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Abstract
When multiple systems work in the same physical environment, it is important to
ensure that no collisions occur. This thesis is focused on the centralized offline
coordination of such collaborating systems, with the condition that the spatial path
each system travels along is known before hand. In addition to collisions, dynamic
constraints as well as optimization of a performance criterion are considered.

The problem is decomposed into two parts, a sequencing problem and coordination
subproblem. For the sequencing problem, an algorithmic improvement is proposed,
where constraint propagation methods from the computer science community are
introduced to improve existing mixed integer nonlinear programming methods used
in mathematical programming. The coordination subproblem on the other hand
is approached from a modeling perspective. By applying state space discretization
and variable changes, two models are derived, one which is entirely convex. Also,
a two stage abstraction approach is introduced, where dynamic programming is
used to parameterize part of the problem, resulting in a much simpler model at the
next stage.

The above methods can be used for minimum energy coordination of industrial
robots. Experimental results from the two robot case study are presented. In
addition, the one robot case is also studied, where the execution time, robot payload
and minimization criteria are varied. Furthermore, the application of the presented
methods to hybrid systems is also discussed.

Finally, the slightly different problem of minimum time stacker crane scheduling
is considered. In the stacker crane problem, a number of tasks should be allocated
to a set of robots moving along the same one dimensional track. Although the exact
spatial path is unknown in the stacker crane problem, it is shown that in a minimum
time setting, it is still possible to use state space discretization.

Keywords: Optimization, scheduling, multi-robot systems, hybrid systems,
energy minimization.

v





Acknowledgments

As my dissertation draws ever closer, I have become increasingly aware of its sig-
nificance. A chapter of my life is ending, and a new one about to begin. Nostalgia
and anticipation are ever present. Whatever comes next, I’d like to take a moment
acknowledge some of the people who have starred in this latest chapter.

My supervisor, Bengt Lennartson, the never tiring professor, who would probably
feel lost without a deadline to push. I offer you my sincerest gratitude for all your
help during these years. Your primary contribution has been to teach me by example,
the art of seeing possibilities, where there seemingly are none.

The crack team of administrators working at the department, whom without
nothing would ever get done. In particular Christine, Elin, Lars, Natasha and
Madeleine, you have helped make my life at Chalmers much easier.

Present and formers members of the Automation group, and in particular Martin,
the boss-friend every employee would like to have, and Sarmad, my ever supportive
colleague. Also Nikolce and Fredrik, I truly enjoyed our collaborations. And finally,
special thanks to Sahar, Zhennan, Julia and Anna-Maria, for all the laughs and
good talks.

To all of my friends outside of Chalmers, it makes me glad to say that you are
far too many to mention individually. I deeply appreciate our friendship and would
like to thank you from the very bottom of my heart, for being there.

I’m grateful to my family, mom, dad, my brothers and of course Anna and Edith.
Also my extended family, whom have always made me feel welcome during these
past years. And let’s not forget my Chalmers family, Nina, Malin and Thomas, I
hope that our lives will forever be intertwined.

My other half, Elin, you are what’s most important to me. Every day, you change
me for the better.

Oskar Wigström
Göteborg, October 2016

vii





List of publications

This thesis is based on the following appended papers:

Paper 1. Oskar Wigström, Nikolce Murgovski, Sarmad Riazi and Bengt Lennart-
son. Computationally efficient energy optimization of multiple robots. Submit-
ted for possible journal publication.

Paper 2. Oskar Wigström, Bengt Lennartson, Alberto Vergnano and Claes Brei-
tholtz High-level scheduling of energy optimal trajectories. IEEE Transactions
on Automation Science and Engineering, 10 (1), 57-64, 2013.

Paper 3. Oskar Wigström, Sarmad Riazi and Bengt Lennartson. Constraint pro-
gramming and nonlinear scheduling. Submitted for possible journal publication.

Paper 4. Sarmad Riazi,OskarWigström, Kristofer Bengtsson and Bengt Lennart-
son Energy and peak-power optimization of time-bounded robot trajectories.
Conditionally accepted for publication in IEEE Transactions on Automation
Science and Engineering.

Paper 5. Oskar Wigström and Bengt Lennartson An integrated CP/OR method
for optimal control of modular hybrid systems IFAC Workshop on Discrete
Event Systems, 47 (2), 485-491, 2014.

Paper 6. Fredrik Hagebring,OskarWigström, Bengt Lennartson, Simon IanWare
and Rong Su Comparing MILP, CP, and A* for multiple stacker crane schedul-
ing. International Workshop on Discrete Event Systems, 63-70, 2016.

Other relevant publications co-authored by Oskar Wigström:

Nina Sundström, Oskar Wigström and Bengt Lennartson On the conflict between
energy, stability and robustness in production schedules IEEE Conference on
Automation Science and Engineering, 2016.

Sarmad Riazi, Kristofer Bengtsson, Rainer Bischoff, Andreas Aurnhammer, Oskar
Wigström and Bengt Lennartson Energy and peak-power optimization of
existing time-optimal robot trajectories IEEE Conference on Automation Science
and Engineering, 2016.

ix



Bengt Lennartson, Kristofer Bengtsson, Oskar Wigström and Sarmad Riazi
Modeling and optimization of hybrid systems for the tweeting factory IEEE
Transactions on Automation Science and Engineering 13 (1), 191-205, 2016.

Bengt Lennartson, Oskar Wigström, Sarmad Riazi and Kristofer Bengtsson
Modeling and optimization of hybrid systems Conference on Analysis and
Design of Hybrid Systems 48 (27), 351-357, 2015.

Bengt Lennartson, Kristofer Bengtsson and Oskar Wigström Optimization of
hybrid Petri nets with shared variables IEEE Conference on Automation Science
and Engineering, 1395-1396, 2015.

Sarmad Riazi, Kristofer Bengtsson, Oskar Wigström, Emma Vidarsson, Bengt
Lennartson Energy optimization of multi-robot systems IEEE Conference on
Automation Science and Engineering, 1345-1350, 2015.

Bengt Lennartson, Oskar Wigström, Martin Fabian and Francesco Basile Unified
model for synthesis and optimization of discrete event and hybrid systems IFAC
Workshop on Discrete Event Systems, 47(2), 86-92, 2014.

Sarmad Riazi, Payam Chehrazi, Oskar Wigström, Kristofer Bengtsson, Bengt
Lennartson A gossip algorithm for home healthcare scheduling and routing
problems IFAC World Congress, 47 (3), 10754–10759, 2014.

Oskar Wigström and Bengt Lennartson Towards integrated OR/CP energy op-
timization for robot cells IEEE International Conference on Robotics and
Automation, 1674-1680, 2014.

Oskar Wigström and Bengt Lennartson Integrated OR/CP optimization for
Discrete Event Systems with nonlinear cost IEEE Conference on Decision and
Control, 7627-7633, 2013.

Oskar Wigström and Bengt Lennartson Sustainable production automation-energy
optimization of robot cells IEEE International Conference on Robotics and
Automation, 252-257, 2013.

Riazi Sarmad, Oskar Wigström, Seatzu Carla and Bengt Lennartson Ben-
ders/gossip methods for heterogeneous multi-vehicle routing problems IEEE
Conference on Emerging Technologies and Factory Automation, 1-6, 2013.

Oskar Wigström, Nina Sundström and Bengt Lennartson Optimization of hybrid
systems with known paths IFAC Conference on Analysis and Design of Hybrid
Systems, 45 (9), 39-45, 2012.

Oskar Wigström and Bengt Lennartson Scheduling model for systems with com-
plex alternative behaviour IEEE Conference on Automation Science and Engi-
neering, 587-593, 2012.

x



Nina Sundström, Oskar Wigström, Petter Falkman and Bengt Lennartson Opti-
mization of operation sequences using constraint programming IFAC Symposium
on Information Control Problems in Manufacturing, 45 (6), 1580-1585, 2012.

Oskar Wigström and Bengt Lennartson Energy optimization of trajectories for
high level scheduling IEEE Conference on Automation Science and Engineering,
654-659, 2011.

xi





List of acronyms

BB – Branch and Bound
GDP – Generalized Disjunctive Program
LP – Linear Program
MINLP – Mixed Integer Nonlinear Program
MIQCQP – Mixed Integer Quadratically Constrained Quadratic Program
MP – Master Problem
MSOCP – Multi Stage Optimal Control Problem
NLP – Nonlinear Program

xiii





Contents

Abstract v

Acknowledgments vii

List of publications ix

List of acronyms xiii

I Introductory chapters 1

1 Introduction 3
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem formulation 7
2.1 Collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Mixed integer nonlinear programming . . . . . . . . . . . . . . 15
2.3.2 Constraint programming . . . . . . . . . . . . . . . . . . . . . 17

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Fixed sequence subproblem 19
3.1 Monolithic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Space formulation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Variable transformations . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Decomposition approach . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Zero velocity transition condition . . . . . . . . . . . . . . . . 31
3.2.2 Parameterization by dynamic programming . . . . . . . . . . 31

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xv



CONTENTS CONTENTS

4 Sequencing problem 33
4.1 Integrated optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Proposed implementation . . . . . . . . . . . . . . . . . . . . 34
4.2 Benchmark problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Multiple robot path coordination . . . . . . . . . . . . . . . . 36
4.2.2 Nonlinear job shop scheduling . . . . . . . . . . . . . . . . . . 37

4.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Multi robot path coordination . . . . . . . . . . . . . . . . . . 39
4.3.2 Nonlinear job shop scheduling problem . . . . . . . . . . . . . 40

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental results 43
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Hybrid systems 51
6.1 Hybrid optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Hybrid systems with shared variables . . . . . . . . . . . . . . . . . . 52

6.2.1 Multi robot coordination case . . . . . . . . . . . . . . . . . . 54
6.3 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.1 Mixed integer formulation . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Continuous dynamics . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.3 Numerical issues . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4 Constraint propagation . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Stacker crane scheduling 63
7.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 State space discretization . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.1 Constraint programming model . . . . . . . . . . . . . . . . . 68
7.2.2 Mathematical programming model . . . . . . . . . . . . . . . 70

7.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.1 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Summary of appended papers 75

9 Conclusions and future work 77

Bibliography 81

xvi



CONTENTS CONTENTS

II Appended papers 89

1 Computationally efficient energy optimization of multiple robots 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Variable transformation . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Inverse velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1 Joint criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Path criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Computation time . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2 High-level scheduling of energy optimal trajectories 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 115
2.2 Optimization model . . . . . . . . . . . . . . . . . . . . . . . . 116
2.3 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . 117
2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3 Energy Optimal Scheduling . . . . . . . . . . . . . . . . . . . . . . . 121
3.1 Constraint modeling . . . . . . . . . . . . . . . . . . . . . . . 122

4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 126
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3 Constraint propagation for nonlinear scheduling 131
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2 Nonlinear job shop scheduling . . . . . . . . . . . . . . . . . . . . . . 135

2.1 General problem formulation . . . . . . . . . . . . . . . . . . . 136
2.2 Fixed time energy minimal scheduling . . . . . . . . . . . . . 137
2.3 Quadratically constrained version . . . . . . . . . . . . . . . . 138

3 Multiple robot path coordination . . . . . . . . . . . . . . . . . . . . 138
3.1 General problem formulation . . . . . . . . . . . . . . . . . . . 139
3.2 Quadratically constrained version . . . . . . . . . . . . . . . . 141
3.3 Collision avoidance for 1-DoF robot arms . . . . . . . . . . . . 142

4 Existing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.1 MINLP algorithms . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2 Constraint programming . . . . . . . . . . . . . . . . . . . . . 144

xvii



CONTENTS CONTENTS

4.3 Integrated approaches . . . . . . . . . . . . . . . . . . . . . . 146
4.4 Proposed integrated algorithm . . . . . . . . . . . . . . . . . . 148

5 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.1 MINLP software . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Nonlinear job shop scheduling problem . . . . . . . . . . . . . 151
5.3 Multi robot path coordination . . . . . . . . . . . . . . . . . . 153

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4 Energy and peak-power optimization of time-bounded robot trajec-
tories 159
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3 Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.1 Programming, running, and recording . . . . . . . . . . . . . . 165
3.2 Optimization and post processing . . . . . . . . . . . . . . . . 165
3.3 Special trajectories . . . . . . . . . . . . . . . . . . . . . . . . 166

4 Setup of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.1 The robot cells . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.2 Test trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.3 Energy measurement procedure . . . . . . . . . . . . . . . . . 170

5 Results of the experiments . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1 Study of cost functions . . . . . . . . . . . . . . . . . . . . . . 171
5.2 Effect of payloads . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3 Study of change of cycle-time . . . . . . . . . . . . . . . . . . 176
5.4 Realistic Multi-robot scenario . . . . . . . . . . . . . . . . . . 178

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5 An integrated CP/OR method for optimal control of modular hy-
brid systems 185
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

2.1 Hybrid Automaton with Shared Variables . . . . . . . . . . . 188
2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 189
2.3 Minimization Criteria . . . . . . . . . . . . . . . . . . . . . . . 189

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.1 Discrete Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 190
3.2 Approximation of Continuous Dynamics . . . . . . . . . . . . 191

4 Integrated Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5 Computational Examples . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xviii



CONTENTS CONTENTS

6 Comparing MILP, CP, and A* for multiple stacker crane scheduling
201

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.1 General model formulation . . . . . . . . . . . . . . . . . . . . 206
3.2 Collision Avoidance Constraint . . . . . . . . . . . . . . . . . 207
3.3 Simplified Collision Avoidance Constraint . . . . . . . . . . . . 209

4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.1 Solving the Problem with MILP . . . . . . . . . . . . . . . . . 210
4.2 Solving the Problem with Constraint Programming . . . . . . 212
4.3 Solving the Problem with Local Search and A* . . . . . . . . 213

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.1 Evaluation of Collision Avoidance Simplification . . . . . . . . 215
5.2 Optimal Solution Methods . . . . . . . . . . . . . . . . . . . . 215
5.3 Solution Methods for Collision Avoidance Problem . . . . . . . 217
5.4 Local Search Algorithm . . . . . . . . . . . . . . . . . . . . . 217

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xix





Part I

Introductory chapters





Chapter 1

Introduction

This work concerns the coordination of multiple robots moving in a shared physical
environment. Of particular interest are the dynamics of robotic manipulators and the
use of state space discretization methods. Throughout the upcoming chapters, we will
attempt to answer the following three questions. How can we pose a mathematical
programming model for the coordination problem, including enough detail to bound
acceleration and minimize energy and/or time? Is it possible to augment existing
mathematical programming algorithms by exploiting the specific structure of the
coordination problem? And what are the potential energy savings for robotic
manipulators using the developed methods?

The thesis consists of two parts. Part I unifies the material found in the appended
papers and Part II contains the appended papers. Some of the material found in the
appended papers is also extended in Part I.

1.1 Scope
The models and algorithms in this thesis all utilize state space discretization in
some form. Hence, to enable state space discretization, we will restrict the system
dynamics to that of a single monotonically increasing position state. By use of
position varying bounds on velocity and acceleration, we will still be able to model
higher dimensional acceleration bounded systems moving along fixed paths. The two
exceptions to the monotonicity condition are a discussion on hybrid systems and a
stacker crane scheduling problem addressed towards the end of the thesis.

As for model parameters, we assume that each system is defined by the fixed
path it moves along, and the velocity and acceleration bounds it must stay within.
Detailed system parameters which could be used to express for example torque are
assumed to be unknown.

Regarding problem size, we have chosen to regard the coordination problem
from an open loop planning perspective, as this is the setting in which robotic
manipulators are often scheduled. That is, our problem is neither real time critical,
nor is it subject to any disturbances. The solution times should preferably lie in the
range of a seconds up to a few minutes. Within this time frame we would like to
solve as large problem instances as possible.

3



4 1.2. Background

Recall that the robots are to share a physical environment, and as such, there
should be some mechanism to describe interaction between systems. In thesis thesis,
we will focus on avoiding collisions. That is, for each pair of systems, there exists a
set of forbidden position states, where collision occurs. A feasible solution should be
collision free.

1.2 Background
Energy efficiency is a very important design driver for robots and other moving
devices in manufacturing systems. Due to the energy cost of operating industrial
robots, manufacturing industries are concerned with decreasing their electricity
consumption. For instance, in a typical body shop, over 500 robots assemble roughly
300 to 500 parts using a total of 3500 to 5000 spot welds before they are dispatched
to the paint shop [1], [2]. An average 200 kg payload body shop robot consumes
a yearly 8 MWh [3], and robots overall consume approximately 8% of the total
electrical energy in automotive production [4]. Also new policies for energy efficiency
are incentives for manufacturing industries to reduce electricity consumption [5].

There exist several strategies for increased energy efficiency in industrial man-
ufacturing. One approach is equipment selection during the process design stage,
such as type of robots [6], motor and/or gearhead [7], [8]. Another approach is
changing the controller in order to minimize a certain criterion, such as the integral
squared torque [9] or power [10], at the cost of execution time. A drawback with
these methodologies is that they are intrusive, i.e. require changes to configuration
or changes in production rate.

In contrast, a non-intrusive strategy, such as the trajectory planning of multiple
robots, can reduce energy without affecting the production rate, by efficient utilization
of idle time. Two approaches are presented in [11], where idle time between the
operations is used to reduce velocities and accelerations, although without explicitly
considering the energy consumption. Another approach is [12], where the energy use
for individual robot tasks is parametrized, and incorporated into a mixed integer
nonlinear scheduled model.

The work in this thesis began in 2010 by extending the parameterization approach
in [12], resulting in Paper 2. Last year, research on energy consumption in industrial
robots was surveyed in [13], and amongst the body of studies, only a few had addressed
non-intrusive energy optimization. In fact, the parameterization approach in [12], a
practical implementation of said approach [14], and the extension in Paper 2, were
the only non-intrusive studies concerned with energy reduction through scheduling.

Another neighboring field is robotics. A recent survey on multiple mobile robot
systems [15] would categorize our problem formulation within motion planning,
which is further subdivided into: cell decomposition, potential field and roadmap
approaches. All of the cited approaches reduce the continuous motion planning
problem to a graph search problem, whereas in this thesis we apply a mathematical
programming approach. Our work also differs from these in that we consider more
detailed dynamics and focus on energy minimization under fixed cycle time. However,
this work is limited by the assumption that the path is fixed. One notable exception
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within the field of robotics is the mathematical programming model presented in
[16], which concerns the time minimal problem with mobile robot dynamics.

Our robot coordination problem is also somewhat similar to intelligent transporta-
tion systems. Linear criteria include the average and maximum vehicle delay [17],
which are similar to due dates and cycle time in robotics and robot scheduling. Much
like minimum energy or jerk formulations for robots, there are dynamic criteria such
as velocity tracking and actuator/discomfort penalties for transportation systems,
e.g. as in [18]. There is naturally a somewhat greater emphasis on guaranteeing
safety for these manned systems [19].

1.3 Contributions
The three questions stated at the beginning of this chapter regard the coordination
problem from a modeling, algorithmic and application point of view. This section
will review the contributions in this thesis, starting with the modeling parts, which
are the most numerous.

The starting point of this thesis is an extension of the approach in [12], in which
the system dynamics were abstracted by parameterizing the energy consumption of
each robot task as a function of its execution time. The parameterization in [12]
was based on a time scaling of existing trajectories. Our extended approach instead
embeds the energy minimal solutions into the parameterized energy functions. It is
shown how these improved functions may be generated by posing a space discretized
model, and solving the problem using dynamic programming. Only a single dynamic
programming problem needs to be solved, since its state space grid will cover the
range of relevant execution times.

A drawback with the parameterization approach is that robots must reach a stand
still in between tasks. This makes a tight synchronization difficult, e.g. if one robot
follows behind another. Rather than using parameterization as earlier, additional
detail could be encoded into the mathematical program. In an effort to add more
general detail, we regard synchronized hybrid systems by modeling the continuous
states using collocation, and communication between systems using the scheduling
style constraints from our previous work. We present a numerical example where
the resulting formulation is applied to dual double integrator systems. Part I of this
thesis also includes an extended discussion on possible numerical issues related to
the synchronization.

While the approach successfully adds more detail to the problem formulation, it
is also computationally demanding due to its nonlinearities. Next, we propose two
monolithic minimum time/energy models, specifically for the coordination problem.
The models utilize both space discretization and variable transformations to remove
difficult nonlinearities. Furthermore, by using path based criteria in combination
with an inner approximation of acceleration constraints, one of the models is reduced
to a linearly constrained quadratic program.

The final modeling contribution concerns a slightly different problem, where
three stacker cranes all sharing a single track are to be scheduled. The objective is
to minimize the final time, and the decisions include task assignment, sequencing
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and trajectory generation. Building on an existing approach, we pose a model for
the stacker crane problem. Furthermore, we introduce a model abstraction, which
decreases the problem complexity. Part I of this thesis also extends the formulation
to bounded acceleration.

On the algorithmic side, we have focused on the use of constraint propagation
methods to speed up the branch and bound phase required in the coordination
problem. In a conference paper [20], we integrated constraint programming with
state of the art mathematical programming methods. And in a case study, we
demonstrated an order of magnitude speed up for a problem instance of the parame-
terization approach. At the time, the integration of constraint propagation and linear
programming had been used to achieve impressive speedups for many problems, but
the nonlinear case had not been investigated as closely. Today, several software
make use of constraint propagation also for nonlinear programming. The appended
papers include an extended version of [20], which is focused on the use of constraint
propagation for nonlinear scheduling problems. Based on the parameterization and
monolithic approach, we define two distinct problem classes, and in a thorough
benchmark, we compare existing methods to our proposed formulation.

As for quantification of energy reduction, we employ accurate energy measurement
equipment and outline a reliable methodology to produce replicable experiments.
Using a single robot, we compare four different cost functions and evaluate the effect
of different robot payloads. Also peak-power consumption is examined. Two case
studies for the two robot case are presented.

1.4 Thesis outline
The thesis is outlined as follows. In Chapter 2, the coordination problem is formalized,
and we take a closer look at the collision avoidance constraints. The chapter is
concluded by a discussion on the hierarchical properties of the problem and a review
of algorithms relevant to this thesis.

As we will find out in Chapter 2, the collision avoidance problem gives rise to
binary decisions which must be explored by branch and bound, splitting our problem
into a high level sequencing problem, and a lower level continuous subproblem.
Chapter 3 is focused on modeling the latter and discusses two approaches to the
problem: a monolithic approach which models the subproblem using quadratic and
nonlinear programming; a decomposition approach in which parts of the problem
are parameterized. Chapter 4 addresses the sequencing problem and how traditional
mathematical programming can be improved with constraint propagation methods.
The primary application for our methods is that of energy minimal control of robotic
manipulators. Chapter 5 presents experimental results and review factors impacting
the energy consumption of the systems.

Next, we broaden the problem formulation somewhat. In Chapter 6 we discuss
the relation of our methods to hybrid systems, and in Chapter 7 the stacker crane
scheduling problem is investigated. Finally, Chapter 8 shortly summarizes each of
the appended papers, and Chapter 9 concludes the thesis. The latter chapter also
includes a discussion on possible future work.



Chapter 2

Problem formulation

Consider n systems, each defined by a normalized path position function si : [0, T ]→
[0, 1], i ∈ {1, . . . , n} = N , with si(0) = 0, si(T ) = 1, ṡi ≥ 0 where (˙) = d/dt
and T ∈ R+ is the final time. Also suppose each system follows a fixed path
fi : [0, 1]→ Rmi , where mi is the dimensionality of the i:th system’s position space.
Each system’s spatial position vector qi(t) along its path fi is defined as a function
of the path position

qi(t) = fi(si(t)). (2.1)

It follows from differentiation that the time derivatives of qi are

q̇i(t) = f ′i(si)ṡi(t), (2.2)
q̈i(t) = f ′i(si)s̈i(t) + f ′′i (si)ṡi(t)2, (2.3)

where (′) and (′′) denote the first and second positional derivatives. Note that
in the special case that a path does not have curvature, |f ′′i |∞ = 0, the resulting
problem becomes much simpler. These equations have been used for single robotic
manipulator motion planning since at least the early 80’ies [21].

As stated in our scope, detailed model parameters are considered unknown. As
such, bounding the velocity and acceleration will suffice. The bounds become

vmin
i (si) ≤ q̇i(t) ≤ vmax

i (si), (2.4)
amin
i (si) ≤ q̈i(t) ≤ amax

i (si), (2.5)

where vmin
i and vmax

i are bounds on the velocity, and amin
i and amax

i are bounds on
the acceleration.

It is however not enough to find a feasible solution, we would also like to minimize
a weighted criterion on the form

w1T + w2

n∑
i=1

∫ T

0
ci (si(t), ṡi(t), s̈i(t)) dt, (2.6)

7
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where T , as before, is the final time, ci : R3 → R, i ∈ N , is a system dependent
criterion, while w1 and w2 are constant weights, penalizing the final time and the
integrand. In this work, each criterion ci should be correlated with the energy
consumption of its system. The choice of criterion is very much dependent on the
choice of model, and will be discussed in Chapter 3, as the models are presented.

Finally, the systems are subject to a collision avoidance constraint

s(t) /∈ F ∀t ∈ [0, T ], (2.7)

where s = [si] is the vector of path functions and F is a collision set. The underlying
structure of this collision set will be discussed in the following subsection. Within
robotics, the concept of collision sets have been used for more than 25 years, beginning
with the two robot problem studied in [22]. Although at that time, and in later work
on coordination of multiple robots [23], [24], none of the dynamics we introduced
earlier were considered.

From an application perspective, the collision avoidance constraint shares many
similarities to the problems found in intelligent transportation systems. Linear
criteria include the average and maximum vehicle delay [17], which are similar to
due dates and cycle time in robotics and scheduling. Much like minimum energy
or jerk formulations for robots, there are dynamic criteria such as velocity tracking
and actuator/discomfort penalties for transportation systems, e.g. as in [18]. There
is naturally a somewhat greater emphasis on guaranteeing safety for these manned
systems [19].

This chapter is specifically focused on the problem formulation, so we will leave
the discussion on solution methods for Chapter 3. Now, let us summarize the problem
formulation: the velocity and acceleration are described by (2.2)-(2.3), and then
bounded by (2.4)-(2.5). The criterion (2.6) provides a means for selecting a solution
and the collision avoidance constraint (2.7) describes the coupling between systems.
In the next section, we will take a closer look at the collision avoidance constraint,
whereafter we discuss the overall structure of the problem. The chapter is concluded
with a review of algorithms relevant to the work in this paper.

2.1 Collision avoidance
The collision set F is not just any set. Because it describes collisions, it has a special
structure. This section will delve deeper into that structure and pose (2.7) on a
form suitable for mathematical programming. Throughout this section we will use
an example to visualize our results. Consider the following scenario illustrated in
Figure 2.1. Three robots share a common zone located in the interval si ∈ [0.3, 0.7],
and a collision occurs whenever two or more of the robots occupy the interval.
This example is identical to what an intersection in a general multi-agent collision
avoidance problem would look like [25].

Collisions are a pairwise phenomenon, and the collision set may thus be described
as the union of several smaller two-dimensional sets describing the pairwise interaction
between systems
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Figure 2.1: The coordination diagram for three robots with a common zone
located in the interval si ∈ [0.3, 0.7], i ∈ [1, 2, 3], i.e. at most one robot may reside
in [0.3, 0.7] at any time.
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Figure 2.2: Three two-dimensional collision sets used to construct the coordination
diagram in Figure 2.1.
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F =
⋃

i, j ∈ N :
i < j

{s : 〈si, sj〉 ∈ Fij} , (2.8)

where Fij ⊂ [0, 1]× [0, 1] are such two-dimensional sets, defining the collisions for
pairs of systems 〈i, j〉. Figure 2.2 illustrates this result applied to our example. One
can regard the complete collision set as composed of several two-dimensional sets
projected into the other dimensions.

Instead of posing the collision avoidance constraint (2.7), these smaller two-
dimensional sets may be used to pose the equivalent condition

〈si(t), sj(t)〉 /∈ Fij ∀t ∈ [0, T ] i, j ∈ N : i < j. (2.9)
From here on we shall use this pairwise form. It should be noted that as we have
decomposed the collisions into pairwise sets some information is no longer explicitly
available to us, something that will be discussed in Chapter 4. Also, in this particular
example there is only a single collision zone. In a more general setting this might not
be the case. However, the more general case can be reduced to the single collision
form by simple partitioning of the collision zones into individual sets. Hence, we will
continue using only a single collision zone per set, without loss of generality.

Collision zones naturally give rise to disjoint solution spaces, i.e. a binary
alternative where one system must be given priority over the other. Because of this,
we need to model our problem such that our algorithms explore both regions. This
is done by explicitly enumerating the alternatives, i.e. one robot should enter the
zone before the other.

In other words, given a pairwise collision zone Fij, we can build on (2.9) and
pose the collision avoidance constraint (2.7) as a disjunction between inequalities.

sj(t) ≥ max {sb : {sa, sb} ∈ Fij : sa ≤ si(t)} ∀t ∈ [0, T ] ∨
si(t) ≥ max {sa : {sa, sb} ∈ Fij : sb ≤ sj(t)} ∀t ∈ [0, T ]

∀i, j ∈ N : i < j,
(2.10)

where sa ≤ si(t) and sb ≤ sj(t) are inequalities rather than equalities, in order to
embed the fact that the systems position states are monotonically increasing. Note
that to make these equations to be well defined over [0, 1], we will simply assume
that the max function over the empty set is 0. For notational simplicity we use the
following expression

sj(t) ≥ gij(si(t)) ∀t ∈ [0, T ] ∨
si(t) ≥ gji(sj(t)) ∀t ∈ [0, T ]

∀i, j ∈ N : i < j,
(2.11)

where gij : R→ R and gji : R→ R are the two max expressions from (2.10). Figure
2.3 illustrates the resulting functions for the pairwise collision set F12 from our
example.



Chapter 2. Problem formulation 11

0 0.3 0.7 10

0.3

0.7

1

s1

s 2

F12 g12(s1) g21(s2)

Figure 2.3: The collision set F12 and its two boundary functions g12(s1) and
g21(s2) which may be used to pose our collision avoidance constraint.

Finally, instead of expressing our collision avoidance constraint as a function of
the path position, we transform it into constraints on the system time as a function
of its position. This is necessary for a state space discretization approach later
employed. Let ti(si) be the time at which system i visits position si, and tj(sj) the
equivalent for system j. The timing conditions equivalent to (2.10), and in turn
(2.7), is

tj(gij(si)) ≤ ti(si) ∀si ∈ [0, 1] ∨
ti(gji(sj)) ≤ tj(sj) ∀sj ∈ [0, 1]

∀i, j ∈ N : i < j.
(2.12)

The first line can be thought of as: system i cannot visit si until system j has visited
gij(si).

To conclude this subsection, we will discuss how discretization affects the co-
ordination diagram. The collision avoidance constraint takes the form of timing
conditions, and in some of our approaches, it is beneficial to keep the number of
these constraints to a minimum, i.e. keep the resolution of the discretization to a
minimum. Thus, the constraint should only be applied when gij or gji varies. In the
example used so far, gij or gji each only vary at one point, and it is enough to pose

tj(0.7) ≤ ti(0.3) ∨ tj(0.3) ≥ ti(0.7). (2.13)

It seems that for intersections, only a very low resolution is required for the timing
conditions. Also note that this constraint looks very much like the finite resource
conditions found in traditional scheduling [26].

There are however other situations where a higher resolution is required. Let us
examine the case of two 1-DoF robot arms, an example which will be used throughout
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this thesis, and for which we can derive an analytical expression. Suppose the two
arms i and j are of length `i and `j, and positioned at a coordinate 〈pxi , p

y
i 〉 in

2d-space.
Consider a single 1-DoF robot arm and the line extending from its base along

the arm, the 2d coordinates along that line is defined by

[
pxi + di cos(θi)
pyi + di sin(θi)

]
, (2.14)

where di is the position along robot i’s line. Now for each pair of robots i and j, the
intersection point for the robots’ lines is

[
pxi + di cos(θi)
pyi + di sin(θi)

]
=
[
pxj + dj cos(θj)
pyj + dj sin(θj)

]
, (2.15)

which by solving for di and dj yields

[
di
dj

]
= 1

sin(θi − θj)

[
sin(θj) − cos(θj)
sin(θi) − cos(θi)

] [
pxi − pxj
pyi − p

y
j

]
. (2.16)

A collision occurs when both 0 ≤ di ≤ `i and 0 ≤ dj ≤ `j . If we translate this to the
interval [−1, 1], collisions occur when

∥∥∥∥∥ 2di/`i − 1
2dj/`j − 1

∥∥∥∥∥
∞
≤ 1. (2.17)

Figure 2.4 illustrates the resulting collision zone of two robots with unit length arms
at distance

√
2 along the x-axis, moving from a top to a bottom pointing position.

Using the boundary of the collision zone, we can derive the two collision functions
gij or gji which are illustrated in blue and red lines respectively. Clearly, a higher
resolution is warranted, compared to that of the intersection case, unless of course
the two robots were to follow each other through the intersection.

In this particular case, it was possible to derive an analytical expression for the
collision set. A more practical approach for more complex paths is to create a sweep
volume for each robot, and then compute the intersection between sweep volumes to
identify where collisions occur. This is an approach which has been used for both
car-like [27] and industrial [28] robots.

2.2 Structure
Let us recall our problem definition: construct n trajectories with bounds defined by
(2.2)-(2.5), which minimize the criteria (2.6), while avoiding collisions (2.7). In the
previous section we learnt that the collision avoidance condition can be transformed
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Figure 2.4: The collision set F12 for the 1-DoF robot case, and its two boundary
functions g12(s1) and g21(s2).

in to disjunct timing conditions. Furthermore, unless the systems are in fact following
each other, it may not be necessary to impose these timing conditions at all points
along the trajectory. This section will briefly discuss the hierarchical structure that
appears when the timing conditions only need to be posed at few points.

First, regardless of the level of discretization, the top most level of the problem
consists of the binary decisions imposed by the disjunct timing conditions. These
must be explored using branch and bound. Note that the mathematical programing
relaxation for such a disjunct timing condition is simply ignoring the condition
entirely, which makes the relaxation very weak. This weakness is a well known
problem which occurs in scheduling models, and causes search algorithms to delve
deeply into infeasible branches before detecting infeasability [29].

Regarding the discretization, consider the collision set in Figure 2.4 resulting
from the two 1-DoF robot example in the previous section. Let us focus in particular
on the case where the second robot has priority, i.e. the region above g12 (blue line).
To model this region, the first most term in the collision avoidance constraint (2.12)
should hold

t2(g12(s1)) ≤ t1(s1) s1 ∈ [0.25, 0.75]. (2.18)

Note that because of the monotonicity property, it is enough to specify the interval
s1 ∈ [0.25, 0.75], as the constraint will implicitly hold outside.

One could regard the two systems as being independent in the interval [0, 0.25],
next completely coupled during [0.25, 0.75] and finally two independent systems once
again for [0.75, 1]. To decrease the coupling of the systems, it is possible to work
with an approximation of ga12(s1). Figure 2.5 illustrates such an approximation with
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Figure 2.5: The collision set F12 for the 1-DoF robot case, the boundary function
g12(s1) and an approximation ĝ12(s1).

a dashed blue line. Using this new approximation, it is enough to pose the collision
avoidance constraints at coordinates 〈0.25, 0.5〉 and 〈0.5, 0.75〉 in s1/s2-space, i.e.

t2(0.5) ≤ t1(0.25), (2.19)
t2(0.75) ≤ t1(0.5). (2.20)

Using this approximation the systems can be considered independent for all but
the two synchronization points. The level of synchronization for the exact and
approximate case is illustrated in Figure 2.6.

We note that the approximate case in Figure 2.6 looks much like two multi
stage systems, each with two switching points. But rather than some change of
dynamics or discrete state jump, the time of transition is coupled between systems.
We will discuss this perspective, as well as the applications of our method to these
more general systems, in Chapter 6. In the following chapter, we will focus on the
subproblem where the binary sequence decisions have already been decided, and in
the following chapter, we will address the algorithmic problem of weak relaxations.

2.3 Algorithms
In Chapter 4, the robot coordination problem will be posed as a mixed integer
nonlinear program (MINLP), and constraint programming is used to improve the
performance of existing algorithms. This section will provide some necessary back-
ground on MINLP algorithms and constraint programming. Although quadratic
programming and pure nonlinear programming are also used in this thesis, we do
not present any algorithmic improvement for these, and thus do not discuss the
underlying algorithms.
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Figure 2.6: The level of synchronization between two systems using the boundary
function g12(s1) (top) and its approximation ĝ12(s1) (bottom).

2.3.1 Mixed integer nonlinear programming
There are a number of different MINLP solution methods, each implemented in
variety of software packages [30]. For non-convex MINLPs, i.e. when the integer
relaxed problem is non-convex, nonlinear programming based branch and bound
(NLP-BB) is typically used [31], [32]. If the problem is convex, which this thesis is
focused on, there are additional choices, e.g. outer approximation [33], [34], linear and
nonlinear programming based branch and bound (LP/NLP-BB) [35] and extended
cutting plane [36]. All these algorithms use some type of branch and bound, a
general search method, which systematically divides (branches) the feasible space
and attempts to identify all candidate solutions. Large portions of the feasible space
may be discarded based on estimated lower and upper bounds (bounding) on the
optimization criteria.

If the problem is convex or if locally optimal solutions are sufficient, NLP-BB
works as follows. A tree of problems yet to be processed is defined. The top level node
in this tree is initialized with an integer relaxation of the MINLP problem, resulting
in a nonlinear program (NLP). The solution to this relaxed problem provides a lower
bound on the objective value for the lower branches. Iteratively, integer variables
are branched upon and constrained, such that NLP subproblems, with some integers
fixed and other relaxed, are created. The resulting solution of each NLP subproblem
yields a lower bound for the current branch. When all integer variables have been
fixed such that they form a complete integer assignment, the solution provides an
upper bound for the entire MINLP. Once an upper bound has been found, any nodes
on the tree with a greater lower bound than the current upper bound can be removed
from the tree of problems yet to be processed. The algorithm terminates when all
branches of the tree have been explored or removed.

The LP/NLP-BB algorithm was first presented in [35]. In short, LP/NLP-BB
just as outer approximation, utilizes the fact that solving a MINLP is equivalent of
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Algorithm 1 NLP/LP-Based Branch-and-Bound Algorithm
1: Initialize.

Populate the search tree Γ with the root node, initialize the linear programming
MP, set the upper bound cub = cmax.

2: Terminate?
If the search tree is empty, Γ = ∅, terminate.

3: Select.
Select the next node γ from Γ.

4: Evaluate.
Solve linear MP based on the full/partial integer assignment p, if infeasible goto
2.

5: Prune.
If the current solution cMP (γ) ≥ cub, goto 2.

6: Solve NLP?
If we are at a leaf node (full integer assignment), solve the NLP corresponding
to γ, else goto 9.

7: Upper bound?
If the NLP solution is feasible and cost cNLP (γ) ≤ cub, update the upper bound.

8: Refine.
Add linear approximations to the MP based on the NLP solution, goto 2.

9: Divide.
Branch on current node, add the new nodes to the search tree Γ, goto 2.

solving a mixed integer linear program of finite size [34]. Suppose we could identify
all feasible integer solutions of a problem, and for each integer solution, linearize the
problem at the locally optimal solution. Solving the resulting linear approximation
would then yield the same solution as solving the MINLP.

Of course, such a large number of linearizations is intractable, and in the process
of finding all the linearization points would have already found the optimal solution.
Instead, the algorithm will iteratively build the approximation, typically denoted
reduced master problem (MP). The overall execution of the algorithm is described
in Algorithm 1, adapted from [30]. In step 1, an initial linearization is created at
the solution of the NLP resulting from the integer relaxed MINLP. We will use c to
denote the complete objective function cost, cMP the master problem solution, cub
the current upper bound and cNLP the local NLP solution. Steps 2-3 and 9 provides
the base functionality of the branching search. At each node, a linear approximation
is solved (step 4). If it is feasible and the solution is not bounded by the current
upper bound (step 5), and we are at a leaf node, an NLP is solved (step 6 − 7).
Finally, additional linearizations may be added to the MP (step 8). Different rule
sets exist which define how often an NLP should be generated. Preferably, there
should also exist a mechanism for the removal of unused linearizations.

One drawback of MINLP methods for nonlinear scheduling problems is the weak
lower bound resulting from the integer relaxation. In a mutual exclusion constraint
where for example two time intervals may not overlap, such as the collision avoidance
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constraints in our problem, the relaxation of the constraint will label the entire
search space feasible. As such, infeasibilities which are caused by discrete dynamics
or logic are not detected until far down in the search tree. There are methods, such
as convex hull relaxations [37], which by adding auxiliary variables and constraints
aim to increase the tightness of the relaxations. Although showing promising results
for a variety of problems, for scheduling disjunctions, a convex hull formulation is of
little or no help [29].

2.3.2 Constraint programming
Constraint programming is a field with roots in the artificial intelligence and computer
science communities. Originally used for solving constraint satisfaction problems,
i.e. assigning values to variable such as to satisfy a set of constraints, constraint
programming has evolved during the last decade to also solve optimization problems.
For an introduction to constraint programming we refer to [38], [39]. In contrast
to classic mathematical programming methods, constraint programming offers a
very rich modeling language, where constraints are not limited to equalities and
inequalities. For example, in a scheduling application, one may use a single specialized
constraint to describe mutual exclusion.

Constraint programming uses a branch and bound search similar to that of
mathematical programming methods. However, instead of solving relaxations at each
node, propagation methods are used to infer information about the domain of each
decision variable. Propagation can be regarded as follows: the set of possible values for
each variable is kept track of, and is reduced based on the problem constraints. Each
constraint has an associated propagation method which is scheduled for execution by
the search method. A propagator may be executed more than once in each node if
deemed necessary. Typically, a propagator subscribes to a number of variables (those
included in the constraint) and is scheduled whenever the domain of those variables
change. After a propagator has been executed, it either enters a state where it can
be rescheduled, or one where it wont.

The following example will demonstrate a simple propagator. Consider two
variables x, y ∈ {1, 2, 3, 4, 5} subject to the inequality x+2y ≤ 5. A propagator for this
constraint can reduce the upper bound on the variables by applying xmax := 5−2ymin
and ymax := (5− xmin)/2. The first will reduce the domain of x to {1, 2, 3} and the
second the domain of y to {1, 2}.

We mentioned previously that there exist specialized propagators for mutual
exclusion. A basic disjunctive scheduling constraint [40], is defined as follows

disjunctive(t,d), (2.21)

where t ∈ Rk is a vector of k operation start times and d ∈ Rk is a vector of
corresponding durations, all utilizing the same resource. The constraint enforces that
for any pair of operations, one must finish before the other. This is known as a unary
constraint in Gecode [41] and a nooverlap constraint in IBM ILOG CP Optimizer.
Propagation methods for this mutual exclusion constraint may be based on edge
finding [42].
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Furthermore, in contrast to branch and bound methods in mathematical pro-
gramming, branching in constraint programming does not necessarily imply the
branching on the domain of a variable. It could just as well apply constraints to
divide the feasible solution set. One may regard constraint programming as taking
a local approach to the problem, examining each constraint by itself, along with
its associated variables. Mathematical programming methods on the other hand,
will take a global approach, regarding all variables and constraints at the same time.
While constraint programming has proven successful in a wide variety of areas, e.g.
assignment problems, scheduling, transport, personnel planning, etc, it does have its
drawbacks. Variables are most often limited to integers, and propagation for general
nonlinear constraints can be considered weak at best. Thus constraint programming
is currently intractable to use for a large number of applications, e.g. discretized
continuous state variables in optimal control problems.

2.4 Summary
To summarize, the problem formulation is defined by (2.2)-(2.7). These include
system dynamics in the form of bounded velocity and acceleration along a fixed path,
criteria to be minimized, and a collision avoidance constraint. In Section 2.1, the
collision avoidance constraint (2.7) was rewritten as the disjunctive timing constraint
(2.12). An analytic instance of (2.12) was posed for a rotating robot arm example,
for later use in Chapters 4 and 6.

The underlying structure of the problem was discussed in Section 2.2, where
most importantly, the problem may be decomposed into a sequencing problem and a
continuous subproblem. The former entails deciding in which temporal order robots
move through shared zones, and the latter involves computing the continuous robot
trajectories when the sequence is known. Chapters 4 and 3 will discuss these two
problems, respectively. Finally, relevant mathematical and constraint programming
concepts were reviewed, these are relevant for the algorithmic improvements in
Chapter 4.



Chapter 3

Fixed sequence subproblem

The robot coordination problem entails both deciding the sequence in which robots
move through the shared zones, as well as the velocity profile of each individual
robot. A branch and bound search is typically applied to the sequencing problem.
During this search, full and partial sequences are evaluated. This chapter is focused
on that subproblem, where the sequence is known and the velocity profiles are to
be decided. We present two approaches. A monolithic approach, suitable when the
collision set has high resolution characteristics, and a decomposition approach, more
suited for low resolution collision sets.

3.1 Monolithic approach
The single robot trajectory planning problem is often modeled by considering the
velocity along the path (path velocity) as a state variable, rather than the velocity
of the actual robot joints [21], [43]. While this reduces the dimensionality of the
problem greatly, it also introduces nonlinearity in the path function that translates
path position into joint positions. Furthermore, the addition of collision avoidance
introduces binary variables which describe the priority sequence of crossing the
shared zone, as well as the occupancy state that prevents two robots to reside in
the shared zone at the same time. The problem is typically solved using nonlinear
programming [9], [10], [43] or dynamic programming [21], [44]. For the multi robot
case, dynamic programming would be intractable due to the curse of dimensionality.
Therefore a mathematical programming approach is needed.

This section will present two monolithic models for the problem. The first makes
use of a convexity result for single robots found in [43]. Unfortunately the problem
does not remain convex with the addition of timing constraints found in the multi
robot case. But even so, the model may still be of use. The second model is based on
another convexification result found in [18], where it is used for traffic intersections.
We add joint velocity and acceleration constraints, and using linearization, the second
model becomes a linearly constraint quadratic program. We will be using velocity
and acceleration as in (2.2)-(2.3), bounds as (2.4)-(2.5), and collision avoidance
constraint (2.12). As for the criteria, we will discuss possible choices after the models
have been introduced.

19
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When the sequence is unknown, boolean variables are required to model the
disjunctive collision avoidance constraint (2.12). But in this chapter, the sequence is
assumed to be known and the collision avoidance constraints can simply be stated as

tj(g(si)) ≤ ti(si) ∀si ∈ [0, 1] ∀ 〈i, j, g(·)〉 ∈ G, (3.1)

where G is a set of tuples 〈i, j, g(·)〉, where each tuple describes robots i and j having
a collision function g(·). That is, robot i cannot visit location si before robot j has
been at position g(si). A general time formulation can be summarized as

min
[
w1 max

i∈N
(Ti) + w2

∑
i∈N

∫ Ti

0
ci(si(ti))dti

]
subject to
si(0) = 0 si(Ti) = 1
ṡi(0) = v0

i ṡi(Ti) = vfi

}
∀i ∈ N ,

|f ′i(si(t))ṡi(t)| ≤ vlim
i (si(t))

|f ′i(si(t))s̈i(t) + f ′′i (si(t))ṡi(t)2| ≤ alim
i (si(ti))

}

∀t ∈ [0, Ti] i ∈ N ,
tj(g(si)) ≤ ti(si) ∀si ∈ [0, 1] ∀ 〈i, j, g(·)〉 ∈ G,

(3.2)

where both si and ti are optimization variables, and Ti could be either a variable
or a constant, v0

i and vfi are bounds on the initial and final velocity of system i.
The velocity and acceleration bounds have been made symmetric without loss of
generality, i.e. vlim

i = vmax
i = −vmin

i and alim
i = amax

i = −amin
i .

3.1.1 Space formulation
In order to reduce nonlinearity, the trajectory planning problem (in the case of single
robots) is often solved by space discretization rather than time [21], [43], [44]. In
the mathematical programming case, a space formulation is advantageous because it
reduces the nonlinearity of the path function [43]. The path function can now be
regarded as a parameter variation in the space domain, rather than a nonlinearity in
the position state.

The model (3.2) is a hybrid model with expressions both in time and space, and
somehow, these elements must be bridged. In a time formulation, binary variables
would be used to express the occupancy of a zone over time. In a space formulation
on the other hand, no such binary variables are needed. Instead, we must transform
the dynamics and bounds to the space domain.

When the problem is posed in space, it entails determining the path velocity
and acceleration as a function of the path position for each system, that is ṡi(si)
and s̈i(si) for si ∈ [0, 1]. Furthermore, the variable ti(si) which defines the time at
which system i is at position si is now treated as a system state. The position si
on the other hand now acts as a spatial dimension for the state space rather than a
system state.
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We note that the relationship between time and path velocity becomes

t′i(si) = dti(si)
dsi

= 1
ṡi(ti(si))

= 1
ṡi(si)

, (3.3)

or on integral form

ti(si) =
∫ si

0

1
ṡi(si)

dsi. (3.4)

The boundary conditions on position are replaced with boundary conditions on time

ti(0) = 0 ti(1) = Ti, (3.5)

as for the boundaries of ṡi(si), these become

ṡi(0) = v0
i ṡi(1) = vfi . (3.6)

The time dependence of the velocity and acceleration constraints are removed as these
are enforced on the interval si ∈ [0, 1]. The timing conditions remain unchanged.
Since the integral of the cost function is now in the space domain, the cost function
becomes

w1 max
i∈N

(Ti) + w2
∑
i∈N

∫ 1

0

ci(si)
ṡi(si)

dsi. (3.7)

The space formulation can be summarized as

min
[
w1 max

i∈N
(Ti) + w2

∑
i∈N

∫ 1

0

ci(si)
ṡi(si)

dsi

]
subject to
ti(0) = 0 ti(1) = Ti
ṡi(0) = v0

i ṡi(1) = vfi

}
∀i ∈ N ,

t′i(si) = 1/ṡi(si)
|f ′i(si)ṡi(si)| ≤ vlim

i (si)
|f ′i(si)s̈i(si) + f ′′i (si)ṡi(si)2| ≤ alim

i (si)


∀si ∈ [0, 1] i ∈ N ,

tj(g(si)) ≤ ti(si) ∀si ∈ [0, 1] ∀ 〈i, j, g(·)〉 ∈ G,

(3.8)

where ti, ṡi and s̈i are optimization variables, and Ti, the final time of system i, is
either a variable or a constant. Except for the slightly nonlinear square term ṡi(si) in
the acceleration equations, all the nonlinearities in the bounds have been transformed
into parameter variations. However, the timing function used for final time and the
collision avoidance constraints remains nonlinear.
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Backward Euler model

A variation of this model is used in a conference version of Paper 4 [45], where the
joint velocities and accelerations are explicitly modeled using a backwards difference
approximation 

q̇i(si) = qi(si)− qi(si −∆)
ti(si)− ti(si −∆) ,

q̈i(si) = q̇i(si)− q̇i(si −∆)
ti(si)− ti(si −∆) ,

(3.9)

where ∆ is a fixed space sampling distance, ti(si), q̇(si) and q̈(si) are variables and
qi(si) is the fixed path. That is, the model does not consider the path velocity ṡi as
a state, but rather models all the individual joints explicitly using (3.9) and ti as a
control input. Due to the non-convexity of the model, an initial solution is required.
This will be referred to as the explicit formulation.

3.1.2 Variable transformations
An additional strategy that further reduces nonlinearity is the introduction of variable
changes. Two such variable changes have been explored in the literature: kinetic
energy (squared velocity) [43] and inverse velocity [18]. Each removes a specific
nonlinearity from the problem without introducing approximations. The former is
used for single robot trajectory planning and linearizes the path function. Although
not included here, additional torque equations can also be included in the first model.
which would support applications such as space vehicles, aircraft and a large range
of car models discussed in [46]. The latter is used for a vehicle intersection problem
and linearizes the time-velocity used for the collision avoidance constraints.

Kinetic energy model

The kinetic energy formulation introduces a variable change where a state ei(t),
proportional to the kinetic energy, is used instead of ṡi

ei(si) = ṡi(si)2, (3.10)

which leads to the state equation

e′i(si) = 2s̈i(si). (3.11)

where e′i(si) is the position derivative of ei(si). The relationship between time and
path velocity becomes

t′i(si) = 1
ṡi(si)

= 1√
ei(si)

, (3.12)
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or on integral form

ti(si) =
∫ si

0

1
ṡi(si)

dsi =
∫ si

0

1√
ei(si)

dsi. (3.13)

Using ei(si) and e′i(si) as the system states, the velocity and acceleration (2.2)
and (2.3) are rewritten as

q̇i(si)2 = f ′i(si)2ei(si), (3.14)
q̈i(si) = f ′i(si)e′i(si)/2 + f ′′i (si)ei(si). (3.15)

The velocity bound can be rewritten as

q̇i(si)2 ≤ vlim
i (si)2, (3.16)

and the the cost function is now

w1 max
i∈N

(Ti) + w2

∫ 1

0

ci(si)√
ei(si)

dsi. (3.17)

In summary, the kinetic energy based formulation is

min
 w1 max

i∈N
(Ti) + w2

∑
i∈N

∫ 1

0

ci(si)√
ei(si)

dsi


subject to
ti(0) = 0 ti(1) = Ti

ei(0) =
√
v0
i ei(1) =

√
vfi

 ∀i ∈ N ,

t′i(si) = 1/
√
ei(si)

f ′i(si)2ei(si) ≤ vlim
i (si)2

|f ′i(si)e′i(si)/2 + f ′′i (si)ei(si)| ≤ alim
i (si)


∀si ∈ [0, 1] i ∈ N ,

tj(g(si)) ≤ ti(si) ∀si ∈ [0, 1], 〈i, j, g(·)〉 ∈ G,

(3.18)

where ti, ei and e′i are optimization variables, and Ti is either a variable or a constant.
Most constraints are linear and the individual robot final time is convex. The
differential equation (3.12) relating time to velocity is however nonlinear. While it
would be possible to construct a linear inner approximation, it will not be useful in
practice since the timing error will become intractable even for small to moderate
changes in reference velocity. The non-convex term must be kept as is.
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Inverse velocity model

The second transformation introduces the new state zi(si) = 1/ṡi(si), the inverse
velocity (or lethargy). We can see from (3.13) that its spatial integral is time, and
thus on differential form

t′i(si) = zi(si). (3.19)

Also, introduce the spatial derivative of the inverse velocity z′i(si), which is related
to s̈(si) by

s̈i(si) = − z′i(si)
zi(si)3 , (3.20)

which follows from

s̈i(si) = d

dt

[
1

zi(si)

]

= − 1
zi(si)2

dzi(si)
dsi

dsi
dt
. (3.21)

Since time is now a state variable, the boundary conditions on time are simply linear
state constraints

ti(0) = 0 ti(1) = Ti. (3.22)

The same goes for the boundaries of ṡi, that become

zi(0) = 1
v0
i

zi(1) = 1
vfi
. (3.23)

The case of zero (or near zero) initial and final velocity will be discussed later.
The velocity (2.2) becomes

q̇i(si) = f ′i(si)
zi(si)

, (3.24)

and since zi(si) is non-negative the velocity bound (2.4) can be expressed

|f ′(si)| ≤ zi(si)vlim
i (si). (3.25)

The acceleration (2.3) is
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q̈i(si) = −f ′i(si)
z′(si)
zi(si)3 + f ′′i (si)

1
zi(si)2 , (3.26)

and the acceleration bound (2.5) consequently

|−f ′i(si)z′i(si) + f ′′i (si)zi(si)| ≤ zi(si)3alim
i (si). (3.27)

The timing constraints (3.1) remain unchanged.
Finally for the criteria, integration in space adds an inverse velocity term just as

in the kinetic energy model, such that

w1 max
i∈N

(Ti) + w2
∑
i∈N

∫ 1

0
zi(si)ci(si)dsi. (3.28)

The inverse velocity formulation can be summarized as

min
[
w1 max

i∈N
(Ti) + w2

∑
i∈N

∫ 1

0
zi(si)ci(si)dsi

]
subject to
ti(0) = 0 ti(1) = Ti
zi(0) = 1

v0
i

zi(1) = 1
vfi

}
∀i ∈ N ,

t′i(si) = zi(si)
|f ′i(si)| ≤ zi(si)vlim

i (si)
|−f ′i(si)z′(si) + f ′′i (si)zi(si)| ≤ zi(si)3alim

i (si)


∀si ∈ [0, 1] , i ∈ N ,

tj(g(si)) ≤ ti(si) ∀si ∈ [0, 1] ∀ 〈i, j, g(·)〉 ∈ G,

(3.29)

where ti, zi and z′i are optimization variables, and Ti is either a variable or a constant.
Note that the only nonlinear constraint in this model is the acceleration bound. It is
possible to make a linear inner approximation of the cubic term around a reference
inverse velocity z̄i(si) such that the acceleration bound becomes

|−f ′i(si)z′i(si) + f ′′i (si)zi(si)| ≤(
z̄i(si)3 + 3z̄i(si)2 (zi(si)− z̄i(si))

)
alim
i (si).

(3.30)

3.1.3 Criteria
Both the kinetic energy and the inverse velocity formulations have convex expressions
of the final time. This section will focus on the minimum energy part of the criteria
ci. First, two convex criteria for the kinetic energy formulation (3.18) on the joint
velocities and accelerations are introduced. Next, criteria based on the movement
along the path will be discussed, a type of criteria available for both models.
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Joint criteria

In [45], a number of criteria for energy minimization in robots are evaluated. The
focus is on criteria where a dynamic model for the robot is not necessary. The two
criteria which performed best from an energy perspective are the squared weighted
acceleration and the squared weighted pseudo power. The former, when used in the
kinetic energy formulation (3.18) becomes

ci(si)√
ei(si)

= (wi ◦ q̈i(si))T q̈i(si)√
ei(si)

, (3.31)

where ◦ is the Hadamard product (element wise multiplication) operator and wi

is a vector of joint weighting factors specific to system i. The choice of weights is
discussed later. We note that this expression is convex.

The second criterion, which in [45] resulted in the greatest energy reduction, is
the weighted squared pseudo power

ci(si)√
ei(si)

= (wi ◦ q̇i(si) ◦ q̈i(si))T (q̇i(si) ◦ q̈i(si))√
ei(si)

=
√
ei(si)(wi ◦ f ′i(si) ◦ q̈i(si))T (f ′i(si) ◦ q̈i(si)).

(3.32)

The reason behind the nomenclature pseudo power is that the real power is P = τiq̇i,
where τi is the torque, but in the absence of a detailed dynamic model, acceleration
is used as a substitute for the torque. We will denote these two criteria (q̈)2 and
(q̇q̈)2 for short.

Because this criterion is non-convex, we choose to apply a zero order approximation
for the outer term at a reference velocity resulting in the quadratic criterion

ci(si)√
ei(si)

=
√
ēi(si)(wi ◦ f ′i(si) ◦ q̈i(si))T (f ′i(si) ◦ q̈i(si)), (3.33)

where ēi(si) is a reference squared path velocity.

Path criteria

In early work on velocity planning, it was observed that dynamically scaling an
existing trajectory "allows for modification of movement speed without complete
dynamics recalculation" [47]. The dynamic scaling of a trajectory can be regarded as
moving along a scaled reference trajectory, and dynamically changing scaling of the
reference velocity. We propose penalizing changes to the scaling.

For the kinetic energy model this could be simply the squared path acceleration

ci(si)√
ei(si)

= e′(si)2. (3.34)
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and for the inverse velocity formulation (3.29), the squared positional variation of
the inverse velocity

zi(si)ci(si) = z′(si)2, (3.35)

is penalized. We will denote these two criteria path acceleration and pseudo path
acceleration respectively, or (s̈)2 and (z′)2 for short. While these criteria certainly
are simple, it is not quite obvious how they will influence the resulting solution.

Consider the single robot case with bounds on neither velocity nor acceleration.
If there are no constraints on initial or final path velocity and the final time is T ,
then the trivial optimal solution to the two criteria above is to use a constant path
velocity ṡ(t) = 1/T . Constant path velocity incurs zero cost for (3.34) and (3.35),
since s̈(t) = z′(t) = 0, and is always feasible due to the lack of bounds. The resulting
optimal trajectory is f(t/T ), i.e. the path function, time scaled such that the final
time holds. We conclude that if f(s) originates from a sampled robot motion, then
the solution for this unbounded single robot problem is to run a constant time scaled
version of that motion.

One could regard the minimization of (3.34) and (3.35) as following a reference
trajectory scaled by ṡ(t). The cost incurs a penalty on changes in ṡ(t), i.e. a cost on
changing the scaling of the reference trajectory. When bounds on acceleration and
velocity are introduced, ṡ(t) may have to vary for the solution to remain feasible.
Staying on the velocity and acceleration boundaries is thus penalized and the solution
will tend to avoid high acceleration and velocity, i.e. energy efficient rather than
aggressive solutions are promoted.

3.1.4 Benchmark
This section will present a case study which evaluates the computational efficiency
of the proposed formulations. We have also evaluated the resulting trajectories in an
industrial robot This experimental evaluation is presented in Chapter 5. The case
consists of two KUKA KR30 6-DoF industrial robots each running the same path,
f1(s) = f2(s) with a single shared zone.

The path is a so called ’pick and place’ movement consisting of 458 samples
sampled at an interval of 0.012 s. We denote this path the nominal path fn. A
complementary path f c was also created using the optimal solution from the weighted
squared acceleration minimal solution of one robot performing fn(s) with a final
time of 8.25 s.

In an industrial setting, it is common for the robot with lower priority to move up
to the zone boundary and simply wait before it can gain access. Thus, for comparison,
we created an additional trajectory following the same path but with a stop and wait
command at the zone boundary, allowing the other prioritized robot performing the
original trajectory to clear the intersection zone. The new trajectory resulted in a
nominal final time of 7.3 s for the two robots. This is referred to as the nominal two
robot solution.
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Figure 3.1: The collision set for the two robots (gray), nominal trajectory (blue)
and optimal trajectory for the minimum squared acceleration case (red) for the
benchmark example with final time 7.3 s.

Figure Figure 3.1 shows the difference between the nominal two robot solution
and the minimum squared acceleration solution. Notice how the first robot in the
nominal path moves up to the common zone as quickly as possible to the edge of the
common zone where it waits for access. The optimized solution shows how the first
robot moves through the zone boundary just as the second robot leaves at t = 3 s.

The problem was modeled using the AMPL [48] modeling interface, using a zero
order hold discretization for the differential equations. For the quadratic program
resulting from the inverse velocity formulation (3.29), CPLEX 12.6.3 was used as
a solver. For the nonlinear programs, the open source solver IPOPT 3.8.1 [49] was
used. The algorithms were run on a Windows 10 64-bit operating system with a 3.29
[GHz] Intel i5 2500K CPU (Q9400). The explicit model is included for comparison,
and as it is already very non-convex, the squared joint power criterion is used without
zero order approximation.

Table 3.1 contains the recorded computation times. There is not much difference
in computation time for the kinetic energy formulation (3.18) when the criteria is
varied. The average time was 0.85 s and it performed roughly 8 times faster than the
explicit approach used in [45] that averaged 7 s. The inverse velocity formulation
(3.29) with the (z′)2 criteria is clearly the fastest with an average time of 0.135 s. The
inverse velocity formulation was approximately 6 times faster than the kinetic energy
formulation and 50 times faster than the explicit formulation. The computation
times differ significantly because the inverse velocity problem is a quadratic program
rather than a non-convex nonlinear one. Also, not only is the problem class simpler
but the software used to solve it is also more mature.
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Table 3.1: Computational times summary

Runtime [s]
with final time:

Model Criteria 7.3 s 7.5 s 8.0 s

Kinetic energy (3.18)

Squared joint acc. (q̈)2 (3.31) 0.82 0.82 0.73
Squared joint power (q̇q̈)2 (3.33) 0.79 0.77 0.85
Path acc. fn (s̈)2 (3.34) 0.77 0.85 0.77
Path acc. f c (s̈)2 (3.34) 1.04 1.11 0.87

Inverse velocity (3.29) Pseudo path acc. fn (z′)2 (3.35) 0.12 0.11 0.11
Pseudo path acc. f c (z′)2 (3.35) 0.16 0.15 0.16

Explicit (3.9) Squared joint acc. (q̈)2 (3.31) 5.07 10.9 6.63
Squared joint power (q̇q̈)2 (3.32) 6.45 6.52 6.28

3.2 Decomposition approach
The previous section presented a monolithic approach to the acceleration bounded
problem with fixed sequences. But as we have seen in Section 2.2 and the benchmark
example of the previous section, it is not always necessary to impose timing conditions
at every single position along the path. Here, we will decompose the problem by use
of parameterization. The following can be regarded as a generalization of the result
in Paper 2. Section 3.2.1 will discuss the assumptions made in the paper.

Suppose the evolution of each system i can be divided into `i stages, defined
by the stage transition conditions si(t) = ∆k

i , k ∈ {1, . . . , `i + 1}. A system is in
stage k when ∆k

i ≤ si(t) ≤ ∆k+1
i . Furthermore, let νki denote the path velocity at a

transition point k, i.e. where s(t) = ∆k
i . Also let τ ki denote the time of transition.

Note that ∆1
i = 0 and ∆`i+1

i = 1. Figure 3.2 illustrates the use of this notation for a
three stage system with transition conditions ∆2

i = 1/3 and ∆3
i = 2/3.

eki (νki , νk+1
i , τ ki , τ

k+1
i ) = min

∫ τk+1
i

τki

ci(si(t))dt

subject to
si(τ ki ) = ∆k

i si(τ k+1
i ) = ∆k+1

i

ṡi(τ ki ) = νki ṡi(τ k+1
i ) = νk+1

i

}
,

|f ′i(si(t))ṡi(t)| ≤ vlim
i (si(t))

|f ′i(si(t))s̈i(t) + f ′′i (si(t))ṡi(t)2| ≤ alim
i (si(t))

}

∀t ∈ [τ ki , τ k+1
i ],

(3.36)

where eki (νki , νk+1
i , τ ki , τ

k+1
i ), not to be confused with the ei(si) from the previous

section, is the minimum cost as a function of transition velocity and time. Also, let
bki (νki , νk+1

i , τ ki , τ
k+1
i ) ≤ 0 define the feasible set for the above problem. We reiterate

that due to time-invariance, only the stage duration is important and as such, bki (·)
and eki (·) are in fact only three dimensional.

Given the two functions eki (·) and bki (·), the master problem problem is
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Figure 3.2: The decomposition of a path into a three stage system.

min
w1 max

i∈N
(Ti) + w2

∑
i∈N

`i∑
k=1

eki (νki , νk+1
i , τ ki , τ

k+1
i )


subject to
τ 0
i = 0 τ `i+1

i = Ti
ν0
i = v0

i ν`+1
i = vfi
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i ) ≤ 0 ∀k ∈ {1, ..., `i} i ∈ N ,

τ ki ≤ τ rj ∀ {i, j, k, r} ∈ Ḡ,

(3.37)

where Ḡ is a set of discretized collision avoidance constraints described by tuples
{i, j, k, r}, i.e. segment k of system i should begin before segment r of system j. The
master problem can be summarized as scheduling the transition times and computing
the optimal transition velocities.

In summary, the stages within each system primarily interact by continuity
conditions on velocity at the switching points, as well as some constraints on the
transition times. But at a local level inside each stage, only the duration spent is of
importance due to time invariance. The cost incurred during each stage is a function
of three external variables, the two boundary velocities and the duration. We express
the minimum cost of a stage k of system i as a function eki (·), and the feasible space
the external variables as bki (·).

If the functions eki (·) and bki (·) are somewhat well behaved, solving this problem
could be simpler than the direct approach. However, one obvious problem is that
the functions are unknown to us. We note that our decomposed problem very
much resembles that of a nonlinear programming primal decomposition, where the
switching velocity and stage durations are global variables, and the dynamics are
local. Such an approach is used for a vehicle intersection problem in [50], where the
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global variables are the stage switch times, rather than the boundary velocity and
stage duration as in our case.

Another approach, which we opted for in Paper 2, is to exhaustively evaluate
the functions eki (·) and bki (·) on a grid. This could very well be performed using the
mathematical programming approach in the previous section. Unfortunately, when
we began working on the decomposition approach, the convexity results of [43], used
in the kinetic model of the previous section, had only been known for less than a year
and were overseen. Instead we settled for a dynamic programming approach. Since
a three dimensional degrees is quite demanding, we opted for a simplified approach,
where both the initial and final velocity of each segment were set to zero.

3.2.1 Zero velocity transition condition
At first glance, the requirement of zero transition velocity may seem like an unrea-
sonably restrictive limitation, especially for collision constraints such as the vehicle
following example in Section 2.1. But in the case of industrial robots, this is not
necessarily the case. When specifying collision zones for industrial robots, one often
uses a lot of margin for safety concerns, and the robots may perform large portions
of their programs entirely within shared zones. Also, it is not uncommon for the
robots to stop, or almost stop, after performing a movement instruction.

With the velocities at the transition points restricted to zero, the minimum cost
of (3.36) is now a function of the initial and final time ēki (τ ki , τ k+1

i ). Note that due to
time invariance, this is really only a one-dimensional function. Also, let the minimum
time solution be denoted δki . We will not consider any maximum time as there should
not be a problem to stop entirely on the time scales considered.

The master problem now becomes simply

min
w1 max

i∈N
(Ti) + w2

∑
i∈N

∑
k=[1,...,`i]

ēki (τ ki , τ k+1
i )


subject to
τ 0
i = 0 τ `i+1

i = Ti ∀i ∈ N ,

τ ki + δki ≤ τ k+1
i ∀k ∈ {1, ..., `i} ∀i ∈ N ,

τ ki ≤ τ rj ∀ {i, j, k, r} ∈ Ḡ,

(3.38)

which is nonlinear in the criterion and linear in all constraints. In Section 4.3, we
will present some benchmarks for this problem class. If we were to substitute ēki for
a function based on the linear scaling of an existing velocity profile, we would have
the method presented in [12].

3.2.2 Parameterization by dynamic programming
We mentioned previously that dynamic programming can be used to parameterize ēki .
There are a large number dynamic programming approaches to the minimum energy
problem for single robots with fixed path, beginning with [44] and later iterative
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dynamic programming [51]. Most works regarding minimum energy use a weighted
energy and time criterion, since excluding an explicit representation of time reduces
the state space to a single dimension, velocity. Thus, for the parameterization, a
number of problems must be solved with varied weighting between energy and time.
In our work, we argued that it is computationally beneficial to explicitly include
time, such that a single problem instance is sufficient for parameterization.

In Paper 2, we presented a benchmark using a Matlab implementation run on a
Windows 7 64bit system with a 2.66 [GHz] Intel Core2 Quad CPU and 4 [GB] of
RAM. Using a resolution of 30 iterations, with a 50× 186 size ṡi/t-grid, each stage
problem was solved in 40 s. As we three years later compare this to the performance
of the monolithic formulation, this clearly is too slow.

Thus, we decided to reimplement the algorithm from Paper 2, this time utilizing
an adaptive grid. Furthermore, the boundary of the reachable set was carefully
kept track of and was used for grid adaptation, resulting in viable solutions at
much lower resolution. Run on the more modern computer used for the monolithic
model benchmark, the results indicate a 30 step problem can be solved in less
than 4 seconds. This solution time may be even further reducible with an efficient
C++ implementation. In retrospect, solving multiple instances of the dynamic
programming formulation in [44] may be even faster due to its implementational
simplicity. Regardless, this would still most likely prove too slow.

Today, using the convexity results of [43], and repeated solving of a mathematical
program or utilizing a multi objective nonlinear programming solver is probably
the most efficient way to sample/parameterize the stage costs. In [46], the authors
exploit the structure of the resulting single robot problem and report solution times
of 10 ms for a 50 step problem. Given such performance, each parameterization
problem can be solved in well less than one second.

3.3 Summary
This chapter has discussed mathematical programming models for the continuous
trajectory subproblem. That is, the discrete decisions governing the sequence in which
robots cross shared zones is known. Two approaches are presented, a monolithic
model in Section 3.1 and another decomposition based in Section 3.2.

In the monolithic approach, the continuous problem is encoded into a single NLP
using space discretization. Two variable changes found in the literature are utilized,
resulting in two models. A variable change based on kinetic energy results in a model
where only the collision avoidance timing constraints are nonlinear, and another
based on inverse velocity is only nonlinear in the acceleration constraints. The latter
is linearized using an inner approximation, resulting in a quadratic program.

For the decomposition approach, the temporal intervals in time instances used
for collision avoidance are considered as stages. The inputs/outputs of each stage is
the duration and initial/final velocity. The continuous trajectory within each stage
is considered as subproblem. The problem is simplified even further by assuming
zero initial and final velocity, such that each stage is only a function of its duration.
The stage cost is parametrized using dynamic programming.
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Sequencing problem

In the previous chapter, it was assumed that the sequence in which the robots move
through the shared zones is known, i.e. which robot is prioritized. Here, the sequence
is now once again assumed to be unknown. Thus, instead of linear inequalities, the
collision zones are modeled by a disjunctions between linear equalities. In other
words, the robot priority is now a discrete decisions which must be made.

Whereas the previous chapter was focused on modeling improvements, this chapter
is concerned with algorithmic improvements. When encoded into a mathematical
program, the disjunctive inequalities are converted into mixed integer expressions.
The nonlinear problem formulation in the previous chapter is now a mixed integer
nonlinear program. Recall that algorithms for MINLPs are discussed in Section 2.3.

Both problem formulations in the previous chapter could be characterized as
scheduling problems with additional nonlinear constraints. In this chapter, we will
examine the integration of constraint programming with mathematical programming
methods for such problems. We will show that a straight forward implementation
provides good results, even against algorithms which already include such integration.

4.1 Integrated optimization
We will attempt to improve the performance of the MINLP algorithms discussed in
Section 2.3 by including components from constraint programming. Since the early
2000s [52], constraint programming and mixed integer linear programming methods
have been combined to solve scheduling problems more efficiently. A survey on the
use of integrated methods in scheduling is presented in [53].

A popular approach is to decompose the problem using logic-based Benders
Decomposition [40]. For example, in minimum time resource assignment problem
without precedence constraints, a master integer programming problem will specify
the assignment problem and constraint programming is used to solve the resulting
allocation problem. The result from the constraint program will then be entered into
the master integer program as a linear cut. In this particular case that approach works
very well, as the lack of precedence constraints allows each resource to be treated as
a separate problem, and as such the cuts generated by the constraint programming
become much stronger. This works very well in the absence of precedence constraints

33
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as the scheduling of operations on each resource is independent of one another. In the
more general setting, including precedence constraints, more complex performance
criteria, etc, such a decomposition is not as efficient.

Another approach which incorporates linear programming into a constraint
programming solver can be found in [54]. In contrast to Logic based Benders decom-
position, which uses a top layer of integer programming and constraint programming
for subproblems, the approach in [54] includes both constraint and linear program-
ming models of when entire problem is created. At each node in the constraint
programming branch and bound tree, a corresponding linear programming relaxation
of the current node is created. The solution of the relaxation provides a bound on
the objective function.

An even tighter integration of constraint and mathematical programming is
SIMPL [55]. It uses its own modeling language to specify the optimization problem,
after which the solver decides itself which methods should be invoked to solve the
problem. Integrated constraint and mixed integer linear programming can also
be found in for example IBM ILOG CP Optimizer, which uses both in its large
neighborhood search [56].

Finally, as previously mentioned, both Baron [57] and SCIP (Solving Constraint
Integer Programs) [58] utilize constraint propagation and can solve non-convex
MINLPs to global optimality. It is not clear how extensive the use of constraint
propagation in Baron is, but in SCIP it is an integral part of the solver. Our work
differs in that SCIP and Baron are both used for the global solution of non-convex
MINLPs, while ours is streamlined for convex formulations.

4.1.1 Proposed implementation

In short, our proposed algorithm uses branch and bound, and at each node, a
portfolio of algorithms is available. The portfolio considered in this paper consists of
constraint, linear and nonlinear programming. Each algorithm in the portfolio uses
its own model and requires an interface to communicate any branching decisions or
variable bound reductions to the algorithm.

Any constraints which are not available/suitable for an algorithm are ignored,
e.g. nonlinear constraints in constraint programming or global constraints (e.g.
disjunctive) in mathematical programing. Thus, since the cost in our problems
is based on nonlinear functions, the constraint programming part cannot tell us
anything about the cost, only feasibility with regards to the other constraints. That
is, the constraint programming model includes only a subset of the original problem,
i.e. the traditional scheduling part. The real valued variables must also be discretized
to some appropriate resolution.

The algorithm computationally cheapest to execute, is constraint programing,
which may be used to determine whether a node is feasible or not. Next is the
linear program, which provides a lower bound to the solution in the current branch.
Finally, the nonlinear program not only provides lower bounds, but if we are at a leaf
(terminal) node, it also yields an upper bound to the global solution. In addition to
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solving subproblems, we have the additional choice of adding linearizations to the
linear program, to improve its lower bound.

The overall execution of the integrated algorithm is described in Algorithm 2. In
essence, the algorithm can be regarded as Algorithm 1 with the addition of constraint
propagation at the point before linear programing is performed, i.e. at the stage
where cutting planes are applied. For the implementation in this thesis, Gecode
4.4.0 [41] is used for constraint propagation, Clp [59] for the linear programs and
Ipopt [49] for the nonlinear programs. These algorithms are used in a modular
fashion, where the input is the vector of binary variables and the output is the result
of the algorithm. Tightened variable bounds may also be communicated from the
constraint propagation phase. For the linear program, there is also the choice of
adding linearizations.

Since constraint propagation is computationally inexpensive to perform, it should
in general be performed in every node. Also, since constraint propagation is also likely
to detect scheduling infeasibilities before linear or nonlinear programing, it should
also be performed first, in the hope that we need not run the other algorithms. In
such a setting, it is possible to realize the integrated algorithm design by embedding
the mathematical programming part into a constraint propagator.

Recall the execution of a constraint programming algorithm described in Sec-
tion 2.3.2. First, all propagators are scheduled for execution. After execution, unless
the propagator deems the current node infeasible, a propagator is either taken of
the list of scheduled propagators, or it is rescheduled. The propagators are typi-
cally scheduled in order of computational requirements, beginning with the lowest
complexity propagators.

Suppose we design a new constraint for which we of course need to implement
a propagator. The constraint is applied to the binary variables as well as our cost
variable. The propagator of this new constraint is scheduled for execution whenever
there is a change to the binary variables of the problem. Furthermore, the cost of
execution for the propagator is set to the maximum, effectively scheduling it last
of all propagators. In such a setting, at each node, the constraint programming
algorithm will perform propagation as usual, but before completing, it will also
execute the code inside our own propagator. This opens up for a possibility to run
mathematical programming, and modify the domain of the cost variable accordingly.

If steps 7-10 of the Algorithm 2 are embedded inside the custom propagator
discussed in the previous paragraph, we can see that the overall behaviour of a
constraint program with the added custom constraint will be that of Algorithm 2.
This approach removes the need to write any branch and bound code since one
already exists in the constraint programming algorithm. We have successfully applied
this embedding approach using both the open source constraint programming solver
Gecode in [60] and the commercial solver Ilog CP Optimizer in [20].

4.2 Benchmark problems
To make a thorough benchmark, we will generate a large number of problem instances.
Here, we will define two generic problems based on the formulations in Section 3.1
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Algorithm 2 Integrated Algorithm
1: Initialize.

Populate the search tree Γ with the root node, initialize the linear programming
MP, initialize the upper bound cub = cmax.

2: Terminate?
If the search tree is empty, Γ = ∅, terminate.

3: Select.
Select the next node γ from Γ.

4: Schedule propagators.
Any propagators subscribing to the variable domain subject to the branching is
added to the list of scheduled propagators.

5: Select propagator.
Select the next propagator from the list, if list is empty goto 7.

6: Propagate
Execute the propagator, if the constraint is infeasible, goto 2. If any variable
bounds were decreased, schedule any available propagators subscribing to the
concerned variables. The current propagator is either flagged as available or
unavailable for rescheduling. Goto 5.

7: Evaluate LP.
Solve linear MP based on the full/partial integer assignment γ, if infeasible goto
2.

8: Prune.
If the current solution cMP (γ) ≥ cub, goto 2.

9: Solve NLP?
If we are at a leaf node (full integer assignment), solve the NLP corresponding
to T , else goto 12.

10: Upper bound?
If the NLP solution is feasible and cost cNLP (γ) ≤ cub, update the upper bound.

11: Refine.
Add linear approximations to the MP based on the NLP solution, goto 2.

12: Divide.
Branch on current node, add the new nodes to the search tree Γ, goto 2.

and Section 3.2. For both models, we will also include a mixed integer quadratically
constrained quadratic program (MIQCQP) version, such that we can include an
additional algorithm to our comparison.

4.2.1 Multiple robot path coordination

The first problem is based on the monolithic space formulation (3.8) in Section 3.1.
We will use a simplified version where the robots are single degree of freedom rotating
arms and rotate from one point to another without stopping. This makes the velocity
and acceleration constraints linear in (3.8). The minimization criteria is the squared
acceleration.
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We note that in contrast to (2.12), this particular benchmark examples has used

(tj(gij(si)) ≤ ti(si) ∨ ti(gji(sj)) ≤ tj(sj)) ∀sj ∈ [0, 1]. (4.1)

This constraint differs from (2.12) in that sj ∈ [0, 1] is placed outside the disjunction.
When sj ∈ [0, 1] is placed inside, there is clearly only one alternative. However,
when it is placed outside, each discretization point of sj inside the collision zone
constitutes an alternative, although implicitly, all of these apparent decision are one
and the same.

Since the sequence is now unknown, the collision avoidance constraint is now
posed including the choice of priority as in (2.12). The collision avoidance zones for
rotating single degree of freedom robot arms is defined by (2.17).

Recall that the problem is non-convex due to the time constraint t′i(si) = 1/ṡi(si).
In this benchmark we would like to work with convex problems, and also pose a
MIQCQP for comparison. Thus, we will relax this constraint such that

t′i(θi) ≥
1

ωi(θi)
, (4.2)

which is convex, since the velocity is non-negative. From our experience, at least for
the special case of unbounded acceleration, this lower bound is tight. Regardless of
tightness, the relaxation allows us to apply convex methods and include state of the
art MIQCQP methods in our benchmark.

4.2.2 Nonlinear job shop scheduling
The second problem is a mix of the decomposition approach (3.38) in Section 3.2
and a traditional job shop scheduling problem. In a job shop scheduling problem,
there are n different jobs that are to be scheduled on m different machines, indexed
byM = [1, ..,m]. Each jobs consists of a set of operations which are to be processed
in a given order, each on a predefined machine. Each operation also has a fixed
processing time. Furthermore, a job does not use the same machine twice, operations
may not be preempted, and each machine can only process one job at a time.

The constraints describing the system consist of

tij + dij ≤ ti+1,j ∀i ∈ N j ∈M : i 6= n, (4.3)
tnj + dnj ≤ T ∀j ∈M, (4.4)
tij + dij ≤ tkl ∨ tkl + dkl ≤ tij ∀ 〈i, j, k, l〉 ∈ D, (4.5)

where tij and dij are the starting time and duration of operation j in job i, j ∈M
and i ∈ N , T is the final time (makespan) of the system and D is a set of tuples
〈i, j, k, l〉 defining each pairs of operations ij and kl processed on the same machine.
As for the constraints: (4.3) describes the given order of operations within a job; (4.4)
ensures the final time is larger than each job completion time; (4.5) finally ensures
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that each machine only processes one job at a time. If the final time is minimized,
the decision variables of the problem becomes the final time T and the starting times
tij, while the operation durations dij each have a minimum duration δij.

In a mixed integer program, the logical constraint (4.5) will have to be converted
to mixed integer form using the big-M technique (not to be confused with initial
point generation in linear programs). That is, (4.5) becomes

tij + dij ≤ tkl +M(1− bijkl) ∀ 〈i, j, k, l〉 ∈ D, (4.6)
tkl + dkl ≤ tij +Mbijkl ∀ 〈i, j, k, l〉 ∈ D, (4.7)

where bijkl ∈ {0, 1} is a boolean variable which is 1 when operation ij precedes
kl, and 0 if kl precedes ij, and M is a constant large enough to relax the inactive
constraint. If the final time is upper bounded by Tub, then M = Tub + dij in (4.6),
and M = Tub + dkl in (4.7). Note that in the constraint programming, the mutual
exclusion constraints (4.5) can be replaced, or supplemented for additional tightness,
with the global constraint (2.21).

To mimic the type of problem resulting from the decompositional approach, we
add an energy minimization term. Each term is a cubic expression on the form

fij(dij) = 4(dij − δij)2/δij + (dij/δij)3, (4.8)

where fij is the cost term, δij the constant minimum duration and dij is the variable
duration of operation ij. Note that the expression is convex for dij ≥ 0. The cost
term represents the energy consumption of an operation. The constraints of the
nonlinear job shop problem are defined by (4.3)-(4.8) and the criterion is the sum
over all terms in (4.8).

Even though the problem belongs to the MINLP class, it is in fact possible to
reformulate this model as a mixed integer quadratically constrained program, and
solve it using for example Cplex, Gurobi and Express. We will later include Gurobi
[61] in our benchmark, and thus present the following quadratically constrained
version.

The cubic term d3
ij can be modeled by first introducing an over approximator of

the squared duration

dsqij ≥ (dij)2, (4.9)

and consequently an over approximator for the cubic term

dcubeij dij ≥ (dsqij )2. (4.10)

which can be modeled using modern MIQCQP solvers, as these typically accept
constraints on the form x2 ≤ yz, where y ≥ 0 and z ≥ 0.
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4.3 Benchmark
Using the two problem classes introduced in Sections 4.2.2 and 4.2.1, we benchmark
our proposed implementation as well as a number of existing MINLP implementations.

Two convex MINLP solvers are included. The commercial solver Knitro includes
three algorithms for MINLP, one of which is a variation of LP/NLP-BB [62]. The
open source solver Bonmin, which features a number of algorithms, one of which is a
variation of LP/NLP-BB. Out of the box, Bonmin uses the open source software Cbc
[63] for mixed integer linear programming and Ipopt [49] for its NLP subproblems.

Two global non-convex MINLP solvers are also included. Baron is a commercial
solver where constraint propagation is utilized, although to what extent is unclear
[57]. For non-convex problems it uses a spatial branch and bound algorithm based
on linear programs for bounding. The open source solver SCIP [58] is also evaluated.
Similarly to Baron, it uses LP based bounding via spatial branch and bound. SCIP
integrates constraint and mathematical programming and has support for global
constraints.

Finally, the commercial MIQCQP solver Gurobi is also included in our benchmark
[61]. A thorough review of MINLP software is available in [64].

4.3.1 Multi robot path coordination
Three problem sizes were considered for the multi robot path coordination problem,
the number of robots n ∈ [2, 3, 4]. For each problem size, 100 instances were generated
with a randomized initial position and rotation direction. The total distance rotated
was set to one revolution and the robots were positioned in two rows, close enough
for collisions to occur, the total time was set to T = 5 s. A discretization grid of
40 points was used and a forward Euler approximation was used for the continuous
dynamics. Also, recall that the constraint propagation methods work with integer
variables. Thus the variable domains are upsampled, we chose a factor 20, making
the smallest time unit 0.05 s. A lower or higher upsampling factor would result in a
faster or slower results, respectively.

At each discretization point, a disjunctive timing constraint (4.1) would be posed,
each with a unique boolean variable. Recall the discussion from Subsection 4.2.1,
that this does introduce some redundant boolean variables, even though there are
only two alternatives for each collision.

In addition to the standard variation of our algorithm, denoted Integrated, a
variation dubbed Integrated w/o LP was also used in this example. In this addition,
the linear approximation part has been disabled such that the algorithm exclusively
uses constraint propagation in the tree and NLPs at the nodes. The reason to
exclude linear approximations from the search is that these simply do not result
in any bounded nodes due to the weak relaxations. In practice, this implies that
constraint propagation is used to find scheduling feasible solutions, and NLP in turn
is used to compute the optimal cost.

The right hand side of Figure 4.1 shows an overview of the result. The solver
Bonmin would abort solving for many instances. These have been marked as unsolved.
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Integrated w/o LP clearly outperforms all other algorithms, even Gurobi. Integrated
algorithm also performs very well. Only three algorithms solves all problems within
the time limit: Integrated, Integrated w/o LP and SCIP, all of which use constraint
propagation technology. Baron performs the worst, only solving problem instances
which have no feasible solution. However, we suspect Baron erroneously treats the
problem as non-convex, which could make the search much more difficult. The
commercial MINLP solver Knitro does rather well, but not nearly as good as
Integrated, Integrated w/o LP, SCIP and Gurobi.

Note that using Integrated w/o LP in favour of Integrated sped up the problem
simply by reducing the number of unnecessary LP solved. A similar phenomenon
was observed in Paper 5, where two instances of a similar, but non-convex problem
was studied. Due to the non-convexity, iterative linearization could not be used
and standard nonlinear branch and bound was employed. Thus, each additional
node explored was very expensive, since an NLP had to be solved in each node.
To overcome this, the following solution was devised. In addition to the method
suggested here, after step 6 of Algorithm 2, before any NLP was solved, two child
nodes would be created and constraint programming would be used to search for
feasible solutions. An NLP would only be solved if both child nodes contained
feasible solutions, this would greatly reduce the number of NLPs due to redundant
boolean variables.

The results of Paper 5 are in line with what we have observed in this benchmark.
When the subproblems are large, there is more time to gain from, and more time to
actually run, constraint propagation methods. The constraint propagation approach
even outperform Gurobi, the quadratic programming solver. For very difficult
subproblems, explicitly finding all the integer feasible solutions and solving these
individually, without hope of bounding by cost, may be a good strategy.

4.3.2 Nonlinear job shop scheduling problem
For the NJSSP, we considered four sizes, n ∈ {4, 5, 6, 7}, with m = n. For each prob-
lem size, three different final times were considered, T ∈ {Tmin, 1.1 · Tmin, 1.2 · Tmin},
where Tmin is the minimum final time. For each of these 4× 3 = 12 configurations,
100 instances with different operation times were randomly generated from a uniform
distribution. The solver Baron crashed for problems of size 6 and 7 with T = 1.2·Tmin.
Also SCIP would crash, although for problems of size 7 with T = 1.2Tmin. These
instances were marked as unsolved.

An overview of the results can be found in the left hand side of Figure 4.1. Our
proposed algorithm is denoted Integrated. It uses the disjunctive constraint (2.21)
for additional tightness. We have also included results for our algorithm without this
additional constraint, where the result is denoted Integrated w/o disj.. Clearly, Gurobi
is the fastest across almost all instances. Recall that Gurobi is a MIQCQP solver
and its performance should be regarded as an estimator of achievable performance
by MINLP algorithms.

For the instances with T = Tmin, our implementation is clearly faster than the
other MINLP algorithms. The other MINLP solvers including constraint propagation
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Figure 4.1: The left most figures show the fraction of nonlinear job shop instances
solved vs solution time (T ∈ {Tmin, 1.1 · Tmin, 1.2 · Tmin}, where Tmin), while the
right most figures show fraction of multi robot coordination instances solved vs
solution time (n ∈ {2, 3, 4})
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technology (Baron and SCIP) follow. The traditional MINLP solvers are the slowest.
These instances typically have a low number of feasible solutions, making the
constraint propagation methods likely to reduce the solution time.

For the medium cycle time instances T = 1.1 ·Tmin, our implementation is fastest
for almost all instances but the most difficult, for which Baron has a slightly higher
success rate. The rest of the algorithms achieve very similar benchmarks.

Finally, for the high cycle time instances T = 1.2 · Tmin, the traditional MINLP
algorithms perform very similar to our implementation. These instances are charac-
terized by a very large number of feasible solutions to search. This is rather naturally
explained by the fact that the constraint propagation methods find less infeasibilities
due to cycle time constraints, and thus create an overhead for the algorithm rather
than a speedup.

The performance of our proposed method seems to degrade for the larger instances.
It seems that when there are a large number of feasible solutions, the constraint
propagation methods struggle to improve the search. At the same time, our algorithm
lack many of the features included in the comparison methods, such as strong
branching. This may begin to play a more important role for larger instances.

4.4 Summary
In this chapter, we have looked closer at the discrete sequencing problem. And
specifically, how the problem may be solved more efficiently by used of constraint
propagation techniques. Existing methods and our proposed approach were discussed
in Section 4.1. We also define two benchmark problems: the multi robot path
coordination problem in Section 4.2.1 based on the monolithic approach in Section 3.1;
and nonlinear job shop scheduling in Section 4.2.2 inspired by the decomposition
approach in Section 3.2.

In a thorough benchmark, we compared our proposed approach to existing MINLP
methods. When a problem instance is characterized by difficult subproblems, or
when the number of feasible solutions is restricted by a near minimal final time, our
proposed approach outperforms existing software.
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Experimental results

As we have previously mentioned, the primary application for our methods is that of
industrial robots. This chapter will present experimental results which will indicate
the potential of energy savings. We will begin by describing the experimental setup,
whereafter the experimental results are presented, followed by a brief analysis.

5.1 Experimental setup
We have previously stated that detailed system parameters are unknown and thus,
torque constrains cannot be included. In the absence of torque, it becomes crucial
to directly constrain angular velocity, acceleration, and jerk by suitable values so
that the robot’s envelope of operation is not violated. The values depend on the
positional configuration of the joints at each time instance, which is referred to as
pose or sample of the path. In practice, we infer the bounds in all poses from the
velocity, acceleration, and jerk values calculated along the original trajectories.

Furthermore, up till now, jerk constraints have been ignored. We offer two options
to overcome this. The first is to extend the explicit formulation (3.9) with jerk.
Although it is already non-convex and will be even more so with jerk constraint, the
problem can still be solved since in practice, the original trajectory is available as a
feasible initial solution. The second option is to post process the result. If we allow
the fixed path condition to be relaxed, a jerk bounded quadratic reference following
problem can be posed. We have used both these methods with success, the latter
resulted in a maximum path deviation in the range of 1− 2 degrees.

During operations, the robots warm up and the resistors inside the servo motors’
circuits exhibit more resistance. At the same time the lubrication system in the joints
becomes more efficient, resulting in lower friction in mechanical components. The
net effect is a significantly decrease in power consumption as the robot warms up.
Therefore, it is very important to conduct all measurements at the same realistically
high temperature to obtain reliable and replicable results.

A program was written to warm up the robot to the desired set-point, run
the experiments sequentially, and warm up/cool down according to the measured
set-point deviation in between experiments. Half an hour of warm up can reduce
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the energy consumption more than 20%, and steady state temperature may not be
reached for hours.

The energy has been measured either at the power cords, leading to the robot’s
servo motors, or at the power source. In the latter case, the cabinet power was esti-
mated and subtracted from the measurements. Energy was measured directly using
Chauvin Arnoux PAC22 current clamps and Testec SI 9002 differential voltage probe.
The data was sampled using Data Translation DT9826 acquisition box operating
at 10 kHz. Active powers at each sample were calculated by direct multiplication
of voltage and current samples, and energy was calculated by integration of active
power over time.

5.2 Results
This section will review the most important energy reduction results.

Two robot minimum energy

Let us begin with the energy measurements from the case study described in Subsec-
tion 3.1.4. For this experiment we use the KUKA KR 30-3, a medium payload robot
with a maximum capacity of 30 kg.

The results are summarized in Table 5.1. Both joint based criterion, available to
the kinetic energy based model (3.18) performed well, i.e. squared acceleration (3.31)
and pseudo-power (3.33). These used roughly 22% less than the nominal case (using
the same final time). The pseudo power criteria performed slightly better than the
acceleration criterion.

The two path based criteria did not perform as well as the squared acceleration
and pseudo power. The path criterion for the kinetic energy model, (s̈)2, reduced
energy by 17.3% and 17.6% depending on the path function (fn, f c). And the path
criterion (z′)2, for the inverse velocity model (3.29), reduced energy by 15.9% and
18.6%. Overall, (s̈)2 performed marginally better than (z′)2. This could either be
due to the lack of available acceleration from the inner approximation of acceleration
bounds in the inverse velocity model, or simply due to some property inherent to z′.
The choice of path function for the two path criteria (s̈)2 (kinetic model) and (z′)2

(inverse velocity model) did not have much affect on the energy consumption. The
complementary path f c based on the minimum acceleration trajectory used slightly
less energy.

Note that Table 5.1 does not present any measurements for the explicit formulation
(3.9). This is because the criteria used in the explicit formulation are nearly identical
to those of the kinetic energy formulation. The only difference is the zero order
approximation of the velocity term in (3.32), which did not impact the energy
consumption noticeably. Thus, the measured energy is expected to be very much
the same.

To summarize, minimizing squared acceleration or pseudo power, available to
the kinetic energy formulation, provides the most energy efficient results. The
second model which uses an inverse velocity variable change is not as energy efficient,
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Table 5.1: Criteria/time: two robot example

Energy reduction [%]
with final time:

Model Criteria 7.3 s 7.5 s 8.0 s
Nominal fn 0 2.8 7.9

Kinetic energy (3.18)

Squared joint acc. (q̈)2 (3.31) 21.3 24.2 28.9
Squared joint power (q̇q̈)2 (3.33) 21.5 25.3 29.4
Path acc. fn (s̈)2 (3.34) 17.3 19.7 23.7
Path acc. f c (s̈)2 (3.34) 17.6 20.8 26.4

Inverse velocity (3.29) Pseudo path acc. fn (z′)2 (3.35) 15.9 18.5 24.2
Pseudo path acc. f c (z′)2 (3.35) 18.6 20.9 26.2

with reductions of 15.9%/18.6% compared to the 22.5% achieved by minimizing
the acceleration or pseudo power. The inverse velocity formulation is however
computationally much faster to solve.

Single robot peak power

Using the same medium size robot as in the previous example, we have studied
the effect of constraining the peak pseudo-power of the entire trajectory. At first,
the trajectory was optimized without any regard to the power. Next, the peak
pseudo-power was calculated for the optimized trajectory, and then a constraint was
added to the model bounding the peak pseudo-power using the calculated value.
Next, in steps of 5% length, the bound was tightened. At 50% of the original peak
pseudo-power limit, the problem became infeasible.

The results are depicted in Figure 5.1. As can be seen, tightening the constraint
on mechanical pseudo-power directly reduces the measured electric active power.
At its extreme, almost 25% peak power reduction is produced at the cost of only
3% energy consumption. We conclude that by adding a peak power penalty to the
problem, one may significantly reduce peak power without losing too much energy
efficiency.

Multiple robots minimum energy

To test the optimization method on a realistic production cell with complex trajecto-
ries, we used a robot cell located at Daimler AG. It comprised of four KUKA KR
210 QUANTEC Prime robots, each capable of handling 210 kg of payload. The cell
was powered by dc grid, and all the equipment, including robots and welding guns
were dc operated.

The robots would assemble a sheet metal part of a car body and the scenario is
as follows: (i) the first robot, designated by R10, picks up three parts and applies
glue to them; (ii) the parts are placed in a fixture, where the second robot, R20,
rivets them together; (iii) the third robot, R30, picks up the assembled part from
the fixture, marks it and places it in another fixture for welding; (iv) the fourth
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Figure 5.1: Trade-off between peak power (black) and energy (red).

robot, R40 performs the welding, and then the parts are placed by R30 in a bin.
The robot programs of this scenario were written by technicians at Daimler AG,
and included an array of motion types such as linear, point-to-point, and circular.
Moreover, the points were programmed with a variety of accelerations, velocities,
and approximation factors.

The production engineers at the cell had imposed the requirement that the cell
had to produce a part every T = 68 s. In practice, the cycle time of the cell, including
the overhead time of communications with the programmable logic controller and
resetting the robots, surpassed the requirement, at about 64 s. Furthermore, three
to four seconds was overhead time, therefore, the actual motions took about 60 s.
Robot R10 was the bottle-neck and governed this cycle time.

We observed that it was possible to relax the cycle time constraints on robots
R10 and R30 without exceeding the imposed cycle time of 68 s. Hence the two
robots received 4.5 and 10 seconds of extra time in the optimization. Note that large
portions of the velocity profiles were fixed, such as where welding was performed.
Only 32% of R10’s motion and 52% of R30’s motion were allowed to be changed.
The results are summarized in Table 5.2, which also contains measurements from the
KUKA robots’ internal energy saving feature that operates based on down-scaling
velocity and acceleration. These are labeled Eco Low, Eco Middle and Eco High

Typically, the motors in an individual robot are all connected to local robot dc
bus. If one motor breaks, the negative breaking power may be used to power another
motor, with some losses of course. Any surplus energy, which is not used by another
motor, is burnt as heat through a resistor. In this particular experiment, since all
robots were connected to a larger dc grid, surplus energy could be fed back into the
grid for use by other robots.

The results are summarized in Table 5.2, where Egross, the amount of energy that
a robot consumed from the grid, Eregen is the amount of surplus energy fed back into
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Table 5.2: Results of the multi-robot case.

Robot Scenario Ti Egross Eregen Enet Pmax[kW] E↓gross[%] E↓net[%] P ↓max[%]
R10 Original 60.0 91.7 12.4 79.3 19.8 0.0 0.0 0.0

Optimized 64.5 69.8 5.3 64.5 8.0 23.9 18.7 59.4
Eco Low 61.9 83.7 9.7 74.0 18.6 8.7 6.7 6.2
Eco Middle 63.7 79.3 7.7 71.6 15.7 13.5 9.7 20.7
Eco High 66.1 75.5 6.8 68.7 13.9 17.6 13.3 29.9

R30 Original 40.5 88.0 17.4 70.6 22.9 0.0 0.0 0.0
Optimized 50.8 62.8 4.6 58.2 7.7 28.6 17.6 66.5
Eco Low 42.4 85.8 15.8 70.0 18.0 2.5 0.8 21.5
Eco Middle 44.1 80.4 13.0 67.4 17.1 8.6 4.5 25.2
Eco High 45.4 77.1 10.5 66.6 16.1 12.4 5.6 -29.8

the grid. That is, in a traditional setup, the robot would consume Egross, but this
particular setting, the total energy consumed is Enet = Egross − Eregen. Moreover,
Pmax is the peak active power. Finally, the percentage of energy savings are given
based on Egross and Enet.

As seen in the table, the optimization resulted in significant reduction of energy
consumption and peak-power. This was achieved while total cycle time of the cell
was still below the required 68 s. The energy reduction for R30 was slightly better
than that of R10, possibly since more of its motion was subject to optimization.
In comparison, the results obtained from robots’ internal energy saving function,
namely Eco Middle, gave similar cycle time, but yielded significantly less savings,
especially in terms of peak power. Note that this feature works on the principal
of reducing speed and acceleration based on some heuristics. Better results were
obtained from Eco High mode, but the total cycle time of the cell then violated the
mentioned requirement.

5.3 Analysis

Here we will take a closer look at the measurements by model fitting. Using the
result, we will attempt to offer a hypothesis for why squared acceleration and squared
pseudo power work well for energy reduction. For notational simplicity, the robot
index i will be omitted. The torque vector for a robot can be expressed by a Lagrange
formulation [65]

τ = J(q)q̈ + C(q, q̇)q̇ + Fs(q)q̇ + Fv(q)sign (q̇) +Gi(q), (5.1)

where J ∈ Rm×m is the inertia matrix, where m ∈ Z+ is the number of joints,
C ∈ Rm×m the matrix of centrifugal and Coriolis coefficients which is linear in the
joint velocities, Fs ∈ Rm×m the coulomb friction matrix and Fv ∈ Rm×m the viscous
friction matrix, G ∈ Rm the gravitational vector.
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Figure 5.2: Measured power (black) and model fit with (blue) and without stator
winding (red).

Considering the relevant time scales, as in [66] and [67] , the energy consumption
of an ac permanently excited synchronous motor can be expressed by the following
simplified voltage and dc models

ν(t) = R ◦ ι(t) +KV ◦KR ◦ q̇(t), (5.2)
τ (t) = KT ◦KR ◦ ι(t), (5.3)

where ◦ once again is the Hadamard (element wise) product, ι(t) ∈ Rm and ν(t) ∈ Rm

are the equivalent direct current and voltage vectors, R ∈ Rm the stator resistance,
KV ∈ Rm the electrical (back emf) constants, KR ∈ Rm the transmission gear ratio
and KT ∈ Rm the equivalent torque constant. With (5.2)-(5.3) defined, we can
express the power of each motor as

p(t) = ν(t) ◦ ι(t). (5.4)
The KUKA robots provide estimates for the individual motor currents, and since

the joint velocities are known, we can combine the voltage equation (5.2) with the
power equation (5.4) such that

p(t) = R ◦ ι(t) ◦ ι(t) +KV ◦KR ◦ q̇(t) ◦ ι(t), (5.5)

for which we can make a least squares estimator. However, the measured power only
includes the positive side of the summed powers over all motors, i.e.

max (0, |p(t)|1) . (5.6)
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Thus any samples with lower measured power than some threshold are discarded.
Also, the data is synchronized to ensure the best fit. The resulting least squares
estimate for pick and place motion used in the two robot example is illustrated in
Figure 5.2.

In the two robot experiment, the motors on a robot all share a local dc bus,
where any negative power is converted to heat using a resistor. Note that before
converted to heat, a small portion may be stored in a capacitor for future use, this is
not included in our model. Using our least squares estimator we can now visualize
this negative power. Furthermore, it turns out that the most important term in (5.5)
is q̇(t) ◦ ι(t), i.e. the stator heat loss R is not very important.

We can also create a least squares estimator for the current by substituting the
torque (5.1) into the current (5.3), while assuming constant inertia, friction, gravity,
etc. To reduce the degrees of freedom, we will also assume the joint torques are
decoupled. If we disregard the velocity component of the matrix of centrifugal and
Coriolis coefficients we get an expression on the form

ιj = α1q̈j + α2q̇j + α3sign (q̇j) + α4, (5.7)

where ιj is the current of motor j ∈ {1, ..,m}, qj is the motor position and ai are
constant coefficients to be estimated. Even this very simplified model fits the data
surprisingly well, see Figure 5.3 for an illustration of the first join current and model
fit. Note that we do not suggest this approach for system identification purposes
but rather for an indication of what occurs inside the system. We find that the
acceleration coefficient α1 dominates the other terms, even after normalization.

To summarize, the (5.5) is dominated by q̇(t)◦ι(t), and (5.7) by q̈j . If we combine
this information it is clear why minimizing the pseudo-power q̇(t) ◦ q̈(t), yields the
best results in our experiments.
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5.4 Summary
The focus of this chapter has been the experimental evaluation of the proposed models
in the previous chapters. We have described the experimental setup, presented results
and provided a short analysis of measured data. We can conclude that in the presence
of slack time, i.e. when the robots are not fully utilized, there most definitely is
potential for energy saving. As for quantification, the amount saved clearly depends
on how the slack time can be spread around the different operations.

In the two robot example, we demonstrated energy reduction of 20 − 30%,
depending on the amount of slack time. In the multi robot case, we saw that one of
the robots would not utilize all of its slack. That is, there are diminishing returns
from increased slack. For this particular example, the energy savings are also in the
range of 20− 30%.



Chapter 6

Hybrid systems

Recall from Section 2.2 how the structure of our problem resembles very much that of
synchronized multi stage systems. In this chapter, we will regard our problem from
an even broader perspective, and consider the case of hybrid systems with shared
variables. We will discuss what sort of limitations our problem class imposes and how
our methods would work for the hybrid systems case. Specifically, we focus on the
multiple hybrid systems case and the modeling of communication between systems.
The scope of this chapter is quite limited, and we will make use of simple examples
to illustrate how multiple systems may be modeled by mathematical programming,
and the subsequent problems that ensue.

6.1 Hybrid optimal control
Optimization methods for hybrid systems aim to compute optimal or sub-optimal
trajectories for the systems. A hybrid trajectory can be regarded as a mode (discrete
state) sequence and a set of continuous state trajectories, one for each mode in
the sequence. In the general case, the transition timing and sequence cannot
be determined a priori. The combinatorial explosion in possible mode sequences
combined with the infinite-dimensional trajectories in each mode makes the problem
very difficult so solve [68]. Unless some simplification or abstraction is made, a
general hybrid optimal control problem usually result in a non-convex optimization
problem.

There are several approaches based on variations of dynamic programming, as in
[69]–[71]. Common in these approaches is that while dynamic programming guar-
antees global optimality, it unfortunately suffers from the ’curse of dimensionality’,
because the method involves computing a large number of trajectories, and the
problem grows exponentially in the number of states.

Another method, involving the extension of classical optimal control, is the hybrid
maximum principle, used in for example [72]–[74]. The maximum principle can be
considered as a set of necessary conditions for optimality, given a hybrid optimal
control problem. For some simple cases, it may be used to carry out analytical
calculations of the optimal solution, but in general, numerical methods must be
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employed. The resulting formulation is solved using a multiple-phase multiple-
shooting method [75]. That is, combinatorial algorithms are used to enumerate a
neighbourhood of mode trajectories, for each mode trajectory, the optimal continuous-
time state trajectories are determined using numerical methods. The numerical
methods generally do not guarantee global optimality.

For the solution of the maximum principle, necessary conditions can be summa-
rized as a two stage approach. A neighborhood of mode sequences are enumerated
and for each sequence, the continuous dynamics are considered. In a similar fashion,
hybrid optimal control problems may be monolithically expressed as a non-convex
MINLP [68], [76] or Generalized Disjunctive Program [77]. A nonlinear program is
used to approximate/collocate the continuous time dynamics [78], and the mixed
integer part is used to model the mode switching behaviour. A search algorithm
then iterates over the neighbourhood of hybrid mode trajectories while considering
the continuous-time dynamics in each iteration. In both the maximum principle
and MINLP approaches, the neighbourhood of mode trajectories must be defined a
priori.

If the system is affine or well approximated as piecewise affine, the whole hybrid
optimal control problem could be modeled in time with a fixed sample length as
a mixed integer quadratic program [79]. At each time instance, boolean variables
specify the active mode of the current sample. This enables both proof of global
optimality and modeling of systems with a high number of switches. Other advantages
of the piecewise affine approach include the maturity of mixed integer quadratic
solvers, results for the system closed loop behaviour [80], [81], and furthermore
multi-parametric mixed integer linear programming solvers may be used to generate
control laws for closed loop control [82]. In the case of multiple systems, expressing
the global mode by binary variables at each time instance may be intractable.

In summary, numerical approaches based on dynamic programming guarantee
global optimality, while increasing very quickly in complexity as the problem size
grows. Other numerical methods either sample uniformly in time, or utilize the fact
that the problem may be hierarchically decomposed into a discrete mode sequencing
problem and a continuous multi stage optimal control problem (MSOCP). The
decomposition approach, to which our methods lie closest, lack proof of global
optimality and may have difficulties in treating systems with a high number of mode
switches. Amongst the decompositional approaches, the main difference lies in the
type of model and methods used for the sequencing and optimal control problems.

6.2 Hybrid systems with shared variables
The study of hybrid systems has resulted in a large number of modeling formalisms.
Here, we will use the hybrid automaton [83] [84] to describe the individual hybrid
systems. Hybrid automata are generalized finite-state machines with the usual
discrete transitions as well as continuous state dynamics which may vary with
each mode (discrete state). The continuous states may also influence the discrete
transitions.
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ẋ = f1(x,u)
x ∈ Inv1

ẋ = f2(x,u)
x ∈ Inv2

v(t+k ) = φ1(x,v)
x(t+k ) = ρ1(x)
x(tk) ∈ guard1(x,v)

v(t+k ) = φ2(x,v)
x(t+k ) = ρ2(x)
x(tk) ∈ guard2(x,v)

Figure 6.1: Two mode hybrid system. The initial mode is marked by an incoming
arrow, and although we have not explicitly included any final state in the model,
the final mode is indicated by gray color.

We will now consider shared variables as a means of communication between
the individual systems [85], and as such extend the hybrid automaton with a set of
shared integer variables, separate from the normal state variables. Note that the
shared variables are only updated during mode transitions.

Based on the notation in [84], we define an individual hybrid automaton with
shared integer variables as

G = 〈Z,V ,X ,U ,f ,φ, Inv, guard,ρ, z0,x0〉, (6.1)

where Z = {z1, ..., zm} is a set of discrete states or modes, V is the domain of the
shared integer variables, V ⊆ Znv , X is a continuous state space, X ⊆ Rnx , U is a
set of admissible input signals, U ⊆ Rnu , f is a vector field, f : Z × X × U → X ,
φ is a discrete state/variable transition function φ : Z × X × V → Z × V , Inv is a
set defining an invariant condition, Inv ⊆ Z × X , guard is a set defining a guard
condition, guard ⊆ Z × Z × X × V, ρ is a reset function, ρ : Z × Z × X → X ,
z0 is the initial discrete state, v0 is the initial value of the shared variables, and
x0 is the initial continuous state. Figure 6.1 provides a graphical representation of
the model. Note that we have excluded events from the formulation as we consider
shared variables a sufficient means of communication.

The vector field f describing the dynamics of X takes the form

ẋ(t) = f(z(t),x(t),u(t)), (6.2)

for all times t 6= tk, where tk : k = {1, 2..} are the time instances when transitions
occur, and z(t) is the mode active during t. At each discrete transition, the reset
condition ρ updates the continuous state vector as

x(t+k ) = ρ(z(t+k ), z(tk),x(tk)), (6.3)

where tk is an arbitrary time when a discrete transition occurs. The discrete mode
and shared integer variables are updated as
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[
z(t+k )
v(t+k )

]
= φ(z(tk),x(tk),v(tk)). (6.4)

A transition at time tk is possible when the guard(z(t+k ), z(tk),x(tk),v(tk)) is satisfied.
Let us discuss these variable updates in more detail. For our purposes, the

shared variables act much like resources which are incremented at allocation and
decremented when deallocated. For example, an allocation of a shared variable v`
is stated simply v`(t+k ) = v`(tk) + 1. The update conditions on a shared variable
will disable a transition if its new value, v`(t+k ), should lie outside its domain. This
definition of synchronization is somewhat informal, but it will suffice for the purposes
of this thesis. For notational simplicity we introduce the short hand notations v+

`

and v−` , equivalent to v`(t+k ) = v`(tk) + 1 and v`(t+k ) = v`(tk)− 1 respectively

6.2.1 Multi robot coordination case
Let us shortly discuss where the problem formulation in Chapter 2 fits into this.
Recall the discretization of collision zones as in Figure 2.5 in the same chapter.
Here, we will consider the collision zones to be discretized in such a way. Also, for
notational simplicity, we will not use the system index i.

Each phase, i.e. the phase in-between synchronization points, is represented by a
discrete mode, and each system visits its mode in sequence. The mode q is always
incremented since the modes are visited in sequence. For each collision zone a shared
discrete variable v` is introduced. These variables are binary since a collision zone
may only be occupied by one robot at a time. Thus, the discrete variables in (6.4)
are updated at transition time tk as

[
z(t+k )
v`(t+k )

]
=
[
z(tk) + 1
v`(tk)± 1

]
, (6.5)

where ± indicates that either an increment or a decrement is applied to the `:th
shared variable v`, ` ∈ {1, . . . , nv}. Note that the mode update is independent of the
continuous state. The discrete mode update is illustrated in Figure 6.2, where pj,
j ∈ {1, 2, 3, 4}, are the zone boundaries. Note that pj is scalar since only the scalar
path position states is relevant to the transition into and out of shared zones, the
velocity state is simply subject to continuity conditions.

As for the continuous states, the vector field (6.2) describing the continuous state
dynamics is a simple double integrator

ẋ1(t) = x2(t) ẋ2(t) = u(t), (6.6)

while the more complex dynamics are placed inside the invariant Inv and take the
form



Chapter 6. Hybrid systems 55

v(t+k ) = φ1(v)
x1(t+k ) = p1

v(t+k ) = φ2(v)
x1(t+k ) = p2

v(t+k ) = φ3(v)
x1(t+k ) = p3

v(t+k ) = φ4(v)
x1(t+k ) = p4

Figure 6.2: The mode sequence, variable update and guard conditions in the
multi robot case using a discretized collision set. The differential equation, path
constraints and reset condition remain constant. Note that only the scalar path
position state is subject to guard conditions.

|f ′(x1(t))x2(t)| ≤ vlim(x1(t)), (6.7)∣∣∣f ′(x1(t))u(t) + f ′′(x1(t))x2(t)2
∣∣∣ ≤ alim(x1(t)), (6.8)

where v, a and f are the velocity and acceleration constraints, and path function,
just as before. The reset conditions (6.3) are simple continuity conditions

x(t+k ) = x(tk). (6.9)

Note that the state equation, invariant and reset conditions are all independent of
the active mode.

The mechanism which couples the continuous and discrete dynamics is placed
in the guard conditions. The guard conditions generally specify subsets of the
continuous state space X which, when entered while the system mode is z(tk),
enables a transition from z(tk) to some new mode z(t+k ) through φ. Since the modes
are visited in sequence, the guard conditions take the form

(z(tk) = zj) ∧
(
z(t+k ) = zj+1

)
∧ (x1(tk) = pj) , (6.10)

which models that a transition from mode j to j + 1 is allowed when the position
state is pj, i.e. pj defines the boundary of the collision zone.

6.3 Mathematical modelling
In this section, we will attempt to fit our ideas for coordination of robots to the
coordination of general hybrid systems. In particular, we focus on numerical issues in
direct methods in presence of synchronization. In the study of hybrid systems, most
often a monolithic model structure is considered. Many of the well known modeling
formats restrict the domain of the hybrid mode to only one dimension. For example,
the unified hybrid modeling framework in [69] considers the mode domain as the
integer numbers, and the mode in hybrid automata is defined as to take values in a
set [83]. Other closely related modeling frameworks such as switched and piecewise
affine systems are also monolithic in their modes.
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Figure 6.3: A 1-DOF robot arm with two shared zones represented by the variables
v1 and v2, and a booking procedure ensuring a collision free system.

There are of course a number of extensions which include synchronization, as well
as practical implementations. In [86], [87], hybrid dynamical systems are modeled
by Petri nets, the continuous dynamics are restricted to single-integrators. Hybrid
input/output automata use shared actions for discrete communication and shared
variables for continuous communication [88]. Another example is CHARON [89],
a language for hierarchical specification of interacting hybrid systems. There are
several other examples, most of which are related to analysis.

Within the scope of this chapter, it will suffice to regard synchronization at an
informal level. For two systems, the composition of the two systems is a single
monolithic system which describes the discrete and continuous dynamics of both.
Let us illustrate composition using the robot arm example in Figure 2.5 of Chapter 2,
where two robots are moving from a top to a bottom pointing position. The resulting
hybrid automaton of the left hand robot is illustrated in Figure 6.3, with its resulting
three zone transitions. Note that since the state x now explicitly represents position,
we have transformed the boundary from the path domain [0, 1] to angular domain
[π/2,−π/2]. The right hand robot would of course have slightly different transition
conditions due to its orientation.

We begin with the continuous dynamics. Suppose the system dynamics are
identical and described by

[
ẋ1
ẋ2

]
=
[

x2
−d cos(x1) + u

]
, (6.11)

where the constant d is a term describing the mass, gravity and length of the arm.
The composed state vector is now of size 4 and is described by the dynamics


ẋ1
ẋ2
ẋ3
ẋ4

 =


x2

−d cos(x1) + u1
x4

−d cos(x3) + u2

 . (6.12)

As for the discrete dynamics, the composed mode transition graph of two such
robots is illustrated in Figure 6.4. The mode combinations not allowed by the shared
variables have been marked with red crosses and transitions removed. The transition
labels have been removed for readability.



Chapter 6. Hybrid systems 57

Figure 6.4: Mode transition graph for two composed 1-DOF robot arms.
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Figure 6.5: Two 1-DOF robot arms with finite mode sequences.

6.3.1 Mixed integer formulation
Search methods such as MINLP require the mode set of possible mode sequences
to be finite. And in any case, general direct methods approach the problem by
enumeration of possible mode sequences. A general approach could be to define a
neighbourhood of discrete mode sequences. For example by defining the maximum
times a mode may be visited, and using reachability information to prune unnecessary
modes.

In our example, let us simply consider that the robots always move towards their
goal state. Although this is a highly restrictive assumption from a modeling sense,
we do this because we are interested in illustrating the numerical properties of the
resulting composed model. Figure 6.5 shows the resulting composed system, with
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Figure 6.6: Two 1-DOF robot arms with state vectors x and z moving in opposite di-
rections with finite mode sequences and a single shared zone, x1, x3 ∈ [−π/4, π/4].

the collision states now completely removed.
We can see that even though there is only a single decision to be made, the

transition graph of the composed system has introduced additional alternatives into
our model. The reason for this, is that the order in which the prioritized robot leaves
v2 and the non-prioritized robot enters v1 is explicitly kept track of. We conclude
that when composing two systems, one should prune these additional alternatives.

Let us consider the even simpler example of where the robots move in opposite
directions and must cross each other. The collision zone is as the intersection
in Figure 2.3 of Chapter 2, where only one single shared zone is required. The
resulting composed transition graph is illustrated in Figure 6.6. There are still
redundant transitions, i.e. the initial and final transitions, although there are only
two alternatives.

But how should we go about modeling this in a MINLP? Not only should we
encode the valid mode sequences, but we must also regard the resulting relaxed
problem. We will now review a few different approaches. All models include a
boolean variable for the discrete choice, which system is prioritized.

A straight forward approach is to, for each mode in the transition graph, instan-
tiate variables modeling the continuous states. The boolean imposes the boundary
constraints and cost contribution of the chosen path, and relaxes the inactive mode
sequence. When the boolean is relaxed, all boundary constraints as well as the cost
contribution are relaxed. The resulting model consists of 8 modes, 4 of which are
redundant, the continuous state vector is of size 4. Denote this the full model,

Because the system dynamics are identical and the mode sequence lengths are
the same, there is also the option to reuse variables. That is, we create a 5 stage
model with a continuous state vector of size 4, where the boolean variable as before
switches the correct boundary constraints on and off, i.e. either the top or bottom
sequences’ boundary constraints hold. Just as before, no boundary constraints hold
when the boolean is relaxed, but there is a chain of state continuity constraints
linking the initial and final states. Let us denote this approach the reuse model.
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Another option, is not to compose the systems, but rather impose timing con-
ditions based on the shared variables, similar to the collision zones in the previous
chapters, i.e. using a mutual exclusion style constraints. This type of method has
previously been used for converting traditional finite automata to mixed integer
linear programs [90], [91]. The continuous states are approximated separately for
each system, i.e. the model contains two MSOCPs, each with 3 stages and a state
vector of size 2. This is denoted the modular model.

Finally, if each alternative is examined individually, the monolithic and even the
modular models use an unnecessary large number of stages. This is because when a
problem is encoded into a MINLP, the size must be fixed. This implies that the total
number of stages in each node of the branch and bound algorithm never change, no
matter if it is a relaxation or a leaf node. If the size could change size, it would be
possible to express these nodes using fewer stages, we denote this the minimal model.

Consider the modular model when the sequence is fixed. The two systems actually
only interact at one point, the inequality relating the exit from the zone by one robot
and the entering of the other. This problem could be modeled using only two stages
per system, removing the transition where the robot with priority moves into the
zone, and the transition where the last robot moves out of the zone. For the relaxed
problem only one stage is required, as the two systems never interact.

6.3.2 Continuous dynamics

As previously mentioned, the evaluation of a mode sequence for one hybrid system
corresponds to solving a MSOCP, where each stage corresponds to a mode. The
MSOCP, when posed as an NLP, consists of three types of elements: transition
timings, boundary conditions and an approximation of the continuous dynamics.

By expressing the time spent (duration) in each mode as variables, we can express
the time at any transition as a sum of durations. Thus, we can ensure that the
total time spent in modes corresponds to any final time we may have. Boundary
constraints ensure either continuity in the continuous states between modes, or that
any transition or reset conditions associated with the transitions holds. The system
dynamics are then typically modeled using collocation [92] or a shooting method [75].
In Chapter 3 we settled for a simple forward approximation.

In collocation, the continuous states and inputs are approximated as polynomials.
These polynomials are differentiated and at selected points, the continuous dynamics
are then enforced at these points using nonlinear equalities. Another approach is
shooting methods, where the integration of the dynamics is approximated using
numerical methods. In summary, the collocation methods result in a large sparse
NLP for which the second order information is readily available. The shooting
methods are much smaller in size, but it is somewhat harder to compute the second
order information.

Let us take a closer look at collocation using the method in [92], and what form
the approximation takes for a single mode. Let L`(t), ` ∈ {0, ..., n`}, be a basis of
Lagrange polynomials [93], on the interval from [−1, 1] given by
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L`(t) =
n∏̀
i=0
i 6=`

t− ti
t` − ti

, ` = [0, ..., n`], (6.13)

where we see that

L`(ti) =

1 if ` = i

0 if ` 6= i
(6.14)

The state x(t) is approximated by X(t) as

x(t) ≈ X(t) =
n∑̀
`=0

xi(t`) · L`(t). (6.15)

Recall that the polynomial is defined on the interval [−1, 1]. The interpolation
points used are the boundary point, −1, and the n` Gaussian quadrature points t`,
` = {1, . . . , n`}. Thus, by (6.14)

X(t`) = x(t`) ` = {0, ..., n`}. (6.16)
where t0 = −1. Differentiation of (6.15) yields the following expression for the
approximated state derivatives Ẋ(ti)

ẋ(ti) ≈ Ẋ(ti) = x(−1) · D̄i +
n∑̀
`=1

x(t`) ·Di`, (6.17)

where Di` = L̇`(ti) and D̄i = L̇0(ti).
We can approximate a state equation ẋ = f(x) for a duration T using

X(−1) · D̄i +
n∑̀
`=1

X(t`) ·Di` = T

2 f(X(ti)). (6.18)

The terminal states are enforced by quadrature approximation of the dynamics as

X(1) = X(−1) + T

2

N∑
`=1

w` · f(X(t`)). (6.19)

where w` are gauss weights.

6.3.3 Numerical issues
By varying the grid resolution n` ∈ {5, 7, 10, 15, 25} and the model parameter
d ∈ {1, 3}, 10 problem instances are generated. The criteria were defined as the
sum over integral squared control inputs. The models posed in the previous section
are evaluated as NLPs with the binary variables either fixed or relaxed, i.e. what a
MINLP algorithm would solve at the leaf and branch nodes respectively. Additionally,
a MINLP model is included, using a big-M formulation for the disjunctive constraints.

Using the big-M technique for nonlinear equality constraints may cause numerical
issues. One way to overcome this is to pose a generalized disjunctive program (GDP),
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which includes the modeling of disjunctive constraints. During branch and bound,
only the appropriate constraints are added to the problem. We also pose NLPs
where only the relevant constraints are added, we denote this a GDP style model, as
opposed to a MINLP style model.

The problem instances were modeled using the AMPL modeling language and
solved using, IPOPT [49] as NLP solver and Bonmin [94] as MINLP solver, Table 6.1
contains the NLP results. As the three models differ in size, to make the comparison
more fair the analysis will primarily focus on the number of iterations rather than
the computational time. In problem instances without numerical issues, changing
the grid resolution n` in the collocation did not have any noticeable impact on the
number of iterations.

As expected, the full model proves to have a bad lower bound, while all the
other models share the same lower bound. Both the full and reuse model suffer from
numerical difficulties when modeled using a MINLP formulation. This is somewhat
alleviated when changing to a GDP style formulation. The modular model suffers
from small numerical problems in the relaxed setting, and the minimal model none.
The latter performed the best on all scales.

When the complete MINLP was solved in Bonmin, the reuse model actually failed
to find a solution due to an NLP iteration limit of 3000. If we exclude n` = 25, the
full model was solved with an average runtime of 4.7 s. The modular model on the
other hand solved the instances with an average runtime of 0.2 s.

Even though this is only a small example, it illustrates the importance of con-
sidering numerical issues in the relaxations when modeling a MINLP. The results
indicate that there is much performance to gain by creating an entirely new model
at each node, that is tailored to reduce numerical issues and produce a good lower
bound. We conclude that it is not straight forward to encode multiple hybrid systems
into a MINLP. Even a single hybrid system which includes alternatives, as opposed
to a MSOCP, can easily become problematic.

6.3.4 Constraint propagation
The evaluation of a candidate sequence implies solving an NLP, and can be considered
relatively expensive. Clearly it is important to select a search method which evaluates
as few solutions as possible. In the case of multiple systems, constraint propagation
could be used similarly to Chapter 4, to reduce the number of NLPs solved. Although
since the problem is now non-convex, linearization cannot be used to approximate
the problem. When the number of feasible integer solutions is low, it may even be
beneficial to enumerate all feasible solutions and examine separately.

The approach in Chapter 4 could be modified as follows. At each branch
node, a depth search is performed to ensure that a feasible solution exists further
down the tree before solving any NLP. The feasibility check was performed using
constraint programming, with a simple lower bound on the mode duration, which was
independent from the state vector due to lack of bounds on velocity and acceleration.
The algorithm would in practice use constraint programming to find feasible solutions,
and then apply NLP for that mode sequence. This is explored in Paper 5.
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MINLP style model
Feasible NLP Relaxed NLP

E[t] E[iter] E[t] E[iter] LB(d = 3)
Full 5.7∗(2.3∗) 777∗(183∗) 0.3 13 0
Reuse 5.6∗(3.2∗) 714∗(363∗) 32.6∗ 1563 40.65
Modular 0.11 24 0.16(0.07) 53(21) 40.65

GDP style model
Feasible NLP Relaxed NLP

E[t] E[iter] E[t] E[iter] LB(d = 3)
Full 0.30∗ 41∗ 0.01 3 0
Reuse —"— —"— 12(3.8) 1939(444) 40.65
Modular 0.19 32 0.15 (0.11) 37(19) 40.65
Minimal 0.07 18 0.015 5 40.65

Table 6.1: Average solution time and iteration count for the different models.
Parenthesis indicate result after 2− 3 outliers were removed, ∗ indicates that one
or two infeasible instance were removed. All models have the same solution for
the feasible sequences.

A more elaborate version might use some form of reachability analysis to ensure
feasible solutions exist. For example, constraint propagation methods for floating
point variables are a maturing technology, which may at some point be used for this
purpose. And constraint propagation for quadratic constraints are being used for
the global solution of quadratic satisfaction problems [95].

6.4 Summary
In this chapter we have examined our collision avoidance scheme as a synchronization
methods for hybrid system. We have discussed what differs our problem from the
general case and how the general problem can be encoded into a MINLP. Using a
small example, we have illustrated how a bad MINLP encoding can easily cause
numerical issues. Preferably, an entirely new NLP, tailored to reduce numerical
issues, should be posed at each node in a branch and bound search. For problems
with few valid mode sequences, using search methods to explicitly enumerate valid
sequences. may prove a tractable approach.

If the problem is serial in nature, as is for example our systems which progress
through a series of zones, transforming the system into a multi stage problem could
be beneficial. However, the problem of robust solvers for these non-convex problems
remain. In other cases, where the discrete mode has a switching nature, a time
discretization with binary variables expressing mode occupancy is most likely the
best option.



Chapter 7

Stacker crane scheduling

This chapter is concerned with the stacker crane scheduling problem, which is
somewhat different from the problem formulation discussed so far. Stacker cranes are
moving devices used in material handling systems for the safe storage and retrieval
of goods. They are typically used in situations where large volumes of goods must
be continuously moved in and out of temporary storage. In short, the stacker crane
problem requires us to distribute a set of tasks amongst a set of cranes, decide the
order in which the tasks are processed, and finally compute the trajectory of each
crane. We would like to find the minimum time solution to the problem.

In [96], a cargo assembly planning problem is solved using constraint programming,
and part of the problem consists of pairs of stacker cranes moving along the same
rail. Here, we extend the problem formulation to include multiple cranes, performing
tasks with both pick up and drop off, as well as bounded acceleration. We also
introduce a simplification which reduces the complexity of the problem with very
small effect on the solution quality.

7.1 Problem formulation
A problem instance consists of m tasks, each defined by two locations, one for pick
up and another for drop off location. Let the constant vector p ∈ R2m, indexed by
M2 = {1, . . . , 2m}, describe these 2m locations. The first m elements are the pick
up and the last m elements are the drop off locations. Also, let the variable vector
a ∈ {1, . . . , n}m, specify which crane is allocated to handle each of the tasks.

For notational simplicity, we introduce two operators (·)+ and (·)−, such that p+
j is

the pick up location and p−j is the drop of location for each task j ∈M = {1, . . . ,m},
i.e. p+

j = pj and p−j = pj+m. For further notational simplicity, let us also introduce a
lazy modulo notation where, any index is subject to a modulo operation based on
the dimensionality of the vector, such that ak = ak+m.

In this particular problem formulation, movement tasks cannot be preempted.
Once a container is picked up by a stacker crane it is required that the container is
dropped off in the designated position, and nowhere else. This implies that stacker
cranes cannot drop off a container part of the way to its destination and then use a
second stacker crane to relay it to its destination. Tasks may be completed in an

63
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arbitrary order. Furthermore, the crane should stand still for a unit duration at pick
up and drop off.

The stacker cranes are identical and all share a single one dimensional track
which lacks curvature, i.e. fi : [0, 1]→ R and f ′′(s) = 0. Since the systems are one
dimensional there is no use for a path function. Therefore we proceed using the state
xi rather than the path position si. The dynamics are defined by a double integrator

ẍi(t) = ui(t), (7.1)

where ui is the control input. Velocity and acceleration and bounded by

|ẋi(t)| ≤ vmax, (7.2)
|ẍi(t)| ≤ amax, (7.3)

where vmax ∈ R+ and amax ∈ R+ are symmetric velocity and acceleration bounds,
identical for all cranes. We note that the velocity state can now be negative. Finally
there is an initial position and zero velocity boundary conditions

xi(0) = x0
i ẋi(0) = ẋi(T ) = 0, (7.4)

where x0
i ∈ R, i ∈ N , is the crane initial position, and all systems share the same

final time T .
For the collision avoidance constraints, suppose the cranes are placed along the

track in order of index, and must keep a unit distance to avoid collisions. The latter
without loss of generality. The collision avoidance constraint for two neighboring
cranes i and i+ 1 can then be posed as

xi(t) + 1 ≤ xi+1(t). (7.5)

Next are the processing and non-preemption conditions. Begin by defining a new
vector of decision variables, t ∈ R2m, describing the time instances at which each of
the 2m locations are visited. Using the operators defined at the start of this section,
the pair t+j and t−j , describe the time of pickup and drop off for each task j ∈ M.
The processing constraint, i.e. each pick up and drop off location should be visited,
for j ∈M2, is posed as

xi(t) = pj ∀t ∈ [tj, tj + 1] : i = aj (7.6)

which includes the unit time stand still condition. Note that the lazy modulo notation
acts on aj such that aj = aj+m. As for the non-preemption condition, for each pair
of pick up and drop off, we have
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(aj = ak)→
(
t−j ≤ t+k ∨ t−k ≤ t+j

)
, (7.7)

i.e. the time intervals where tasks are processed may not overlap. We note that
this looks very much like the scheduling disjunctions arising from collision zones,
although this constraint describes the internal order of tasks on a single machine.
Also, since an task must be picked up before it can be dropped off

t+j ≤ t−j . (7.8)

The stacker crane problem can be summarized as

min T

subject to
xi(0) = x0

i

ẋi(0) = 0 ẋi(T ) = 0

}
∀i ∈ N ,

ẍi(t) = ui(t)
|ẋi(t)| ≤ vmax

|ẍi(t)| ≤ amax

 ∀t ∈ [0, T ] i ∈ N ,

t+j ≤ t−j
t−j + 1 ≤ T

}
∀j ∈M,

(aj = ak)→
(
t−j ≤ t+k ∨ t−k ≤ t+j

)
∀j, k ∈M : j < k,

xi(t) = pj ∀t ∈ [tj, tj + 1] : i = aj ∀j ∈M2,

(7.9)

where the decision variables are the assignment aj , pick up and drop off times tj , the
state xi(t) and the final time T .

7.2 State space discretization
Consider the collision constraints in (7.5), if we could discretize our problem in time,
these would become simple linear inequalities. Unfortunately, posing the processing
constraints (7.6) becomes much too difficult, since the exact time at which pick up
and drop off occurs is unknown.

In a state space discretization approach on the other hand, which we have focused
on so far in this thesis, the collision avoidance constraint become problematic since
we no longer have a fixed paths. But in the case of the time minimal problem, this
difficulty may be overcome. We mentioned previously that a model presented in [96]
included two cranes with unbounded acceleration occupying the same track. The
main idea is that it is possible to ensure a collision free system by posing timing
constraints on the visited positions. More specifically, we will keep the time instances
as decision variables and try make due without explicitly describing the state. When
the time instances are considered pairwise, we end up with two cases, either both
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Figure 7.1: The blue lines show the projected minimum time solutions of moving
from pk to pj and vise versa. There must be enough time to travel between
locations according to (7.10), this can be regarded as a no-overlap between the
grayed areas. In this figure pj = 6 and pk = 2.

elements of the pair are processed on the same machine, or on different machines.
We will begin with the former case, which is also the simplest.

Consider two locations tj and tk processed on the same machine, if we can compute
the minimum travel time between the locations, then the following constraint will
ensure the state dynamics are fulfilled

(aj = ak)→
(
t−j + 1 +

∣∣∣p−j − p+
k

∣∣∣
t
≤ t+k

)
∨(

t−k + 1 +
∣∣∣p−k − p+

j

∣∣∣
t
≤ t+j

)
∀j, k ∈M : j < k, (7.10)

where | · |t denotes the minimum time to cover a given distance, assuming zero
velocity boundary conditions, and j < k is used to decrease redundancy, such that
the constraint is only posed for unique pairs. In other words, if two locations j and k
are visited by the same machine, the times must be separated by the travel time and
the unit stand still condition. The constraint is illustrated in Figure 7.1, in which
the two gray areas may not overlap in time. As for the case when both time instance
belong to the same task, i.e. j = k, we pose

t+j + 1 +
∣∣∣p+
j − p−j

∣∣∣
t
≤ t−j ∀j ∈M, (7.11)

which also makes (7.8) redundant.
Now, for the slightly more complicated case where location j is visited by a crane

located higher than that of the crane serving location k, i.e. aj > ak, and the position
pj is at the same height or below the position of pk. Note that if there are any cranes
in between aj and ak, we must account for these as well. The collision avoidance
constraint is then
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Figure 7.2: Two cranes must be separated by aj − ak ≥ 1, crane aj (red) travels
into crane ak:s (blue) territory below pk in order to reach pj . The time difference
|tj − tk| must always be larger or equal 1 + |pk − pj + aj − ak|t.

(aj > ak) ∧ (pj < pk + aj − ak)→(
tj + 1 + |pk − pj + aj − ak|t ≤ tk

)
∨(

tk + 1 + |pk − pj + aj − ak|t ≤ tj
)

∀j, k ∈M2,

(7.12)

where pk − pj + aj − ak is the distance which must be cleared by crane aj before and
after it enters the area below pk. We could consider this as crane aj intruding into
crane ak’s space at time tj, and the timing constraint expresses the time it takes for
crane aj to clear the area. This constraint is illustrated in Figure 7.2. Since each
crane is identical, this constraint can be regarded as ensuring there is enough time
for a crane to accelerate and follow the other crane at unit distance.

Finally, the initial conditions are simply a special case of (7.10), where one of
the time instances is zero, no unit wait time is imposed, and only pick up times are
considered, i.e.

(aj = i)→
(∣∣∣pj − x0

i

∣∣∣
t
≤ t+j

)
∀j ∈M i ∈ N . (7.13)

The space formulation can now be summarized as

min max
j∈M

(
t−j + 1

)
subject to

(aj = i)→
(
|pj − x0

i |t ≤ t+j
)

∀j ∈M i ∈ N ,

t+j + 1 +
∣∣∣p+
j − p−j

∣∣∣
t
≤ t−j ∀j ∈M,
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(aj = ak)→(
t−j + 1 +

∣∣∣p−k − p+
j

∣∣∣
t
≤ t+k

)
∨(

t−k + 1 +
∣∣∣p−k − p+

j

∣∣∣
t
≤ t+j

) ∀j, k ∈M : j < k,

(aj > ak) ∧ (pj < pk + aj − ak)→(
tj + 1 + |pk − pj + aj − ak|t ≤ tk

)
∨(

tk + 1 + |pk − pj + aj − ak|t ≤ tj
) ∀j, k ∈M2,

(7.14)

where the decision variables are now tj and aj, and the final time T has been
substituted with a max function.

An easy way to simplify the problem is to assume that once a crane performs a
pick up, it will move a minimum time speed to the drop off, i.e. using (7.10), any
two time variables belonging to the same task, t+j and t−j , are now

t+j +
∣∣∣p+
j − p−j

∣∣∣
t
+ 1 = t−j , (7.15)

which is an equality since we assumed that the crane moves in minimum time fashion.
We can now substitute t−j into (7.10) and (7.12).

Furthermore, since each task is now performed in a time minimal fashion, we
can further simplify (7.12) without affecting the optimal solution by much. Rather
than to pose the constraints for ∀j, k ∈M2, we can assume that if the pick up time
of task k precedes any part of task j, then so will the drop off time. That is, we
can reduce the constraint to act for ∀j, k ∈ M, cutting the number of constraints
down to a fourth. In our benchmark, we will see how these assumptions affects the
computation time and quality of the solution. We will refer to this as the simplified
model. Note that in Paper 6, this latter simplification was imposed for all models.

7.2.1 Constraint programming model
For the constraint programming model, we define a new set of variables b ∈ Z2m×2m

2 ,
where each element bjk describes the partial order of time instances where locations
j and k are visited, i.e. bjk = 1 if j precedes k and 0 otherwise. It follows that
bjk = ¬bkj, for j 6= k. These variables are included to be used for branching
decisions in the model. We will use the lazy modulo notation also for matrices, i.e.
b(j+m)(k+m) = bjk.

Since pj and pk are constant, (7.10) and (7.12) can be aggregated into a constraint
on the form

(tj + ∆jk (aj − ak) ≤ tk) ∨ (tk + ∆kj (aj − ak) ≤ tj) ∀j, k ∈M2, (7.16)

where ∆jk and ∆kj : {(n− 1), . . . , (n− 1)} → R and describe the minimum allowed
time-distance of tj and tk as a function of crane allocation. We note that ∆jk may
take a large negative value whenever it is not needed for collision avoidance. The
initial conditions can be posed similarly
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∣∣∣pj −∆0(aj)
∣∣∣
t
≤ t+j ∀j ∈M, (7.17)

where ∆0(aj) = x0
i : i = aj. Constraints on this form can be directly used in a

constraint program with use of the element constraint. An element constraint is in
essence a look-up-table, i.e. we can impose constraints on the from y = rk, where k
and y are variable, and r is a constant or variable vector.

Since we decided to base our model on the partial order of tasks, we shall
reformulate (7.16). First, a large portion may be posed as

bjk → (tj + ∆jk (aj − ak) ≤ tk) ∀j, k ∈M2 : j 6= k, (7.18)

where ∆jk (aj − ak) is defined as in (7.16). However, this excludes the case when
j = k, i.e. when both indices belong to the same task. This is posed as

t+j + 1 +
∣∣∣p+
j − p−j

∣∣∣
t
≤ t−j ∀j ∈M. (7.19)

Furthermore, to model the non-preemption condition acting on tasks processed by
the same crane, we add

aj = ak → (bjk = bj+n,k) ∧ (bkj = bk+n,j) ∀j, k ∈M j 6= k. (7.20)

The constraint programming model can now be summarized as

min max
j∈M

(
t−j + 1

)
subject to
|pj −∆0(aj)|t ≤ t+j ∀j ∈M,

t+j + 1 + |pj − pk|t ≤ t−j ∀j ∈M,

bjk → (tj + ∆jk (aj − ak) ≤ tk) ∀j, k ∈M2 : j 6= k,

aj = ak → (bjk = bj+n,k) ∧ (bkj = bk+n,j) ∀j, k ∈M : j 6= k,

bjk = ¬bkj ∀j, k ∈M2 : j 6= k,

(7.21)

where the decision variables are bjk, aj, tj. In the case of the simplified model,
b ∈ Zm×m2 , and subsequently, the collision avoidance constraint (7.18) is only posed
for all j, k ∈M using appropriately modified ∆jk functions. Furthermore, the same
task constraint (7.19) becomes an equality and non-preemption (7.20) is simply
removed.
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7.2.2 Mathematical programming model
In a mixed integer linear programming model, we cannot be as expressive as in the
constraint programming case. We will have to define binary variables to define the
various configurations of our constraints and then pose all variants explicitly. First,
we convert the integer vector of allocation variables a into a binary representation
d ∈ Zn×m2 , where each element dij describes whether or not crane i is assigned to
task j. Next s ∈ Zm×m2 describes whether tasks are assigned to the same crane or
not, sjk = 1 if j and k are allocated to the same crane. Finally, b ∈ Z2m×2m

2 is the
partial order of tasks, i.e. bjk = 1 if j precedes k.

First of all, each task must be assigned to a crane

∑
i∈N

dij = 1 ∀j ∈M. (7.22)

The relationship between assignment and the variable describing whether two tasks
are allocated to the same crane must be defined

dij + dik − sjk ≤ 1 ∀i ∈ N j, k ∈M. (7.23)

The equation for locations belonging to the same task (7.11) remains unchanged.
Tasks on the same crane, described by (7.10), are converted into mixed integer
constraints

t−j + 1 +
∣∣∣p−j − p+

k

∣∣∣
t
≤ t+k +M (2− sjk − bjk) ∀j, k ∈M : j 6= k, (7.24)

where M is a sufficiently large constant. As for the initial position, the mixed integer
version is

∣∣∣pj − x0
i

∣∣∣
t
≤ t+j +M (1− dij) ∀i ∈ N j ∈M. (7.25)

Finally, there is the collision avoidance constraint (7.12), which on mixed integer
from is

tj + 1 + |pj − pk + i− `|t ≤ tk +M (3− bjk − dij − d`k)
tk + 1 + |pj − pk + i− `|t ≤ tj +M (3− bkj − dij − d`k)

}
∀i, ` ∈ N j, k ∈M2 : (j 6= k) (i > `) (pj < pk + i− `).

(7.26)

where j 6= k also includes j 6= k + n. We note that the constraint is posed for all
combinations of both possible crane allocation and combination of visited locations.

The mixed integer linear formulation can now be summarized as
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min max
j∈M

(
t−j + 1

)
subject to∑

i∈N dij = 1 ∀j ∈M,

dij + dik − sjk ≤ 1 ∀i ∈ N j, k ∈M,

|pj − x0
i |t ≤ t+j +M (1− dij) ∀i ∈ N j ∈M,

t+j + 1 +
∣∣∣p+
j − p−j

∣∣∣
t
≤ t−j ∀j ∈M,

t−j + 1 +
∣∣∣p−j − p+

k

∣∣∣
t
≤ t+k +M (2− sjk − bjk) ∀j, k ∈M : j 6= k,

tj + 1 + |pj − pk + i− `|t ≤ tk +M (3− bjk − dij − d`k)
tk + 1 + |pj − pk + i− `|t ≤ tj +M (3− bkj − dij − d`k)

}
∀i, ` ∈ N j, k ∈M2 : (j 6= k) (i > `) (pj < pk + i− `),

(7.27)

where the decision variables are now tj, aj, bjk, sjk and dij. In the case of the
simplified model, b ∈ Zm×m2 , and subsequently, an appropriately modified version of
the collision avoidance constraint (7.26) is posed only for all j, k ∈ M. Also, the
same task constraint (7.11) becomes an equality.

7.3 Benchmark
Figure 7.3 shows a computational comparison between the constraint programming
and mixed integer models. Each data point is the average solution time of 100 problem
instances. The former was solved using Gecode and the latter using CPLEX. We can
see that up till 10 tasks, Gecode performs better, whereafter CPLEX maintains a
slight edge. We note that Gecode very much benefits from the proposed simplification.

Note that CPLEX was run through the AMPL modeling interface. It is possible
that this introduces some overhead which could be avoided using an API. How much
this affects CPLEX performance at a low number of tasks is unknown.

The proposed simplification in (7.15) will at times reduce the quality of the
optimal solution. Since the absolute value of the optimal solution varies greatly with
problem instance, we focus on the relative gap to evaluate the simplification. The
gap between the simplified and exact models was non-zero in 53% of instances. For
the non-zero instances, the average gap was 1.3% and the maximum gap 7.4%.

7.3.1 Local search
We have also implemented a local search algorithm which works in two phases, a
constructive phase and a search phase. The goal of the constructive phase is to
generate an initial solution. This is performed as follows: begin with a solution
without any tasks, then add tasks one at a time, until all the tasks of the problem
formulation has been introduced. Each time a task is added to the solution, a small
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Figure 7.3: Average solution time for 100 randomly generated instances.

optimization problem is solved, sorting it amongst any existing tasks already added
to the solution.

Next, during the search phase, a random set of tasks are selected iteratively. For
each set of tasks, an optimization problem where the selected set of tasks should
be resequenced, with regard to all other tasks is created. The tasks not in the set
keep their partial order. That is, suppose there is an existing solution defined by the
partial order b and assignment a, then rescheduling task k entails searching for the
optimal value of row and column k in b, and element k of a.

The number of tasks in the randomly selected set may be varied. Figure 7.4
illustrates how this affects the results for a specific problem instance where the
optimal solution is known up to 20 tasks. A time limit of 2m seconds was used to
terminate the search. Clearly, near optimal solutions can be found in short times for
up to at least 20 tasks.

The local search can be run for even 100 tasks. Unfortunately, the optimum of any
problem instance over 20 tasks is unknown to us. Still, we can look at the convergence
and determine how much time is needed to get a good solution. Figure 7.5 shows the
results for such a 100 task instance. We can see that after 300 seconds, improvement
in the local search is negligible.

7.4 Summary
In this chapter, we presented a state space discretization based method for a stacker
crane scheduling problem. The state is only discretized at the pick up and drop off
points, and collisions are implicitly handled using timing constraints. Using MILP
or constraint programming, the problem can be solved reasonably fast for up to 12
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orders. Close to optimal solutions may be generated using local search, and we have
verified good results up to 20 tasks. The local search can also find, what we believe
are good, solutions for 100 task problem instances.





Chapter 8

Summary of appended papers

This chapter summarizes the papers contained in Part II. Important contributions
are highlighted and the relation between papers is briefly discussed.

Paper 1

Oskar Wigström, Nikolce Murgovski, Sarmad Riazi and Bengt Lennartson. Com-
putationally efficient energy optimization of multiple robots. Submitted for possible
journal publication (under review), 2016.

This paper is focused on modeling the multi robot coordination problem. We pose
the problem in the space domain and apply two different variable transformations
found in the literature. Next, we propose criteria for energy minimization and present
a case study where we study the computational efficiency of the models and energy
measurements from an industrial robot.

Paper 2

Oskar Wigström, Bengt Lennartson, Alberto Vergnano and Claes Breitholtz High-
Level Scheduling of Energy Optimal Trajectories. IEEE Transactions on Automation
Science and Engineering, 10 (1), 57-64, 2013.

In this paper, we extend an existing approach to multi robot energy minimization
found in [12]. The approach is based on paramterization of operation energy cost as
a function of execution time, and the scheduling of these. In this paper we introduce
a more energy efficient paramterization based on a dynamic programming.

Paper 3

Oskar Wigström, Bengt Lennartson and Sarmad Riazi. Constraint programming and
nonlinear scheduling. Submitted for possible journal publication, 2016.

In this paper, we focus on the use of constraint propagation for nonlinear schedul-
ing problems, in particular two problem classes found in literature. These correspond
to the models resulting from Paper 1 and 2. We discuss existing methods and
how constraint propagation can be used within these. An extensive benchmark is
presented to demonstrate the efficiency of the method.

75



76

Paper 4

Sarmad Riazi, Oskar Wigström, Kristofer Bengtsson and Bengt Lennartson Energy
and Peak-power Optimization of Existing Time-optimal Robot Trajectories. Under
review for possible journal publication, 2016.

Here, we attempt to quantify the energy reduction available via multi robot
scheduling. Varying load, peak power and extension of execution time is considered.
Practical aspects are discussed.

Paper 5

Oskar Wigström and Bengt Lennartson An integrated CP/OR method for optimal
control of modular hybrid systems IFAC Workshop on Discrete Event Systems, 47
(2), 485-491, 2014.

In this paper, we consider open loop control of synchronization of multi stage
systems. Collocation is used for the continuous state dynamics and the integrated
approach in Paper 3 is used to solve a small example.

Paper 6

Fredrik Hagebring, Oskar Wigström, Bengt Lennartson, Simon Ian Ware and Rong Su
Comparing MILP, CP, and A* for Multiple Stacker Crane Scheduling. International
Workshop on Discrete Event Systems, 2016.

This paper concerns the stacker crane scheduling problem. We extend an existing
collision avoidance formulation to fit our problem. The resulting collision avoidance
constraint is used to pose mixed integer linear programming, constraint program-
ming and graph based models. These methods are then compared. A convenient
simplification to the problem is also introduced.



Chapter 9

Conclusions and future work

At the beginning of Chapter 1, we posed three questions, or topics, which we have
addressed throughout this thesis. These topics related to our problem formulation
by: the level of detail encoded into a mathematical program; improvement of search
algorithms by exploiting structure; and quantification of potential energy reduction.
This chapter will attempt to conclude these topics and discuss directions of future
work.

There are four categories of models presented in this thesis: the monolithic models
in Section 3.1; the decomposition model in Section 3.2; the hybrid model in Chapter 6;
and finally, the stacker crane model in Chapter 7. We will begin discussing the two
former which are specifically used for energy efficient multi robot coordination.

Both approaches include velocity and acceleration constraints, and if model
parameters are available, can also be extended to include torque constraints. The
monolithic approach allows for a much higher resolution in synchronization than
that of the decomposition model, since the practical implementation of the latter,
requires robots to reach zero velocity at zone boundaries. The monolithic models
are also computationally efficient, and in a fixed sequence setting these are highly
preferable. However, the two monolithic models each have drawbacks. The kinetic
energy model still includes non-convex constraints, and will suffer performance issues
in the case that the sequence is unknown, and convex mixed integer algorithms
cannot be used. Although, this is not a problem from the inverse velocity model, its
inner approximation of the acceleration bounds may instead become problematic.
The choice of model is clearly problem specific.

Regarding hybrid systems modeling, we conclude that while we can model more
general dynamics, numerical issues tend to increase. This is due to the non-convexity
in the approximation of the continuous dynamics, as well as the encoding of discrete
dynamics into mixed integer constraints.

As for the stacker crane problem. It seems as if the solution space tends to
become quite flat when the number of tasks increase. And thus, running a receding
horizon scheme using the proposed models should yield quite good results.

Our approach to algorithmic improvement is to reduce the discrete search space
during branch and bound. This is achieved by running constraint propagation
methods each branch and bound search node, before other traditional mathematical
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programming methods are run. In a benchmark, our methods outperforms other
state of the art MINLP solvers for a range of problem instances. Even solvers which
to some extent uses constraint propagation are surpassed. The level of speed-up
is related to the computational complexity of the subproblems solved, as well as
the number of feasible solutions. The more complex the subproblem, the more time
there is to gain from decreasing the discrete search space. The less feasible solutions
there are, the higher the likelihood of reducing the discrete search space.

The model resulting from the decomposition approach is the least computationally
complex, and resembles a bounded time job shop problem with an added nonlinear
cost. Although near time minimal final times resulted in large speed-ups, when the
final time was extended and the number of feasible solutions increased, the constraint
propagation methods became decreasingly cost efficient. In the case of the monolithic
problem on the other hand, spending more time on constraint propagation methods
is beneficial with increased problem size. That is, the most efficient approach is to
use constraint propagation to search for full integer solutions, and solve the NLP
subproblem only for these scheduling feasible solutions. For problems such as the
hybrid model, which is even more complex, using tailored search methods to identify
feasible solutions may prove a good approach.

As for the quantification of energy reduction, let us begin with a short note on the
validity of our comparisons. Since we do not use a torque model, it becomes crucial
to constrain velocity and acceleration such that robot’s envelope of operation is not
violated. This process may remove the true optimal solution from the feasible space.
At the same time, some of the velocity and acceleration bounds imposed on the
original robot trajectory are unnecessarily restrictive, and may be favorably relaxed
in our model. These two factors may skew the results somewhat either against or in
favor of our methods, respectively. However, this issue is mostly problematic at near
time minimal solution, and most noticeable for the single robot problem.

From an energy reduction perspective, one can regard our approach as follows.
In a system of multiple robots, there is typically some slack time in the system,
i.e. the robots are not utilized fully at all times. The amount and distribution of
available slack may vary depending on the sequence of tasks. Our algorithms search
the sequence space for slack time configurations and allocate the slack amongst the
robots in an optimal fashion.

From studying the single robot case, we have observed that the most significant
energy reductions are achieved by moving away from time minimal solutions. If we
disregard the effect of shared zones, as well as variations in payload and path, it seems
reasonable that slack will be spread somewhat evenly amongst robots. This implies,
in a best case scenario, the total energy reduction for all robots will proportionally
mimic the reduction of the single robot. From our experiments with multiple robots,
we have observed that given a sufficient slack time, 20− 30% energy may be saved.

Future work

Future work on energy efficient multi-robot coordination would be directed towards
decentralization and robustness. In their current format, our methods are used
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at a planning stage. The result is generated outside the robot and then encoded
into the robot program. This makes reconfiguration on-site a problem. To create a
more practical approach, our methods should be distributed into the robots. The
sequencing problem may still have to be solved in a supervisory form, but the
subproblems should be distributable.

Each individual system is governed by fixed deadlines which must be met, such
as the total time. And pairwise, the systems are subject to collision avoidance
timings constraints. A practical approach should enable the systems to pairwise
negotiate these timing constraints. Some form of robustness which considers system
breakdown must be included. Also disturbances in robot task execution time should
be considered such that the fixed deadlines are always met.

Finally, a note on the stacker crane problem. The collision avoidance constraints
look very much like a mutual exclusion, although the range of overlap is dependent
on the order. It would be interesting to apply a sequence dependent no-overlap
constraint.
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