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Summary. The boundary value problem coupling large deformation to transient mass
transport in form of diffusion is governed by the balance principles for an open system.
As a model material, hydrogel — a polymer capable of absorbing large amounts of water,
swelling in the process — is chosen. The free Helmholtz energy additively combines elastic
and mixing effects. The mass flux is constituted by Fick’s law of diffusion. The implemen-
tation of a related mixed finite element method — formulated in terms of displacements
and a chemical potential — poises several numerical challenges to which solutions are
proposed. Finally, the implemented finite element method is illustrated in stationary as
well as transient settings and further examples are given to demonstrate typical swelling
behaviour.

1 INTRODUCTION

Diffusion plays an important role in many biological as well as technological processes,
e.g. osmosis and diffusion welding, but also corrosion. In any case, a simulation of diffusion
processes can provide additional insight into the exact details. An ideal class of materials
to study diffusion are hydrogels. A hydrogel consists of multiple cross linked polymer
molecules, in between which water molecules can be stored1 swelling the gel in the process.

First modelling approaches on polymeric gels are commonly attributed to Tanaka and
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his colleagues2. They formulated a linear elastic model for a polymer fibre network and
later connected it to diffusion by modelling the friction in the gel. More recently, non-
linear approaches to accurately capture the effects of swelling, have been proposed.

The theory outlined here closely follows the works of Bouklas et al.3 and Hong et al.1.

2 THEORY

The summary of theoretical modelling aspects is split into two parts: The definition
of the boundary value problem, necessary for the implementation of the finite element
method, and the material model, based on which stresses and flux terms are specified.

2.1 Definition of the boundary value problem

Hydrogel is considered as an open system containing a mixture of polymer and water.
Small molecules enter the system either through the boundary in terms of the referential
flux J or through the source r0. The balance equations in local form are then given by

ρ̇0 = mM [r0 −∇X · J ] , ρ̇0 ẋ+ ρ0 ẍ = ∇X · P + ρ0 b (1)

with the mass per molecule denoted as mM . It is important to note that the rate of the
referential density ρ̇0 does not vanish (as in closed systems), such that an additional term
appears in the balance of linear momentum. A theory incorporating all dynamical effects
has to deal with these strongly coupled governing equations. In the context of diffusion
however, the dynamical effects can be neglected with the argument of decoupling the
underlying time scales. For macroscopic problems typical times for diffusion are in the
order of thousand seconds, while dynamical effects operate on a much shorter time frame.

The balance of mass can be recast into a particle-based balance relation by constituting
the density in terms of the concentration and assuming no reaction between the polymer
and the small molecules takes place. The boundary value problem is then given by

∇X · P + ρ0 b = 0 in B0, P ·N = t0 on ∂B0
t,

∂C

∂t
+∇X · J = r0 in B0, J ·N = − j0 on ∂B0

j
.

(2)

2.2 Material model

The derivation of the material model follows the concept of standard dissipative ma-
terials. The free Helmholtz energy is additively combined of an elastic contribution Ψ el,
a mixing term Ψm and a bulk term Ψblk penalising compression, i.e.

Ψ el =
1

2
N kB T [F : F − 3 −2 ln (det (F ))] , Ψblk =

1

2
K [det (F )− [1 +ΩC]]2 ,

Ψm =
kB T

Ω

[
ΩC ln

(
ΩC

1 +ΩC

)
+

χΩ C

1 +ΩC

]
,

(3)
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where N describes the number of polymer chains per volume, kB the Boltzmann constant,
T the temperature, Ω the molecular volume of the solvent, χ the Flory parameter and K

the bulk modulus.
The stresses and driving forces follow from the second law of thermodynamics. Con-

trary to the procedure for closed systems, an open system also requires to take the entropy
of the mass entering the system into account. To this end, the free energy in the system
needs to decrease, such that the external mechanical work and the work performed by the
small molecules can be considered. After identifying the stresses and driving forces, the
inequality

∫

B0

J · ∇Xµ dV ≤ 0 (4)

remains to be fulfilled. In straight forward fashion the mass flux J is constituted to create
a quadratic form as

J = −M · ∇Xµ , M :=
C D

kB T
F

−1 · F−t , (5)

where the mobility tensor M follows from Fick’s law of diffusion.

3 IMPLEMENTATION

The finite element method is derived in standard manner. As field variables the dis-
placement u and the chemical potential µ are chosen. It is beneficial to choose the
chemical potential instead of the concentration as field variable, to prevent higher order
derivatives of the shape functions. Consequently, the Legendre transformation is applied
to switch from Ψ (F , C) to Ψ̂(F , µ). This results in an implicit relation for the concen-
tration, which is solved by a Newton-Raphson scheme on quadrature point level. The
discretisation follows the isoparametric Galerkin approach using quadratic shape func-
tions for the displacement field and linear shape functions for the chemical potential.

An important problem regarding the implementation of this model is the huge differ-
ence in scales between the displacement field and the chemical potential, which cannot
be overcome by solely choosing an appropriate set of units. Instead, the chemical poten-
tial, the time and the balance equations are each normalised by characteristic material
parameters. Another point to keep in mind is the singularity for C = 0, which requires
an initial swelling C0 6= 0 pior to the simulation. C0 can be determined analytically by
assuming a homogeneous and stress-free state of initial swelling.

4 CONSTRAINED SWELLING

A layer of gel with thickness H is initially swollen with concentration C0 and then bound
to a rigid substrate. Assuming an infinite length of the layer, the problem reduces to two
dimensions. The top surface of the gel is then brought in contact with an infinite reservoir
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of water molecules, which start to diffuse into the gel, swelling it. Figure 1(a) shows how
the water molecules slowly penetrate into the gel with increasing time. In Figure 1(b) the
top surface is additionally slightly perturbated, which leads to the formation of wrinkles.
The observed surface instability is invariant of the perturbation type, but strongly depends
on the stiffness of the surface layer.
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(a) Chemical potential µ over height y of
the layer and for selected points of (nor-
malised) time (different colours).
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(b) Display of surface instability. Contour
plot of the Piola stress Pxx in MPa.

Figure 1: Constrained swelling of a hydrogel layer.
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