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LES stochastic modelling of cavitation
with its applications in OpenFOAM
Boxiong Chen
Division of Combustion, Chalmers University of Technology

ABSTRACT
Cavitation is a vaporisation process that commonly happens in high pressure in-
jector nozzles nowadays. It has been shown by previous studies that cavitation
has a significant influence on the subsequent atomization process, the quality
of which would in turn heavily affect the quality of combustion. With the com-
ing of the ever increasingly restrictive emission standard, studies into cavitation
phenomena has attracted rapidly increasing amount of interest from both the
academic and the industrial circle. However, due to the inheritant difficulties,
cavitation still render itself a process that is hard to be quantified with the ex-
perimental facilities nowadays. While many of the commercial softwares, e.g.
Ansys, STAR-CCM+, have integrated cavitation modules into their packages,
the variety of models is still in a rapidly expanding phase.
The open source CFD package OpenFOAM (Open Field Operation and Manip-
ultation) has gone through a long developing stage and has been proved to be
a highly matured and convenient CFD tool for many engieering applications.
Although a great number of fundamental applications have been developed, the
development of solvers and libraries which caters the need of specific physi-
cal problems remain to be an ongoing task. In this work, focus has been put
specifically on the development of cavitation modeling. Several readily avail-
able cavitation models have been used, based on which, a more complicated
stochastic ordinary differential equation (ODE) solver has been developed to
facilitate a Monte-Carlo type treatment to the non-linear terms involved in the
cavitation model.

Keywords: Cavitation, Volume of Fluid Method, Rayleigh-Plesset Model, Modeling,

Simulation, OpenFOAM
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1
Introduction

1.1 Introduction

Energy has been one of the major concern of human civilization since the dawn
of industrial revolution. As we enjoy the fruit of modernization, problems
caused by the consumption of fossil fuels have become more pronounced than
ever. In gerneral, the development of countries with a less developed indus-
trial basis depends heavily on oil. Take crude oil consumption of China as an
example, in 1980 the consumption was around 2 million barrels per day, it in-
creases five times to around 10 million barrels per day until 2013 [1]; A almost
6 times increase from around 640 to 3600 has also occured during the same
period of time in India [2]. The figures in EU countries suggest a lesser de-
pendence [3] [4], however, this is largely due to the more developed industrial
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2 CHAPTER 1. INTRODUCTION

basis, and the ongoing effort to discover alternative resources and reduce the oil
consumption by political intervention.
Fossil fuels are in general not renewable, and considering the resctriction on
the available amount of oil, there could be a time of depletion. New efforts to
exploit non-fossil energy resources, such as solar, wind, and nuclear power, as
well as the novel technologies to obtain fuels, such as shale oil extraction, and
the application of bio-fuel, have given us new hopes to the solution of potential
shortage of fossil fuel. However, at present the combustion of fossil fuels still
accounts for 80 percent of the energy consumption of today’s world. Before the
coming of any matured, and economically feasible solutions out of any of the
above mentioned technologies, the only sane response to avoid such shortage is
to use fossil fuel in a controlled and more efficient way. From the environmental
prospective, combustion gives off CO2 as one of the major chemical product,
which is vastly believed to be a major cause of the global warming problem. In
the less ideal situation when the combustion is insufficient, the process yields
more harmful products such as CO and NOx, unburned hydrocarbons and soot,
which could give rise to severe health problems. Thus, it is necessary to reduce
the consumption of fossil fuel and to improve combustion efficiency.
Among all the sources of fuel consumption, consumption by transportation
has been a major portion of the figure. According to [5], 63.7 percent of the
world oil consumption goes to the transportation sector in 2012, see Figure 1.1.
Therefore, it is critical to reduce the oil consumption of motor vehicles. From
the political side, emission standards have become ever-increasingly strict. In
the automotive engineering realm, researchers from both the industrial side and
the academic side have been struggling hard to study the combustion inside
the internal combustion engine from various aspects so as to meet the emission
requirements. Among multiple factors, the quality of the fuel spray greatly af-
fects the quality of combustion. Previous studies [6] have demonstrated that
the cavitation that happens inside the needle following the passage contraction
of flow enhances spray atomization, which in turn affects strongly the qual-
ity of subsequent combustion. And it is speculated that the enhancement is
achieved by either inducing a direct disintegration locally, or through enhanc-
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Figure 1.1: Global crude oil consumption in 2012

ing turbulence, which in turn, induces the breakup. Up to now, neither of the
two mechanisms have got convincing validations from experiments or direct
numerical simulations. More insight into the phenomena is required for both
fundamental understanding of the process and to provide predictive simulations
on relevant applications. However, it is commonly admitted that experimental
study of cavitation on realistic nozzle geometries and injection conditions is dif-
ficult. As pointed out in [7], direct observation of cavities in realistic injectors
requires high resolutions in both space and time, due to the small sizes and rapid
evolvements of bubbles. Therefore previous experimental studies have mostly
been performed on up-scaled nozzles, lower injection pressure and velocities
with simple geometries. Results and conclusions obtained in such simplified
designs could not be directly transfered to realistic injectors, they are rather
used for validation and references for cavitation models.
Previous computational studies on cavitation with various levels of complexi-
ties have been carried out. Direct numerical resolving of the interface between
phases could be computationally very expensive, and is therefore only feasi-
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ble for fundamental studies. Various interface modelling methodologies have
been testified in previous studies. Although some of them have achieved good
agreement with experiments, they would be less applicable to simulations of re-
alistic nozzle geometries. Since we are more concerned about the applicability
to real size, high pressure nozzle geometries, a homogeneous mixture model is
adopted in the current work, which does not attempt to resolve or model the
interface, but observe on a more macroscopic level and regard the bubbly flow
as a mixture of fluid and gas. The phases are represented by their volume frac-
tion. Previous studies, e.g. [8] have developed mass exchange models based on
the Rayleigh-Plesset equation. In this work, a stochastic Monte-Carlo type of
treatment has been applied to solve the volume fraction equation with higher
complexity.
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2
Cavitation and multiphase modelling

2.1 Introduction

In this chapter, the physics and modelling aspects of cavitation are discussed.
An overview of some previous cavitation modelling studies will be given. What
then follows is a description of the cavitation model in the current work.

2.2 Cavitation modelling: an overview

Cavitation is a vaporisation of a liquid following a drastic pressure drop below
the vapour pressure. The transition from liquid to vapour can be achieved by
either heating the liquid at a constant pressure, which is known as boiling, or

7



8 CHAPTER 2. CAVITATION AND MULTIPHASE MODELLING

through decreasing the pressure below the vapour pressure while maintaining
constant temperature, which is known as cavitation.
The cavitation processes could present itself in many engineering applications.
For example, in hydraulic applications like pumps and marine propellers, the
rapid growth and collapse of cavity bubbles could chip off the turbomachinery
over time; in water treatment, the same phenomena incurred by bubbles could
be harnessed to break the pollutant particles. Specifically in spray nozzles of
internal combustion engines, previous studies have found that cavitation phe-
nomena helps in breaking up liquid fuel spray which is important to proper
fuel-air mixing and reduce the formation of pollutant. Therefore, cavitation at-
tracts substantial interests from both the automobile industry and the research
side.
The influence of cavitation in injector nozzles on spray formation and breakup
has been investigated both experimentally and computationally by previous
works. Sou in [1] have demonstrated that the cavitation inside the fluid passage
strongly affects the quality of the subsequent combustion. Whereas it remains
and open question whether it enhances spray disintegration by contributing to
the turbulent kinetic energy or by inducing a direct breakup mechanism locally.
Experimental studies of cavitation on realistic nozzle geometries and injection
conditions are difficult to perform. The geometric size and the residence time
of the bubbles requires restrictively high resolutions of both time and space of
optical access, for this reason, many experimental studies thus far have been
based on up-scaled nozzles and low pressure conditions.
Computational studies with various modelling methodologies have been car-
ried out. On the basis of Lagrangian approach, a Lagrangian description of
individual bubbles or bubble clusters can be used to represent cavities, see, for
instance, [2] and [3]. The interaction between bubbles, and bubble-wall inter-
actions are modelled. On the Eulerian modelling side, both the liquid phase
and the vapour phase are described by Eulerian fields. Since directly resolving
interface normally takes formidably high computational cost, the treatment of
interface is critical for Eulerian methods. [4] and [5] applied a level set method
to represent the phase boundary between liquid and vapour phase. The onset
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of cavitation is identified when the maximum tensile stress exceeds a critical
value. Based on this assumption a model of the sub-grid shape of the interface
is applied. The curvature of the interface is then used to calculate surface ten-
sion forces in the momentum equation. Marcer in [6] applied a volume of fluids
(VOF) method, reconstructed the interface with planes of arbitrary orientations
in each cell. In the above mentioned studies, the sub-grid shape of interface is
considered either by geometrical reconstruction or direct modelling. Methods
of this kind fit well into fundamental studies of the behaviour of few bubbles.
A more macroscopic class of models, called “interface diffuse models” [7], re-
gard bubbly flow as a continuous dispersed phase. The approach spends no
effort tracking the fronts of each individual bubbles, but regard the bubbly flow
as a mixture instead. The phases are represented by volume fractions, and the
interface is treated as a zone where two phases coexists. Since physically bub-
bles exist on the sub-grid level, the volume fraction field does not define a sharp
interface between the phases but provides the volumetric fraction of liquid and
vapour within a computational cell. In the category of interface diffuse models,
the number of equations that are used to describe the two phase further subcat-
egorise different models. [8] proposed a seven equation model that consists of
a conservative set of equations for mass, momentum, and energy for each of
the two phases and an additional transport of equation for the volume fraction.
Six-equation model by [9], [10], and [11] consist of the conservation equations
for both phases, but only one pressure is kept assuming either incompressibil-
ity of one of the phases, or pressure equilibrium between the two phases. This
approach reduced the computational cost involved in solving a volume fraction
transport equation at the expense of a reduced validity on problems where tran-
sient wave propagation is important. Based on the seven-equation models, a
five-equation model was derived in [12], assuming a mechanical equilibrium
between the two phases. It involves transport of volume fraction, one set of
momentum and energy equation, but two phase balance equations. [7] applied
a discrete equation method (DEM) and a splitting method on the five-equation
model to preserve the positivity of the solution and reduce the computational
cost at the same time. The even simpler models make equilibrium assumption
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for both pressure and temperature in the different phases, thereby regarding
the two phases practically as one. [13] and [14] applied the volume of fluids
method, combined with a k − ω turbulence model to describe the flow field.
The Rayleigh-Plesset relation was used to provide a source term for the volume
fraction equation.
In this work, we focus on the Eulerian Volume of Fluids method (VOF) of mul-
tiphase modelling. The expansion and shrinkage of vapour bubbles is indicated
by the volume fraction of the vapour phase. The vapour-liquid mixture is as-
sumed to be a homogenous mixture in each cell. Therefore, no effort is needed
to reconstruct the interface and to model surface tension.This simplification is
justified by our focus on applications that are close to realistic industrial de-
signs, in which a large number of bubbles is involved and tracking every bub-
bles is computationally excessive or impossible. The Rayleigh-Plesset model is
applied as a prediction for the mass transfer between the two phases. A Large
Eddy Simulation approach is adopted to model sub-grid turbulent fluid motion.
In the next section, a mathematical description of the governing equations and
the cavitation model will be used.

2.3 Governing equations and models

We start with the definition of volume fraction. As proposed in [15], the vapor
is assumed to consist of spherical bubbles. Therefore the liquid volume fraction
can be written as

αl =
1

1 + n ∗ 4πR3/3
, (2.1)

where R denotes bubble radius and n is the nuclei number density, which must
be prescribed. The closure for αl can be achieved by taking the material deriva-
tive:

dαl
dt

= −3αl(1− αl)
Ṙ

R
(2.2)

or

α̇l + ~u · ∇αl = −3αl(1− αl)
Ṙ

R
(2.3)



2.3. GOVERNING EQUATIONS AND MODELS 11

A model for the bubble growth rate R is needed to close the equation above,
which will be discussed shortly.
The global continuity and the momentum equation for the density ρ and the
momentum ρ~u are

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.4)

∂

∂t
(ρ~u) +∇ · (ρ~u~u) = ∇ · (µ∇~u)−∇p (2.5)

The mixture averaged density is given by

ρ = (1− αl)ρv + αlρl, (2.6)

where ρl and ρv denote the density of the liquid phase and the vapor phase
respectively. Mass balance equations for the two phases are

∂

∂t
(αvρv) +∇ · (αvρv~u) = ṁv, (2.7)

∂

∂t
(αlρl) +∇ · (αlρl~u) = −ṁv. (2.8)

In the present study we use a pressure based scheme of the PISO type [20] for
the numerical solution of the governing equations. A one-equation LES model,
as is used in [16], is applied to model the turbulent behavior of the flow.
There have been numerous investigations since the beginning of the last century
to achieve the closure of Ṙ. A simple yet effective description by Rayleigh,
see [15], is widely applied in cavitation modelling. Neglecting thermal effects
and surface tension forces (justified by the assumption of homogeneity of the
mixture) we have

Ṙ =

√
2

3

p(R)− p
ρl

, (2.9)

where p(R) is the pressure in the liquid at the bubble boundary, which in the
current model is assumed to be equivalent to the saturation pressure, and p is
the pressure at a large distance from the bubble which is in practice the local
pressure of the flow solver.
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With the above closure for Ṙ, the focus is then placed on the solving of Equa-
tion (2.3). The solving framework that has been presented up to this point
constitutes the methodology of several previous works, e.g., [14] [16], and
cutting-edge solvers, e.g., interPhaseChangeFoam in OpenFOAM, which will
be discussed again in the later chapters. However, it is evident that, follow-
ing the definitions, the single volume fraction field enjoys the correspondence
with only one bubble radius( for each computational cell). It is, therefore, nat-
ural to think of a representation, through which, a distribution of radii can be
rendered. In previous works, various methodologies have been developed on
account of this extension. Pope in [17] solved the PDF transport equation by
tracking Lagrangian particles in combination with Monte-Carlo method in a
combustion problem. The spatial position of each particle is included as one of
the stochastic variables and evolves according to PDF equation. This approach,
therefore, entails no Eulerian grids. In [18], a more Eulerian-based approach
was developed. The particles reside on a Eulerian field, and moves from one
node to another following rules that are based on transportation. In the current
work, we adopt the full Eulerian framework as in [19] and [20]. With certain
stochastic procedures, which will be discussed in the next chapter, an ensemble
of Eulerian fields is generated to represent a distribution of radii.
In the next chapter, our discussion will be focused on the stochastic treatment
of a typical scalar transport problem that bears a close mathematical resemb-
lence to Equation (2.3). The stochastic fields cavitation model of the current
work can be derived based on the same procedures. However, since the final
mathematical formulation would make little sense without a detailed discussion
on stochastic method, the final formulation will not be shown until the end of
the next chapter. Interested readers who have backgrounds pertinent to PDF
method are refered to Section 3.6.
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3
Stochastic numerical integration

3.1 Introduction

In this chapter, we start with a discussion on Monte Carlo method, which grad-
ually transit to an introduction of Ito stochastic differential equation, then an
extensive discussion on stochastic numerical integration schemes will be given.

3.2 Monte Carlo method

Monte Carlo methods are a broad class of computational algorithms that are
used on a wide range of mathematical and physical problems. Several previous
studies [1], [2] and [3] have applied Monte Carlo methods on the numerical so-

15
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lution of probability density functions (PDF). In essence, Monte Carlo method
is not concerned with capturing any particular realization of the solving vari-
able. Through the random sampling process, a series of stochastic fields are
taken as representations of the variable, who stochastically resembles the solv-
ing variable. Therefore, stochastic variables such as mean value of the origi-
nal variable can be estimated by the stochastic variables of the fields. These
approaches rely on random sampling processes to obtain numerical results,
whereas vastly different procedures are seen in different approaches. In [3],
a Monte Carlo method is presented to simulate the finite difference solution of
the PDF transport equation of turbulent reactive flows. By considering the joint
probability density function of the flow variables, the closure problem associ-
ated with non-linearities in the Navier-Stokes equation is avoided. In reactive
flows, the typically non-linear chemical source terms are closed though the ap-
plication of PDF method. A complete set of statistical description of chemical
species and thermodynamic properties can be accessed through the introduc-
tion of joint pdf. The computational work involved in such method scales only
linearly, in contrast to the power law dependence of a standard finite difference
approach, with the number of independent variables of the joint pdf, therefore
making it feasible for turbulent reactive flow with multiple species.
In [4], an Eulerian field approach is designed to solve a dynamically scalar
transport equation.

As has been pointed out in [5], cavitation flows are inherently stochastic
because of the uncertainty involved in water quality (nuclei size and nuclei
number PDF variance) and turbulence-cavitation interaction. In the modelling
realm, an inspection on the cutting edge cavitation models [6] would reveal
the non-linear nature of such models. Given the restriction on computational
and experimental capacities, solving for instantaneous number and size of bub-
bles at specific locations would be neither economically feasible nor necessary
for most flow applications, in which mean variables suffice for a complete de-
scription of thermodynamic properties of the fluid. Therefore, a numerical tool
that is capable of reproducing the statistical properties of the mean flow would
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be of higher practical interest. In the current work, a stochastic field method
that resembles the methodology being used in [5] has been applied. Some fun-
damental numerical experiments are performed to testify the various stochas-
tic integration schemes available. In [5], a standard forth-order Range-Kutta
scheme was applied to solve the stochastic field due to the robustness concern.
However, such scheme is inherently inconsistent with the stochastic formula-
tion. Some ground-breaking studies on stochastic integration schemes have
already been conducted in the mathematical realm, e.g. [7], [8]. A comparison
of these stochastic numerical integration schemes is needed to obtain the neces-
sary insight into them. The particularly interesting questions are, what are the
theoretically consistent options, and how their performances compare in prac-
tice. In the current work, a Matlab code was developed to perform 1-D and 2-D
stochastic simulations of sample problems, based on which we concluded that
under the ideal condition of relatively lower number of realizations, 2nd order
stochastic Runge-Kutta (SRK2) method performs noticeably better than 1st or-
der Eulerian-Maruyama (EM1) method, and therefore was chosen as the tool
for the numerical integration of the stochastic cavitation model implemented in
OpenFOAM.

3.3 PDF and Ito stochastic differential equations

In [4], a novel PDF representation is developed, in which the description of PDF
does not rely on the concept of particles, as in previous approaches. In line with
this pure Eulerian representation, the state-of-the-art numerical algorithms for
partial differential equations can be applied. While the method has been elab-
orated on in [4], a brief summary of the method will be given in this section in
order to give a self-contained explanation of the method.

The typical transport equation of a dynamically scalar field φ(x, t) that un-
dergoes turbulent convection, molecular diffusion, and chemical source bears
the following form:



18 CHAPTER 3. STOCHASTIC NUMERICAL INTEGRATION

∂φ

∂t
+ uj

∂φ

∂xj
= D

∂2φ

∂xj∂xj
+ S (3.1)

where uj ,xj follows the convention of tensor notation. And uj denotes a solenoidal
velocity field, and D represents the diffusion coefficient.
The time evolution equation for the scalar PDF of φ, with turbulent fluctuation
and molecular mixing terms modeled [4], is

∂P

∂t
+ Ui

∂P

∂xi
+

∂

∂ψ
[SP ] =

∂

∂xi
(D′

∂P

∂xi
) +

∂

∂ψ
[
ωc
2

(ψ − C)P ]. (3.2)

where C represents scalar mean value. The main idea of the stochastic fields
method is that, instead of solving the transport equation of the PDF itself, with
some stochastic procedures, we come up with a series of Eulerian fields, the
purpose of which is not to recover any particular realization of the scalar field
φ, but more importantly they shares the same PDF with scalar field φ. In the
above equation, we have gradient terms in both the spatial coordinates and the
sampling space. Before applying the stochastic procedure on the PDF equa-
tion above, we would need to reformulate it into a formula that is conducive to
stochastic integration (i.e. a Fokker-Planck equation).
In stochastic theory, a Fokker-Planck equation (FPE) takes the following form
[9]:

∂P (φ, t)

∂t
= − ∂

∂φ
[a(φ, t)P (φ, t)] +

1

2

∂2

∂φ2
[b(φ, t)P (φ, t)], (3.3)

where P denotes the PDF of φ, a, b are some arbitrary coefficients.
We will now reformulate the PDF into a FPE. In fact, what we need to do is just
transform all spatial derivative terms into derivatives in the sampling variable
space. It is therefore important to notice that:

∂P

∂xi
= − ∂

∂ψ

[〈
∂τ

∂xi
|τ = ψ

〉
P

]
(3.4)

where the angle brackets denotes the ensemble avergae of the contained quan-
tity. For a more detailed discussion on PDF, please refer to [10]. Here we will
give a proof of the above equation without covering much of the fundamentals.
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As in [4], we start with the definition of PDF:

P (ψ;x, t) =
1

N

N∑
n=1

δ[ψ − τn(x, t)] := 〈δ[ψ − τ(x, t)]〉 (3.5)

where δ denotes the Dirac delta function. It is well known, see e.g. [10], that
the delta function has the following properties:

δ(x− a) = δ(a− x) (3.6)

δ(1)(x− a) = −δ(1)(a− x) (3.7)

where the superscript in brackets indicates a derivative and its order. Following
the above relations, we have:

∂P

∂xi
=
∂ 〈δ(τ − ψ)〉

∂xi

=
∂

∂xi

(
1

N

N∑
n=1

δ[τn(x, t)− ψ]

)

=
1

N

N∑
n=1

∂

∂xi
δ(τn − ψ)

=
1

N

N∑
n=1

∂τn

∂xi

∂δ(τn − ψ)

∂τn

= − 1

N

N∑
n=1

∂τn

∂xi

∂δ(τn − ψ)

∂ψ

=
∂

∂ψ
[

1

N

N∑
n=1

∂τn

∂xi
δ(τn − ψ)]

=
∂

∂ψ
[

〈
∂τ

∂xi
|τ = ψ

〉
P ]

Looking back at the PDF equation, the combined turbulent and molecular dif-
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fusion term requires applying the above relation twice:

∂

∂xi
(Γ′

∂P

∂xi
) =

∂Γ′

∂xi

∂P

∂xi
+ Γ′

∂2P

∂xi∂xi

=
∂Γ′

∂xi

∂P

∂xi
− Γ′

∂

∂ψ
(

〈
∂2τ

∂xi∂xi
|τ = ψ

〉
P )

+ Γ′
∂2

∂ψ2
(

〈
∂τ

∂xi

∂τ

∂xi
|τ = ψ

〉
P )

(3.8)

The first term on the RHS can be dealt together with the convection term by
applying the derivative variable exchange relation for another time, then we
get:

∂P

∂t
=

∂

∂ψ
[(Ui

〈
∂τ

∂xi
|τ = ψ

〉
− ∂Γ′

∂xi

〈
∂τ

∂xi
|τ = ψ

〉
− Γ′

〈
∂2τ

∂xi∂xi
|τ = ψ

〉
)P ]

+
∂2

∂ψ2
(Γ′
〈
∂τ

∂xi

∂τ

∂xi
|τ = ψ

〉
P )

(3.9)

Now the convection-diffusion components of the PDF transport equation has
been reformulated into a FPE. All the remaining terms in the PDF are naturally
derivatives of sampling variable.
In [9], it is proved that a stochastic process described by a FPE is equivalent to
the Ito stochastic differential equation (SDE).

dφ(t) = a[φ(t), t]dt+
√
b[φ(t), t]dW (t) (3.10)

where W (t) is a Wiener process, which is a continuous Gaussian stochastic
process. The rigorous mathematical definition is not necessary here for the
particular interest of engineering applications. Interested readers will find a
scrutinised discussion in [9]. It is, however, important to understand that,

• W(t)∼N(0,t) for any t≥0

• for any 0≤s<t, [W(t)-W(s)]∼N(0,t-s)
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where N denotes normal distribution. The above conclusions are drawn from
the fact that W (t) is a Gaussian process. We can further argue that,

∆W = ε
√

∆t, (3.11)

where ε ∼ N(0, 1). We let ∆t get infinitesimally small, then we get,

dW = ε
√

dt. (3.12)

Equipped with the knowledge on Wiener process we are ready to deal with the
integral of the Ito SDE, namely

φ(t) = φ(t0) +

∫ t

t0

dt′a[φ(t′), t′] +

∫ t

t0

dW (t′)b[φ(t′), t′]. (3.13)

The next section will be devoted to the numerical integration of the Ito SDE.

3.4 Stochastic integration schemes

Having shown the theoretical correspondence of the PDF equation and the Ito
stochastic differential equation, the priority of our work now is to think about
what kind of numerical schemes we could possibly use to tackle a stochastic
numerical integral. Out of intuition, it is natural to understand that the deter-
ministic portions are not different with the normal integral, and therefore can be
treated with any typical numerical integration schemes, e.g., Runge-Kutta type
methods. In fact, in [5] a conventional Runge-Kutta scheme was applied due to
the convenience and robustness of conventional numerical integration schemes.
However in the strict sense, the existence of the Wiener process calls for a spe-
cial type of numerical scheme.
The subject of SDE integration is a relatively young one with many intensive
ongoing research. To be able to label the order of accuracy of SDE schemes
as in conventional integration analysis, different definitions of accuracy would
be needed, an elaboration which is beyond the scope of this work. Interested
readers are refered to [11]. Based on the affinity with deterministic integration,
some of the methods are selected in this work for further discussions:
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• Euler-Maruyama method, a direct extension from traditional Euler first
order scheme.

• Milstein method, a slightly more complex scheme compared to the Euler-
Maruyama method.

• Stochastic 2nd order Runge-Kutta method(SRK2).

Below we would give a brief introduction to the Euler-Maruyama method, then
some theoretical tools will be discussed to facilitate the derivation of the Mil-
stein method that follows. Finally, the higher order SRK2, which will be applied
in our cavitation model, will be presented.

3.4.1 Euler-Maruyama method

Euler-Maruyama method [12] is the simplest generalization of the Euler method
of ordinary differential equation (ODE) to SDE. Consider the SDE:

dφ(t) = a(φ, t)dt+ b(φ, t)dW (t) (3.14)

Suppose we solve the SDE on the interval [0, T ], with time step ∆t = T/N ,
where N is the number of time steps, and initial condition φ(0) = φ0. The
Euler-Maruyama approximation to the true solution φ is the following series
Y :

• set Y0 = φ0

• recursive march the time

Yn+1 = Yn + a(Yn)∆T + b(Yn)∆Wn (3.15)

where 0≤n≤N − 1, ∆Wn = Wn+1 −Wn

The advantage of such scheme is obviously its simplicity, although, not sur-
prisingly, the accuracy of such method is low. And unfortunately the idea of
such simple extension cannot be directly transplanted into higher order SRK
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schemes, as will be shown in the later section. Despite of the disadvantages, it
is a convenient method especially suitable for preliminary solution and compar-
ison purposes.

3.4.2 Some Theoretical Tools and Milstein method

Euler-Maruyama method is the simplest integration scheme that does not take
much theoretical consideration. But in applications where higher accuracy is
important, schemes with higher order of accuracy are usually adopted. How-
ever, without delicate theoretical tools, it is impossible to develop or to un-
derstand the gist of higher order schemes. In the discussion that follows, we
will demonstrate the derivation of Ito’s Lemma and Lemperti transforma-
tion. Then a derivation of the Milstein Method will be given by applying Taylor
expansion.

Ito’s Lemma

The basis of Ito SDE is Ito’s Lemma, which is commonly compared with the
chain rule in calculus. Suppose for any function f(φ, t) that is first order con-
tinuous in t and second order continuous in φ, we have,

df =
∂f

∂t
dt+

∂f

∂φ
dφ+

1

2

∂2f

∂φ2
dφ2 + o(dφ2)

=
∂f

∂t
dt+

∂f

∂φ
(a(φ, t)dt+ b(φ, t)dW 2)

+
1

2

∂2f

∂φ2
[a2(φ, t)dt2 + 2a(φ, t)b(φ, t)dtdW + b2(φ, t)dW 2] + o(dφ2)

(3.16)

From the previous discussion on the Wiener’s process, we know that the dW
term is of order dt

1
2 , neglecting terms with order higher than dt in the above

equation, we get,

df = (
∂f

∂t
+ a(φ, t)

∂f

∂φ
+

1

2
b2(φ, t)

∂2f

∂φ2
)dt+ b(φ, t)

∂f

∂φ
dW (3.17)



24 CHAPTER 3. STOCHASTIC NUMERICAL INTEGRATION

Lamperti Transformation

Another tool that will be used later is called Lamperti transformation. For
any SDE with the diffusion coefficient depending only on the state variable but
not on time t,

dφ(t) = a(φ, t)dt+ b(φ)dW (t) (3.18)

Such a SDE can always be transformed into one with unitary diffusion coeffi-
cient by applying the Lamperti transformation

Yt = F (φt) =

∫ φt

z

1

σ(u)
du. (3.19)

Here z is an arbitrary value in the state space of φ. The process Yt solves the
SDE below

dYt = (
a(t, F−1(y))

b(F−1(y))
− 1

2
σφ(F−1(y)))dt+ dWt, (3.20)

which is just

dYt = (
a(t, φt)

b(φt)
− 1

2
σφ(φt))dt+ dWt. (3.21)

Also the following properties will be used extensively later on in the scheme
derivations

f(t, φ) =

∫ φ

z

1

σ(u)
du, ft(t, φ) = 0,

fφ(t, φ) =
1

σ(u)
, fφφ(t, φ) = −σφ(φ)

σ2(φ)
.

Milstein Method

Milstein method is published the first time in [13]. We assume the time dis-
cretization and initial condition as in the previous section. The Milstein ap-
proximation to the true solution φ is the series Y defined as follows:

• set Y0 = φ0
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• recursive march the time

Yn+1 = Yn+a(Yn)∆T + b(Yn)∆Wn+
1

2
b(Yn)b′(Yn)((∆Wn)2−∆t)

(3.22)

where b′ denotes the derivative, 0≤n≤N − 1, and ∆Wn = Wn+1−Wn.

We will now start to look at the derivation of the scheme. Think about an SDE
with diffusion coefficient independent of t. For any transformation y = f(x)

on the state variable, by Ito’s Lemma we have

dYt = (
∂f

∂t
+ a

∂f

∂φ
+

1

2
b2
∂2f

∂φ2
)dt+ b

∂f

∂φ
dW. (3.23)

Let f be the Lamperti transformation, we get

f ′(φ) =
1

b
, f ′′(φ) = −bφ

b2
.

Plug the above into Ito’s formulation,

dYt = (
a

b
− 1

2
bφ)dt+ dW, (3.24)

and note that ∆Y ∼ O(∆t
1
2 ).

Denote the inverse of f as g, so φ = f−1(y) = g(y). Then we apply the Taylor
expansion on g

g(Yi + ∆Yi) = g(Yi) + g′(Yi)∆Y i+
1

2
g′′(Yi)(∆Yi)

2 +O(∆Y 3
i ). (3.25)

Applying the chain rule of derivatives on g, we get

g′(y) = b, g′′(y) = bbφ.

Therefore, we have

φi+1 − φi = g(Yi + ∆Yi)− g(Yi)

= b∆Yi +
1

2
bbφ(∆Yi)

2 +O(∆Y 3
i )

= b(
a

b
− 1

2
bφ)∆t+ b∆W +

1

2
bbφ(∆W )2

= a∆t+ b∆W +
1

2
bbφ((∆W )2 −∆t) +O(∆t

3
2 ).

(3.26)
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Note that:

• When the diffusion term is not a function of φ, then bφ = 0, this method
degrades to the Euler-Maruyama method.

• Due to the additon of the derivative term, this method normally has a
higher accuracy as compared to the Euler-Maruyama method. However,
it requires the knowledge of the derivative term.

In the next section, we will introduce the 2nd order stochastic Runge-Kutta
scheme, which requires no knowledge of the derivative term and enjoys a high
order of accuracy.

3.4.3 2nd order stochastic Runge-Kutta method

Other than the first-order methods discussed above, A.Rößler in [14] has de-
veloped a range of Runge-Kutta schemes with 2nd order accuracy in the weak
sense (for the definition of strong and weak accuracy, please refer to [11]), by
different choices of coefficients and number of stages. A discussion on the gen-
eral scheme and the order of accuracy would be beyond the scope of the current
work. Here we adopt a specific scheme that is proposed in [7] and [8]:

Yn+1 = Yn+
1

2
a(tn, Yn)∆t+

1

2
a(tn+∆t, Yn+a(tn, Yn)∆t+b∆W )+b∆W

(3.27)

3.5 Numerical tests

Having all the theoretical background covered, some sample problems will be
testified with the Euler-Maruyama and the SRK2 schemes. A finite difference
code is written in matlab to perform these preliminary numerical experiments.
In this section some results will be shown and discussed.
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3.5.1 Test One

As in [3] and [4], we will solve a PDF transport equation that corresponds to
a plug flow reactor configuration. With a simple molecular mixing model, the
PDF equation becomes Equation (3.2) with the boundary conditions:

P (φ; 0, t) = δ(φ),
∂

∂x
P (φ; 1, t) = 0

and the initial condition:

P (φ;x, 0) = δ(1− φ). (3.28)

In order to apply Monte Carlo method, the transport equation for the PDF is
transformed into the Eulerian field formulation:

dφn =

[
−∂φ

n

∂xi
+D′

∂2φn

∂xi∂xi
− ω

2
(φn− < φn >) + a1(1− φn)

]
dt

+
√

2D′
∂φn

∂xi
dW.

(3.29)

The above equation is non-dimensionalized. The first term on the RHS is the
convection by mean velocity, which aligns x1 direction in this plug flow prob-
lem and is non-dimensionalized into 1. The constant values adopted in the
current problem are:

a1 = 3, ω = 20, D′ = 0.1.

For the above values, the scalar mean value has the following analytical solu-
tion:

φ(x) = 1− exp(−2.416x). (3.30)

We obtained the result as in Figure 3.1. Both methods seem to have produced
satisfactory results.

3.5.2 Test Two

The second test resembles the one-dimensional problem in [7], a typical advection-
diffusion equation with a stochastic forcing term:

∂u

∂t
+ v

∂u

∂x
− ν ∂

2u

∂x2
= σ

∂W

∂x
, (3.31)
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Figure 3.1: Test 1 for SRK and EM method, dt=0.01, dx=0.1, realizations=40

where x ∈ [0, 1], velocity v = 0.6, diffusion coefficient ν = 0.005, σ = 2.5

subject to the initial condition

u(0, x) = exp

(
− (x− 0.2)2

ν

)
, x ∈ [0, 1] (3.32)

and the boundary conditions

u(t, 0) =
1√

4t+ 1
exp(− (−0.2− vt)2

ν(4t+ 1)
),

u(t, 1) =
1√

4t+ 1
exp(− (−0.8− vt)2

ν(4t+ 1)
).

(3.33)

It has the following analytical solution for the expected value of u

u(t, x) =
1√

4t+ 1
exp

(
− (x− 0.2− vt)2

ν(4t+ 1)

)
, x ∈ [0, 1] (3.34)
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The results from the simulation, which are shown in Figure 3.2-Figure 3.4,
agree well with the analytical solution. Here we are more interested in knowing
how the two schemes behave with different time step and different number of
realizations. As later on when calculating realistic problems, it is critical to con-
trol the computational cost. Figure 3.2 and Figure 3.3 offer a comparison on the
number of realizations. As is revealed in the 10000 realizations cases, at high
number of realizations, both methods produce very satisfactory results. Even
the variances are highly converged. With a close inspection, SRK2 slightly out-
performs Euler-Maruyama method at the range close to the peak. However,
at a lower number of realizations, the SRK2 clearly achieves a higher level of
agreement to the analytical expected value, especially at the peak region.
Figure 3.4 demonstrates the behavior of the two methods with different time
step values. A trend similar to that with the number of realizations can be ob-
served. Both of the methods agree very well with the analytical expected value,
nonetheless the Euler-Maruyama gets a higher and higher deviation in contrast
to SRK2, as the time step gets larger. Also SRK2 again captures the peak better
than Euler-Maruyama method.
In summary, from the above figures, it is safe to conclude that with a refined
time step and large number of realizations, both methods perform well. For re-
alistic problems, in which the affordable computational cost limits the number
of realizations (in the current studies, the number of Eulerian fields), and when
a larger time step is usually desirable, SRK2 has a considerably high advantage
over the Euler-Maruyama method. Therefore, we selected the SRK2 method in
the final implementation of the cavitation model.

3.6 An Eulerian Field Monte Carlo Formulation
of Volume Fraction

The details on stochastics covered in this chapter enable us to finalize the dis-
cussion on stochastic cavitation model that we left opened in the end of the last



30 CHAPTER 3. STOCHASTIC NUMERICAL INTEGRATION

chapter.
Recall that in the last chapter, a volume fraction equation, Equation (2.3), which
is mathematically identical to Equation (3.1), has been derived. Likewise, the
volume fraction shares the same PDF transport equation. Therefore, a similar
transformation from PDF equation to Eulerian field Monte carlo formulation
can be applied, which leads to:

dαn =

[
−ui

∂αn

∂xi
+D′

∂2αn

∂xi∂xi
− ω

2
(αn− < α >) + S(αn)

]
dt

+
√

2D′
∂αn

∂xi
dW.

(3.35)

where the first term denotes the convection by filtered velocity field. The un-
resolved velocity from our LES model contributes via D′. At this point, the
formulation could readily be handled by the stochastic numerical integration
schemes.
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Figure 3.2: Test 2 for SRK and EM method, realizations=1000
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4
Test case

4.1 Introduction

In this chapter, a preliminary test case for stochastic field method will be demon-
strated. We opted for a 2 dimensional configuration as in standard cavitating-
Foam case (available in the majority of OpenFOAM releases) for its simplic-
ity. Comparison is made between the results from stochastic field solver, inter-
PhaseChangeFDFFoam and regular interPhaseChangeFoam.
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4.2 Geometry and case setup

A simplified geometry of an academic nozzle geometry (see Figure 4.1), with a
rectangular contraction in the middle of the domain, is used to present both the
cavitation inside the nozzle and the flow downstream. A higher mesh concen-
tration is adopted around the nozzle and immediate upstream and downstream
portion of the domain.
With respect to the boundary conditions, we followed the setting in cavitating-

Figure 4.1: 2D nozzle geometry

Foam case, in which 300bar, and 100bar pressure are imposed on the inlet and
outlet respectively. Velocity boundaries (mass fluxes) are left free to adjust to
the pressure difference, much like in the case of a Poiseuille flow.

4.3 Results

Two cases with the same settings have been simulated with interPhaseChange-
Foam and interPhaseChangeFDFFoam respectively. In the latter case, we take
10 stochastic fields as the presentation of the PDF, for 8 were used in previous
works [1] [2]. Snapshots of velocity fields amd volume fraction fields are taken
at 0.01s, which is several times of flow through time.
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In Figure 4.2 and Figure 4.3, very good agreement on the velocity prediction

Figure 4.2: Velocity field, interPhaseChangeFoam

Figure 4.3: Velocity field, interPhaseChangeFDFFoam

has been achieved both in terms of the scale of velocities and the flow behavior
downstream, as the scales of the curvatures are similar.
With respect to alpha fields in Figure 4.4 and Figure 4.5, in both cases we ob-
serve cavity regions extended from the nozzle inlet all the way out of the nozzle,
after which, shear induced vorticities close to the nozzle outlet create low pres-
sure spots at their centers, hence the inception of cavitation, which correspond
well with the wiggles we have seen in the velocity fields. The value of vol-
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ume fraction is also predicted with satisfactory accuracy. For the purpose of
demonstration for the stochastic method, snapshots of 4 volume fraction fields
are provided, see Figure 4.6- Figure 4.9. The difference involved in them can
easily be observed.

Figure 4.4: Volume fraction field, interPhaseChangeFoam

Figure 4.5: Mean volume fraction field, interPhaseChangeFDFFoam
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Figure 4.6: Volume fraction field number 1, interPhaseChangeFDFFoam

Figure 4.7: Volume fraction field number 2, interPhaseChangeFDFFoam

Bibliography

[1] J Dumond, F Magagnato, and A Class, “Stochastic-field cavitation model,” Physics

of Fluids (1994-present), vol. 25, no. 7, pp. 073302, 2013.

[2] WP Jones and S Navarro-Martinez, “Large eddy simulation and the filtered prob-

ability density function method,” in LES AND DNS OF IGNITION PROCESSES

AND COMPLEX-STRUCTURE FLAMES WITH LOCAL EXTINCTION Proceed-

ings of the International COST Workshop. AIP Publishing, 2009, vol. 1190, pp.

39–62.



40 CHAPTER 4. TEST CASE

Figure 4.8: Volume fraction field number 3, interPhaseChangeFDFFoam

Figure 4.9: Volume fraction field number 4, interPhaseChangeFDFFoam
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A
OpenFOAM implementation

A.1 Introduction

In the previous chapters, the theoretical and algorithmic details have been dis-
cussed in preparation for the code implementation of the current study. This
chapter focus specifically on the details involved in the coding aspect. Firstly,
an introduction and general perspectives will be given on the numerical tool
that will be used, namely OpenFOAM (Open Field Operation and Manipula-
tion) and the major standard solvers pertinent to the current study, with the
particular aim of connecting the standard implementation with the theoretical
background. Secondly, we will briefly walk through the code structure of the
cavitation models that has already been available in the standard release, in or-
der to lay a perceptional foundation for the implementations of stochastic mod-
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ule. In the last section, a demonstration of the implementation of the stochastic
model, as well as the underlying stochastic integration library will be given.
Much unlike in the previous chapters, where theory presents heavily, the con-
tents of this chapter are organised with the aim that is twofold: First is to show
the code implementation of the model in a reader-friendly way; second is to
provide an example on how to harness the available code snippets in Open-
FOAM package to fulfil our purpose in practice. It has always been a sincere
hope of the author that more pragmatic tutorials of OpenFOAM would become
available to the users, so that they could handle the code with ease, and such
convenience would hopefully in turn attracts more users into the open source
community. Because the collaboration under the spirit of open source is, in the
author’s opinion, the most effective way of fostering the development of CFD.

A.2 OpenFOAM and its standard solvers

Computational Fluid Dynamics (CFD) has been well established since its ear-
liest applications in meterology in the early 20’s. With the increasing compu-
tational power becoming available at a lower price, the application of computa-
tional models has become an indispensable part of the studies on the respective
physical problems in both academical and industrial practices. Several com-
mercial CFD packages, e.g., Star-CD, Fluent, CFX, FIRE, have accomplished
great success and have long been available in the market. However, with the
ever increasing complexities and amount of details involved in the problems
of interest, reducing the overhead involved in the licence costs has also be-
come increasingly more important for CFD users. In line with this concern,
OpenFOAM (Open Field Operation and Manipulation) has attracted a substan-
tial amount of attention from both academical and commercial users since its
first release in 2004. Researchers in the multiphase flow area have been using
OpenFOAM extensively since some of the earliest release, and a range of well
developed solvers are readily available in the OpenFOAM standard releases.
The ongoing OpenFOAM implementation and debugging effort in the multi-
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phase area by the community has made OpenFOAM an excellent platform for
high-level solver development. Some major solvers that are worth mentioning
are (Lagrangian particle based solvers are not included here due to the lower
relevance to the current work):

• interFoam [1], solver for 2 incompressible, isothermal immiscible flu-
ids using a VOF (volume of fluid) phase-fraction based interface captur-
ing approach. Its multiple fluids counterpart multiphaseInterFoam has
adopted the same approach.

• twoPhaseEulerFoam, solver for a system of 2 compressible fluid phases
with one phase dispersed, e.g. gas bubbles in a liquid including heat-
transfer.

• cavitatingFoam, transient cavitation code based on the homogeneous equi-
librium model from which the compressibility of the liquid/vapour “mix-
ture” is obtained.

• interPhaseChangeFoam [2], solver for 2 incompressible, isothermal im-
miscible fluids with phase-change (e.g. cavitation). Uses a VOF (volume
of fluid) phase-fraction based interface capturing approach.

Since the purpose of the project is to develop an Eulerian stochastic model in the
VOF framework, and the state-of-the-art simplified Rayleigh-Plesset model [3]
[4] has already been implemented in interPhaseChangeFoam, interPhaseChange-
Foam is selected as the basis of the further development of the current work. In
the next chapter, below we would focus mainly on the implementation details
of the new model, namely the SRK2 stochastic integration module, and the
stochastic model library. The details of the code provided in this section is
based on Foam extended 3.1, minor variations may apply to different releases.
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A.3 Implementation of SRK2

A good practice of OpenFOAM development involves selecting the available
code pieces to start with. And as was mentioned before, the deterministic part
of the stochastic integration closely resembles the normal numerical integra-
tion. As an open source project with some past development, OpenFOAM has
an ODE library that serves this purpose. In the ODE library, the RK directory
contains the components for a 4th order Runge-Kutta integration. A few steps
can be taken to modify the ODE libraries into the stochastic integration library
we need:

• Take a copy of the original ODE library, then remove the numerical meth-
ods that are irrelevant to our purpose. In foam extended 3.1, Euler, KRR4,
SIBS directories should be removed. Meanwhile corresponding changes
in Make files have to be made.

• Tailor down the 4th order RK scheme into a 2nd order RK. This mainly
involves deleting many integration coefficients defined in the first few
lines of RK.C file, and those in the constructor. Then remove the exces-
sive integration stages in function "solve". A compile and test on the 2nd
order RK method at this point is highly recommended before proceeding.

• Implement the stochastic part. The class "Random" is a random number
generator in OpenFOAM that can be used to perform a Gaussian sam-
pling (cachedRandom class is not kept in foam extended 3.1, but it can
also be used if available). The stochastic contribution should then be
added into the corresponding lines of the "solve" function.

Note that keeping the code structure of ODE library enables an easy poten-
tial addition of other numerical integration schemes into the library. Another
scheme can be easily implemented independent on the existing SRK2 compo-
nents.
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A.4 Implementation of stochastic model

The stochastic ODE library (which will be referred to as stchODE from now on,
following the naming in the implementation) only solves the stochastic ODE,
but a module that assembles the equation is still needed. In standard inter-
PhaseChangeFoam solver, the equation of volume fraction exist in alphaEqn.H,
and it is numerically solved in the MULES solver which is located in /finiteVol-
ume/fvMatrices/solvers. What we need to achieve here is to build a substitution
for alphaEqn.H which will be solved by our stchODE library.
The question that follows during the implementation was: "What are the essen-
tial features of the stochastic model that are fundamentally different from those
of the interPhaseChangeFoam?" In author’s opinion, implementation-wise the
differences lie in two aspects:

• Stochastic method solves realisations of volume fraction on multiple Eu-
lerian fields instead of just one. So we need to find where the Eulerian
field is defined in interPhaseChangeFoam, and add the multi-fields fea-
ture into that structure for our application.

• The solving of stochastic method relies on the stchODE module we have
developed, which means an ideal target template should be some class
that resorts to ODE library for solution. That template class can then
be modified to assemble our stochastic equation, and call stchODE for
solution.

The following two sections contain brief discussions that support these two as-
pects with details on the implementation level. For better clarity, readers are
recommended to refer to the corresponding code snippets.

A.4.1 stochasticPhaseChangeTwoPhaseMixture

First off, we have to locate the Eulerian field in interPhaseChangeFoam. It is
obvious that in creaetFields.H of interPhaseChangeFoam,

volScalarField alpha1
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(

IOobject

(

"alpha1",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

declares the Eulerian field. Then we notice that in the declaration of phaseChangeT-
woPhaseMixture,

...

autoPtr<phaseChangeTwoPhaseMixture> twoPhaseProperties =

phaseChangeTwoPhaseMixture::New(U, phi, "alpha1");

...

A character string is passed to the runTime selection (of the cavitation models).
Digging deeper into the class phaseChangeTwoPhaseMixture, we find no trail
of alpha1 inside the phaseChangeTwoPhaseMixture class itself. However, a
closer inspection on phaseChangeTwoPhaseMixture.H reveals that,

class phaseChangeTwoPhaseMixture

:

public twoPhaseMixture

{

...

could have make the manipulation of alpha1 possible for phaseChangeTwoPhaseMix-
ture (such manipulations can be found in any of the cavitation models, e.g., in
SchnerrSauer.C), through the inheritance from twoPhaseMixture structure. In-
deed, after locating the twoPhaseMixture files (in /src/transportModels
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/incompressible/incompressibleTwoPhaseMixture), in twoPhaseMixture.H, we
find the following line in the class declaration:

...

const volScalarField& alpha1_;

...

which hints at the chance that twoPhaseMixture might communicate with the
alpha1 in createFields.H through the above reference. This can easily be con-
firmed by the constructor in twoPhaseMixture.C:

...

alpha1_

(

U_.db().lookupObject<const volScalarField>

(

alpha1Name

)

),

...

so the lookupObject function searches for the alpha1 field, and returns the ref-
erence to twoPhaseMixture.
Having understood the principle of how phaseChangeTwoPhaseMixture works,
we can start to build the block for our purpose. In order to operate on the mul-
tiple Eulerian fields, the PtrList structure is used in our current implementation.
In author’s implementation, stochasticTwoPhaseMixture.H

...

PtrList<volScalarField> alpha1_;

...

And in the constructor of stochasticTwoPhaseMixture in the corresponding C
file, the number of the fields is first passed to the constructor, and then a mech-
anism that identify, name, and initialise the Eulerian fields is implemented.
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...

forAll(alpha1_, i)

{

char buffer[8];

sprintf(buffer,"%d",i);

Foam::word stringI(buffer);

IOobject header

(

"alpha1_" + stringI,

U_.mesh().time().timeName(),

U_.mesh(),

IOobject::NO_READ

);

// check if field exists and can be read

if (header.headerOk())

{

alpha1_.set

(

i,

new volScalarField

(

IOobject

(

"alpha1_" + stringI,

U_.mesh().time().timeName(),

U_.mesh(),

IOobject::MUST_READ,
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IOobject::AUTO_WRITE

),

U_.mesh()

)

);

}

else

{

alpha1_.set

(

i,

new volScalarField

(cd

IOobject

(

"alpha1_" + stringI,

U_.mesh().time().timeName(),

U_.mesh(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

alpha1Mean_

)

);

}

}

...

Other auxiliary functionalities, such as obtaining the mean value of Eulerian
fields, are also actuated in stochasticPhaseChangeTwoPhaseMixture. Mean-
while, the cavitation models, for instance, SchnerrSauer.C require some modi-
fication to fit into the multi-field structures. However, since the work involved
in these aspects are fairly straight forward but scattered in the code, they will
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not be covered here due to the limited volume of this instruction. Interested
readers are highly encouraged to refer to the code for more details. While the
application of such mechanism will be touched upon again in the next section,
where the equation is assembled.

A.4.2 stochasticModel and stochasticSolver

As has been mentioned before, since we designed our stchODE library in a way
largely similar to the ODE library. So for the equation assembling purpose,
it is natural to seek for a structure in foam that resorts to ODE for solution.
Some code pieces in foam provides such examples, e.g. chemistryModel and
chemistrySolver in thermophysicalModels. So the design of stochastic model
vaguely follows the pattern in chemistryModel in the sense that stochasticModel
provides necessary functions that interface with ODE library, such as nEqns,
derivatives, and jacobian, and stochasticSolver inherits stochasticModel, un-
wraps it, and calls the stchODE solver for solution in the end. In the following
content of this section, we would briefly walk through the final implementation
of stochasticModel and stochasticSolver and commentate as it is due.

stochasticModel.H

stochasticModel inherits stchODE class:

...

class stochasticModel

:

public stchODE

...

Such inheritance guarantees that stochasticModel, or any derived class of it
would be able to call the solver in stchODE. In fact we would see later that the
this is done by stochasticSolver, who includes stochasticModel as a member.

...
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autoPtr<stochasticPhaseChangeTwoPhaseMixture>

twoPhaseProperties_;

transportModel& twoPhaseTransport_;

...

These references and pointer are basically a replication of those in the create-
Fields.H of interPhaseChangeFoam, as the transport properties are necessary
for the update of properties, when the new solution becomes available.
As mentioned previously,

...

virtual label nEqns() const;

virtual void derivatives

(

const scalar t,

const scalarField& y,

scalarField& dydt

) const;

virtual void stochasticTerm

(

const scalar t,

const scalarField& y,

vectorField& stch

) const;

virtual void jacobian

(

const scalar t,

const scalarField& y,

scalarField& dfdt,
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scalarSquareMatrix& dfdy

) const;

...

Are the functions that interface with stchODE library. Here, they are virtual
functions but not pure virtual ones because in stochasticMode.C they will be
loaded with our stochastic equations.

stochasticModel.C

As shown in the last section,

...

twoPhaseProperties_

(

stochasticPhaseChangeTwoPhaseMixture::New

(

NoR,

U,

phi,

alpha1Name

)

),

twoPhaseTransport_

(

dynamic_cast<transportModel&>

(

twoPhaseProperties_()

)

),

...

These are the handles for the properties’ update.

...
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Foam::label Foam::stochasticModel::nEqns() const

{

return twoPhaseProperties_

->alpha1Mean_.internalField().size();

}

...

We will pass all the internal nodes of the Eulerian fields to stchODE for solution.

...

void Foam::stochasticModel::derivatives

(

const scalar t,

const scalarField &y,

scalarField& dydt

) const

{

volScalarField yc(twoPhaseProperties_->alpha1Mean_);

volScalarField detRHS

(

IOobject

(

"dydt",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::NO_WRITE,

false

),

mesh_,

dimensionedScalar("zero",dimless/dimTime,0.0)
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);

yc.internalField() = y;

yc.correctBoundaryConditions();

...

The derivatives function provides the deterministic portion of the RHS source.
The reason why we build volScalarField yc here is because, we need the so-
lution of the old step (both internalField and the boundary condition) later on
to calculate the deterministic source. However, the interface of virtual function
derivatives has to follow the same pattern as that in stchODE, and the solution
of the old step can only be seen through the reference of scalarField y (which
means boundary conditions are missing). So here we recover the old solution by
taking a new field yc, which is declared and initialised with the mean solution
field. It follows that yc would get the same boundary conditions as the mean
field, which actually are the same boundary conditions with solution fields of
each realisations. And once yc has taken y, the boundary conditions is updated,
then the yc becomes the full old solution field.

...

const surfaceScalarField& phiRef

= mesh_.lookupObject<surfaceScalarField>("phi");

Pair<tmp<volScalarField> > vDotAlphal

= twoPhaseProperties_->vDotAlphal(yc);

const volScalarField& vDotvAlphal = vDotAlphal[1]();

detRHS = (

//- Diffusion

fvc::laplacian

(

turbulence_->nuEff(),
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yc

)

//- Convection

- fvc::div

(

phiRef,

yc

)

+ fvc::Sp(fvc::div(phiRef),yc)

//- sgs molecular mixing

// In the explicit source function,

// only the first input get returned.

- fvc::Su

(

scalar(0.5)

* (yc - twoPhaseProperties_->alpha1Mean_)

/ tsgs(),

yc

)

);

dydt = detRHS.internalField();

dydt += vDotvAlphal.internalField()*yc.internalField();

...

These portion assembles the deterministic source. We can see that all the fvc
operations work on volScalarField, not scalarField, and this justifies our round-
about representation of the old solution field. Since dydt has to be scalarField,
it takes back only the internalField information from detRHS. The last line rep-
resents the contribution from the cavitation model. A similar mechanism has
been used in function stochasticTerm to recover the full solution field, which
needs no further elaboration.



58 APPENDIX A. OPENFOAM IMPLEMENTATION

stochasticSolver

Since the content of stochasticSolver is rather straightforward, we would not go
over the files line by line. However it is worth mentioning that,

...

PtrList<volScalarField>& alpha1 = stchModel_.alpha1();

forAll(alpha1,i)

{

scalarField& ci = alpha1[i].internalField();

stchODESolver_->solve

(

stchModel_,

t0,

t0 + dt,

ci,

deltaT

);

...

extracts the internal nodes values and pass them to the stchODE solver. If we
have a look at the stchODE solver (The reader is recommended to check out the
stchODESolver.C file in the directory: /applications/solvers/interPhaseChangeFDFFoam
/stchODE/stchODESolvers/stchODESolver as continue reading),

...

void Foam::stchODESolver::solve

(

const stchODE& ode,

const scalar xStart,

const scalar xEnd,
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scalarField& y,

scalar& h

)

{

const label MAXSTP = 10000;

scalar x = xStart;

for (label nStep=0; nStep<MAXSTP; nStep++)

{

ode.derivatives(x, y, dydx_);

ode.stochasticTerm(x, y, stch_);

...

solve(ode, x, y, dydx_, stch_, h);

...

Comparing the interface of the above function and that of stochasticSolver::solve
function (Note that there is another solve function that has a different inter-
face. It is a different function, following C++ syntax), it becomes obvious that
stchODESolver::solver takes the internalField values of each of the alpha field
from stochasticSolver::solve, pass them to ode.derivatives and ode.stochasticTerms,
which are in fact the corresponding functions in stochasticModel that we have
covered in the previous section. These functions return the deterministic and
stochastic source in the form of dydx_ and stch_, which are then passed to
the core stchODE solver. When the solution is completed, back in stochastic-
Solver.C file,

...

stchODESolver_->solve

(

stchModel_,

t0,
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t0 + dt,

ci,

deltaT

);

alpha1[i].correctBoundaryConditions();

...

The ci, which refers to the internalField of alpha[i] gets updated, and the last
line updates the boundary conditions of alpha[i]. When the loop of i is finished,
the solution of all Eulerian fields is completed.
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