injection system.

Another limitation in the project is that the data were collected in a high-pressure
fuel injection rig (an engine without a combustion system). The gathered data
and other settings in the injection rig have been specified for different cases. The
construction of the injection rig may therefore contribute with some errors that may
not occur similarly in an actual engine. Errors other than temperature estimation

6



1. Introduction

are not included in this thesis.

Since the measurement measures pressurized fluid within a cavity, there are theoret-
ical calculations for estimating the pressure variations. The theoretical principle for
estimating the calculations will not be taken into any larger consideration, since this
is not the main objective of the project. The collected data will also only be used
for evaluations of the quantity of injected fuel. The implementation will therefore
not be used as feedback-control to control the injected fuel amount and eliminate
possible error in the injected fuel amount. By this the project will only discuss the
injected fuel as an estimation or evaluation of the collected data, and the focus will
be on the results of the rail pressure that have been obtained.

The investigation of this thesis was only made on the AURIX Tricore microprocessor.
This microprocessor will be a part of the new ECU at Volvo and is the latest
generation powertrain microprocessors available. There is therefore no interest in
investigating different types. This will also, by default, lead to the limitation of
Infineon providing Simulink and software-framework models for the microprocessor
as well as implementation code examples.

7



2
Technical Background and Theory

The common-rail injection system is the one of the fuel-injection systems applied in
Volvo diesel engines. The common-rail application to an injection system is a well
known concept throughout the continuously development of diesel engines from the
early 20th century and still is being further developed today [10].

Unlike other types of injection systems, the common-rail injection system supplies
a high pressured fuel independent of the engine speed [10]. The pressure is obtained
and kept in the rail enclosure. This offers the opportunity to tune the rail pres-
sure target within the rail enclosure to provide lower emissions and achieve higher
rotational force (torque).

The higher engine torque enables the engine to handle larger loads. More load
on the engine normally requires more injected fuel. This provides a rich fuel mix
(high fuel to air ratio) and a cold combustion will take place. Cold combustion is
not always the preferable case due to the inefficient fuel usage, wear of the engine
and higher emissions of carbon dioxide (CO2). By injecting less fuel, the fuel mix
will not be as rich and a so-called warm combustion will take place and result in
a different emissions mix than for the cold combustion with a higher amount of
nitrogen oxides (NOx). To optimize this trade-off of emissions and fuel usage it is
therefore desirable to use the specific amount of fuel at the specific engine speeds
and loads. The common-rail injection system supplies the possibilities to modulate
the injection pattern and therefore optimize the balance between cold and warm
combustion [12].

8



2. Technical Background and Theory

2.1 Diesel Engine

The first diesel engine was introduced by Rudolf Diesel in the 1890s. The first-
generation diesel engine was large with a low operating speed [4]. The new kind of
engine was noticeably more efficient than the steam engines that were commonly
used for industries. At first, Rudolf Diesel wanted to use coal, but later decided
to use liquid oil instead. Nowadays, all diesel engines use some kind of diesel oil
mixture (fossil, synthetic, bio).

After some time, diesel engines were installed in vehicles. One of the first diesel
engines for a vehicle was introduced in the early 1920s by Benz, used in a three-
wheeled tractor [4].

The first diesel engine by Volvo was introduced in 1946 (planned to be introduced in
1940, but was delayed because of World War II). This engine was called VDA (Volvo
Diesel engine type A) and the vehicle in which this engine was included became one
of the most famous trucks in Sweden [7].

Diesel engines have the beneficial characteristics of consuming less fuel, being more
durable and more reliable than petrol engines. However, an issue with diesel is that
the combustion process results in emissions of NOx, CO2 and particulate matter
(PM) [3], which are also the subjects of regulations presented in table 1.1.

The two main factors that contribute to diesel combustion process are:

• Inducted amount of air in the cylinders (temperature and kinetic energy de-
pendent)

• Injected fuel (temperature, injection duration, common-rail-target pressure
and physical characteristics dependent)

The amounts of NOx and CO2 emissions depend upon the type of combustion.
When the engine executes a cold combustion with rich fuel-air mix, the engine
emits a higher amount of CO2 (which is a result of complete combustion of carbon
monoxide CO). When the fuel mix has a high quantity of air, a warm combustion
occurs and the amount of NOx emission is higher. To achieve the low levels of NOx
and CO2 specified in legislation (see table 1.1), the combustion must be optimized,
so that neither the amount of CO2 nor NOx emitted is too high. It can also be seen
in table 1.1 that the regulations for pollution have become stricter throughout the
years.

Through the benefits of the common-rail injection system, the injected fuel as main
factor for diesel combustion can be optimized. By investigating how well the injected
fuel can be observed and controlled for the common-rail injection system, further
optimizations can be made and provide new possibilities for decreasing the emissions.

9



2. Technical Background and Theory

2.2 Injection System

The injection system of a diesel engine consists of four parts: the high-pressure
(HP) system, low-pressure (LP) system, ECU and the after-treatment hydrocarbon
injector (AHI), as can be seen in figure 2.1. The project of this thesis has limited
the injection system into two parts: the HP system and the software components
(ECU SW/HW).

Figure 2.1: Above is an overview of the whole injection system within an engine. The
injection system is shown with four subsystems even though only the HP system and SW
components have been investigated in this thesis project. (Image used with permission by
Volvo GTT)

The common-rail injection system is a HP system and consists of a HP fuel pump, a
rail enclosure called common rail, and injectors. The common rail and injectors can
be seen in figure 2.2. The ECU controls the HP system and injectors by assigning
a target pressure in the rail that is supplied from the HP fuel pump and controlling
the injection timing and duration.

10



2. Technical Background and Theory

Figure 2.2: A representation of the common rail within the HP system of the injection
system. As can be seen the common rail is just a rail where the injectors are connected
which are represented. The image shows two types of injectors, to the very left is a injector
that only injects fuel and to the right is a injector which can also pump back the fuel.
The pumping of the injectors was both varied and turned off during the measurements.
(Image used with permission by Volvo GTT)

Since the ECU controls the injection and the HP-fuel pump, the implementation on
the ECU contributes to the important functions such as fuel delivery, injection time,
injection-rate modulation and through these functions also controls the combustion.

In the rail, there is a pressure sensor installed to monitor the common-rail pressure.
The reason for having this sensor is to detect if the pressure becomes too high for
the rail to contain the pressure or if the rail cannot hold the target pressure constant
due to leakage.

The common-rail pressure is set to a target value that depends on the engine oper-
ating conditions. The HP fuel delivery to the rail is controlled, by the ECU, from
the HP fuel pump through the outlet metering valve (OMV). When the injectors
inject high-pressured fuel through the injection-needle (NCV) the rail pressure will
drop since the fuel is released from the rail into the combustion chamber. This
pressure drop can be monitored through the signal from the pressure sensor. This
relation between the fuel injection and the rail-pressure drop is the main subject of
this project for estimating the injected fuel amount.

An important aspect of the common rail is that wave dynamics can occur due to
injections and pumping. These phenomena will show up as oscillations in the mea-
surements. It is important to be aware of these oscillations. Because of these os-
cillations the most difficult challenges are to distinguish the disturbance oscillations
from wave propagation and data oscillations due to the injection. The oscillations
can have very high amplitude in the case of standing waves in the rail and are usu-
ally located in the low-frequency domain. They might anyway give errors in the
determination of the pressure drop if the max or min estimations are located in a
wave oscillation minimum or maximum. This uncertainty will then be included in
the estimation of the injected fuel amount.

11



2. Technical Background and Theory

2.3 Injected Fuel-Amount Estimation

As mentioned previously, the injected amount of fuel is proportional to the pressure
decay within the common rail during an injection. There are two factors that are
of significance for the fuel estimation: the properties of the injection system, and
the properties of the fuel. To estimate the injected fuel amount it is possible to use
the definition of bulk modulus defined in [16], with the physical definition of the
derivative of density over time (dρ

dt
) equal to the mass quantity over volume, bulk

modulus can be expressed as:

B = dp

dρ
ρ→ dp

dt
= B

ρ

dρ

dt
→ ∆P = B

ρ

Q

V
(2.1)

where dp
dt

is the pressure drop ∆P .

From the derivation in (2.1), the estimation of the injected fuel amount, Q, can be
expressed as:

Q = ∆P V

B
ρ (2.2)

where ∆P is the pressure drop within the common rail during an injection, V is the
dead volume which is the fuel volume of the HP injection system (estimated as a
constant) and ρ is the density of the fuel.

The pressure drop during the injection and the dead volume signify the properties
of the injection system. As mentioned, the pressure within the common rail will
decrease during an injection and increase when fuel is pumped into the rail. An
outcome of this, the decay of the pressure will originate from the target-rail pressure
and down to a value that corresponds to the quantity that has been injected. To
obtain the target-rail pressure, fuel is pumped by the HP fuel pump and the common-
rail pressure is increased again.

The other parameter of the injection system is the dead volume. The dead volume
is a constant within the HP injection system. Given the dependency of dead volume
the injected fuel amount will be relative to the amount of fuel which is available
within the system.

The other two entities, ρ and B in (2.2), are both properties of the fuel. One of these
contributing parameters is the density of the fuel. In this project the density has
been approximated to be constant. This is because if the density changes in the fuel
it will influence the whole injection system causing a huge effect on the combustion.
Since the density is defined as mass over volume a change in density would either
result in a change in volume or mass. As mentioned it is known that the volume
(dead volume) is constant. This results in that a change in density would result
in a change in mass. A change of mass may occur, but is neglected because of the
high fuel pressure of the measurements. Thus density is therefore also assumed to
be constant.
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2. Technical Background and Theory

The last parameter which has to be obtained for the fuel estimation is the bulk
modulus. This parameter defines how the elastic properties of fuel vary during
temperature and pressure changes. The dependency for how bulk modulus changes
in fluids is described in (2.3), which is obtained from ISO 4113 [13]:

B = (0.9(17579− 90 T ) + (4.89 + 0.0052 T ) P 10−5)10−5 (2.3)

where T is the fuel temperature in degrees Celsius and P is the target-rail pressure
expressed in Pascal. A higher value of bulk modulus means a lower compressibility
of the fuel.

There have been a lot of research on the thermophysical properties of fluids such
as diesel fuel [14]. Chorazewski and collaborators[14] have investigated result of
air solubility in the fuel by using ISO 4113 [13] with the temperature span from
0−150 degrees Celsius and pressure span up to 200 MPa to determine the isothermal
bulk modulus of the fuel. The research shows that bulk modulus increases linearly
with pressure at low temperatures, but at high temperatures and high pressures a
tendency of peak level is shown [14]. It has also been shown that bulk modulus
decreases due to a temperature increase. This can also be seen in (2.3). Since the
bulk modulus is strongly dependent on the temperature, the fuel quantity estimation
will also be highly temperature dependent.

2.4 Theory and Technical overview

In this project, there are functions that must be mentioned to be able to follow
the content the project. The delta-sigma ADC converter is the main function of
this project and will be presented below. Furthermore, filtering and microprocessor
details will be explained.

2.4.1 Delta-Sigma ADCs

The delta-sigma ADC is an ADC which has been developed with specific charac-
teristics [1]. These characteristics are obtained from digital system techniques. The
purpose of having an ADC is to convert from an analog input to a digital output.
This is done by sampling the signal and then quantizing the samples into bit levels
(discrete values). The quantization process assigns a representation from the sam-
ples that are still in the analog domain to the digital domain as a binary number. In
delta-sigma ADC, approximately one quarter of the conversion is in analog domain
and three-quarters are digital domain[1].
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2. Technical Background and Theory

Each assigned binary number is represented as a voltage level. The number of
voltage levels is described as 2L, where L is the number of bits, e.g 4 bits would
result in 16 voltage levels. The number of voltage levels is exponentially increasing
with the number of bits. If the input has a high dynamic range of data, the digital
representation will have to consist of an even larger amount of voltage levels, e.g
if the amount of data is instead 32 bits then the separate voltage levels will be
42, 94, 967.296. The quantization will result in an error included in the sampled
signal as shown in figure 2.3. The quantization error does however decrease when
using a higher sampling rate (oversampling) due to that the noise-power spectrum
will be distributed across a wider frequency range. Using an ADC the signal-to-
noise ratio (SNR) should preferably be as high as possible in order to obtain a good
representation in the digital domain since the amplitude of the signal is low. The
SNR can be described according to (2.4). Since the input is perceived to be constant
the only way to improve SNR is to lower the quantization noise[6].

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

Original signal

Quantized signal

Figure 2.3: This figure shows a representation of a sinusoid input signal together with
four quantization levels. As can be seen the sinusoid input will be distorted and noise will
occur in the border-line of the peak and valley.

The relation between the signal power and total noise in the system is called SNR.
The SNR and input signal are proportional in terms of power:

SNR =
1
N

∫
t s(t)2

1
N

∫
t y(t)2 =

∫
t s(t)2∫
t y(t)2 (2.4)

where s(t) is the power of the input and y(t) is the quantization-noise power. It
means that if the input power increases, the SNR will be increased. Theoretically,
maximum SNR can be seen at the highest allowable spectral-input power to the
system, but in practice, it might be affected by distortion or other reasons.

Signal processing tasks in the digital area are expanding and the need of digital
signal processing (DSP) is increased. However, technology is getting continuously
more complex and data remain analog[5]. Therefore, the data need to be encoded
into the digital domain. To convert analog to digital is important for computational
part of the circuits. Accuracy and speed are critical for this conversion. Usually,
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2. Technical Background and Theory

analog input enters the converter after being filtered and amplified. The input is
then converted to digital data, by a carrier onward to the DSP part. An analog
input can mainly be converted to digital data by using two methods: Nyquist rate
sampling and oversampling. In Nyquist-rate method, matching can cause accuracy
and linearity problems in the converter, and in many DSPs, linearity and accuracy
are main part of the requirements.

In an oversampling method, the sampler samples at a much higher rate than the
Nyquist rate but with lower resolution than is required by the SNR requirements.
These two changes can fix the linearity and accuracy problems. Increasing the
sampling frequency improves the SNR by spreading the noise over a larger frequency
band. Formula (2.5) shows the SNR for a full-range-sinusoidal wave where N is the
number of output bits and oversampling (OSR)[11]:

SNR = 6.02×N + 1.76 +OSR (2.5)

Formula (2.6) shows how oversampling can improve the SNR by applying an over-
sampling factor K:

OSR = 10× log (K) (2.6)
As an outcome of (2.5) and (2.6), SNR can be improved by 3 dB with oversampling
factor of 2. This is a highly important fact to the delta-sigma ADC for determining
the required oversampling-rate for obtaining the necessary SNR [15]. To obtain the
correct representation of the signal it has to be decimated with the oversampling
factor.

Moreover, noise shaping loop shifts the quantization noise to the higher frequencies,
which can be filtered out by low-pass filter [1]. There exist different architectures
for this method. Mainly, the loop order is different, a higher loop order can improve
the SNR at a cost of potential stability issues. The simplest delta-Sigma ADC has
first-order delta sigma noise shaping loop. Figure 2.4 shows the first-order loop
architecture.

Figure 2.4: This figure shows first-order architecture of ADC consists of integrator to-
gether with 1-bit ADC; moreover, DAC is converting digital signal to analog as a feedback
part of the delta-sigma ADC. Since 1-bit ADC convert signals into 1-bit, conversion is
linear and there is no need to be worried about non-linearity.
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2. Technical Background and Theory

The higher-loop order increases the complexity and therefore also increases the po-
tential of introducing instability. Figure 2.5 illustrates the second-order delta-sigma
loop. As shown in the picture, it is more complex than the first order.

Figure 2.5: This figure shows a general architecture of second-order delta-sigma ADC.
It shows that first-order ADC cascade with another first-order ADC to reduce noise. The
reason of using the first-order delta-sigma ADC is to keep the system linear.

As mentioned previously, higher loop order increases complexity and potential in-
stability. An alternative way to increase the SNR without adding complexity and
instability is cascading two lower-order delta-sigma ADCs. This structure is called
Multi-StAge Noise SHaping (MASH) delta-sigma ADCs [9]. Figure 2.6 shows the
MASH structure. An example of a MASH is if both stages have a second-order
delta sigma loop in their modulator, the noise shaping behaves as a fourth-order
single loop with a second order instability behavior. As a result, while having a less
complicated module, higher SNR can still be achieved. As shown in figure 2.6, two
different filters can adjust the signal separately.
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Figure 2.6: This figure shows a multi-stage delta-sigma modulator (MASH) with 2 stages.
The MASH model can be increased with a preferable number of stages. This does however
make the modulator more complex which is not always preferable.

2.4.2 Example of Delta-Sigma ADC

The processing of the delta-sigma ADC from analog input to digital output can be
seen in figures 2.7-2.13. Figure 2.7 shows a sinusoid that in this example represents
the input signal. The delta-sigma ADC first processes the input by an oversampling
modulator that over-samples the signal. Through a pulse-width modulator (PWM)
the signal is converted into a pulse-width-modulated signal that is oversampled,
shown in figure 2.8. Within the oversampling the signal has both been sampled and
quantized.
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Figure 2.7: This figure shows a representation of a sinusoid wave which can be used as
an input to the delta-sigma ADC (shown in figure 2.16). The sinusoidal wave is a very
basic example input that can be obtained from any signal generator.

The delta-sigma modulator modulates the analog input to digital value in the delta-
sigma ADC. It converts the analog input to a PWM signal. Figure 2.8 shows the
time-domain conversion. The figure shows a high speed, one bit pulse width modu-
lated signal.
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Figure 2.8: This figure shows a representation of delta-sigma pulse width modulated sig-
nal. The representation shows the first process stage at the analog delta-sigma modulator
block in figure 2.16. As shown the signal is converted into a high sampled pulse width
modulated signal.
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Figures 2.9 and 2.10 show the noise shaping in the frequency domain. As can be
seen in 2.9, noise increases exponentially at higher frequencies. One important role
of this step is shifting the noise to the higher frequencies to be able to remove it by
applying a digital filter. The delta-sigma converter is a well suited for analog-to-
digital conversion of low-frequency signals where high accuracy is needed.
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Figure 2.9: This figure shows representation of the signal power in frequency domain. As
is shown, noise shaping is shifting noise in higher frequency, as a result, it can be removed
by digital filters. This technique is suitable for signal in low frequency, since noise shaping
reduces noise in lower frequency.
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Figure 2.10: The figure shows a noise shaping behavior with more details in frequency
domain. It shows that noise level in lower frequency is lower which can improve SNR.
Noise in higher frequency can be removed by digital filter
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The pulse-width modulated signal is converted to the digital domain with high-
frequency noise as seen in figure 2.11. It can be seen that there is some noise due
to quantization and modulation on the peaks of the signal, but it is filtered out by
using FIR filters, as seen in figure 2.12 and figure 2.13 which results in the final
digital output.
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Figure 2.11: Digital signal within the Delta Sigma ADC without filtering which can be
referred to as the signal after the Data Shifter block in figure 2.16

Two FIR filters are used to remove the noise in delta-sigma ADC conversion. Figure
2.12 and figure 2.13 show the digital converted signal in time domain. As it can be
seen in figure 2.13, input signal is reconstructed with higher accuracy.
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Figure 2.12: Digital signal within the Delta Sigma ADC with first FIR filter applied as
showed as the first FIR filter in figure 2.16
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Figure 2.13: Digital signal within the Delta Sigma ADC with second FIR filter applied
as showed as the second FIR filter in figure 2.16
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2.4.3 Processor description

In this part, AURIX TC29x characteristics are explained[17]. AURIX is a new mi-
cro controller family produced by Infineon. This project is evaluated using Infineon
Tricore family starter kits. The Tc29x has triple Tricore 32-bit CPUs up to 300
MHz, which support data memories, buses, interrupt system, direct memory ac-
cess (DMA) controller and on-chip peripherals. Tc29x supports delta-sigma ADC
with acceptable clock frequency, that is, tricore microcontrollers support delta-sigma
ADC up to 20 MHZ.

Software Description

For implementing code into the TC29x Infineon’s own AURIX software frame-
work was used. The AURIX software framework is implemented in an Eclipse
environment[19], which is a programming tool and integrated development environ-
ment. The software framework comprises software development tools and software
objects. The software development tools are used to generate make-files depending
on the toolchain compiler that is used to make the build executable, generate soft-
ware source files and generate the operating system configuration. The process flow
of the software development tools is shown in figure 2.14.

Figure 2.14: In the block diagram above is a representation of the process flow which
the software framework is responsible for once the project is configured or built. It first
scans the project and makes a file list. From the file list it uses a tool called Indent for
code style formatting the source files. The software framework also in parallel generates
documentation for the source files and make files for the chosen toolchain compiler which
is used to build the executables.

The software objectives consist of application examples and function libraries for
different modules that can be accessed on the TC29x. Among them is the delta-
sigma ADC. The application example sets a baseline for the registers used by the
specific module.
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Hardware Description

The TC29x is a tri-core microprocessor with the three cores executing in parallel.
However, for this thesis project, only one of the cores was used.

For this thesis project the module that is of interest to apply is the delta-sigma
ADC module. There are several ways to access the delta-sigma ADC module in
the TC29x: either through a peripheral bus directly to one of the cores or through
other modules such as high-speed serial link (HSSL), bridge or direct memory access
(DMA) modules and access to the cores can be achieved through a shared resource
interconnect (SRI) crossbar. In this project we decided to have the connection
directly through the peripheral bus. Direct connection made the implementation as
fundamental as possible. Having a more complex implementation would result in
the question if this was necessary or not.

In the delta-sigma ADC module there are internal clocks that can be used for sam-
pling and interrupts. These clocks are unfortunately not fast enough for the precise
timing that is needed in our application. Therefore, the Generic Timer Module
(GTM) has been used to support the delta-sigma ADC to provide more precise
timing. The GTM is also directly connected to the peripheral bus. The different
connection paths from the used modules to the cores are shown in figure 2.15.

Figure 2.15: This figure shows a representation of the implementation options on how
the delta-sigma and GTM modules can be implemented in the cores of the microproces-
sor. The most straightforward implementation, which was also used in this project, is to
implement on Core 0 directly from the peripheral BUS. To gain access to the other cores
the implementation has to be through either HSSL, a Bridge or a safe DMA. It could be
necessary in the future to implement our measuring system in one of the other cores if
many applications are used in the TC29x in the future. If so the implementation behind
this project has to be changed.
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Delta-sigma architecture

TC29x has number of inputs operating independently. Input pins can be selected
by multiplexers. Also, each input pin has a choice of different channels that are
programmable to it. The results of the delta-sigma ADC are stored in a specific
register for each channel. Moreover, each pin can operate in two different modes:
single-ended mode or differential mode. The delta-sigma ADC can work in two
voltage ranges: 5 or 3.3 volts depending on the specific requirements. There are
also programmable gain settings that can be used during the conversion: 1, 2, 4, 8
or 16. Delta-sigma ADC in TC29x can sample between 10 MHz and 20 MHz; high-
performance and low-power modes are also available. Pass-band frequency in delta-
sigma ADC of TC29x is between 10 kHz and 100 kHz. Since the frequency content
of the rail pressure is below 50 kHz, the delta-sigma ADC meets the requirements in
this project. In the demodulator, there exists filter chains consisting of one cascaded
integrator-comb filter and two FIR filters with different coefficients. Figure 2.16
shows the different steps of delta sigma analog to digital conversion. It consists of
analog fronted, the modulator and the demodulator.

Figure 2.16: The figure shows delta-sigma ADC architecture. As is shown, the input
signal is converted to PWM by the delta-sigma modulator. After that, the digital filter
removes noise to achieve a higher accuracy. Two FIR filters can be used in this implemen-
tation with different characteristics. It is also possible to bypass the filters through the
code. Finally, the digital results are stored in a register that is updated continuously.

As mentioned in section 2.4.2, the delta-sigma ADC has different orders. The data
stream is converted from the analog input from pin by the on-chip 3rd order modu-
lator. The decimation with selectable decimation rate can reduce the sampling rate
of the input signals and FIR filters filter out the noise.
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There exists an auxiliary filter to limit the converted signal. It limits the input by
two limit values. This feature can save CPU performance and DMA bandwidth.
Digital values are stored in registers. Results have 15-bit effective resolution for
gain=1 and input voltage of 5 V. Result registers consist of 32 bits: 0 to 14 are used
for results, bit 15 is the sign bit and 16 to 31 are reserved.

With different bandwidth and oversampling rate, SNR is changeable. It means that
according to the application frequency, accuracy and SNR requirement, AURIX
family can be configurable to achieve the set specifications.
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3
Experimental Setup in Rig and

Software Implementation

In this chapter we discuss the concept behind the injection rig used for data gathering
and the importance of implementation and procedure of the data gathering.

3.1 Injection Rig

The injection rig provides an easily implemented environment for evaluation of en-
gine performance. Since there are no pistons or crank stacks in the rig there is
no possibility for combustion (see photograph of the rig in Appendix A.1). The
fuel that would have been combusted is instead lead back to the fuel tank. In the
injection-rig engine there is extra space that would normally have been occupied by
pistons. This extra space provides additional opportunities of measuring and study
the HP part of the injection system that would not be possible in an engine with
pistons.

The rig has an interface directly connected to the ECU so that the engine perfor-
mance can be set through parameters according to the engine-performance state.
In our study we have chosen to look at the parameter settings of amount of fuel,
revolutions per minute (rpm) and default rail pressure. These parameters influence
other important parameters for our estimations, observed as visual data parameters
such as rail temperature and the true injected fuel. The amount of injected fuel that
is set in the ECU differs slightly from the actual fuel that is injected. The reason is
that the injectors approximately inject the fuel amount that is set.
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3.1.1 Scenario Set-up

To obtain measurements of common-rail pressure, scenario setups were made in an
injection rig as presented in tables 3.1 and 3.2.

In table 3.1 five different scenarios are presented, in which each scenario was mea-
sured both with and without fuel being pumped into the rail after each injection.
In the cases without pumping this refers in the first measurement that the fuel
pumping has been turned off for two injections within the injection revolution. The
parameters set in the ECU were chosen to characterize different cases depending on
the load of the engine.

These measurements provided understanding on how the data should be handled
and how to improve the data capturing.

The first set of measurements was made by using outlet metering valve (OMV) and
nozzle control valve (NCV) as references for determining the pressure drop. The
OMV supplied information about the fuel pumping into the rail and NCV supplied
information about whether the injection needle was active or not.

Figures 3.1 and 3.2 show averaged signals of the rail pressure from cases from table
3.1. Figure 3.1 shows a case when the pumping was active (a normal condition
case for an engine with one injection in the injection pattern). Marked green, in
figure 3.1 show the pumping instances, which was later turned off. Marked pink, in
figure 3.2 show where there is no pumping because of the switched-off pumping. As
shown, the rail pressure remains constant when there is no pumping and when the
next injection starts the rail pressure drops further.

Figure 3.1: Above is a presentation of
the averaged rail pressure of case 1, table
3.1. The case represents a scenario where
all pumping is active and can be seen
over one entire injection period (duration
for when all six injectors have been ac-
tive). The green marking represents the
pumping occasions in which was later
turned off in case 2 (presented in Figure
3.2.

Figure 3.2: The graph above shows the
averaged rail pressure of case 2, table 3.1.
The case represents the same scenario as
Figure 3.1 but with the pumping turned
off in two occasions which are presented
in pink color.
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As can be seen in figure 3.2, when the pumping is turned off before an injection it is
much easier to locate the pressure drop. This localization in figure 3.1 would not be
possible without knowing the localization of NCV or SAC. However, figure 3.2 show
injections at different pressure levels and to determine the decay and target pressure
is very difficult. This was not a desired scenario, since there is no structural variance
within the signal. It can be seen that after the first injection in figure 3.2 there is
a variation of decrease for the different injections and the variety of pressure levels
became very confusing. Because of this and that these measurements are much too
noisy (explained in section 3.1.2) it was decided to redo the measurements and make
sure that the pumping was only turned off before the injection of interest and at no
other time. In the next measurement setup, as seen in table 3.2, all measurements
were done without pumping during the injection from the injector which was selected
to be investigated. In figure 3.3, two crank revolutions are shown. Figure 3.3 starts
with the injection from the injector of interest and ends with the pumping turned off
for this injector. The pink marking shows the lack of pumping before the injection
of interest.

Figure 3.3: The graph shows one entire injection period for a case from table 3.2. The
pumping in these cases has been turned off before the injection of interest is activated.
This lack of pumping is marked in pink at the end of the period of the injection in the
graph.

The second measurement setup was made with additional cases than in the first mea-
surement. These cases were added to obtain more variations in injected fuel amount.
In a normal case scenario, where the injection contains pilots (pre injections), the
quantities will be as low as 3 to 5 mg/stroke.
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3.1.2 Noise reduction in measurement setup

Since the first measurement study showed some undesirable qualities in noise and
pumping sequence, the measurements were re-executed to reduce noise and distur-
bances. It is known that there is noise in the rail-pressure signal that would be
possible to filter out. However, if the data contain a high amount of noise, filtering
could destroy the signal. To not risk this it was decided to redo the measurements
with cases and settings as described in table 3.2.

It appeared that the main noise source was a break-out box connected between
the sensor and oscilloscope. To solve this problem, the rail-pressure sensor was
instead connected directly to the oscilloscope by a split adaptor. Figure 3.4 shows
the noisy signal obtained in the first measurement setup and figure 3.5 shows the
measurements by utilizing the split adaptor.

Figure 3.4: The graph above shows a
duration of one injection from table 3.1
for when the break-out box was used. It
can be seen that the signal consists of
a lot of high frequency noise, which is
not desirable. Even if the signal would
be filtered the uncertainty of filter away
necessary data can not be neglected.

Figure 3.5: Above is a representation
of the injection duration using the split
adapter which was used for the second
measurement setup presented in table
3.2. It can be seen that the signal does
not contain the noise as shown in figure
3.4 and a much cleaner signal is mea-
sured.

As can be seen from figures 3.4 and 3.5, data from measurements became less noisy.
The main benefit of having this adaptor is that the external filter is not needed
anymore. Less hardware makes it easier to capture the data and filter effects such
as latency, complexity and component effect will be cleared out.
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3.2 MATLAB and Simulink Evaluations

In this section, a general picture of data processing will be discussed for MATLAB
and Simulink.

3.2.1 Signal adjustments for processing

Data from the test rig are stored in an oscilloscope and need to be imported into
MATLAB for analysis. Files from the oscilloscope can be copied to the computer,
but they can not be imported to MATLAB directly. To solve this issue, a function
(called reader) can be used. Since this file has different recorded data, it needs to
be separated as well. In this case, recorded data consists of rail pressure , SAC,
NCV and OMV signals. When data are imported to MATLAB, they are saved into
a mat file with one group and 4 traces. Reader function separates the data into
different variables. As the function separates the data it creates time lines for the
imported signals according to their sampling rate frequencies. Later on, this time
line is very crucial to estimate quantity of the signals. However, since the recorded
data have all the same sampling rate this did not become an issue. As a result, time
for our measurements is in the right order when the correct values are achieved for
the different sample steps.

Since the rail-pressure signal has a noisy characteristic, it is necessary to adjust the
data before executing any processing evaluations. This is done by implementing a
smoothing function. This smoothing function calculates an average of a constant
number of samples in comparison with the surrounding samples. The form of the
signal can be changed and simplified as shown in figure 3.6.
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Figure 3.6: The figure shows a representation of the process of using the smoothing filter.
The top graph shows the rail pressure signal without any smoothing filter applied. The
graph located in the middle shows the signal with the smoothing filter using 1000 samples
and the bottom graph shows the signal with the smoothing filter using 100, 000 samples.
It can be seen that by applying the smoothing filter the signals undesired high-frequency
content can be removed without destroying the characteristic of the signal.

3.2.2 Simulink model
Once the data have been adjusted and converted into a time-series variable, the
Simulink model can be executed. As is shown in figure 3.7, the delta-sigma ADC uses
three first-order ADCs cascaded together with filter chains to reduce noise and gain
higher accuracy. This technique is called multi-stage noise shaping conversion[9].
The filter chain has two filters which are FIR with different characteristics. Finally,
an integrator measures an average and stores it in digital results. These first-order
ADCs run in linear mode. As is shown, a MASH model is used in this simulink
model during simulation.

Figure 3.7: The figure shows the Simulink block diagram of the delta-sigma ADC which
is used in this implementation.
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After the model has been executed for a period of the injection, a digital result will
be stored in the MATLAB workspace. For detecting the pressure variance during
the injection an additional MATLAB-function has been used.

3.2.3 Pressure Drop Detection

As mentioned in section 2.3, when the injection starts the common-rail pressure will
drop sharply. By detecting the common-rail pressure in the MATLAB implementa-
tion, the delta pressure can be estimated. Meanwhile, the amount of injected fuel
can be calculated through equations (2.2) and (2.3) since all parameters are known
for our measured cases.

3.2.4 Temperature Model

As mentioned previously in section 2.3, the estimation of the injected amount of
fuel is highly sensitive to temperature changes. During the measurements, the fuel
temperature was monitored by the injection rig. However, outside the injection rig,
in an actual engine, the fuel temperature is estimated through parameters which
have been evaluated by a Simulink model. Therefore, it is highly important that
the Simulink model is calibrated correctly to give a true and realistic temperature
estimation through the used parameters. By having an accurate estimation, it is
possible, through calculations, to obtain a fuel consumption close to the real injected
amount.

The temperature estimation model is a Volvo proprietary Simulink model, which
uses parameters that are measured in the engine and by using dependencies es-
timates the temperature for certain conditions. Since the dependencies can vary
between conditions, the calibration is significant to avoid contribution to errors in
the temperature estimation.

By using the settings of the different measurement scenarios shown in table 3.2, into
the temperature estimation model together with ambient calibration parameters,
the temperature for each scenario can be estimated.

The scenarios do however contribute to a bigger problem. Changing operating con-
ditions will create temperature changes as well. It is not even guaranteed that the
temperature will stabilize before the operating condition changes again. It would
therefore be significant to measure temperature variation, specifically during the
injection duration. If this is done using the same sampling frequency and timing as
for the rail pressure, the same procedure as for estimating the pressure drop could
be implemented for the temperature signal.
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It is also important to be aware that the temperature model uses only target pressure
and engine speed (RPM) together with additional engine compartment characteris-
tics. Additionally for this the model is calibrated to satisfy scenarios for an engine
with a combustion system and engine compartment as shown in figure 3.8. Temper-
ature estimation will give a significant error for the temperature. However, because
this is a property of specific engine installations, different engine setups will provide
a difference in temperature compared to the injection rig. When using estimation
versus the measured temperature the error will differ due to variation of the set con-
ditions. This is a trade-off which has to be further investigated and have a proper
temperature determination.

Figure 3.8: Shown above is a black-box representation of the fuel-temperature-estimation
model. Because of the confidentiality behind this model only the common parameters
behind our measurement setup and the model are presented as the engine speed (RPM)
and the target pressure. The box of Engine Compartment Characteristic will remain
unknown in this report.
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4
Implementation of Delta-Sigma

ADC

How to estimate injected fuel amount from rail pressure by pure calculations is
previously described in chapter 2. However, to estimate the amount of injected
fuel by sampling the rail pressure in real time, the accuracy is of a much higher
significance than for the MATLAB evaluation.

This chapter will discuss the implementation of the delta-sigma ADC and the es-
timation of the amount of fuel with real-time sampling. The implementation has
been done using a desk setup and later tested in the injection rig.

4.1 Realtime Implementation of Delta-Sigma ADC

In an engine the fuel injections for optimizing emissions operate in real time. It is
therefore desired to be able to estimate the injected fuel amount to see if the engine
optimization is actually as good as desired. It is also useful to know if all injectors
are working or if there is leakage in the injectors. Because of this, a real-time
implementation of our fuel estimation has to be implemented. The implementation
will give results of how well the rail pressure can be sampled, which has a significant
role in how small amounts of injected fuel can be detected.
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The real-time implementation to the Infineon evaluation board has been done on a
desk setup using listed equipments (see photograph of setup in Appendix A.2):

• Project board

• Quad Operational Amplifier

• Function Generators

• Voltage Supplier

• Infineon evaluation board

• Eclipse Compiler

4.1.1 Analog Simulations of Rail Pressure

Our project had limited access to the injection rig, since the rig has to be used
for other projects. To do the evaluation with the Infineon evaluation board would
not be possible due to working conditions and maintenance of the injection rig.
Because of these circumstances the rail pressure had to be simulated somehow for
the desk setup. As can be seen from the MATLAB implementation in chapter 3,
the rail pressure signal had specific characteristics in appearance. The rail-pressure
appearance is a half-wave rectified sinusoid upon a ramp function. This appearance
can be simulated by using two function generators, one set to a sinusoid function and
the other to a ramp function. The sinusoid function is sent through a diode which
cuts the negative voltage and later sent to an adder implementation of a operational
amplifier where it is combined with the ramp function, as shown in figure 4.1. This
emulation of the rail-pressure signal can be connected to the differential pins of the
evaluation board.

Figure 4.2 shows the rail-pressure signal recorded from test rig and figure 4.3 shows
the signal simulated by the rail-pressure emulation. It is possible to adopt the signal
by changing the amplitude and frequency to have it more similar to the different
scenarios. As is shown in the figure 4.3, the simulated signal does not have any
noise. It is also possible to add noise by connecting another function generator to
the circuit to produce noise (low amplitude with high frequency), but in this project,
the rail-pressure signal without noise is used.
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Figure 4.1: Shown above is a block diagram of how the rail pressure was emulated. As can
be seen the first function generator generates a sinusoid wave, which is half-way rectified.
The half-way rectified wave is later added together with the second function generator,
which generates a ramp function. Using an operation amplifier the result shows a good
representation of the graph in figure 3.6. The emulation could also add an additional
function generator to simulate a noise characteristic, but was not implemented.
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Figure 4.2: The graph above shows the rail-
pressure signal as presented in figure 3.6.

Figure 4.3: Above is a representation
of the simulated rail-pressure signal de-
scribed in figure 4.1.

In addition to having function generators to simulate the rail-pressure signal, a
pressure sensor was connected to the differential input. In this implementation, a
pressure pump was connected to the pressure sensor. The pressure was then pumped
up to a certain value and after release back to zero. The aim of having this test is
to check that the circuit is working with a real sensor in real time before the final
execution in the test rig. Since the result of this test is not scientific, it is not covered
in this report.
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4.1.2 TC29x Delta-Sigma ADC

In this section, a brief description of the hardware implementation of the delta-
sigma ADC will be discussed. Delta sigma ADC is implemented in one of the three
available cores. To be able to execute delta-sigma conversion on the Infineon board,
some registers must be set and enabled. Some important registers which need to be
set are: clock source, clock frequency, decimation factor, filter type, supply voltage,
input pins and channel, sample frequency. These registers will be set according to
the specification. In this implementation, one input will be converted to digital, by
assigning the negative pin of the differential mode to ground, only the positive pin
in the differential mode will be used as input. It means that the input signal has
to be connected to two pins: positive input to sensor and negative input to ground
due to the differential mode.

Another important part of the implementation is the generic timer modulator(GTM).
Since high accuracy is very important in real time, GTM has to be implemented.
To be able to use the GTM, some registers need to be set as well. Period, duty
cycle, internal path and trigger controls will be set.

Moreover, trigger is vital to control the sampling and delay. Trigger for the delta-
sigma ADC has its own register and peripheral connection. The number of samples
in each interrupt can affect the CPU efficiency, DSP unit and memory. In this case,
a constant number of sample points will be stored in each interrupt, sent to the DSP
function and return the pressure gap in each injection.

To achieve the possibility to read values between certain points in time, there is a
register which controls the timestamp which might be possible to use in this project
according to the constant time between each injection. But in this project, the
timestamp was not used for this purpose.

Total delay of conversion can be easily calculated according to the data sheet. The
total delay can be calculated by as:

Delay = [7 + 1 + (3× (N − 1)
2 ) + (3.5×N) + 3 + (27×N) +N + 5]× T, (4.1)

where N is the oversampling rate and T is 1
Fs
. In this project, since N = 32 and

the sampling frequency, Fs = 20 MHz, total delay is:

Delay = [7 + 1 + (3× 31
2 ) + (3.5× 32) + 3 + (27× 32) + 37]× 1

Fs
(4.2)

Which gives us:

Delay = (7 + 1 + 46.5 + 115 + 901)× 50 ns = 53.525 µs (4.3)

Since the pressure sensor which is used to obtain the rail-pressure signal has a
response time of 15 ms this delay is not an issue when obtaining the measurements.
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Finally, the result of the delta-sigma ADC is stored in a register. This register
updates continuously, then it needs to be saved in another register to be stored and
processed. The digital result consists of 14 bits resolution; moreover, accuracy of
this conversion is very high. The analog signal converted to digital is saved in a
register. To be able to convert the result to the signal value, the result’s constant
floating number has to be multiplied to have a digital result. For example, when
the converter connected to 0 V, ”0000000000000010” was stored in a register which
stands for ”2” in decimal. Moreover, maximum signal can be converted to digital
is 5 V. The digital result of the conversion is ”0010101010111011” which stands for
”10939” in decimal. This constant factor was calculated as 0.00045716.

As can be seen, 14 bits represent the digital result of the conversion. Other analog
inputs between 0 and 5 V have a digital value in this range. By having the number
of bits, it is possible to convert the binary value to digital values.

There are two functions beside the delta-sigma ADC: Average calculator and pres-
sure gap finder. Average function or mean function calculates the average value of
the signal values by using the certain number of points. Dependent on the signal
characteristics, the number of points can be changed. The aim of this function is
removing the noise from the signal. As shown in section 3.2, the median filter can
clear the signal from unwanted noise.

The last function is finding the critical point of the signal. It means that a certain
number of samples will be compared to each other to find the pressure drop in
injection. To be able to do this, one injection period has to be converted to digital,
saved to the memory and analyzed. By adding a very short delay, one period of
injection can be stored in an array. Therefore, this array can be imported to the
function and analyzed by a comparator. As a result, this function returns the
pressure drop in each injection. The most important part of this stage is finding the
right number of samples to be able to capture the whole period of injection, since
the injection is periodic and it is repeating in a constant time.

4.2 Real-Time Implementation in the Injection Rig

Even if the results from the desk setup gave good results the specific parameters
for fuel estimation were not available, except for the pressure drop. Therefore the
evaluation board together with the delta-sigma implementation was taken to the
injection rig setting up several real case scenarios. The scenarios that were imple-
mented contained a full injection pattern with pilot and main injection. By these
implementations the pilot was set to 5 mg/stroke with varieties of main injections
of 20, 100, 200, 360 mg/stroke. To perform worse scenarios also the target-rail
pressure was changed between 700 bar as a low working condition and 2400 bar as
a high working condition.
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Results and Discussion

In this chapter, the results of the different implementations are presented; in MAT-
LAB and AURIX evaluation board (real-time implementation). The two implemen-
tations convert the rail pressure values for the significant measurements and use
different strategies for determining the pressure drop that can be used for the fuel
estimation.

5.1 Result of MATLAB and Simulink

The measurements used for obtaining the results in the MATLAB implementation
are shown in table 3.2. In these measurements, the SAC pressure was accessible
during the simulation. However, the SAC pressure is not available in an engine with
combustion cylinders. It is important to be aware of the delay between the NCV
signal and the injector SAC pressure as shown in figure 5.1. If the implementation
uses the NCV signal for the fuel estimation, this delay will influence the detection
of the rail-pressure drop during the injection. It means that by having the delay,
maximum and minimum points will be shifted right and since the slope of the signal
is very steep, a huge error may be added.
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Figure 5.1: The graph above presents the NCV in the green curve and the SAC in the
blue curve with higher amplitude throughout time. It can be seen that the NCV has the
same duration time as the SAC but with an introduced delay. Once the NCV opens the
needle valve fully the SAC pressure will increase. The delay can therefore be seen as the
time the valve is opening.

Figure 5.2 shows the rail pressure and SAC pressure. It can be seen that the pressure
drops accordingly when SAC pressure is active. In the measurement setup the
implementation was to turn off the fuel pumping after the investigated injector.
Therefore , a noticeable drop can be seen during the time SAC is active. This will
clear out any disturbances of pumping influence, making it easier to locate the stop
of injection.
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Figure 5.2: The graph above shows the rail pressure and SAC pressure. In this figure
there are three injection periods and the SAC pressure of the injector of interest is active
three times. The rail-pressure drop within these activations of SAC is the pressure drop
during the injection, which is referred to as ∆P .
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In a zoomed image of the injection shown in figure 5.3, it can also be seen that the
rail-pressure starts to fluctuate at higher frequencies some milliseconds before the
SAC pressure is active. This is a result of that the NCV activates the nozzle and the
fuel gains access to the injector. However, the fuel is not injected to the cylinders
until the SAC of the injector has reached a certain pressure. It can also be seen that
the higher frequency fluctuation is stabilized a bit before SAC is lowered. This is
a result of that the NCV is no longer active but as can be seen, there is still SAC
pressure and fuel is still injected into the cylinders.
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Figure 5.3: Above is a zoomed-in case of an injection from figure 5.2. It can be seen
what duration the SAC pressure holds and therefore also the duration of the pressure drop
(∆P ).

5.1.1 Case specific results

By applying the smoothing filter to the rail-pressure signal, the noise disturbances
and higher frequency contents are canceled out. The rail-pressure values can then
be read in a much more precise manner.

In figure 5.4, the smoothed rail pressure is presented with the pressure drop de-
tection. As shows in table 5.1, case 1, the set target pressure for this case is 1000
bar.
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Figure 5.4: The graph above shows the representation of figure 5.2 for case 1 from table
3.2. The point of the pressure drop is also shown above as the pressure drops from 1002
bar down to 962.7 bar.

It can also be seen in figure 5.4 that the pressure drops around 38.4 bar. From this,
the fuel can be estimated as presented for case 1 in table 5.1.

Consider case 3 presented in table 3.2, the target pressure is set to 1600 bar. This
can be seen in figure 5.5 in the same manner as for figure 5.4. However, an interesting
result is that the pressure drops by 45 bar during the injection even though the same
amount of fuel is injected as for the first case (presented in figure 5.4). One reason
for this is the high target pressure contributes to a smaller fuel-volume density in
the rail. Hence, injecting the same amount of fuel under a higher target pressure
corresponds to a larger volume quantity.
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Figure 5.5: The graph above shows in the same way as figure 5.4 the representation of
figure 5.2 for case 3 from table 3.2. The point of the pressure drop for this specific case
are also shown above as the pressure drops from 1600 bar down to 1556 bar.
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The same result is further shown in figure 5.6 where the target pressure is set to
2400 bar (see table 3.2). The pressure drops even at a steeper rate of 97 bar than
previously, even if for case 1 and case 3 have the same amount of injected fuel.
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Figure 5.6: The graph above shows in the same way as figure 5.4 and figure 5.5 for case
6 from table 3.2. The point of the pressure drop for this specific case is also shown above
as the pressure drops from 2340 bar down to 2243 bar.

Consider case 2 presented in table 5.1, the target pressure is set to 2400 bar and
instead of injecting 100 mg/stroke, 200 mg/stroke is injected. It can be seen in
figure 5.7 that the pressure drop is 103 bar, which is very close to case 6.
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Figure 5.7: The graph above shows in the same way as figure 5.6 the representation of
figure 5.2 for case 2 from table 3.2. The graph is a bit zoomed-out in contrast to figure
5.4, figure 5.5 and figure 5.6 as can be seen in the time-axis. The point of the pressure
drop for this specific case is also shown above as the pressure drops from 2353 bar down
to 2252 bar.
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Table 5.1: The table presented below shows the monitored actual injected fuel presented
in table 3.2, together with the cases implemented in MATLAB for estimating the injected
fuel. Both the monitored values and estimated values are presented in mg/stroke. The no-
tification ERROR represent values which were not able to be estimated by the MATLAB
implementation.

Case Actual Injected Fuel Amount mg/stroke Estimated Fuel Amount mg/stroke
1 98 114
2 196.7 178.5
3 96 93
4 240 240.9
5 49 34.9
6 98 84.1
7 189 180.1
8 210 211
9 2.4 ERROR

10 4.4 ERROR

11 4.8 ERROR

12 2.8 ERROR

In the MATLAB/Simulink implementation the temperature is known and the amount
of injected fuel can be estimated as described in section 2.3. These results are pre-
sented in table 5.1. The table shows the monitored values of the actual injected fuel
in the different cases presented in table 3.2 together with the fuel estimation. It
can be seen that the fuel estimation shows promising results and is more accurate
with larger amount of injected fuel. However, there are some differences between the
injected and estimated amount. These are believed to be due to the uncertainty in
the bulks modulus. However, the results are within an acceptable range. The table
also shows errors for the small injections between 2 and 5 mg/stroke. These are due
to the noise distortion and the implementation fails to detect the pressure variance
during this small injection. From this error it can be stated that the MATLAB
implementation is not able to detect a pre- or post injection.

5.1.2 Temperature investigation results

As mentioned in section 3.2.4 there is currently no temperature sensor in the engines
to measure the fuel temperature and an estimation model is used instead. Since
this model is calibrated for a system with a combustion chamber it is expected to
differ from our measurements which are executed without a combustion chamber.
However, since our results are all obtained in the injection rig it is highly significant
to be aware of any differences that are to be expected when implementing onto the
ECU and having the control on an actual engine. In figure 5.8, it can be seen that
the temperature model used on the ECU is overestimating and underestimating the
different cases presented in table 3.2.
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Figure 5.8: Above is a representation of the overestimation and underestimation per-
centages between the estimated temperature model described in section 3.2.4 versus the
monitored temperature presented in table 3.2 for the twelve different cases. The target
pressure and engine speed was set into the temperature model (see figure 3.8) for each case
and compared with the monitored value of the case in table 3.2. For positive percentage
values the model has overestimated the temperature.

There does not seem to be any correlation between changes in engine speed or
target pressure, which are the related factors for both the simulated scenario and
the measurements. As is shown, a temperature model is not reliable for estimating
the fuel temperature for our investigations, since it has a large variation among the
scenarios. According to the model, it is possible to have up to 20% error. Because of
this high error-rate it is not possible to disregard the error. Adding a temperature
sensor could be a solution for this issue. However, this would contribute to the
disadvantages of having more hardware, complexity and more wiring. To be able
to estimate the amount of the injected fuel, it is necessary to have a sensor or a
significantly better calibration of the temperature estimation model used today.

5.2 Results of Delta-Sigma ADC Implementation

In this section, results of the evaluation test on the test rig is presented. As is men-
tioned in section 3.1.1, there are several scenarios with different conditions. Table
5.2 shows the cases that have been tested in the test rig with the evaluation board.
Since these cases are only measured to clarify the delta-sigma ADC implementation
the engine speed was kept as a constant at 1200 rpm. The aim of having different
cases is to see if the data from delta-sigma conversion is reliable for the ECU.
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Table 5.2: The table represents a final measurement in the injection rig together with the
real-time implementation. The six cases presented were selected as a proof of concept that
the real-time implementation works. Since the common-rail pressure in independent of
engine speed only the target pressure and the quantity of the main injection (injected fuel
amount) were varied. These cases were also made having a 5 mg/stroke pilot injection.

Case Target Pressure bar Main Injection mg/stroke
1 700 360
2 2400 360
3 2400 200
4 2400 20
5 600 20
6 600 100

In each case, first presented figure shows the sampled result of the interrupt, the
second one represents the window with maximum and minimum values of each
injection showed with data cursors for each interrupt result and the last figure shows
the results from the evaluation board.

In case 1 presented in table 5.2, as can be seen in figure 5.9, the interrupt is long
enough to store significant amount of data for the pressure drop detection in a digital
bit amplitude representation. Figure 5.9 also shows that it would be possible to have
a smaller amount of samples for the interrupt since only the pressure decay that is
of interest. However, the timing of the sampling is crucial and having more data
stored will provide us a certainty that the injection will not be excluded from the
stored result.
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Figure 5.9: The graph above shows a representation for the result register for case 1
from table 5.2 where 12000 samples are stored in the interrupt. Having a result register
of 12000 samples will provide the certainty to cover at least one injection, and as can be
seen in this case two injections are covered in the register.
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Since it is only the pressure drop that is of interest it is not necessary to process the
entire result but instead just process a window of the result. In the implementation
the window has been chosen to 5000 samples as shown in figure 5.10. It can also
be seen that the pressure drop can be estimated to be between 1.51 and 1.247 Volts
with the pressure drop ∆P around 0.263 Volts.
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Figure 5.10: The graph above shows the window of 5000 samples used to detect the
pressure drop showed in figure 5.9. The DSP function of the real-time implementation
detects the max and min value as also presented above as 1.51 and 1.247 Volts.

As mentioned before, 12000 samples are believed to cover at least one injection. As
shown in figure 5.11, this also applies for the second case in table 5.2. It can be seen
that this case has a higher target pressure since the digital amplitude is higher than
for the first case.
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Figure 5.11: The graph above shows a representation for the result register for case 2
from table 5.2 where 12000 samples are stored in the interrupt. As shown in Figure 5.9
also in this case two injections are covered in the register.

49



5. Results and Discussion

Figure 5.12 shows the window of 5000 samples to only contain one injection. As it
is shown the max- and min values show 3.655 and 3.274 both in figure 5.12.
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Figure 5.12: The graph above shows the window of 5000 samples used to detect the
pressure drop showed in figure 5.11. The DSP function detection of the max and min
value as also presented above as 3.655 and 3.274 Volts.

The pressure drop is also detected and calculated to be around 0.406 Volts. This
result shows that even the higher target pressure within the same amount gives
a larger pressure drop. This shows that the implementation does not seem to be
affected result-wise by the rail-pressure change from 700 to 2400 bar. In case 3
from table 5.2, the results are still consistent with the two previous cases. Figure
5.13 show the complete stored results from the interrupt. Moreover, in this case the
amount of samples stored are enough to detect at least one injection. It can be seen
that the target pressure is still at the same amplitude as for case 2 since the digital
amplitude still varies around 7000 to 8000.
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Figure 5.13: The graph above shown in the same way as figure 5.9 and figure 5.11 the
whole result register with 12000 samples in the interrupt but for case 3 from table 5.2.
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5. Results and Discussion

In this case the injected fuel has been lowered to a quantity of 200 mg/stroke
instead of 360 mg/stroke as has been for the previous cases. It can be seen in the
window of 5000 samples in figure 5.14 that the max- and min values are in this case
3.76 and 3.461 Volts, which both are higher than case 2 that can be due to pressure
oscillations or other factors of the common rail. This result shows that the pressure
decay is smaller than for a higher amount of injection as for case 2.
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Figure 5.14: The window of 5000 samples shows also in the third case one injection with
the max and min value at 3.76 and 3.461 Volts.

Case 4 provides information of how small amounts of injection can be detected. The
quantity in case 4 is as presented in table 5.2 to only 20 mg/stroke but still at
a target pressure of 2400 bar. The outcome of this low fuel injection is that the
injection does not provide any larger pressure variation, as can be seen in figure
5.15, and is still within the noise floor.
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Figure 5.15: The graph above shown in the same way as figure 5.9, figure 5.11 and
figure 5.13 the whole result register with 12000 samples in the interrupt but for case 4
from table 5.2. An obvious observation is that this graph looks quite different from to the
others. The reason for this is that the target pressure is set high and the injection is quite
small. The injection in this particular case is 100 times smaller than in case 3 and does
not contribute to as a big a time variance of the rail pressure.
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5. Results and Discussion

However, as can be seen in figure 5.16, there is something happening in the window.
The max- and min values are within the same span as the previous cases as a max
value about 3.8 was measured, which is to expected by the other cases. As is shown
in figure 5.16, pressure drop is 0.203 Volt.
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Figure 5.16: The graph above shows the window of 5000 samples to detect the pressure
drop in case 4. Even though there is no clear pressure drop in figure 5.15 the max and
min value is still detected to 3.794 and 3.591 Volts.
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6
Conclusion

The purpose of this project was to investigate how high-speed sampling with a
delta-sigma ADC which can provide more accurate data to the ECU. The report
has discussed the theory of analog-to-digital conversion together with the principles
of what signifies the delta-sigma ADC.

The target of this investigation was to process the common-rail pressure of a diesel-
truck engine. The processing of the common rail was used for estimation of injected
fuel amount. Since the common rail is a part of the injection system, this report
has described the basic concept of the injection system, characteristics of the engine
and how the dependencies for fuel estimation are estimated. The work to gather
data has been stated as very specific scenarios for different data gathering occasions.
This shows the difficulty in having a static measurement setup due to temperature
variation and the continuous variations of a running engine.

Another big part of this report has discussed the measurement data and how it has
been gathered in a simplified engine environment in which a verification study was
also made. This simplified environment has been described as an environment which
provides additional information that would otherwise not be possible to obtain.
Additional information about the specifics of this environment is limited for this
project.

The project has shown that the delta-sigma ADC can convert the rail-pressure sig-
nal with high accuracy and it is fast enough to be able to detect the pressure drop
in injection. The small pressure variations can be detected by delta-sigma ADC
together with Infineon Tricore microprocessor. The reason is that Infineon is fast
enough to convert the injection signal to the digital domain and delta-sigma is accu-
rate enough to detect the pressure gap between each injection. Having the pressure
differences during an injection allows the ECU to estimate the fuel consumption.
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6. Conclusion

As we expected in pre-study phase, the result is reliable in real-time implementation,
since MATLAB implementation has been proved that small amount of injection can
be detected accurately. Another result of the project is that noise can be canceled
out in the interest frequency of interest due to the noise shaping features. This
feature has been demonstrated in both MATLAB and real-time implementation.

However, estimating the exact amount of the fuel injected requires the temperature
of the fuel. Since no temperature sensor is installed on the real engine, one has to
resort to estimating the fuel temperature, which leads to an enormous error.

One of the most important achievement of the project is that a temperature sensor
is required in the engine to be able to estimate the exact amount of the fuel in each
injection. This lack of hardware can lead to the error in different scenarios due to
the temperature model which is currently used and it is not very accurate. This
error cannot be calibrated out since it has a non-linear behavior. The solution to
this error can be a temperature sensor to get an exact value of the temperature.
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A. Appendix

Figure A.1: Photograph of the rig which was used to collect measurement data.

Figure A.2: Photograph of the realtime implementation of the delta-sigma ADC. The
photograph shows the project board, function generators, voltage supplier and the Infineon
evaluation board
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