
Evaluation of traffic light detection
algorithms for automated video
analysis

Master’s thesis in Software Engineering

MUHANAD NABEEL

DAVID USTARBOWSKI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016

Evaluation of traffic light detection algorithms
for automated video analysis

MUHANAD NABEEL

DAVID USTARBOWSKI

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
Gothenburg, Sweden 2016

Evaluation of traffic light detection algorithms
for automated video analysis
Muhanad Nabeel & David Ustarbowski

© MUHANAD NABEEL, 2016.
© DAVID USTARBOWSKI, 2016.

Supervisor: Christian Berger, Department of Computer Science and Engineering
Supervisor: Jordanka Kovaceva, SAFER – Vehicle and Traffic Safety Centre at
Chalmers
Examiner: Miroslaw Staron, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Evaluation of traffic light detection algorithmsfor automated video analysis
MUHANAD NABEEL
DAVID USTARBOWSKI
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Vehicle and Traffic Safety is a growingly important research topic among the automo-
tive industry and academia. Being able to analyse driving behaviour and collecting
data is key for gaining understanding about potential risks affecting traffic safety.
Traffic lights are important in terms of traffic safety, therefore it is of importance to
have a solution to detect them without having to spend time to find their occurrence
manually in a video analysis. The goal of this this paper was to evaluate a traffic
light detection algorithm for automated video analysis. The study was conducted as
a case study with a quantitative research method, and present an evaluation of the
implemented algorithm. The implemented algorithm is benchmarked and evaluated
on a dataset exceeding one million frames coming from videos of naturalistic driving
in different conditions. The result of this study covers an evaluation of the algorithm
based on the benchmark. This study concluded that using Haar feature-based cas-
cade classifiers for traffic light detection is a suitable method if some trade-offs can
be made. This paper also presents recommendations for developers facing similar
problems in terms of automated detection of objects connected to the real world.
The process of designing and creating a solution for an automated video analysis is
emphasized in a top-down approach, giving an insight for developers facing similar
challenges.

Keywords: Traffic light detection, traffic light recognition, object detection, object
detection algorithms, Viola–Jones object detection framework, Haar-like features,
cascade classifiers, computer vision, euroFOT, big data.

v

Acknowledgements
We would like to thank our supervisors Christian Berger and Jordanka Kovaceva
for their dedication and support during the thesis project. We would also like to
thank the case company SAFER, the Vehicle and Traffic Safety Centre at Chalmers
University, for providing us access to the video data of the euroFOT project and
allowing us to use their facilities.

Muhanad Nabeel & David Ustarbowski, Gothenburg, August 2016

vii

Contents

1 Introduction 1
1.1 Problem Domain & Motivation . 2
1.2 Research Goal & Research Questions 3
1.3 Contributions . 3
1.4 Scope . 4

2 Background & Related Work 5
2.1 Video Content Analysis . 5
2.2 euroFOT . 5
2.3 Object Detection . 6
2.4 Object Detection Algorithms . 7

2.4.1 Viola–Jones object detection framework 7
2.5 Traffic light detection - methods & approaches 11
2.6 Related Work . 12

3 Methodology 15
3.1 Functional and Non-functional Requirements 15

3.1.1 Internal Requirements . 16
3.1.2 External Requirements . 16

3.2 Data Collection . 17
3.2.1 Positives . 17
3.2.2 Negatives . 18

3.3 Video Collection . 18
3.3.1 Own recordings . 18
3.3.2 euroFOT data . 19

3.4 OpenCV . 19
3.5 Object Detection & Recognition . 19

3.5.1 Training of the algorithm . 19
3.5.2 Haar Feature-based Cascade Classifier for Object Detection . . 20
3.5.3 Haar features . 20
3.5.4 Detecting the traffic lights . 21

3.6 Circle Detection for Object Recognition 22
3.7 Saving information of previous frames 23
3.8 State Detection . 23
3.9 Counting the traffic lights . 24
3.10 Automated Evaluation . 25

ix

Contents

3.11 Detection in terms of traffic light scenarios 26
3.12 Selection of videos . 26
3.13 Benchmarking & Data Analysis . 27

4 Results 29
4.1 Research Question 1: Precision and recall 29

4.1.1 Results from the benchmarking 30
4.1.2 Sunny weather conditions . 31
4.1.3 Cloudy weather condition . 31
4.1.4 Snowy weather condition . 31
4.1.5 Rainy weather condition . 32

4.2 Reflection on the measurements . 32
4.3 Parameters affecting detection . 33
4.4 Research Question 2: Automated Evaluation 33

5 Discussion 35

6 Threats to Validity 37
6.1 Construct validity . 37
6.2 Internal Validity . 37
6.3 External Validity . 37

7 Software Engineering & Computer Vision - Recommendations and
Guidelines 39
7.1 Software Quality . 39
7.2 Recommendations for Developers . 40

7.2.1 Collect the needed data early 41
7.2.2 Continue collecting data through the whole project 41
7.2.3 Create a test environment . 41

7.3 Motivations for Using own Dataset of Videos 42
7.4 Lessons Learned . 43

7.4.1 Minimizing complexity . 43
7.5 Automation . 43

8 Conclusion & Future Work 45

x

1
Introduction

With the vast interest of traffic safety research, the request for solutions concern-
ing the area has been increasing in the past few years [1]. The traffic safety topic
is attracting more researchers to collaborate with the automotive industry to find
solutions for a safer traffic environment. Those solutions can vary depending on the
sensors equipped in the vehicles. One of those sensors is a video camera equipped in
the vehicles, which enables the vehicles to detect objects in different traffic environ-
ments in order to avoid traffic accidents. One of those solutions is creating a robust
traffic light detection and recognition, which is an essential task for autonomous
driving in traffic environments and to behave safely in various traffic situations.

The task of detecting traffic lights can be difficult due to the complexity of the
roads and the vast amount of information that have to be extracted to comprehend
by a visual based solution. To reduce the complexity of the task of recognizing
traffic lights, several studies focus on specific scenarios where the traffic lights are
suspended [1, 2]. The results of those studies are promising; they are evaluated on
scenarios that are easy to comprehend in terms of computer vision. These scenarios
however do not often occur in Swedish traffic environment where traffic lights are
mostly not suspended.

While there are already a couple of commercial vision-based systems available, the
research in this area is still ongoing [3, 4]. Various previous studies of traffic light
detection focus mostly on recordings with color to detect and recognize the features
of a traffic light. The authors of existing studies often argue about different ap-
proaches for traffic light detection, such as image processing methods or machine
learning processes. Both of these methods have their own trade-offs and present dif-
ferent results. The existing solutions around this topic could not be narrowed down
to one, due to the nature of the environment. One solution presented for the French
traffic environment gave 94% in precision and 63% in recall [2], the same solution
was applied to a Chinese traffic environment and achieved 96% in precision and 39%
recall [2]. This shows that the environment has a big impact on the algorithms in
terms of measuring the performance. The knowledge from the previous studies was
taken into consideration when conducting this study.

The goal of this research was to evaluate an object detection algorithm by approach-
ing the problem with a solution that contributes to software engineering. To tackle
this problem we aim to benchmark the chosen algorithm by using a large amount
of video data and measure the performance in terms of precision and recall in order

1

1. Introduction

to identify the limitations. In order to evaluate the robustness of those solutions
using traffic light detection and recognition algorithms, we aim for two approaches.
The first approach is the machine learning to detect the traffic lights, combined
with a image processing approach to recognize traffic lights. The second approach is
to evaluate the algorithm with an automated solution which will serve as a bench-
marking environment for the first approach, with a focus on methods within software
engineering. The euroFOT [5] project has collected more than 30 terabytes of video
recordings from naturalistic driving; those recordings will help to evaluate the algo-
rithm used in this research.

This paper is conducted as a case study in collaboration with SAFER - Vehicle and
Traffic Safety Centre at Chalmers [6]. The case-company provided us with access
to the euroFOT database [5]. Their interest of this study concerned an evalua-
tion of solutions for detecting, recognizing and counting traffic lights from video
recordings. Furthermore, creating an automated video content analysis would serve
as a tool for the researchers at SAFER to extract information regarding traffic lights.

The data collected by the euroFOT project [5] was the main data source for this
study. These videos are in grayscale which means that there was a need for ap-
propriate solutions regarding the limitation that comes with grayscale videos. One
of the main problems that arise when working with grayscale videos is the lack of
colors that otherwise could be used in order to detect traffic lights and to determine
their status (such as extracting a red circle, which represents stop). This makes the
problem we are facing more complex and adds uniqueness to the research compared
to previous researches. Furthermore, this paper will aim to give recommendations
and guidelines to Software Engineers facing similar problems in terms of machine
learning and object detection through computer vision.

1.1 Problem Domain & Motivation
This case study aims to investigate the different parameters that could have a po-
tential effect on an object detection algorithm in terms of precision and recall. The
chosen algorithm for detecting traffic lights in this case, is still under study and a
complete solution is not yet achieved in the domain of computer vision. The reason
is due to the different complex traffic environments in the real world.

In this particular research, the aim is to evaluate an object detection algorithm
capable of detecting traffic lights from a large video set. The video set consists of
grayscale video recordings of naturalistic driving. These facts need to be taking into
consideration while implementing the solution for the video content analysis, due
to the limited color information in grayscale videos. The motivation for this study
is concerned around two factors, the first factor can be referred to the previous
studies made within the topic. There is clearly a gap regarding the evaluation of the
Viola-Jones object detection algorithm when it comes to videos recorded in different
environments with different scenarios and weather conditions. The second factor,
or motivation, is connected to the available euroFOT [5] data consisting of a large

2

1. Introduction

amount of naturalistic driving videos, making it possible to test and evaluate the
object detection algorithm on a large amount of video frames.

1.2 Research Goal & Research Questions
The goal of this research is to study and identify the parameters, which have an
impact on the chosen object detection algorithm in terms of Precision and Recall
through an automated evaluation. This study also seeks to identify the functional
and non-functional parameters of an automation, which includes the machine learn-
ing (ML) approach. The research will also provide recommendations and guidelines
for the software engineering methods in the domain of machine learning and com-
puter vision. This study aims to answer the following research questions:

RQ1: Which parameters would influence the traffic light detection algorithm.
RQ2: Which functional and non-functional parameters would influence an auto-
mated evaluation in a benchmarking environment for video analysis?

Answering the research questions will provide knowledge on which parameters could
influence the object detection algorithm for detecting traffic lights. Furthermore,
answering the research questions aims to give a perspective on the potential solutions
for a software engineering approach in terms of an automated video content analysis.

1.3 Contributions
The results from this study give an insight on the evaluated object detection al-
gorithm for traffic light detection. The information gathered can be of a value for
software engineers who deal with the same problem in the area, in terms of creating
solutions in form of automation for video content analysis. The solutions made were
for grayscale video recordings derived from the euroFOT project [5]. A solution for
grayscale videos is not preferred due to the limited information of colors, which is
useful in image processing to efficiently distinguish between unique features of an
object. The grayscale data have a big benefit in terms of gathering large amount of
data and be stored without adding huge costs for the customer. Therefore a solution
for this kind of data could cut on financial expenses for a customer. Another con-
tribution is using an open source algorithm, which gives accurate results, instead of
using other proprietary off-the-shelf software. These two contributions could benefit
companies dealing with big data and strive for efficient and low cost solutions.

3

1. Introduction

1.4 Scope
The scope of this research is within the domain of computer vision, software en-
gineering and machine learning. This study is conducted in order to evaluate an
object detection algorithm for traffic lights. The results were planned to be divided
into two parts, the first part measuring the Precision and Recall in different weather
conditions presented in the video recordings. The second part aims on evaluating
various parameters that affect the detection rate. The algorithm will be evaluated
in several complex traffic environments, with different scenarios from a large set of
video recordings provided by the case company. The study is crucial for identifying
a potential ML-algorithm for detecting traffic lights while handling a large amount
of grayscale videos recorded in different weather conditions. The contribution of
this study is valid on grayscale video recordings including traffic lights of different
designs. Furthermore, the study also aims to provide recommendations for software
engineers facing the challenges of object detection in various environments.

4

2
Background & Related Work

This section introduces relevant background information on automated video content
analysis, object detection algorithms and theories related to traffic light detection.

2.1 Video Content Analysis

Video content analysis is a growing area of research within computer vision [7]. The
challenges in this area are connected to the large amount of data that has be han-
dled in order to make correct assumptions. Furthermore, advanced techniques are
needed for categorizing, learning, structuring and analysing the video data [7, 8].
According to [7], “The challenge is to discover and interpret tiny fractions of useful
information in a whirlwind of meaningless noise.”

Different video solutions, such as surveillance systems etc. collects a large amount of
data in terms of video recordings, therefore there is a need of an automation process
in order to save time by not having to go through all the data manually [7, 8].

2.2 euroFOT

European Field Operational Test (euroFOT) was a project intended for reducing
environmental impact and increase safety through evaluation of existing technolo-
gies for driver assistance systems [5]. The project achieved to find links between the
driver behaviour and the existing technologies, fuel efficiency and traffic safety [5].

Driver behaviour is to a large extent the reason for traffic accidents in the European
Union, which was one of the reasons for the euroFOT project to research into driver
assistance technologies for understanding those behaviours [5]. The project launched
over one thousand cars and trucks, which included those driver assistance systems
[5]. The vehicle’s movements and locations were tracked and recorded for the project
to study driver behaviours. For the recordings, the cameras were located in multiple
views. One view is shown in figure 2.1.

5

2. Background & Related Work

Figure 2.1: Driving video from the euroFOT project

2.3 Object Detection

Object detection is a significant topic of research related to computer vision [9, 10].
Techniques for detecting and recognizing objects have been used broadly for different
systems and solutions. Such systems exist in areas of robotics, video surveillance,
traffic control and medical imaging to name a few [11, 12]. The ability of detect-
ing objects are crucial in various applications of computer vision as many of these
solutions require objects to be determined in terms of presence and location [11].
Furthermore, object detection is being used for visual tracking applications, which
means that the desired object is detected and tracked in one or many frames in the
video, even in real time (robotic surgery) [12].

Detecting objects in images and videos is generally a challenging task. Real-world
objects that are required to be detected in videos tend to have intermittent shapes
making them visually differ between each other [13]. Other challenges are connected
to motion and occlusion in the environment [13]. Another issue can be meeting pro-
cessing requirements, in case real time has to be guaranteed [13].

Another problem that is faced in object detection is about evaluating the detector in
order to gain understanding about well it is performing [14]. There are different ap-
proaches for estimating and evaluating how well a detector works, one uncomplicated
but time-consuming way is manual evaluation by visual inspection. Other solutions
for testing an object detector could include various performance estimations and
measures, such as precision and recall [14].

6

2. Background & Related Work

2.4 Object Detection Algorithms
There are various known object detection algorithms where Feature-based methods
are some of the most common. Features are calculated based on image properties
and used for matching objects. The features are so called invariants which mean
that they can handle image scaling and rotations [15]. An extensive amount of fea-
tures can be extracted from images by using the appropriate algorithms.

2.4.1 Viola–Jones object detection framework
One well-known detection algorithm using feature-calculations is the Viola–Jones
object detection framework presented in 2001 by Paul Viola and Michael Jones
[16]. The algorithm is able to process images fast and give high detection rate. It
was demonstrated and partially motivated by the task of face detection and is using
a machine learning method, that also is the mechanism behind the feature selection
that is performed during training [16]. The detection framework requires a process
of training, where a set of positive and negative images are required [16]. Once the
training is finished it returns a Cascade Classifier that can be used with a detector,
referred to as Haar Cascade Detection [17].

Figure 2.2: Rectangles around two traffic lights detected by the Viola–Jones object
detection framework

7

2. Background & Related Work

The Viola-Jones algorithm works by finding shapes of so called Haar features. The
features are basically rectangles of black and white regions. The algorithm selects
the white rectangle and subtracts it with the black rectangle, this is done creat-
ing a integral image based on the inputted image, the integral image, also called
Summed Area Table, is an effective and rapid way to calculate the sum of pixel val-
ues [16]. The purpose is to allow quick computations of any areas in a image with
a few memory lookups. Once the sum of the rectangles with the white and black
areas are within a threshold, the algorithm continues on a new stage with increased
complexity and more features to compute [16]. The process of matching features is
illustrated in figure 2.3.

Figure 2.3: Feature matching on a face [18]

8

2. Background & Related Work

In order to detect any objects with the Viola–Jones object detection framework, a
training has to be performed. The training takes positive and negative examples
of images and runs a learning algorithm using AdaBoost, which accelerates the
computational task [19]. OpenCV provides an application for cascade classifier
training called opencv_traincascade, written in C++ in accordance to OpenCV 2.x
API [20].
Important to point out is that the training can take days or even weeks depending
on factors such as CPU clock rate, number of stages specified, boosting type and
various other training parameters. Once the training is finished it will output a Haar
cascade which is an XML file containing a lot of nodes with numbers that defines
the Haar features.

Listing 2.1: An example of features defined inside an .xml classifier file
<f e a tu r e>

<r e c t s>
<_>

11 14 8 21 −1.</_>
<_>

13 14 4 21 2 .</_></ r e c t s>
<t i l t e d>0</ t i l t e d></ f e a tu r e>

<thre sho ld>1.7821850487962365 e−003</ thre sho ld>
<l e f t_va l>−0.3374626934528351</ l e f t_va l>
<r ight_va l>0.2435684055089951</ r ight_va l></_></_>

As can be seen in the listing 2.1, the example classifier contains of a node with
sub-nodes. The numbers in <rects> are defining the shape of the Haar features
where the first two numbers (11 14) are the coordinates of the rectangle that is
to be summed using the integral image. The next two integers (8 21) are defining
the length and height of the rectangle [21]. More information about how to use
the algorithm, together with description of a training phase is to be found in the
methodology section 3.5 Object Detection & Recognition.

9

2. Background & Related Work

Another feature-based algorithm is Scale-invariant feature transform (SIFT)
presented in 1999 by David Lowe. The object detection algorithm is able to detect
local features in images by extracting “interest points” [15]. For detection, descrip-
tion is being used from a training image, as seen on figure 2.3, and then applied to
another image containing the same object as in the training image [15].

Figure 2.4: SIFT Feature Matching, the training image is to the left [18]

Speeded-Up Robust Features (SURF) is yet another algorithm used for object
recognition, presented by Herbert Bay et al. in 2006. SURF is a local feature detec-
tor and descriptor with focus on fast computation without trade-off to performance.
The SURF algorithm is partially similar to the SIFT algorithm although faster and
more robust [22].

Circle Hough Transform [23] is a part of the original Hough Transformation
algorithm [23], which operate by detecting edge points in an image. After detecting
an edge point, the point is considered as a centre of a circle of radius R included in
an accumulator array. When many of those circles intersect each other, they will
eventually create a complete shape of a final circle as illustrated in figure 2.4. The
algorithm is provided by OpenCV [18].

Figure 2.5: Hough Circle Transform

10

2. Background & Related Work

2.5 Traffic light detection - methods & approaches
Traffic lights are easily recognized by human vision, this is however a challenging
task in terms of object detection where the results of a machine vision system is
highly dependent on factors such as weather, camera type etcetera [1]. Further-
more, objects such as cars, billboards and pedestrians contribute to an increased
risk of false detections/false positives [1]. A region of interest (ROI) can decrease
the amount of false positives; this can be achieved by predicting the area in the frame
where the traffic lights will appear [1]. Other factor that can affect the robustness
of the detection is lightning conditions [24]. Detection performance tend to drop
when it comes to night-time recordings, as detection systems are dependent on edge
information and other methods such as thresholding and template matching the
performance will get affected negatively, since the color information will decrease or
in worst case vanish [1]. The same applies to recordings with occurrences of strong
sunlight [1].

There are different designs of traffic lights, two main types are suspended traffic
lights and supported traffic lights [2]. Suspended traffic lights are easier to recognize
since the background often is static, which means that the background consists of
few colors [2]. Supported traffic lights are mounted on a pole and is the standard in
Sweden, as shown in figure 2.5.

Figure 2.6: Suspended traffic light to the left, mounted Swedish traffic light to the
right

There are various concepts to recognize traffic lights, for example by an learning
process or by image processing. The learning process requires samples of traffic
lights and non-traffic lights to teach the learning process algorithm the object it
should detect. One learning process applied to traffic light detection could be the
Haar algoritm [16], which often is evaluated in terms of performance and recall.

11

2. Background & Related Work

2.6 Related Work
Haar-like features has earlier been used in terms of detecting traffic lights, the au-
thors of [25] evaluates three feature extraction methods including Haar Cascades,
LBP and HOG and compare the results in terms of precision and recall. They also
argue about the usage of various operations applied in order to reduce false positives
and the execution time of the support vector machine (SVM) [25].

Figure 2.7: “Accuracy comparison in adverse weather conditions” [25]

According to the study, LBP showed the most promising results in terms of recog-
nition of traffic lights with 83.5% recall [25] in adverse weather conditions. There
is however a minor difference between the three methods presented, as can be seen
in figure 2.4. The authors do not specify on how many frames their method was
tested on more than: “At this point around 2000 images from the city and around
are present, more images and video should be taken in the suburbs as well to train
the algorithm also in a less populated area.” [25].

Another study covering feature extraction is [26] which presents a solution to traf-
fic light detection in daytime. Their detection method include a “potential traffic
light detector”, shape filter and Adaptive Multiclass Classifier [26]. The detector
uses the YCbCr channel to generate binary images of green and red traffic lights
[26]. Furthermore, the Adaptive Multi-class Classifier is used to define candidate
regions through Haar features [26] and AdaBoost [19]. Their result is based on two
sequences, the fist with a total amount of 13,723 frames and the second with 2,838
frames, giving up to 94% of detection rate for the proposed method [26].

A different approach to detecting traffic lights in real-time is presented by [2], the
solution is entirely based on image processing with spotlight detection and recog-
nition by adaptive templates. The traffic light recognition consists of three main
steps, Spot Light Detection, Adaptive Template Matcher and Validation [2]. Fur-
thermore, the authors developed various traffic light recognition systems in order to
evaluate their own solution to other standard solutions [2], including trained cascade
classifiers with AdaBoost and Haar features. The result of the author’s own method
reached up to 95% of precision: “the tests were performed using a video stream
database consisting of more than 20 minutes of “useful” urban scenes sequence” [2].
The two of the total three video sequences had a total of 7,723 and 2,616 frames.
The amount of frames in the last sequence was not specified [2].

12

2. Background & Related Work

The majority of the related work explored is relying on color images, furthermore
the solutions are tested on a fairly small amount of frames. This is one of the dis-
tinguishing differences behind the research presented in paper and the related work.
The reason behind creating a solution for grayscale video is because we cannot rely
on color images as the euroFOT [5] data set is recorded in grayscale.

13

2. Background & Related Work

14

3
Methodology

This section introduces the approaches, methods and techniques applied in the phase
of training a machine learning algorithm and designing an automated object detector
in order to answer the research questions. The section is written in a top-down
approach, beginning with listing requirements, describing the data collection and
further taking up applied algorithms.

3.1 Functional and Non-functional Requirements
The functional and non-functional requirements were set with a requirements engi-
neering approach, both internally with the case company that served as a product
owner, and externally among us developers. The Requirement Elicitation Process
[27] was conducted together with the case company SAFER - Vehicle and Traffic
Safety Centre at Chalmers [6] in order to discuss and gather the expectations of the
solutions that had to be provided.

The internal Requirement Elicitation was conducted through discussions and task
analysis. All the internal and external requirements were placed in a System Re-
quirements Specification document [28].

15

3. Methodology

3.1.1 Internal Requirements

Functional requirement Description
FR1 The detector should work with different weather

conditions in video recordings, in specific sunny,
cloudy, rainy and snowy.

FR2 The solution must to able to determine the state
of the detected traffic light in a analysed video
recording

FR3 The solution must count the total amount of traffic
light stops in a analysed video recording

FR4 The solution must handle large amount of data in
form of video recordings

FR5 The solution must not terminate during the pro-
cess due to invalid input, in specific: handle vari-
ous video inputs, at least .avi

Table 3.1: Internal functional requirements

Non-functional requirement Description
NFR1 The solution must be able to run on the cus-

tomer’s machine.
NFR2 The solution should handle 12 frames/s with-

out any extensive frame-dropping recording.
NFR3 The solution should provide high detection

rate of the traffic lights in the video record-
ings.

Table 3.2: Internal non-functional requirements

3.1.2 External Requirements
The external Requirement Elicitation was conducted with aspects to Software En-
gineering and Machine Learning and were conducted through Domain Analysis and
Observations [28].
The external functional and non-function requirements are based on the knowledge
gained from previous studies. Furthermore, these requirements are conducted upon
a software engineering approach and elicited with help of a Domain Analysis. Im-
portant to point out is that the solution intended to be provided should be designed
as a black-box taking the needs of the product owner into consideration making the
external requirements focus on both a Software Engineering and Machine Learning
approach in terms of video content analysis.

16

3. Methodology

Functional requirements Description
FR1 The solution must be able to modify the in-

put videos, in specific; change resolution, adjust
brightness and blur.

FR2 The solution must accept different kinds of video
input data, in specific .avi, .waw and .mp4

FR3 The solution must be able to handle different
shapes and angles of the traffic recording.

FR4 The solutions must be able to save information
about frames for validation purposes.

Table 3.3: External functional requirements

Non-functional requirement Description
NFR1 The solution must conform to coding conven-

tions in order to avoid the risks of expensive
maintenance due to complexity.

NFR2 The solution must be modifiable in terms of
code.

NFR3 The black-box solution must conform to set
quality standards.

Table 3.4: External non-functional requirements

The internal and external non-functional requirements are directly related to the
quality aspects of the solution and are discussed in the section 4.4.

3.2 Data Collection

3.2.1 Positives
The very first step into creating an object detector with a machine learning algorithm
is the data collection of positive images, hereby referred to as positives. The posi-
tives are the images which represent traffic lights. The positives were photographed
from the real world in form of high definition images of traffic lights. To relate to
RQ1, the parameters would be the positives with visible traffic lights, positives of
traffic light from different visibility angles and positives with different traffic light
status (Red, Yellow, Green). These parameters are important to be taken into con-
sideration since they may affect the results.

It was important to gather qualitative data, in terms of positives, for the algorithm
training in order to extract all the unique features of a traffic light. This data is for
machine-only processing to prepare the algorithm for its application to the euroFOT
dataset [5]. All the positive images collected had the same resolution and were taken
from different distances and angles, see figure 3.1. Other important characteristics

17

3. Methodology

were about to capture the different state of the traffic lights, red, yellow and green.
The different shapes of the traffic lights were also included in the data collection,
one shape is the rectangular traffic light and the second shape is the oval traffic
light. These attributes are part of the parameters that RQ1 is intended to answer.

Once the data collection phase was done, the training of the algorithm could begin,
section 3.5 reflects on the complete process of the algorithm training.

Figure 3.1: Swedish traffic lights - example of positives inputted into the training

3.2.2 Negatives
The negatives are images that not representing the object that is desired to be de-
tected. It is a method for the algorithm to distinguish between the desired objects
and anything else in the environment that shall not be detected. Those negatives
could be collected from the same environment the object will appear in. The nega-
tives collected for this research are of the same resolution as the positives mentioned
in the previous paragraph.

3.3 Video Collection
The video collections used for this research was divided into two sets, the first video
set was recorded by ourselves whereas the second video set was derived from the
euroFOT project [5].

3.3.1 Own recordings
For the purpose of evaluating the training results from the machine learning al-
gorithm, we recorded driving videos in central Gothenburg, Sweden, with several
traffic light scenarios presented in those videos. The reason behind the recording of
our own videos is due to restricted access to the complete video collection offered
by the case company.

18

3. Methodology

The first recording was performed in a crowded traffic environment surrounded by
buildings and pedestrians as well as vehicles. Other recordings included highway
driving with different vehicle speeds. The reasoning for this data collection was to
test how well the detection works in different complex traffic environments.

3.3.2 euroFOT data
The video recordings from SAFER were derived from the euroFOT [5] project, as
explained in the background section 2.2. Those video recordings are the data that
were included in the benchmarking of the Haar algorithm. The videos consists of
naturalistic driving in different weather conditions and introduces several complex
traffic environments; for testing the limitations and the performance of the algo-
rithm in terms of precision and recall, to answer RQ1.

3.4 OpenCV
OpenCV was used for applying the algorithms in this research. OpenCV is an
open source library aimed for computer vision [18]. The library is written in C and
C++ with bindings to other programming languages such as Python and Java. The
OpenCV library contains more than 500 functions which contributes to computer
vision, including camera calibration, stereo vision and robotics [18]. OpenCV does
also features Machine-Learning modules, which makes it a suitable choice for this
research.

3.5 Object Detection & Recognition

3.5.1 Training of the algorithm
The training of the Haar Cascade Classifier [20] was performed on the collected data
mentioned in section 3.2. The first phase of the training was to identify the vectors
of the positive images. In this phase the area where the objects is located in each
positive image is retrieved by cropping the traffic light from the rest of the environ-
ment. The second phase into the training was to provide the negative images in a
separate location from the positive images. The third phase was to provide different
parameters for the Haar Classifier [20] to perform the training. The parameters are
related to answer on RQ1 and are presented in table 3.5 and 3.6 below.

19

3. Methodology

Positive Samples:

Arguments Parameters
-num 1836
-w 32
-h 48
-bgthresh 80

Table 3.5: Parameters providing positive samples

Cascade Training:

Arguments Parameters
-numPos 1836
-numNeg 3530
-numStages 27
-minHitRate 0.99500
-maxFalseAlarmRate 0.500
-weightTrimRate 0.99500
-bt GAB - Gentle AdaBoost

Table 3.6: Cascade Training Parameters

After the training was finished the opencv_traincascade [20] provided Classifiers for
each stage performed during the training, those in turn were provided to another
tool from OpenCV [18] to generate a XML file with all the necessary data retrieved
from the training. The training for this research took 3 weeks to complete on an
Intel Core i7-4770K @ 3.50GHz with 8GB RAM.
The long training time was due to the large width and height parameters for the
positive samples combined with a high number of cascade stages to be trained.
The other reason is because the selection of up to 5 existing traffic lights per given
positive sample, resulting in over 3500 positive objects in total.

3.5.2 Haar Feature-based Cascade Classifier for Object De-
tection

There are various well-known algorithms when it comes to object detection within
computer vision, one of them is Object Detection using Haarlike Features proposed
by Paul Viola and Michael Jones in 2001 [16]. Although the proposed algorithm orig-
inally is motivated for the task of face detection by the creators, it has been proved
to suit well for detection of other objects than faces, such as vehicle registration
plates, pedestrians and even traffic lights.

3.5.3 Haar features
There are many objects in the real world that share the same properties, the type
of traffic light we want to detect will always consist of a pole with a black box

20

3. Methodology

containing three circles, at least one of the circles will always be illuminated. Haar-
like features are calculated by finding these properties during the training stage [16].
Once training the algorithm, feature masks are placed on a sub-window in a specific
location. There are different types of features that are consisting of dark and light
regions, these are computed during the training by calculating the normalized sum
of the pixels in the black areas, which then get subtracted from the normalised sum
of the pixels in the white areas [29]. Once a training is finished it will output a
so-called Cascade Classifier which is ready to be applied on the input data, in our
case videos.

3.5.4 Detecting the traffic lights
Once the desired Cascade Classifier has been trained it can be used for detecting
the desired object, this is performed with a so called detector. The detector used
in this study is written in C++ with OpenCV [18] and is the core of the solution
behind detecting the traffic lights. Once this detector is running, it will give outputs
in case it can classify objects as traffic lights, if the output is correct it is classified
as a true positive, otherwise as a false positive. Completely undetected traffic lights
are classified as false negatives. Figure 3.2 shows a true positive as an example.

Figure 3.2: Detection giving a true positive in a frame with large displacement
optical flow

21

3. Methodology

3.6 Circle Detection for Object Recognition
After detection has been made through the detector, verification is done on the
output; this verification is done to ensure that the output indeed is a traffic light
and not something else by circle detection as shown in figure 3.4. Since all traffic
lights have illuminated circles we find this being an adequate solution to reduce false
positives. There can of course be outputs of false positives containing a circle; these
are further decreased by the usage of a ColorMap [30]. The recolor of the grayscale
output is performed in order to get the illumination from the circles in the traffic
lights to appear in a specific color as shown in figure 3.4, this is done in order to
further increase robustness of the verification. The flow of this process is illustrated
in figure 3.3.

Figure 3.3: Flowchart of the circle detection

Hough Circle Transform [30] was the used algorithm for circle detection. The algo-
rithm was set to give circle candidates even though they are not completely circular,
this is due to the fact that the illumination the traffic light sometimes affect the
shape of the circle making it look more like a blob than a perfect circle.

Figure 3.4: Circle detection with applied ColorMap

22

3. Methodology

3.7 Saving information of previous frames
Once the first verification detected object is a traffic light has been made, another
verification is performed in order to additionally increase the validity of the detec-
tion. The reason behind this solution is to avoid getting false detections in the
sequence of true detections, which would affect the robustness of the state decision
described in 3.8. The solution is verifying that every new detection coming in a
sequence is within the same coordinates of the previous frame, these coordinates
are changed iteratively once the traffic lights are moving in the frame with specific
conditions disallowing the X-axis and Y-axis differ too much between frames.
Large differences are signs of false detections and are set to be avoided. This data is
stored into vectors, which can be saved for further testing of the robustness behind
this solution. An initial evaluation for this solution was made on our own video set
with good results. Further testing of this solution would be on the complete video
collection.

3.8 State Detection
State detection is the last step of the process and is performed once detection has
been labeled as a true positive according to the steps described in the previous sub-
sections.

Figure 3.5: Example of the state detection in the application

23

3. Methodology

The purpose of this approach is to identify which state the detected traffic light is
in, the states refer to red light, yellow light and green light. The state determination
is done on a labeled true detection by using the Hough Circle Transform algorithm
[23]. The circle-coordinates in the region of interest served as ground for determining
the state. If the location of the circle-coordinates matched the top area of the region
the state was labeled as a red-light situation. If the location of the circle-coordinates
was on the bottom instead, the state was labeled as a green-light situation. Yellow
lights were considered as trivial for the state detection according to the specifications
of this case study. The reason behind this was that the yellow light would appear in
a few seconds before switching into green or red and those states would determine
if the driver should stop or continue driving. An example of a green state is shown
in figure 3.5 above.

3.9 Counting the traffic lights
One of the important requirements for the solution is to be able to count the amount
of traffic light scenarios, this is a crucial part since the whole purpose of a video
content analysis is to output relevant information and minimize the need to manually
review the content. After a traffic light has been successfully detected and verified a
function was implemented to count how many traffic light stops there were in each
analysed video.

Figure 3.6: Flowchart describing how counting is performed

Every true detection will get a state assigned to it as described in section 3.8. In case
the state is red no counting will be done, this is due to the vehicle is still standing
still and waiting for a green state. Once the traffic light turns green a timer is
triggered of 3 seconds, circle-coordinates are saved meanwhile and are checked if
they exist in the same Region of Interest (ROI) of the detected traffic light, restart
the timer. In case there are no more detections in the same ROI and the timer
has passed 3 seconds the total traffic light counter increments and the traffic light
scenario has been recorded as 1. The flow of this process is introduced in figure 3.6
above.

24

3. Methodology

3.10 Automated Evaluation

Once all the methods were implemented from the previous sections, we combined
them into one automation program. The automation served as an evaluation which
included the Haar algorithm [16], circle detection, state detection and counting the
amount of traffic lights as viewed in figure 3.7. As well as additional functional
parameters to improve the detection of traffic light and circles. One of those param-
eters was added in the code, which would change the brightness of the frames from
the input videos. Other functional parameters were directly linked to the circle de-
tection algorithm, such as the ColorMap [30] and blur [31]. Those parameters reflect
on our RQ2. The non-functional parameter was the memory consumption of the
automation, which was solved through processing the input videos systematically
and by applying a release function for each processed video recording.

Figure 3.7: The complete solution of the automated traffic light detection

25

3. Methodology

3.11 Detection in terms of traffic light scenarios
The detection rate is a measure of how many traffic lights have been detected in
total with aspect to the amount of traffic light stops per analysed video; we refer to
detection rate as recall. Important to point out is that every traffic light is counted
as one “traffic light scenario” independent on how many lights there is for the specific
driving lane. Important to point out is that our classification of false negatives differs
from the other studies presented in the background chapter. The false negatives in
our case refer to non-detected traffic lights at a traffic light scenario. We do not
count each traffic light at the traffic light scenario, instead we count a traffic light
scenario as one detection-scenario. In terms the algorithm detect a traffic light at a
traffic light scenario it is counted as one successful detection for that scenario.

3.12 Selection of videos
The reason for selecting videos in beforehand and analysing the content was to en-
sure that the videos were appropriate with a clear view over the road and that they
in fact had traffic lights in the video content. This was an approach to satisfy all
the requirements set in order to fit the black-box which is discussed in section 3.13.

All the detected objects were saved into separate folders based on whether the
detected object contained a circle or not. Important to point out is that all the
detections were saved in order to ensure a reliable benchmarking. This procedure
gives the option to count the amount of true positives and false positives detected
during the benchmarking. The output were later analysed manually in order to
ensure correctness of the algorithm.

Another important factor for the automation was to maintain a high quality to be
able to handle big data. In this case the program should handle at least one mil-
lion frames, which corresponds to over 22 hours of recorded videos. The reliability
for the implemented program in this case should be high to ensure that the pro-
gram executes all the selected videos without losing data or terminating during the
execution.

26

3. Methodology

3.13 Benchmarking & Data Analysis
The benchmarking was the most crucial process for evaluating the performance of
the implemented algorithm; the results presented in this study are directly extracted
from the outcomes of this process. Once the automation was finished and executed
it returned an output of all the detections made, this can be referred to as a Black-
box where input is given and processed, the output are including all the detections
made no matter if they are false or true positives.

Figure 3.8: The black-box served as a benchmarking environment

After the automation-process finished an output was given containing the detections,
this output was labeled with information about the input for enhanced verification,
weather conditions etc. The output from the black-box were later manually ana-
lyzed for each of the inputted video.

This analysis included counting of how many traffic light scenarios each video con-
tained and how many of these had a true detection, therefore it is important to point
out that every single video inputted into the black-box was manually examined and
every single output connected to that specific input was verified.

Figure 3.9: Input and output of the automation process

The reason behind not having a full automation had to do with reliability. The
implemented solution for the automation was simply not reliable enough to serve
as a full automation for the implemented algorithms. With the manual inspection
and calculations we ensure that result is valid for every video set. Therefore it is
fair to say the implementation for the benchmarking was only a semi-automated
evaluation, the next step would be to fully automate this process, this is argued in
chapter 8.

27

3. Methodology

28

4
Results

This section introduces the results of this study based on data from the benchmark-
ing. The benchmarking was conducted on a total of 41 naturalistic driving videos
where the inputted videos exceeded more than 22 hours of recordings, which were
selected in beforehand as argued about in the selection of videos section. The visual-
inspection of the total input together with the output gave us all the data required
to present the results.

The results are presented and evaluated for each dataset, which consists of videos
recorded in four different weather conditions. The results are categorized into
weather conditions, which will contain a representation of the performance of the
chosen algorithm in terms of precision and recall together with information about
the total amount of frames for each category.

4.1 Research Question 1: Precision and recall
The performance of our trained classifier is measured in precision and recall, ex-
pressed in percentage. The precision gives an understanding of how well the algo-
rithm is performing in terms of giving relevant detections.

Precision = tp

tp + fp

EQN 1: Precision

Relevant detections made in aspect to the total set of existing traffic lights in a video
is measured as recall:

Recall = tp

tp + fn

EQN 2: Recall

29

4. Results

4.1.1 Results from the benchmarking
This section lists the results derived from the benchmarking. The results are grouped
into four categories depending on the weather conditions, including sunny, cloudy,
rainy and snowy weather. The selected material consisted of naturalistic driving
videos recorded in different environments, including various types of roads, areas
and optical flows such as vehicles and pedestrians. It is important to mention that
during the benchmarking, a increase of 50% brightness was included for the all the
selected videos trough an operation in OpenCV [32]. All of the selected videos
contained at least one traffic light scenario.
The total video time, total amount of frames, average precision and recall for all the
videos is presented in the table 4.1 below:

Total video time Total frames Average precision Average recall
22,7 hours 1,021,620 59,6% 85,4%

Table 4.1: Results calculated in average for all the weather conditions

Figure 4.1: Precision and Recall for the different weather conditions

30

4. Results

4.1.2 Sunny weather conditions
The benchmarked videos categorized under this condition are recorded in daylight
with adequate lightning, which means the traffic lights are well visible throughout
the video. One key factor affecting the detection rate in a negative way is the heavy
sunlight that in some occasions reflects on the windscreen making it hard for the
camera to capture anything on the road.

From the results of the videos with the weather condition sunny we have a total
amount of 336 272 frames and an average precision of 52,8% and average recall
of 89,9%, see figure 4.1. The total time of naturalistic driving for this set was 7,4
hours. The best individual result achieved in this set gives 87% precision and 100%
recall, this particular video contained 14964 frames with 10 traffic light scenarios.

The most poor individual result achieved in this set gave 55% precision and 62%
recall, this particular video contained 14964 frames with 8 traffic light scenarios.
The reason behind this low detection is reflected upon in the discussion.

4.1.3 Cloudy weather condition
The benchmarked videos categorized under this condition are recorded in cloudy
weather conditions. From the results of the videos with the weather condition cloudy
we have a total amount of 376 140 frames and an average precision of 61,6% and
average recall of 82,5%, see figure 4.1. The total time of naturalistic driving for this
set was 8,7 hours. The best individual result achieved in this set gave 93% precision
and 100% recall, this particular video contained 16008 frames with 8 traffic light
scenarios.

The most poor individual result achieved in this set gives 27% precision and 50%
recall, this particular video contained 18252 frames with 6 traffic light scenarios.

4.1.4 Snowy weather condition
The benchmarked videos categorized under this condition are recorded in snowy
weather conditions. One key factor affecting the detection rate in a negatively was
snow hitting the windscreen in some occasions. Another factor that could contribute
to lower detection and in particular decreased performance was reflections from the
snow.

From the results of the videos with the weather condition snowy we have a total
amount of 376 140 frames and an average precision of 75,9% and average recall of
77,7%, see figure 4.1. The total time of naturalistic driving for this set was 3,1 hours.
The best individual result achieved in this set gave 93,4% precision and 100% recall,
this particular video contained 19932 frames with 9 traffic light scenarios.

31

4. Results

The most poor individual result achieved in this set gives 88,5% precision and 60%
recall, this particular video contained 16584 frames with 6 traffic light scenarios.

4.1.5 Rainy weather condition
The benchmarked videos categorized under this condition are recorded in rainy
weather conditions. One key factor affecting the detection rate negatively was rain
hitting the windscreen.

From the results of the videos with the weather condition sunny we have a total
amount of 68472 frames and an average precision of 52,1% and average recall of
92,8%, see figure 4.1. The total time of naturalistic driving for this set was 1,5
hours. The best individual result achieved in this set gives 28% precision and 100%
recall, this particular video contained 25680 frames with 8 traffic light scenarios.

The most poor individual result achieved in this set gives 75,4% precision and 85,7%
recall, this particular video contained 42792 frames with 14 traffic light scenarios.

4.2 Reflection on the measurements
The distinction between the precision and recall in the results is due to the approach
of counting the false negatives which is mentioned in the methodology section, where
recall tend to be higher. The explanation for this revolves around two factors. The
first factor is that they are calculated in different ways, since our benchmarking is
based upon traffic light scenarios we do not measure false negatives in the same
manner as true positives and false negatives. Instead we are labeling every traffic
light scenario and measuring whether there was a detection for this scenario. The
second factor is that is about cost connected to the complexity that derives from
having this large amount of frames. The potential outcome and risks of this mea-
surement technique is argued in the threats to validity, chapter 6. Furthermore, to
go in-depth and investigate the limitations of the algorithm, a third measurement
could have been included and that would take the true negatives of the object detec-
tion into consideration. For that case, additional functions should be implemented
to identify a true negative, and would be anything detected that does not have a
traffic light. This would be verified through additional functions by processing the
content of the detection. The measurement formula would be specificity were true
negatives are divided by the total amount of negatives from the detections.

32

4. Results

4.3 Parameters affecting detection
As reflected to in section 3.1 and to answer RQ1, one of the requirements was that
the detection algorithm had to handle different states, shapes and angles of the traffic
lights. In order to meet the requirement about the detector to find traffic lights at
all angles accordingly, we had to find the right functional parameters affecting the
problem.

Figure 4.2: True positives detected, A. represent different states and B. different
angles

As derived from the result of the benchmarking, one can determine that the internal
requirement FR2 was strongly affected by the functional parameter of providing
positives with different states and angles to the machine learning algorithm. This
can be verified due to the process of continuous training and visual testing. As can
be seen on figure 4.2 the traffic light detector is able to find traffic lights in most
states, shapes and angles both when the car is in motion and standing still.

4.4 Research Question 2: Automated Evaluation
This section answers the functional and non-functional parameters of an automated
evaluation for ML-algorithms that had an influence on the automated video content
analysis. The suggested parameters are derived from the visual inspection and ex-
periences throughout the project. The automation developed for this research had
to fulfill crucial requirements to handle large amount of video data, in this case over
one million frames. The requirements were set around the ISO/IEC 25010:2011 [33].

33

4. Results

The following characteristics were affecting the requirements:

Reliability; which serves under non-functional requirements, had to be reliable
enough to input all the video recordings without termination and provide the de-
sired outputs. To achieve the automation had to be tested with different amount
of samples of video recordings, at first with a small set of videos containing a few
hundred frames. The size of the video recordings were systematically increased, the
last test contained up to 192,000 frames. The tests showed that the automation
worked as intended without termination for larger amount of frames, this quality
aspect serves under FR4 and FR5.

Another requirement that the automation had to fulfill was about giving precise
outputs from the detector, this quality refers to the FR2 and FR3. This was tested
through visual inspection [14]. The solution was also required to work reliably on
the machine the customer provided; this quality refers to the NFR1 from the re-
quirements section 3.1. In this case the automation solution was able to run on the
given machine.

Functionality; is a quality aspect for the automation to comply with any sort of
video inputs from a complete data set in order to test the algorithm. One of the
important functionalities was that the solution had to handle video inputs with
different weather conditions and return appropriate outputs for the specific set of
weather condition under test, see FR1. The automated was also required to handle
the amount of frames/second without any extensive frame-dropping, as required by
the product owner, see NFR2. This particular functionality was tested through
OpenCV to get precise information about frames/sec under runtime and verify that
no prior frame-dropping occurred. The functional parameters mentioned in the
methodology section, and used in the automation during the evaluation, were blur
and brightness. The increased brightness showed to give successful results in terms
of detection rate. The blur was of type Gaussian blur [33].

Maintainability; is another quality aspect which was achieved through minimizing
the complexity of the code, making the solution simpler to maintain. Another
approach was to refactor the code as new features were developed to ensure that the
code was maintainable and understandable,for other developers that might continue
this study.

34

5
Discussion

Creating solutions for automated video content analysis requires broad domain
knowledge, furthermore it is important to choose the right techniques, algorithms
and methods for the intended task. The goal of this research was to provide an eval-
uation on object detection algorithms for traffic lights. The first research question
was intended to answer which parameters would influence the traffic light detection
algorithm. The result showed that the chosen and described parameters in this
study have a great impact on the detection rate; this motivates the importance of
having such parameters available since they often are very trivial. The result suggest
using parameters that are specific to the environment around the object that has
to be detected, it is therefore crucial to have knowledge about the the conditions in
the video set that is aimed to be analysed.

Second research question aimed to answer which functional and non-functional pa-
rameters would influence an automated evaluation in a benchmarking environment
for an video content analysis. To begin with, the result showed that different weather
conditions have a significant impact on the precision and recall for the presented al-
gorithm. As argued about in the result section, the quality of the recordings was
affected in case of rain, snow or heavy sunlight, resulting in increased false detec-
tions and reduced detection rate. Furthermore, there showed to be various important
functional and non-functional parameters influencing the automated analysis in a
benchmarking environment. Those parameters were applied to the video recordings
through the automation, for the algorithm to recognize the traffic light. The au-
tomation as a software consisted of other parameters regarding quality aspects and
functionalities necessary for an automation, as mentioned in the result section 4.4.

The individual results per analysed video showed a visible deviation in terms of
precision and recall. This is due to the low resolution of the videos, which in many
cases made it very difficult to detect the traffic lights. Another factor affecting the
measurements was about the driver stopping in front of the traffic light, making
them partially covered. The different angles the traffic light appeared in was also
a contributing factor to reduced detection, our parameter regarding the shapes and
angles showed to have a positive impact on the detection, reducing this problem.
Also, the speed of the vehicle the made it difficult detect the traffic lights because of
the large displacement optical flow. Lastly, a factor that affected the detection was
the lack of brightness in the videos, some of the traffic light appeared brighter than
other traffic lights which made it difficult for the algorithms to distinguish them
from the surroundings due to the video quality. This problem was partially solved

35

5. Discussion

by increasing the brightness and is one important functional parameter.

Reflecting on related work, this study mainly differs in three ways. To begin with,
our evaluation is conducted on a video set that is much larger than presented in pre-
vious research [25, 26, 2]. In addition, the previous research cover solutions evaluated
on a few video sequences, often recorded in one weather condition only. Further-
more, the solutions are evaluated on videos with driving in urban areas. Unlike the
previous research, our solution is benchmarked on video sequences recorded in all
kind of environments, both when it comes to weather, roads, and areas. This was
possible thanks to the access to the euroFOT [5] data which included a large set of
recordings of naturalistic driving. Secondly, in difference to the existing research, we
include the machine learning process describing how the training of the chosen ob-
ject detection algorithm was performed together with the given parameters. Lastly,
this research covers the aspects of software engineering within computer vision, and
in particular when it comes to automated video content analysis. We provide rec-
ommendations and guidelines based on our own experience gained by creating a
complete solution for automated traffic light solution.

36

6
Threats to Validity

This section brings up the identified threats to validity connected to this research.

6.1 Construct validity
The algorithms used for this research were applied for all the videos included in the
automation. The same parameters in terms of blur and brightness were applied on
the videos, independent of the weather conditions. No changes were applied to those
configurations during the benchmarking.

6.2 Internal Validity
For ensuring the validity of the results in precision and recall of the Haar detection
algorithm, we execute the automation on one computer. This way we avoid a poten-
tial differences in the precision and recall of the Haar detection algorithm. Another
threat is that we analysed the validity of traffic lights manually, which could oppose
threats to missing traffic lights in the results. Other threat to validity is the counting
of false negatives in our research compared to other papers evaluating their object
detection. In our case we measure the false negatives as the amount of traffic light
scenarios skipped in each video recording, other papers count the amount of traffic
lights missed in total of their occurrences in a scenario with traffic lights.

6.3 External Validity
Threats to external validity could be the bias choice of the detection algorithms.
Although this might be a true threat to the validity, we have analysed multiple
papers that refer to the chosen algorithm and comparing other algorithms against
it. The choice was based on the results presented in those papers.

37

6. Threats to Validity

38

7
Software Engineering & Computer
Vision - Recommendations and

Guidelines

The machine learning approach is often used for identifying a target with limited
information. The target could be any object or shape in a computer vision per-
spective. Within the software domain, the targeted information can vary depending
on various circumstances and could be a time consuming task to analyse. Machine
learning introduces flexibility of retrieving useful information software developers
seek [34, 1, 35, 36]. This section is reflecting upon software engineering within the
field of computer vision and machine learning, together with guidelines and recom-
mendations for developers facing similar challenges when comes to object detection
and video content analysis.

7.1 Software Quality
The first approach into the development of a solution for this domain would be the
adaptation to software quality using standards. It is important to ensure structural
and functional quality and it is of importance to have a model in place, such as
ISO/IEC 25010:2011 [33]. See figure 7.1 below.

39

7. Software Engineering & Computer Vision - Recommendations and Guidelines

Figure 7.1: ISO/IEC 25010:2011 Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models [33]

Therefore, a recommendation would be to set requirements before the solution is de-
veloped, starting with structuring a quality framework by choosing relevant quality
requirements for the intended solution. Consult the customer or the project owner
and gain understanding about the important requirements for the solution. Once
the developers elicit these requirements, one can implement the system accordingly.
The initial phase of the system serves as a black-box which receives different inputs
and provides outputs, which are then observed by the developers for validation.
These inputs could be functional parameters which are evaluated later through the
outputs of the black-box. With the help of the evaluation, the developers can gain
more knowledge about the domain and apply improvements to the quality of the
overall system.

7.2 Recommendations for Developers
Creating a robust and accurate object detection is a challenging and time consum-
ing process, especially when the environment consists of numerous real-world objects
that in many occasions share similar characteristics in terms of visual appearance.
Object detection algorithms commonly use feature extraction and learning algo-

40

7. Software Engineering & Computer Vision - Recommendations and Guidelines

rithms in order to detect the desired objects. Training such algorithms often requires
a large set of data, another time consuming aspect is the actual training which in
many cases can take days or even weeks to finish. The recommendations below are
written for object detection using Cascade Classifiers but could in many cases be
applied to other object detection algorithms.

7.2.1 Collect the needed data early
As emphasized, training satisfactory classifiers is a time consuming process, a rec-
ommendation would be to start the collection of the data needed for training as
early as possible. As it is often ambiguous to what extent the characteristics of
the positive data is needed. It is essential to continuously draw conclusions from
the training and adapt upon the outcomes, to either add more data or change the
approach of the data collection.

7.2.2 Continue collecting data through the whole project
Performance and accuracy are key factors for any object detector, as this is obtained
through training it is crucial to collect enough data in order to achieve satisfying
performance. Since it often is ambiguous how much data is needed, a recommenda-
tion would be to collect a larger set early and continue collecting until reaching the
desired result as illustrated in figure 7.2.

Figure 7.2: The recommended process of collecting data for training

7.2.3 Create a test environment
In case the aim of the project is to implement a solution that should be used to
detect the desired object in various datasets, for instance videos, the recommen-
dation would be to create a testing environment in order to test the solutions and
evaluate the trained classifier. It is although important to point out that the testing
environment should consist of data that will be similar to your customer data, this
is reflected on in the section 7.3 below.

41

7. Software Engineering & Computer Vision - Recommendations and Guidelines

It is of importance to have knowledge about what functional and non-functional
parameters are required to support the development, as the outcomes of the testing
environment will later become an end product or solution. Therefore the starting
phase should include videos with minimal content that does not take too long to
develop. The parts that are needed for a systematic evaluation of a machine learning
based approach are concerned around this content, and in specific: data set for
testing, a machine-learning algorithm and a working detector. Once these parts of
the test environment has been created, the next step would be to perform testing,
input data that is easy to detect, and verification if it is fulfilling the functional
requirements such as giving any detection. Then modify the different functional
parameters in the test environment such as adjusting several parameters and verify
again. Systematically draw conclusions about how the detection is getting affected
by changing those parameters. This should be an repeated approach through the
development process until reaching the desired performance.

7.3 Motivations for Using own Dataset of Videos

At the beginning of testing the trained cascade for detecting objects in video record-
ings, one could need to collect those videos as own dataset. The purpose here is to
test the performance of the trained cascade. Therefore the collected videos should
include different content, which reflects on the functional and non-functional param-
eters, that should be set at the beginning of the project. These parameters could
be anything from different lighting environments to different complex environments
where the desired objects might appear. The developers need to inspect the cus-
tomer data and document the content of the data to include the same parameters
for their own dataset. This procedure is important for the previously mentioned
test environment, due to the reason of tuning and polishing the algorithm before
attempting to apply it on the customer data. Another important part when collect-
ing the dataset is to modify (if necessary) and include similar content, which might
appear in the customer data. This is necessary to avoid the creation of a solution
which would work for own dataset and fail for customer data. Another reason for
using a own dataset might be because of the limited availability to the customer
data at the beginning of the project.

For this study, we had to collect the desired dataset of videos due to the availability
to the euroFOT data, which was not always accessible due to restricted access to
SAFER [6]. At the first stages of the implementation and testing, a set of data had
to be available at all times to visually review the performance of the algorithm. Col-
lecting own data in terms of positives was also necessary to achieve better training
of the cascade classifiers. This approach introduced flexibility to test and analyze
the output of the algorithm and evaluate the functional and non-functional param-
eters. The recorded videos were adjusted to fit the same video characteristics as the
customer videos from the euroFOT project [5] by changing them to grayscale.

42

7. Software Engineering & Computer Vision - Recommendations and Guidelines

7.4 Lessons Learned

This project could have been done with a Test-driven development (TDD) [37] ap-
proach to increase the quality of the implementation and the process of detecting
the desired object. By first having a cascade classifier [29] one can create test cases
which would fail at first. Secondly write a piece of code that should succeed by
matching the coordinates of the desired objects with the output of the cascade clas-
sifier. Once the test case succeeds, refactoring should be the next step to make
adjustments and improvements of the code.

The TDD approach would have been a suitable method for implementing a solution
within the ML domain. The developers are required to always test every piece
of code and observe the results at all time while developing in a computer vision
project.

7.4.1 Minimizing complexity
The minimization of complexity is a fundamental part of software construction [38].
One of the lessons learned in this project was about “overengineering”, we realized
that too much effort was put on writing code that turned out to be complicated with-
out increasing the robustness and detection rate to the desired degree. This required
us to spend more time on refactoring, which took away focus from the functional
and non-functional requirements that were set. As mentioned in the Software En-
gineering Body of Knowledge [38] “Most people are limited in their ability to hold
complex structures and information in their working memories, especially over long
periods of time.“ [38], which could be reflected on the experience gained in this re-
search. This is also important when reflecting to testing, as “The need to reduce
complexity applies to essentially every aspect of software construction and is par-
ticularly critical to testing of software constructions” [38]. Therefore we find TDD
[37] being a suitable software development process for this kind of projects.

7.5 Automation
For evaluating an object detection algorithm in a software engineering point of view,
an automated solution should be implemented to increase efficiency of the evalua-
tion. In terms of object detection from video recordings, the automation should be
able to handle any kind of video inputs as a functional requirement for the automa-
tion. The content inside the video is the most crucial information for the detector,
which should not in any case be ignored. Depending on the complexity of the video
content, the developers should elicit the functional and non-functional parameters
of such object detection algorithm. The functional parameters could be for the au-
tomation to detect the objects through different weather conditions appearing in
the video recordings. Other functional parameters could be the different features of
the object to be detected. By evaluating these parameters through the automation,
the developers can determine the quality of the algorithm in terms of precision and

43

7. Software Engineering & Computer Vision - Recommendations and Guidelines

recall. For the non-functional parameters, the automation should work properly at
the desired frames/sec and not opposing any memory leaks. Memory consumption
should be handled by the automation to not discard any necessary information from
each frame due to increased computation.

An example could be if the objective is to detect pedestrians in a crowded environ-
ment, what would the functional and non-functional parameters to accurately detect
these pedestrians be? For this case study, the object detection needed to distinguish
between the vast information provided by the video recordings and shifting the fo-
cus of the algorithm to only detect the desired object. From the study one could
conclude that the reliability aspect of the automation created had a major impact
on the performance of the object detection. The automation should reliably detect
the object at different weather condition as specified in the methodology section.
Furthermore, the automation should handle different lightning conditions that could
occur in different video sequences as this is affecting the detection rate. This could
although be a tall order to accomplish, it is possible to find a middle ground where
the reliability of the automation could give successful results.

Portability is a quality that should be considered when implementing an automa-
tion for an machine learning based approach [39]. The customer might have different
hardware specification and other software environments which the automation might
not work for.

Another quality aspect of this automation should be the maintainability. New fea-
tures can be added during the project depending on the complexity of the target
environment to detect the desired object. Therefore the code should be comprehen-
sively written and allow those new features to be added without further complica-
tions.

44

8
Conclusion & Future Work

This research was conducted as a case study for the purpose of finding a suitable ob-
ject detection algorithm for video content analysis, as requested by the case company
SAFER. The object detection was build upon Haar-like features using Viola–Jones
object detection framework [16]. The results from this study reflect on the preci-
sion and recall measured through a benchmarking with the help of an automated
evaluation where the emphasised parameters affected the outcome. Such parameters
covered weather conditions in the video sequences. Other parameters were functional
and non-functional that influenced the software quality of the automation. The algo-
rithm could handle different weather conditions with promising results. Compared
to previous studies [25, 26, 2] which evaluated the same algorithm, we have achieved
significant results in an extensive evaluation conducted on over one million video
frames. The study was conducted with a software engineering approach taking the
automated solution into consideration, with a reflection to relevant software quality
characteristics. Furthermore, the study is leaving guidelines and recommendations
for developers facing the challenges of object detection, both in terms of machine
learning and development of an object detector with an aspect to functional and
non-functional parameters.

Answering the research questions for this study, we can reflect on RQ1. The param-
eters used for the Haar training showed to have a significant impact on the precision
and recall of the detection algorithm. The parameters that had biggest impact on
the detection were different weather conditions. Regarding RQ2, the non-functional
parameters showed to be important in terms of software quality to assure correctness
of the automation. One of the most challenging and time-consuming part of this re-
search was connected to the machine-learning. Using the right training-parameters
showed to be a trivial task, since there are no clear instructions of what parameters
are best suitable for good feature extraction of traffic lights, a trial and error method
was used.

An extension of this study would include nighttime recordings together with an
evaluation of the depending parameters that has to be taken into consideration
for that specific case. Further extension of this study could include other object
detection algorithms benchmarked against each other, with a result showing which
one has the best performance in terms of Precision and Recall for the different
weather conditions. Last but not least, the solution of the video content analysis
could be extended to an application that could be used for detecting traffic lights in
real time.

45

8. Conclusion & Future Work

46

Bibliography

[1] Y. Zhang, J. Xue, G. Zhang, Y. Zhang, and N. Zheng, “A multi-feature fusion
based traffic light recognition algorithm for intelligent vehicles,” in Control
Conference (CCC), 2014 33rd Chinese, pp. 4924–4929, July 2014.

[2] R. de Charette and F. Nashashibi, “Traffic light recognition using image pro-
cessing compared to learning processes,” in 2009 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 333–338, Oct 2009.

[3] M. Diaz-Cabrera, P. Cerri, and P. Medici, “Robust real-time traffic light detec-
tion and distance estimation using a single camera,” Expert Syst. Appl., vol. 42,
pp. 3911–3923, May 2015.

[4] F. Zaklouta and B. Stanciulescu, “Real-time traffic sign recognition in three
stages,” Robot. Auton. Syst., vol. 62, pp. 16–24, Jan. 2014.

[5] “eurofot // the first large-scale european field operational test on active safety
systems.” http://www.eurofot-ip.eu/. (Accessed on 08/23/2016).

[6] “Chalmers: Safer.” http://www.chalmers.se/safer/. (Accessed on
08/23/2016).

[7] M. Thida and H. Eng, Contextual Analysis of Videos. Synthesis Lectures on Im-
age, Video, and Multimedia Processing, Morgan & Claypool Publishers, 2013.

[8] F. J. Seinstra, J. M. Geusebroek, D. Koelma, C. G. M. Snoek, M. Worring, and
A. W. M. Smeulders, “High-performance distributed video content analysis with
parallel-horus,” IEEE MultiMedia, vol. 14, pp. 64–75, Oct 2007.

[9] M. Abualkibash, A. Mahmood, and S. Moslehpour, “A near real-time, paral-
lel and distributed adaptive object detection and retraining framework based
on adaboost algorithm,” in High Performance Extreme Computing Conference
(HPEC), 2015 IEEE, pp. 1–8, Sept 2015.

[10] L. He, H. Wang, and H. Zhang, “Object detection by parts using appear-
ance, structural and shape features,” in 2011 IEEE International Conference
on Mechatronics and Automation, pp. 489–494, Aug 2011.

[11] J. C. Kwak, T. R. Park, Y. S. Koo, and K. Y. Lee, “Implementation of object
recognition and tracking algorithm on real-time basis,” in EUROCON, 2013
IEEE, pp. 2000–2004, July 2013.

[12] M. Simic and R. Krerngkamjornkit, “Multi object detection and tracking from
video file,” in Modern Tendencies in Engineering Sciences, vol. 533 of Applied
Mechanics and Materials, pp. 218–225, Trans Tech Publications, 5 2014.

[13] S. V. Kothiya and K. B. Mistree, “A review on real time object tracking in
video sequences,” in Electrical, Electronics, Signals, Communication and Opti-
mization (EESCO), 2015 International Conference on, pp. 1–4, Jan 2015.

47

http://www.eurofot-ip.eu/
http://www.chalmers.se/safer/

Bibliography

[14] R. Anirudh and P. Turaga, “Interactively test driving an object detector: Es-
timating performance on unlabeled data,” in IEEE Winter Conference on Ap-
plications of Computer Vision, pp. 175–182, March 2014.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.
Comput. Vision, vol. 60, pp. 91–110, Nov. 2004.

[16] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput.
Vision, vol. 57, pp. 137–154, May 2004.

[17] “Cascade classifier — opencv 2.4.13.0 documentation.” http://docs.opencv.
org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_
classifier.html. (Accessed on 08/23/2016).

[18] “Opencv | opencv.” http://opencv.org/. (Accessed on 08/23/2016).
[19] K. Lin, R. Yan, H. Duan, J. Yao, and C. Zhou, “Objective classification using

advanced adaboost algorithm,” in Fuzzy Systems and Knowledge Discovery,
2008. FSKD ’08. Fifth International Conference on, vol. 1, pp. 525–529, Oct
2008.

[20] “Cascade classifier training — opencv 2.4.13.0 documentation.” http://
docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html. (Accessed
on 08/23/2016).

[21] “Opencv reference manual v2.1.” http://picoforge.int-evry.fr/projects/
svn/gpucv/opencv_doc/2.1/opencv.pdf. (Accessed on 08/23/2016).

[22] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf),” Comput. Vis. Image Underst., vol. 110, pp. 346–359, June 2008.

[23] “Hough circle transform — opencv 2.4.13.0 documentation.” http:
//docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_
circle/hough_circle.html. (Accessed on 08/23/2016).

[24] Z. Shi, Z. Zou, and C. Zhang, “Real-time traffic light detection with adaptive
background suppression filter,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 17, pp. 690–700, March 2016.

[25] M. Salarian, A. Manavella, and R. Ansari, “A vision based system for traffic
lights recognition,” in SAI Intelligent Systems Conference (IntelliSys), 2015,
pp. 747–753, Nov 2015.

[26] “Effective traffic lights recognition method for real time driving assistance sys-
temin the daytime.” http://www.waset.org/publications/725. (Accessed on
08/23/2016).

[27] S. Tiwari, S. S. Rathore, and A. Gupta, “Selecting requirement elicitation tech-
niques for software projects,” in Software Engineering (CONSEG), 2012 CSI
Sixth International Conference on, pp. 1–10, Sept 2012.

[28] D. Zowghi and C. Coulin, Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools, pp. 19–46. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005.

[29] “Cascade classification — opencv 2.4.13.0 documentation.” http://docs.
opencv.org/2.4/modules/objdetect/doc/cascade_classification.html.
(Accessed on 08/23/2016).

[30] “Colormaps in opencv — opencv 2.4.13.0 documentation.” http://docs.
opencv.org/2.4/modules/contrib/doc/facerec/colormaps.html. (Ac-
cessed on 08/23/2016).

48

http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://opencv.org/
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
http://picoforge.int-evry.fr/projects/svn/gpucv/opencv_doc/2.1/opencv.pdf
http://picoforge.int-evry.fr/projects/svn/gpucv/opencv_doc/2.1/opencv.pdf
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://www.waset.org/publications/725
http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/colormaps.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/colormaps.html

Bibliography

[31] “Smoothing images — opencv 2.4.13.0 documentation.” http://docs.opencv.
org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_
filter/gausian_median_blur_bilateral_filter.html. (Accessed on
08/23/2016).

[32] “Changing the contrast and brightness of an image — opencv 2.4.13.0
documentation.” http://docs.opencv.org/2.4/doc/tutorials/core/
basic_linear_transform/basic_linear_transform.html. (Accessed on
08/23/2016).

[33] “Iso/iec 25010:2011 - systems and software engineering – systems and soft-
ware quality requirements and evaluation (square) – system and software qual-
ity models.” http://www.iso.org/iso/catalogue_detail.htm?csnumber=
35733. (Accessed on 08/23/2016).

[34] “Benchmarking machine learning techniques for software defect detection.”
https://arxiv.org/pdf/1506.07563.pdf. (Accessed on 08/23/2016).

[35] D. Zhang and J. J. P. Tsai, “Machine learning and software engineering,” in
Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings. 14th IEEE
International Conference on, pp. 22–29, 2002.

[36] D. A. Clifton, J. Gibbons, J. Davies, and L. Tarassenko, “Machine learning and
software engineering in health informatics,” in Proceedings of the First Inter-
national Workshop on Realizing AI Synergies in Software Engineering, RAISE
’12, (Piscataway, NJ, USA), pp. 37–41, IEEE Press, 2012.

[37] L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven development as
a defect-reduction practice,” in Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, ISSRE ’03, (Washington, DC, USA),
pp. 34–, IEEE Computer Society, 2003.

[38] “Swebok v3 • ieee computer society.” https://www.computer.org/web/
swebok/v3. (Accessed on 08/23/2016).

[39] “Portability in computer vision applications.” http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.454.5984&rep=rep1&type=pdf. (Ac-
cessed on 08/23/2016).

49

http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/core/basic_linear_transform/basic_linear_transform.html
http://docs.opencv.org/2.4/doc/tutorials/core/basic_linear_transform/basic_linear_transform.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
https://arxiv.org/pdf/1506.07563.pdf
https://www.computer.org/web/swebok/v3
https://www.computer.org/web/swebok/v3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.5984&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.5984&rep=rep1&type=pdf

	Introduction
	Problem Domain & Motivation
	Research Goal & Research Questions
	Contributions
	Scope

	Background & Related Work
	Video Content Analysis
	euroFOT
	Object Detection
	Object Detection Algorithms
	Viola–Jones object detection framework

	Traffic light detection - methods & approaches
	Related Work

	Methodology
	Functional and Non-functional Requirements
	Internal Requirements
	External Requirements

	Data Collection
	Positives
	Negatives

	Video Collection
	Own recordings
	euroFOT data

	OpenCV
	Object Detection & Recognition
	Training of the algorithm
	Haar Feature-based Cascade Classifier for Object Detection
	Haar features
	Detecting the traffic lights

	Circle Detection for Object Recognition
	Saving information of previous frames
	State Detection
	Counting the traffic lights
	Automated Evaluation
	Detection in terms of traffic light scenarios
	Selection of videos
	Benchmarking & Data Analysis

	Results
	Research Question 1: Precision and recall
	Results from the benchmarking
	Sunny weather conditions
	Cloudy weather condition
	Snowy weather condition
	Rainy weather condition

	Reflection on the measurements
	Parameters affecting detection
	Research Question 2: Automated Evaluation

	Discussion
	Threats to Validity
	Construct validity
	Internal Validity
	External Validity

	Software Engineering & Computer Vision - Recommendations and Guidelines
	Software Quality
	Recommendations for Developers
	Collect the needed data early
	Continue collecting data through the whole project
	Create a test environment

	Motivations for Using own Dataset of Videos
	Lessons Learned
	Minimizing complexity

	Automation

	Conclusion & Future Work

