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Three-Nucleon Forces Through Normal-Ordered Approximations
DAG FAHLIN STRÖMBERG
Department of Physics
Chalmers University of Technology

Abstract
Three-body forces have long been known to play an important role in nuclear physics.
However, fully including such interactions in ab-initio methods is computationally
expensive and not feasible for larger nuclei. As an alternative, approximations based
on normal-ordering with respect to a Fermi state of the nucleus can be used. In this
framework part of the three-body interaction can be expressed as lower order inter-
actions, which can be included without increasing the computational complexity.
This thesis provides a full derivation of the normal-ordered two-body (NO2B) ap-
proximation for closed-shell nuclei. In addition, a simple implementation of this
method is described. This is then used to calculate ground states of helium-4 in
small model spaces, which are compared to the corresponding calculations with full
three-body forces. The results show a relative error of less than 1.5%, in line with
earlier studies.

Keywords: ab-initio, nuclear physics, normal-ordered approximation, quantummany-
body theory, three-nucleon forces
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1
Introduction

The development of precise and efficient ab-initio methods is an important goal in
theoretical nuclear physics. Rather than relying on empirical models of the nucleus,
such methods start from a microscopic description of the interactions between the
individual nucleons. All approximations that are used in these methods are well-
controlled and applied in a systematic manner, meaning that the resulting uncer-
tainties can be quantified in a reliable fashion.
A significant challenge in the pursuit of higher accuracy is the inclusion of three-
nucleon (3N) interactions. Such interactions arise naturally in Hamiltonians derived
from chiral effective field theory [10], which are used as input to most modern ab-
initio calculations. Comparisons with experimental data such as [2] have proven
that the 3N contribution is not negligible in general.
Fully including 3N interactions in many-body methods is computationally challeng-
ing. To see why we must go to the core of the nuclear many-body problem, namely
the time-independent Schrödinger equation

Hψ = Eψ, (1.1)

where H is a many-body Hamiltonian operator and ψ is a many-body eigenstate.
If 3N interactions are included the Hamiltonian operator is

H =
A∑
i

Ti +
A∑

i<j

V 2N
ij +

A∑
i<j<k

V 3N
ijk , (1.2)

where A is the number of nucleons and Ti, V 2N
ij and V 3N

ijk represent the kinetic en-
ergy, the two-nucleon (2N) interaction and the 3N interaction, respectively. The
many-body state ψ exists in a Hilbert space spanned by an infinite basis φ1, φ2 . . .
This many-body basis is truncated into a finite-sized subset φ1, φ2 . . . φN , turning
(1.1) into a matrix eigenvalue problem. H is replaced by an N × N matrix given
by (HN)kl = 〈φk|H|φl〉. For this matrix to be diagonalisable within a reasonable
time frame it must be sufficiently sparse, i.e. only a fraction of the elements can
be non-zero. We note that the kinetic energy operator is a one-nucleon (1N) op-
erator, meaning that it only affects one nucleon at a time. This implies that the
corresponding term in (HN)kl must be zero if there is more than one single-particle
state that does not exist in both φk and φl — otherwise there is no 1N operator
that can turn the initial state φl into the final state φk. In the same fashion, the
2N interaction affects two nucleons simultaneously and only gives non-zero values
for (HN)kl if φk and φl have less than two non-shared single-particle states. If the
3N interaction is included as well (HN)kl can be non-zero for up to three non-shared
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1. Introduction

single-particle states. This implies that HN is significantly less sparse if 3N interac-
tions are included. As a consequence of this the computational complexity increases
dramatically, especially in larger nuclei.
A compromise between accuracy and computational feasibility can be reached through
an approximation scheme. One such approach is the normal-ordered two-body
(NO2B) approximation. The underlying idea is to express (normal order) the 3N
interaction relative to the Fermi state of the nucleus, i.e. the many-body state where
all nucleons occupy the lowest possible single-particle states. This results in an ex-
pression for the 3N interaction operator as a sum of a constant (0N), a one-nucleon
(1N) operator, a 2N operator and a 3N operator.

0

1

2

N
Protons Neutrons

(a) Helium-4 in its Fermi state.

0

1

2

N
Protons Neutrons

(b) One nucleon excited above the Fermi
state.

0

1

2

N
Protons Neutrons

(c) Two nucleons excited above the Fermi
state.

0

1

2

N
Protons Neutrons

(d) Three nucleons excited above the
Fermi state.

Figure 1.1: Examples of many-body configurations in a helium-4 nucleus. N is
the harmonic oscillator shell number.

To illustrate the meaning of these terms we consider the application of the normal-
ordered 3N interaction to the Fermi state of helium-4. The 0N term accounts for
all 3N transitions from the Fermi state (shown in Figure 1.1a) to itself. In a similar
fashion, the 1N term represents all transitions between the Fermi state and states
with one excited nucleon (e.g. 1.1b). The 2N term represents transitions from the
Fermi state to states with two excited nucleons (e.g. 1.1c). Finally, the remaining
3N term accounts for all other transitions (such as 1.1d). The normal-ordered 3N
interaction can also be applied to other many-body configurations. The 0N, 1N, 2N,
and 3N terms then correspond to transitions with three, two, one and zero diagonal
single-particle states that belong to the Fermi configuration.
In the NO2B approximation, only the 0N, 1N and 2N terms are retained whereas the
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1. Introduction

3N term is discarded, allowing us to at least partially account for the 3N interaction
without increasing the computational difficulty substantially.
The particular version of normal ordering that is used this thesis is known as single-
reference normal ordering. It is valid if a single reference state (the Fermi state) is
already a good approximation of the true many-body ground state. This is true for
ground states of closed-shell nuclei (such as helium-4).
This thesis aims to provide a full derivation of the NO2B approximation (Chapter 2),
describe a simple implementation in Python (Chapter 3), and apply this to ground
states of helium-4 in small model spaces (Chapter 4). This is benchmarked against
calculations using the full 3N interaction. Finally, a summary of the key points of
the thesis as well as an outlook of possible improvements are provided (Chapter 5).
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2
Theory

A full derivation of the NO2B approximation can be found in Section 2.2 in this
chapter. This adds detail to the more concise derivation previously published in [9].
To provide the reader with the formalism needed to arrive at the NO2B approxima-
tion, an introduction to second quantisation and normal ordering is given in Section
2.1. Additional sections on JT-coupling (Section 2.3) and model space truncation
(Section 2.4) are also included as a background to the chapters on implementation
and results.

2.1 Second Quantisation

Many-body physics is usually expressed in the language of second quantisation.
This framework provides a convenient way to describe and manipulate many-body
states containing non-fixed numbers of identical particles. An introduction to this
subject is included below, and more thorough accounts can be found in textbooks
on many-body theory such as [5, 14].

2.1.1 Many-body states
In single-particle quantum mechanics all states exist in a Hilbert space H spanned
by basis states φ1, φ2, φ3, . . . such that any state ψ ∈ H can be expressed as

|ψ〉 =
∑

i

ci |φi〉 .

The complex numbers ci = 〈ψ|φ〉 are the projections of ψ on the basis states.
Many-body states exist in product sets of such Hilbert spaces, spanned by products
of single-particle basis states. For example, a two-body state can be expressed as a
sum of product states such as φ1φ2, φ2φ3, and so on.
In the case of identical particles physical many-body states must also satisfy the spin-
statistics theorem. For fermions this means that the state must be anti-symmetric
with respect to an interchange of any two particles, i.e.

|abc〉 = − |bac〉 .

Similarily, boson states must be symmetric under the same transformation. As all
nucleons are fermions we will not discuss boson states any further.
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2. Theory

Anti-symmetrised states are traditionally constructed as Slater determinants, such
as

|abc〉 =

∣∣∣∣∣∣∣
φa(1) φb(1) φc(1)
φa(2) φb(2) φc(2)
φa(3) φb(3) φc(3)

∣∣∣∣∣∣∣ = φa(1)φb(2)φc(3) + φa(3)φb(1)φc(2) + φa(2)φb(3)φc(1)

− φa(3)φb(2)φc(1)− φa(2)φb(1)φc(3)− φa(1)φb(3)φc(2).

Note that a, b and c above represent the single-particle states occupied by the
particles denoted by 1, 2 and 3.

2.1.2 Creation and annihilation operators
In the second quantisation framework many-body states can be modified through
the application of creation and annihilation operators.
To create a particle in the single-particle state p one applies the creation operator
â†p

â†p |〉 = |p〉
whereas the particle can be removed by the corresponding annihilation operator âp

âp |p〉 = |〉 .

Note that â†p is the Hermitian conjugate of âp. The empty ket |〉 refers to the
(physical) vacuum, i.e. a state with zero particles. From this starting point any
many-body state can be constructed by applying a sequence of creation operators,
e.g.

â†pâ
†
qâ
†
r |〉 = â†pâ

†
q |r〉 = â†p |qr〉 = |pqr〉 .

If a certain single-particle state is unoccupied, applying the corresponding annihila-
tion operator to the many-body state results in

âp |qr〉 = 0.

In other words, one cannot annihilate a particle which does not exist. Due to the
Pauli exclusion principle, this also occurs when trying to create a fermion in an
already occupied single-particle state

â†p |pqr〉 = 0.

It is important to note that the zeros above simply refer to the number 0 and not
to the vacuum |〉.
In the subsequent sections we will need to rearrange products of creation and anni-
hilation operators into certain orders. This reordering can be done by utilising the
anti-commutation relations for fermions

{âp, â
†
q} = âpâ

†
q + â†qâp = δp,q (2.1)

{âp, âq} = 0 (2.2)
{â†p, â†q} = 0. (2.3)
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2. Theory

2.1.3 The Hamiltonian in second quantisation
Second quantisation allows us to express interactions in terms of creation and an-
nihilation operators. As an example, for an arbitrary operator â acting on a single
particle we get

Â =
∑
pq

〈p|â|q〉 â†pâq,

where, given a single-particle basis φ1, φ2 . . . , we have the matrix element

〈p|â|q〉 =
∫
drφ∗p(r)âφq(r).

The summation indices p and q run over all possible single-particle states. Each
operator pair in the sum moves a particle from q to p with probability 〈p|â|q〉,
assuming that q is occupied and p is empty.
In the same spirit, an arbitrary two-particle interaction B̂ can be written

B̂ = 1
4
∑
pqrs

〈pq|b̂|rs〉 â†pâ†qâsâr.

This time the matrix elements are defined as

〈pq|b̂|rs〉 =
∫
dr1dr2φ

∗
p(r1)φ∗q(r2)b̂φr(r1)φs(r2)−

∫
dr1dr2φ

∗
p(r1)φ∗q(r2)b̂φs(r1)φr(r2),

where the second integral provides the antisymmetric property 〈pq|b̂|rs〉 = −〈pq|b̂|sr〉.
The factor 1

4 is needed to account for overcounting:

〈ab|B̂|cd〉 =1
4
∑
pqrs

〈pq|b̂|rs〉 〈ab|â†pâ†qâsâr|cd〉

=1
4
(
〈ab|b̂|cd〉 〈ab|â†aâ

†
bâdâc|cd〉+ 〈ba|b̂|cd〉 〈ab|â†bâ†aâdâc|cd〉

+ 〈ab|b̂|dc〉 〈ab|â†aâ
†
bâcâd|cd〉+ 〈ba|b̂|dc〉 〈ab|â†bâ†aâcâd|cd〉

)
=1

4
(
〈ab|b̂|cd〉 − 〈ba|b̂|cd〉 − 〈ab|b̂|dc〉+ 〈ba|b̂|dc〉

)
=1

44 〈ab|b̂|cd〉 = 〈ab|b̂|cd〉

The Hamiltonian (1.2) can now be written as

H =
∑
pq

〈p|t̂|q〉 â†pâq+
1
4
∑
pqrs

〈pq|v̂2N |rs〉 â†pâ†qâsâr+
1
36

∑
pqrstu

〈pqr|v̂3N |stu〉 â†pâ†qâ†râuâtâs.

Just as the two-body elements above, the 3N elements 〈pqr|v̂3N |stu〉 are also anti-
symmetrised.

2.1.4 Normal-ordered products and contractions
A product of creation and annihilation operators are said to be in normal order if
all creation operators are to the left of all annihilation operators, e.g.

â†pâ
†
qâ
†
râsâtâu

7



2. Theory

is normal-ordered.
A key property of a normal-ordered operator product is that its vacuum expectation
value vanishes identically

〈| â†pâ†qâ†râsâtâu |〉 = 0. (2.4)

This is obviously true, since the annihilation operators to the right will reduce the
empty state to zero before the creation operators can act.
Using the anti-commutation relations (2.1)–(2.3) it is possible to write an arbitrary
product of creation and annihilation operators as a sum of normal-ordered products:

âsârâ
†
pâ
†
q = âs

(
{âr, â

†
p} − â†pâr

)
â†q = δr,pâsâ

†
q − âsâ

†
pârâ

†
q

= δr,p

(
{âs, â

†
q} − â†qâs

)
−
(
{âs, â

†
p} − â†pâs

)
ârâ
†
q

= δr,pδs,q − δr,pâ
†
qâs − δs,pârâ

†
q + â†pâsârâ

†
q

= δr,pδs,q − δr,pâ
†
qâs − δs,p

(
{âr, â

†
q} − â†qâr

)
+ â†pâs

(
{âr, â

†
q} − â†qâr

)
= δr,pδs,q − δr,pâ

†
qâs − δs,pδr,q + δs,pâ

†
qâr + δr,qâ

†
pâs − â†pâsâ

†
qâr

= δr,pδs,q − δr,pâ
†
qâs − δs,pδr,q + δs,pâ

†
qâr + δr,qâ

†
pâs − â†p

(
{âs, â

†
q} − â†qâs

)
âr

= δr,pδs,q − δr,pâ
†
qâs − δs,pδq,r + δs,pâ

†
qâr + δr,qâ

†
pâs − δs,qâ

†
pâr + â†pâ

†
qâsâr

= â†pâ
†
qâsâr + δs,pâ

†
qâr − δs,qâ

†
pâr − δr,pâ

†
qâs + δr,qâ

†
pâs − δs,pδq,r + δr,pδs,q.

(2.5)

The final expression contains five normal-ordered products and two terms without
any operators at all. In a similar but even more cumbersome fashion it is possible to
normal order longer products. A more convenient method is to use Wick’s theorem
from quantum field theory. Before stating this theorem additional notation must be
introduced.
Let âb̂ĉ . . . refer to an arbitrary product of creation and annihilation operators.
Then the corresponding normal product n[âb̂ĉ . . . ] is a normal-ordered permutation
of the original product, with an additional minus sign if the permutation is odd.
The normal product can be expressed in several equivalent ways, as illustrated in
the following example

n[â†pârâ
†
qâs] = −â†pâ†qârâs = â†pâ

†
qâsâr = −â†qâ†pâsâr = â†qâ

†
pârâs.

Furthermore, the contraction of two operators â and b̂ is defined as

âb̂ = âb̂− n[âb̂]. (2.6)

Operators inside a normal product can be contracted in the following way

n[âb̂ĉd̂] = −n[b̂d̂âĉ] = −b̂d̂n[âĉ].

In other words, the contracted pair must first be moved in front of the other operators
(with a minus sign in the case of odd permutations) before the contraction can be
put outside the normal product.

8



2. Theory

From the anti-commutation relations (2.1)–(2.3) the fermion contraction rules can
be derived

âpâ
†
q = âpâ

†
q − n[âpâ

†
q] = âpâ

†
q + â†qâp = {âp, â

†
q} = δp,q (2.7)

â†pâq = 0 (2.8)

â†pâ
†
q = 0 (2.9)

âpâq = 0. (2.10)

Note that although the contraction is defined as the difference between two operators
products, the end result is an ordinary number.

2.1.5 Wick’s theorem
In the context of quantum field theory and many-body physics, Wick’s theorem pro-
vides a way to turn an arbitrary operator product into a sum of normal-ordered prod-
ucts. The theorem tells us that an operator product is equal to the corresponding
normal-ordered product, plus all possible single contractions of the normal-ordered
product, plus all possible double contractions of the normal-ordered product, and
so on. We can write this as

âb̂ĉd̂êf̂ · · · =n[âb̂ĉd̂êf̂ . . . ] +
∑

n[âb̂ĉd̂êf̂ . . . ]

+
∑

n[âb̂ĉd̂êf̂ . . . ] +
∑

n[âb̂ĉd̂êf̂ . . . ] + . . .

(2.11)

As an example, consider the operator product from (2.5)

âsârâ
†
pâ
†
q =n[âsârâ

†
pâ
†
q] + n[âsârâ

†
pâ
†
q] + n[âsârâ

†
pâ
†
q] + n[âsârâ

†
pâ
†
q]

+ n[âsârâ
†
pâ
†
q] + n[âsârâ

†
pâ
†
q] + n[âsârâ

†
pâ
†
q]

=n[âsârâ
†
pâ
†
q]− âsâ

†
pn[ârâ

†
q] + âsâ

†
qn[ârâ

†
p] + ârâ

†
pn[âsâ

†
q]

− ârâ
†
qn[âsâ

†
p]− âsâ

†
pârâ

†
q + âsâ

†
qârâ

†
p

=â†pâ†qâsâr + δs,pâ
†
qâr − δs,qâ

†
pâr − δr,pâ

†
qâs

+ δr,qâ
†
pâs − δs,pδr,q + δs,qδr,p

(2.12)

The contraction rule (2.7) has been used above. Contractions corresponding to
(2.8)–(2.10) are trivially zero and have been omitted. Note that we have arrived at
the same result as in (2.5) but with less work.

2.1.6 Normal-ordering and Fermi states
We have previously demonstrated how an arbitrary many-body state can be con-
structed by applying a series of creation operators to the vacuum |〉. It is also
possible to use a non-empty Fermi state |Φ〉 as a starting point. We refer to |Φ〉 as

9



2. Theory

0

1

2

N
Protons Neutrons

Figure 2.1: The Fermi state of Helium-4 with hole states represented as filled
circles and particle states as unfilled circles. Note that the N = 1 and N = 2 shells
contain more single-particle states than indicated.

a reference state or a Fermi vacuum. Single-particle states that are occupied in |Φ〉
are called hole states, whereas unoccupied states are called particle states. This is il-
lustrated in Figure 2.1. A common notation is to use the letters i, j, k . . . to denote
hole states, a, b, c . . . for particle states and p, q, r . . . for arbitrary single-particle
states.
Given a certain reference state |Φ〉, creation operators â†a acting on particle states
and annihilation operators âi acting on hole states are considered pseudo-creation
operators. Similarly, annihilation operators âa acting on particle states and creation
operators â†i acting on hole states are known as pseudo-annihilation operators. A
pseudo-annihilation operator applied to |Φ〉 will result in zero, as this implies either
trying to annihilate an unoccupied particle state or trying to populate an already
occupied hole state. This is completely analogous to the way ordinary annihilation
operators turn the vacuum ket |〉 into zero.
The concept of normal ordering can now be extended in the following way: An
operator product is said to be in normal order with respect to a reference state |Φ〉
if all pseudo-creation operators are to the left of all pseudo-annihilation operators.
The ordinary normal order introduced before is also known as vacuum normal order.
Although one can define normal order relative to several reference states, this thesis
will only deal with single-reference normal ordering.
Analogously to the ordinary normal product n[âb̂ĉ . . . ] we define {âb̂ĉ . . . } as the
normal product of âb̂ĉ . . . with respect to |Φ〉. Note that the reference state expec-
tation value of such a product is identically zero

〈Φ|{âb̂ĉ . . . }|Φ〉|Φ〉 = 0 (2.13)

since any pseudo-annihilation operators will be moved to the right and turn |Φ〉 into
zero and any pseudo-creation operator will be moved to the left and turn 〈Φ| into
zero. This property mirrors (2.4) and is the motivation for defining reference normal
ordering as above.
With the normal product definition above, the corresponding contraction can be
defined as

âb̂ = âb̂− {âb̂}. (2.14)

It can be shown that this contraction only results in non-zero values in the following

10



2. Theory

two cases

âaâ
†
b = δa,b

â†i âj = δi,j.

We can express the above as

âpâ
†
q = δp,q>F (2.15)

â†pâq = δp,q<F (2.16)

where δp,q>F confines p and q to particle states (above the Fermi level F ) and δp,q<F

confines p and q to hole states (below the Fermi level F ).
Wick’s theorem is also valid in the context of normal ordering with respect to a
reference state. In this case (2.11) turns into

âb̂ĉd̂êf̂ · · · ={âb̂ĉd̂êf̂ . . . }+
∑
{âb̂ĉd̂êf̂ . . . }

+
∑
{âb̂ĉd̂êf̂ . . . }+

∑
{âb̂ĉd̂êf̂}+ . . .

(2.17)

2.2 Normal-ordered approximations

2.2.1 Derivation

The starting point of the NO2B approximation is the 3N interaction in vacuum
normal order

V̂ 3N = 1
36

∑
pqrstu

〈pqr|v̂3N |stu〉 â†pâ†qâ†râuâtâs. (2.18)

Using Wick’s theorem (2.17) this can be rewritten as sum of operators normal-
ordered with respect to the Fermi state of the nucleus in interest.

â†pâ
†
qâ
†
râuâtâs = {â†pâ†qâ†râuâtâs}+

∑
{â†pâ†qâ†râuâtâs}

+
∑
{â†pâ†qâ†râuâtâs}+

∑
{â†pâ†qâ†râuâtâs}.

(2.19)

In the above expression the three sums are taken over all single contractions, all
double contractions and all triple contractions, respectively.
Due to the number of terms involved it is convenient to expand each sum separately.
Using the contraction rule (2.16) the single contractions can be rewritten in the

11



2. Theory

following way

∑
{â†pâ†qâ†râuâtâs} = {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}
= δp,u<F{â†qâ†râtâs} − δp,t<F{â†qâ†râuâs}+ δp,s<F{â†qâ†râuât}
− δq,u<F{â†pâ†râtâs}+ δq,t<F{â†pâ†râuâs} − δq,s<F{â†pâ†râuât}
+ δr,u<F{â†pâ†qâtâs} − δr,t<F{â†pâ†qâuâs}+ δr,s<F{â†pâ†qâuât}.

Note the sign changes emerging when moving the contracted operators to the be-
ginning of the operator products.
We now add the summation over p, q, r, s, t and u. In each term the delta function
combines two of the summation indices into a single index i, which is restricted to the
hole states (i.e. the single-particle states occupied in |Φ〉). By rearranging the indices
inside the matrix element (and switching signs in the case of odd permutations) we
see that all 9 terms are in fact identical.

∑
pqrstu

〈pqr|v̂3N |stu〉
∑
{â†pâ†qâ†râuâtâs}

=
∑

pqrstu

〈pqr|v̂3N |stu〉 δp,u<F{â†qâ†râtâs} −
∑

pqrstu

〈pqr|v̂3N |stu〉 δp,t<F{â†qâ†râuâs}

+
∑

pqrstu

〈pqr|v̂3N |stu〉 δp,s<F{â†qâ†râuât} −
∑

pqrstu

〈pqr|v̂3N |stu〉 δq,u<F{â†pâ†râtâs}

+
∑

pqrstu

〈pqr|v̂3N |stu〉 δq,t<F{â†pâ†râuâs} −
∑

pqrstu

〈pqr|v̂3N |stu〉 δq,s<F{â†pâ†râuât}

+
∑

pqrstu

〈pqr|v̂3N |stu〉 δr,u<F{â†pâ†qâtâs} −
∑

pqrstu

〈pqr|v̂3N |stu〉 δr,t<F{â†pâ†qâuâs}

+
∑

pqrstu

〈pqr|v̂3N |stu〉 δr,s<F{â†pâ†qâuât}

=
∑
iqrst

〈iqr|v̂3N |sti〉 {â†qâ†râtâs} −
∑

iqrsu

〈iqr|v̂3N |siu〉 {â†qâ†râuâs}

+
∑

iqrtu

〈iqr|v̂3N |itu〉 {â†qâ†râuât} −
∑
iprst

〈pir|v̂3N |sti〉 {â†pâ†râtâs}

+
∑

iprsu

〈pir|v̂3N |siu〉 {â†pâ†râuâs} −
∑

iprtu

〈pir|v̂3N |itu〉 {â†pâ†râuât}

+
∑
ipqst

〈pqi|v̂3N |sti〉 {â†pâ†qâtâs} −
∑

ipqsu

〈pqi|v̂3N |siu〉 {â†pâ†qâuâs}

+
∑

ipqtu

〈pqi|v̂3N |itu〉 {â†pâ†qâuât}

= 9
∑
ipqst

〈pqi|v̂3N |sti〉 {â†pâ†qâtâs}

12



2. Theory

The sum over all double contractions is slightly more intricate but follows the same
principle.

∑
{â†pâ†qâ†râuâtâs} = {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}
=
− δp,u<F δq,t<F{â†râs}+ δp,u<F δq,s<F{â†rât}+ δp,t<F δq,u<F{â†râs}
− δp,t<F δq,s<F{â†râu} − δp,s<F δq,u<F{â†rât}+ δp,s<F δq,t<F{â†râu}
+ δp,u<F δr,t<F{â†qâs} − δp,u<F δr,s<F{â†qât} − δp,t<F δr,u<F{â†qâs}
+ δp,t<F δr,s<F{â†qâu}+ δp,s<F δr,u<F{â†qât} − δp,s<F δr,t<F{â†qâu}
− δq,u<F δr,t<F{â†pâs}+ δq,u<F δr,s<F{â†pât}+ δq,t<F δr,u<F{â†pâs}
− δq,t<F δr,s<F{â†pâu} − δq,s<F δr,u<F{â†pât}+ δq,s<F δr,t<F{â†pâu}

Since each term contains two delta functions four of the summation indices p, q,
r, s, t, u are fused into two hole indices i and j, only leaving a single pair as free
indices.

13
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As before, all terms are identical.

∑
pqrstu

〈pqr|v̂3N |stu〉
∑
{â†pâ†qâ†râuâtâs} =

−
∑
ijrs

〈ijr|v̂3N |sji〉 {â†râs}+
∑
ijrt

〈ijr|v̂3N |jti〉 {â†rât}

+
∑
ijrs

〈ijr|v̂3N |sij〉 {â†râs} −
∑
ijru

〈ijr|v̂3N |jiu〉 {â†râu}

−
∑
ijrt

〈ijr|v̂3N |itj〉 {â†rât}+
∑
ijru

〈ijr|v̂3N |iju〉 {â†râu}

+
∑
ijqs

〈iqj|v̂3N |sji〉 {â†qâs} −
∑
ijqt

〈iqj|v̂3N |jti〉 {â†qât}

−
∑
ijqs

〈iqj|v̂3N |sij〉 {â†qâs}+
∑
ijqu

〈iqj|v̂3N |jiu〉 {â†qâu}

+
∑
ijqt

〈iqj|v̂3N |itj〉 {â†qât} −
∑
ijqu

〈iqj|v̂3N |iju〉 {â†qâu}

−
∑
ijps

〈pij|v̂3N |sji〉 {â†pâs}+
∑
ijpt

〈pij|v̂3N |jti〉 {â†pât}

+
∑
ijps

〈pij|v̂3N |sij〉 {â†pâs} −
∑
ijpu

〈pij|v̂3N |jiu〉 {â†pâu}

−
∑
ijpt

〈pij|v̂3N |jti〉 {â†pât}+
∑
ijpu

〈pij|v̂3N |iju〉 {â†pâu}

= 18
∑
ijps

〈pij|v̂3N |sij〉 {â†pâs}

Finally, the sum over all triple contractions only yields six terms.

∑
{â†pâ†qâ†râuâtâs} = {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}

+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}+ {â†pâ†qâ†râuâtâs}
=
− δp,u<F δq,t<F δr,s<F + δp,u<F δq,s<F δr,t<F + δp,t<F δq,u<F δr,s<F

− δp,t<F δq,s<F δr,u<F − δp,s<F δq,u<F δr,t<F + δp,s<F δq,t<F δr,u<F

The three delta functions in each term combine the six summation indices into three
hole indices ijk. As all operators are contracted this leaves us with a sum of six
identical constant terms.

∑
pqrstu

〈pqr|v̂3N |stu〉
∑
{â†pâ†qâ†râuâtâs} =

−
∑
ijk

〈ijk|v̂3N |kji〉+
∑
ijk

〈ijk|v̂3N |jki〉+
∑
ijk

〈ijk|v̂3N |kij〉

−
∑
ijk

〈ijk|v̂3N |jik〉 −
∑
ijk

〈ijk|v̂3N |ikj〉+
∑
ijk

〈ijk|v̂3N |ijk〉

= 6
∑
ijk

〈ijk|v̂3N |ijk〉
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The result of the three contraction sums above can be inserted into (2.18) yielding

V̂ 3N = 1
36

∑
pqrstu

〈pqr|v̂3N |stu〉 {â†pâ†qâ†râuâtâs}

+ 1
4
∑
ipqst

〈pqi|v̂3N |sti〉 {â†pâ†qâtâs}+ 1
2
∑
ijps

〈pij|v̂3N |sij〉 {â†pâs}+ 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 .

The interpretation of these four terms has already been presented in the introduction
— the 0N, 1N, 2N, and 3N terms then correspond to transitions with three, two,
one and zero diagonal single-particle states that belong to the Fermi configuration.
If we remove the three-body term from the expression above we arrive at the normal-
ordered two-body (NO2B) approximation

V̂ NO2B =1
4
∑
ipqst

〈pqi|v̂3N |sti〉 {â†pâ†qâtâs}+ 1
2
∑
ijps

〈pij|v̂3N |sij〉 {â†pâs}

+ 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 .
(2.20)

Analogously we also get the normal-ordered one-body (NO1B) approximation

V̂ NO1B = 1
2
∑
ijps

〈pij|v̂3N |sij〉 {â†pâs}+ 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 (2.21)

and the normal-ordered zero-body (NO0B) approximation

V̂ NO0B = 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 . (2.22)

2.2.2 Returning to vacuum normal order

Before (2.20) can be used in the no-core shell model it must be converted back into
vacuum normal order. This can be done by using Wick’s theorem in reverse. In the
one-body case

â†pâs = {â†pâs}+ â†pâs = {â†pâs}+ δp,s<F

this is trivial, as we only have to move the delta function to the opposite side of the
equation

{â†pâs} = â†pâs − â†pâs = {â†pâs} − δp,s<F . (2.23)

In the 2B-case we apply the same principle, and use (2.23) to invert the resulting
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one-body terms

â†pâ
†
qâtâs ={â†pâ†qâtâs}+ {â†pâ†qâtâs}+ {â†pâ†qâtâs}+ {â†pâ†qâtâs}

+ {â†pâ†qâtâs}+ {â†pâ†qâtâs}+ {â†pâ†qâtâs}
={â†pâ†qâtâs} − δp,t<F{â†qâs}+ δp,s<F{â†qât}+ δq,t<F{â†pâs}
− δq,s<F{â†pât} − δp,t<F δq,s<F + δp,s<F δq,t<F

={â†pâ†qâtâs} − δp,t<F (â†qâs − δq,s<F ) + δp,s<F (â†qât − δq,t<F ) + δq,t<F (â†pâs − δp,s<F )
− δq,s<F (â†pât − δp,tt<F )− δp,t<F δq,s<F + δp,s<F δq,t<F

={â†pâ†qâtâs} − δp,t<F â
†
qâs + δp,s<F â

†
qât + δq,t<F â

†
pâs

− δq,s<F â
†
pât + δp,t<F δq,s<F − δp,s<F δq,t<F

.

As before we simply move all terms containing delta functions to the opposite side
of the equation, resulting in

{â†pâ†qâtâs} =â†pâ†qâtâs + δp,t<F â
†
qâs − δp,s<F â

†
qât − δq,t<F â

†
pâs

+ δq,s<F â
†
pât − δp,t<F δq,s<F + δp,s<F δq,t<F .

(2.24)

Inserting (2.23) into the the one-body term of (2.20) gives us∑
ijps

〈pij|v̂3N |sij〉 {â†pâs} =
∑
ijps

〈pij|v̂3N |sij〉 â†pâs −
∑
ijps

〈pij|v̂3N |sij〉 δp,s<F

=
∑
ijps

〈pij|v̂3N |sij〉 â†pâs −
∑
ijk

〈ijk|v̂3N |ijk〉 .

Similarly, inserting (2.24) into the two-body term of (2.20) produces∑
ipqst

〈pqi|v̂3N |sti〉 {â†pâ†qâtâs} =
∑
ipqst

〈pqi|v̂3N |sti〉 â†pâ†qâtâs

+
∑
ijqs

〈jqi|v̂3N |sji〉 â†qâs −
∑
ijqt

〈jqi|v̂3N |jti〉 â†qât −
∑
ijps

〈pji|v̂3N |sji〉 â†pâs

+
∑
ijpt

〈pji|v̂3N |jti〉 â†pât −
∑
ijk

〈jki|v̂3N |kji〉+
∑
ijk

〈jki|v̂3N |jki〉

=
∑
ipqst

〈pqi|v̂3N |sti〉 â†pâ†qâtâs − 4
∑
ijps

〈pij|v̂3N |sij〉 â†pâs + 2
∑
ijk

〈ijk|v̂3N |ijk〉 .

The rewritten terms above transform (2.20) into vacuum normal order

V̂ NO2B =1
4

∑
ipqst

〈pqi|v̂3N |sti〉 â†pâ†qâtâs − 4
∑
ijps

〈pij|v̂3N |sij〉 â†pâs + 2
∑
ijk

〈ijk|v̂3N |ijk〉


+ 1

2

∑
ijps

〈pij|v̂3N |sij〉 â†pâs −
∑
ijk

〈ijk|v̂3N |ijk〉

+ 1
6
∑
ijk

〈ijk|v̂3N |ijk〉

=1
4
∑
ipqst

〈pqi|v̂3N |sti〉 â†pâ†qâtâs −
1
2
∑
ijps

〈pij|v̂3N |sij〉 â†pâs + 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 .
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This can be expressed more succinctly as

V̂ NO2B = 1
4
∑
pqst

vpqstâ
†
pâ
†
qâtâs −

1
2
∑
ps

vpsâ
†
pâs + v, (2.25)

where

vpqst =
∑

i

〈pqi|v̂3N |sti〉 (2.26)

vps =
∑
ij

〈pij|v̂3N |sij〉 (2.27)

v = 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 . (2.28)

Using the notation above, the NO1B approximation (2.21) in vacuum normal order
is

V̂ NO1B = 1
2
∑
ps

vpsâ
†
pâs − 2v. (2.29)

The NO0B approximation (2.22) only contains a constant term and is thus the same
in vacuum normal order

V̂ NO0B = v. (2.30)

2.2.3 Expressing lower-order operators as 2N operators
A complication inherent to the NO2B approximation is the appearance of the one-
body and constant terms, in addition to the usual two-body term. By expressing
the two former as two-body operators this problem can be circumvented without
having to rewrite other software packages to accommodate the additional terms.
As a starting point consider the number operator

N̂ =
∑

p

â†pâp,

which returns the number of particles in a many-body state.
Since for any N -body state |a1a2 . . . aN〉

〈a1a2 . . . aN |N̂ |a1a2 . . . aN〉 = N

it is obvious that we can construct a one-body identity operator as

1̂1 = 1
N
N̂ = 1

N

∑
p

â†pâp.

To arrive at a two-body identity operator we start from a similar expression

N̂2 =
∑
pq

â†pâ
†
qâqâp,

which has the following effect

〈a1a2 . . . aN |N̂2|a1a2 . . . aN〉 = 〈a1a2 . . . aN |
∑

p

â†p

(∑
q

â†qâq

)
âp|a1a2 . . . aN〉 = N(N−1).
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Since the inner operator pair∑q â
†
qâq will act on a ket which has already been reduced

by one particle by the rightmost annihilation operator âp, the result is N(N − 1)
rather than N2. This gives us the identity operator

1̂2 = 1
N(N − 1)N̂

2 = 1
N(N − 1)

∑
pq

â†pâ
†
qâqâp.

We now utilise the identity operator above to write the constant term as a two-body
interaction

v = 1̂2v = 1
N(N − 1)vN̂

2 = 1
N(N − 1)

∑
pq

vâ†pâ
†
qâqâp.

This is not yet in the same form as the 2N term in (2.25), as we only have two
summation indices. We can add two more in the following fashion:

v = 1
N(N − 1)

∑
pq

vâ†pâ
†
qâqâp = 1

N(N − 1)
∑
pqst

v
δp,sδq,t − δp,tδq,s

2 â†pâ
†
qâtâs

= 1
4
∑
pqst

2v
N(N − 1) (δp,sδq,t − δp,tδq,s) â†pâ†qâtâs

(2.31)

The one-body term can be rewritten in the same way:

∑
ps

vpsâ
†
pâs =

∑
ps

vpsâ
†
p

1
N − 1N̂ âs = 1

N − 1
∑
pqs

vpsâ
†
pâ
†
qâqâs

= 1
N − 1

∑
pqst

(vpsδq,t − vptδq,s − vqsδp,t + vqtδp,s)â†pâ†qâtâs.
(2.32)

Just as before the N̂ is divided by N − 1 and not N since âs removes one particle
from the ket before N̂ can act.

2.3 Coupled and uncoupled matrix elements
Many-body states can be expressed in terms of uncoupled single-particle states.
Consider the two-body case

|ab〉 = |na, la, sa, ja,ma, ta, tza;nb, lb, sb, jb,mb, tb, tzb〉 .

This is known as the m-scheme representation. In this thesis the single-particle
states are expressed in a harmonic-oscillator basis. Above, n and l are the quantum
numbers for the oscillator whereas s is the particle spin. Furthermore, j refers to
the total angular momentum and t refers to the isospin of the particle. m and tz,
respectively, are the corresponding projection quantum numbers. Since s = 1

2 and
t = 1

2 for all nucleons they are often omitted.
It should be noted that the labels a, b, c and d used in this context refer to arbitrary
single-particle states, and are not related to the notation introduced in 2.1.6 (where
they were used to indicate particle states).
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An alternative to the m-scheme representation is to use spin-coupled states. Spin-
coupling can be performed in both spin and isospin space by coupling ja and jb to a
total angular momentum J and by coupling ta and tb to a total isospin T . Coupling
both sets of spin is known as JT-coupling. An advantage of this over the m-scheme
is that interactions can be represented using fewer matrix elements, reducing the
amount of storage required.
It can be shown [15] that the following relation holds between coupled and uncoupled
two-body matrix elements

〈ab; JT |V |cd; JT 〉
= 〈(na, la, ja), (nb, lb, jb); JT |V |(nc, lc, jc), (nd, ld, jd); JT 〉
= Nab(JT )Ncd(JT )

∑
ma,mb,mc,md

〈jamajbmb|JM〉 〈jcmcjdmd|JM〉

×
∑

tza,tzb,tzc,tzd

〈1
2tza

1
2tzb

∣∣∣∣TMT

〉〈1
2tzc

1
2tzd

∣∣∣∣TMT

〉
× 〈na, la, ja,ma, tza, nb, lb, jb,mb, tzb|V |nc, lc, jc,mc, tzc, nd, ld, jd,md, tzd〉

. (2.33)

The terms following the summation symbols are Clebsch-Gordan coefficients, whereas
the two prefactors are normalisation coefficients defined as

Nab(JT ) =

√
1− δab(−1)J+T

1 + δab

.

Note that J and T are conserved by all interactions without isospin-breaking terms.

2.4 Model space truncation
As mentioned in the introduction, the Schrödinger equation is turned into a finite
matrix equation by expressing the Hamiltonian in a truncated basis. This sets
an upper limit to our model space. In this thesis the truncation is controlled by
the Nmax parameter, which denotes the maximum number of harmonic oscillator
excitations above the Fermi state. For example, if Nmax = 2 only states that can
be reached from the Fermi state with two or less excitations are included. Nmax for
various many-body configurations of helium-4 is shown in Figure 2.2. The size of
the model space (i.e. the number of many-body basis states) increases dramatically
as Nmax grows.
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Figure 2.2: The value of Nmax for various many-body configurations of helium-4.
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3
Implementation

To test the concepts presented in the preceding chapter a simple implementation
named pyNO2B was written in the Python programming language. Given two files
containing two-nucleon (2N) and three-nucleon (3N) matrix elements, respectively,
it computes the approximated NO2B matrix elements from the 3N interaction and
adds them to the 2N matrix elements. The resulting 2N+3N(NO2B) matrix elements
are then written to a file which can be used as an input to many-body calculations.

3.1 Overview

pyNO2B
2N Matrix
elements

(JT-coupled)

3N Matrix
elements

(uncoupled)

2N+3N(NO2B)
Matrix
elements

(JT-coupled)

pAntoine Many-body
observables

Figure 3.1: Computing NO2B-approximated observables from 2N and 3N interac-
tions using the pyNO2B code and the pAntoine many-body solver.

The usage of pyNO2B is illustrated in Figure 3.1. The resulting output is fed to
pAntoine, a many-body code based on the No-Core Shell Model [1, 3]. Although
several different many-body observables can be calculated, only ground-state ener-
gies will be computed in this thesis.
Both the 2N input and the 2N+3N(NO2B) output are JT-coupled and stored in
an pAntoine-specific binary file format. These binary files only contain the matrix
element values

〈
ab; JT

∣∣∣ v2N
∣∣∣ cd; JT

〉
themselves. This means that pyNO2B must gen-

erate both a list holding the configuration a, b, c, d, J, T for each matrix element, and
a single-particle basis listing the quantum numbers (ni, li, ji) for to the single-particle
states specified by a,b,c,d. The ordering of elements in these lists are identical to
the ones used by pAntoine. Naturally, larger values of Nmax result in longer lists.
The 3N interaction is expressed in an uncoupled basis and is stored in a file in the
HDF5 format [17]. In contrast to the 2N input file, this file contains all configura-
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3. Implementation

tion lists and bases needed to match matrix element values with the corresponding
quantum numbers.
pyNO2B uses the following steps to arrive at the end result:

• The single-particle (SP) basis and configuration list used in the 2N and 2N+3N(NO2B)
files are generated.

• For each 2N matrix element
〈
ab; JT

∣∣∣V 2N
∣∣∣ cd, JT〉 in the 2N input file:

1. The values of a,b,c,d,J , T are looked up in the configuration list, and the
corresponding quantum numbers (ni=a,b,c,d, li, ji) are looked up in the SP
basis.

2. We are now ready to compute the JT-coupled NO2B element correspond-
ing to a,b,c,d. This is done using the sum (2.33). For each term in the
sum:
(a) The Clebsch-Gordan coefficients are computed.
(b) The m-scheme NO2B matrix element is calculated by summing the

2N, 1N and 0N contributions. This is described further in Section
3.2.1.

• The JT-coupled NO2B element is added to the 2N element and written to the
output file.

One might add that in the above procedure the same m-scheme elements will be
calculated repeatedly. Although this is not a huge problem when Nmax ≤ 6, an
alternative approach must be used in larger model spaces.

3.2 Further details

3.2.1 NO2B m-scheme matrix elements

The matrix elements in the 3N interaction file is divided into different data splits,
where each data split corresponds to a specific set of values of the conserved quan-
tities MT = tza + tzb + tzc and M = ma + mb + mc. Altogether, the 3N interaction
file contains the following parts:

1. Single-particle (SP) basis listing basis states |i〉 = |ni, li, ji,mi, tzi〉.
2. Many-body (MB) basis listing three-particle states |ijk〉, where i,j,k are in-

dices in the SP basis.
3. Each datasplit contains:

• List of configurations (n,m) where n and m are the MB indices corre-
sponding to the bra and ket states of the matrix element, respectively.

• List of matrix elements, where the lth element corresponds to the lth
configuration in the configuration list.

To calculate the m-scheme NO2B matrix elements we must be able to compute the
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sums over the hole states (v, vps, vpqst) as defined in (2.26)–(2.28):

vpqst =
∑

i

〈pqi|v̂3N |sti〉

vps =
∑
ij

〈pij|v̂3N |sij〉 = 2
∑
i<j

〈pij|v̂3N |sij〉

v = 1
6
∑
ijk

〈ijk|v̂3N |ijk〉 =
∑

i<j<k

〈ijk|v̂3N |ijk〉

Note that the by rewriting vps and v as above we avoid having to add identical terms
(eg. 〈pij|v̂3N |sij〉 = 〈pji|v̂3N |sji〉) multiple times, thus saving time.
vpqst is computed as below. v and vps are calculated in an almost identical fashion.

• The single-particle states p,q,s,t corresponding to (ni=a,b,c,d, li, ji,mi, tzi) are
looked up in the SP-basis in the 3N interaction file.

• For each hole state i:
1. The data split indices corresponding to |pqi〉 and |sti〉 are computed. If

they differ 〈pqi|v̂3N |sti〉 must be 0 and can be skipped.
2. MB basis indices n and m corresponding to |pqi〉 and |sti〉, respectively,

are looked up.
3. The configuration index l corresponding to (n,m) is retrieved.
4. The lth matrix element is added to the sum.

3.2.2 Search algorithms
As seen above, calculating vpqst, vps and v involves repeatedly searching the 3N input
file for matching indices. Since the number of configurations and MB basis states
is large, even for moderate values of Nmax, the use of efficient search algorithms is
imperative. As an example, there number of MB states is 51328 in the Nmax = 6
case. Fortunately both the configurations and the MB basis states are already sorted
in a specific order, meaning that we can use a binary search algorithm. The worst-
case running time of a binary search is O(log n), which is significantly better than
the linear O(n) running time of a linear search.

3.2.3 External modules
pyNO2B mostly uses modules from the Python Standard Library. The two sole
exceptions are the h5py module [4], which is used to read the HDF5 file format, and
the SymPy module [16], which is used to compute the Clebsch-Gordan coefficients.
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4
Results

The pyNO2B code was tested for helium-4 and Nmax = 0, 2, 4, 6. The choice of
helium-4 is obvious — the single-reference NO2B approximation is only applicable
to closed-shell nuclei and helium-4 is the simplest example of such a system. The
interaction used was NNLOsat [6], which is derived from chiral effective field theory
and features both 2N and 3N interactions. To benchmark the results they were
checked with the ncsd code [12], a many-body code capable of including both 2N
and 3N interactions fully.

4.1 Ground state energies of helium-4
Ground state energies of helium-4 were computed using pAntoine for Nmax =
0, 2, 4, 6 and for the following interactions: The plain 2N interaction, the plain in-
teraction with the NO0B term added, with the NO1B terms added, and finally with
the full NO2B approximation added. For each Nmax a reference value was also cal-
culated from the full 2N+3N interaction using ncsd. In all cases the HO frequency
~ω = 22 MeV is used. The results are presented in Table 4.1.

2N+3N
Nmax 2N NO0B NO1B NO2B Full Rel. error
0 -17.06463 -13.88235 -13.88235 -13.88235 -13.8845 0.015%
2 -19.95847 -16.77619 -16.53317 -18.72536 -18.5570 0.91%
4 -23.88394 -20.70166 -20.47555 -24.11923 -23.7846 1.41%
6 -25.56324 -22.38095 -22.13663 -26.99404 -26.6596 1.25%

Table 4.1: Ground state energies of helium-4 in MeV, calculated at various Nmax

with ~ω = 22 MeV. ncsd was used for the full 2N+3N calculations, whereas the
other columns were computed using pAntoine. The last column is the relative error
of the 2N+3N(NO2B) results compared to the full 2N+3N calculations.

Including the 3N interaction has been shown to result in a ∼10% [11] increase in the
binding energy. The calculations with ncsd demonstrates, however, that for small
model spaces the opposite is true — the binding energy actually decreases.
For Nmax = 0 both the NO0B, the NO1B and the NO2B approximations give the
same result, which is very close to the reference value. This can be understood by
noting that the only configuration in the Nmax = 0 model space is the Fermi state.
As we observed in the introduction all interactions between the Fermi state and itself
are included in the 0N term, which is retained in all three approximations. The fact
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4. Results

that we do not get a perfect agreement can probably be attributed to rounding
errors.
As expected the NO0B term introduces a constant shift in the ground state energies.
With the exception of the Nmax = 0 case, this is actually farther from the reference
value than the result of the pure 2N interaction itself. This is also true, although to
a slightly smaller extent, when the NO1B approximation is applied. It is only when
the full NO2B approximation is employed that we get close to the reference values
in any real sense.
Previous studies [13] have shown that the errors introduced by NO2B approximation
is in the order of 1–2% for converged (i.e. for large values of Nmax) calculations of
the helium-4 ground state energy. More precisely, an overbinding of 0.3–0.6MeV
is observed. Although our results are far from converged, we note that relative
errors for Nmax = 2,4,6 lie within the 1%–2% range. Furthermore the absolute
error is 0.33463MeV and 0.33444MeV, respectively, suggesting that the overbinding
stabilises at slightly above 0.3MeV. We can therefore conclude that our limited
results are in line with expectations, although more results might be needed for a
final verdict.
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5
Conclusion and Outlook

In this thesis we have provided a full derivation of the single-reference NO2B approx-
imation together with the necessary formalism. A simple Python implementation
pyNO2B of this scheme has also been described. The goal of this implementation
was to test the approximation in small model spaces. As a benchmark, pyNO2B was
applied to helium-4 for Nmax = 0, 2, 4, 6 and compared to calculations using the full
3N interaction. The results were favourable and in line with previously published
results. More specifically we have shown that the main contribution of 3N forces
to the ground-state energy of helium-4 can be accounted for using the NO2B ap-
proximation — i.e. with an effective 2N force. In fact, the neglect of the remaining
(non-reducible) 3N part was shown to result in just 1-2% relative error in the final
result.
Since pyNO2B code was written with only limited attention paid to performance it is
too slow to be used in model spaces larger than Nmax = 6. There are several ways
to improve this situation. The most obvious is to pre-calculate the m-scheme matrix
elements to avoid wasting time on repeating calculations. In the same token Clebsch-
Gordan coefficients could also be cached. This approach would probably reduce the
running time significantly, but to reach large model spaces additional steps may have
to be taken. Being a dynamically-typed interpreted language, Python programs are
often slower than implementations in other languages. Rewriting pyNO2B in C would
most likely improve the performance dramatically. Finally, the program is easy to
parallelise since the problem is embarrassingly parallel — all matrix elements can
be computed independently from each other.
The single-reference NO2B approximation presented in this thesis is only applicable
to closed-shell nuclei. By using a generalised multi-reference normal ordering as
defined in [8] the multi-reference normal-ordered two-body (MR-NO2B) approxima-
tion can be introduced. This can be applied to both open-shell nuclei and nuclei in
excited states as demonstrated in [7].
In conclusion, the single-reference NO2B approximation enables us to study the
effects of the 3N interaction on closed-shell nuclei for much larger systems and model
spaces than a full inclusion would allow. This thesis has provided a full derivation
of this approximation and demonstrated that it can be implemented in a relatively
simple program.
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