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Summary. In computational homogenization, periodic Boundary Conditions (BCs) are
often imposed on the Representative Volume Element (RVE). However, it is well known
that such BCs are inaccurate if cracks are present in the RVE and these cracks are not
aligned with the periodicity directions. To overcome this problem, we propose aligned
periodic BCs on weak form.

1 INTRODUCTION

In computational homogenization1,2, the effective response of the microstructure is
evaluated by computing the homogenized response of a Representative Volume Element
(RVE). A key step in this computation is the imposition of suitable Boundary Conditions
(BCs) on the RVE. Periodic boundary conditions are often used3, even though it is well
known that such boundary conditions lead to inaccurate results if localization bands or
large cracks in the RVE are not aligned with the periodicity directions. In particular,
artificial crack closure occurs on the RVE boundary in such cases, leading to overstiff
response of the RVE. A previously proposed remedy is to use modified strong periodic
boundary conditions, called Percolation Path Aligned Boundary Conditions (PPABC)4,5,
that are aligned with the dominating localization direction in the RVE. However, strong
periodic boundary conditions require a periodic mesh in the RVE. To overcome this lim-
itation, we here start from a previously proposed format for weakly periodic boundary
conditions6,7 and show that these BCs can conveniently be aligned with an identified lo-
calization direction. It turns out that this alignment can be achieved by only modifying
the mapping (mirror function) between the associated parts of the RVE boundary. In the
present work, we therefore propose a modified mirror function, corresponding to a shifted
stacking of RVEs, that allows alignment with an identified localization direction.
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2 THEORY

We consider the solution of a small strain elasticity problem in an RVE containing
cracks, see for example7,8. To impose (strong or weak) periodic boundary conditions on
the RVE, we divide the RVE boundary into an image part Γ+

� and a mirror part Γ−� as
shown in Figure 1. Next, we introduce a mapping (mirror function) ϕper : Γ+

� → Γ−�, that
relates points on Γ+

� and Γ−� to each other according to x− = ϕper(x
+), and define the

jump between Γ+
� and Γ−� as JuK�

def
= u+ − u−. Letting ε̄ denote the macroscopic strain

on the RVE, strong periodicity would then be obtained by enforcing JuK� = ε̄ · Jx− x̄K�
pointwise on Γ+

�. Here, we will instead consider weakly periodic boundary conditions,
whereby the periodicity constraint only needs to be fulfilled in a weak sense. The resulting
mixed RVE problem is then to find u ∈ U� and tλ ∈ T� such that

1

|Ω�|

[∫
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σ : ε [δu] dΩ−
∫

Γ+
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t · JδuK dΓ

]
− 1
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∫
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tλ · JδuK� dΓ = 0 ∀δu ∈ U�,
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∫
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�

δ tλ ·JuK� dΓ = − 1

|Ω�|

∫
Γ+
�

δ tλ ·Jε̄ · [x− x̄]K� dΓ ∀δtλ ∈ T�,

(1)

where U� and T� are the spaces pertinent to u and tλ, respectively. In the equations
above, we also introduced the displacement jump JuK over the faces of a crack inside the
domain Ω�, and Γ+

�,int = Γ+
int∩Ω�, representing the part of the internal boundary located

inside the RVE Ω�. Furthermore, ε = [u⊗∇]sym is the engineering strain, σ = σ (ε) is
the Cauchy stress, t = t (JuK) is the traction on crack faces in the material, and tλ is the
traction on the RVE boundary. See7 for further details.

When solving Equation (1), different choices for the mirror function ϕper are possible.
The standard choice, which is used by6,7 among many others, is to map points along
horizontal or vertical lines as shown in Figure 1a, so that ϕper is explicitly given by
ϕper (l�, y) = (0, y) and ϕper (x, l�) = (x, 0), where l� denotes the side length of the RVE.
However, as pointed out by several researchers4,9, this choice leads to inaccurate results
due to artificial crack closure on the RVE boundary for cracks that are not aligned with
these directions.

To develop an alternative mirror function, now assume that a dominating crack di-
rection exists as indicated in Figure 1b. Then, we may modify ϕper such that the crack
pattern is compatible over RVE boundaries, thereby preventing artificial crack closure on
RVE boundaries10. The explicit alternative expression for ϕper as shown in Figure 1b (for
45◦ < α < 90◦) is now given by

ϕper (l�, y) = (0, y),

ϕper (x, l�) = (l� − s+ x, 0) if 0 ≤ x < s,

ϕper (x, l�) = (x− s, 0) if s ≤ x ≤ l�,

(2)
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where the shifting distance is given by s = l�/ tanα. Clearly, we may carry out the same
procedure also for cracks with α < 45◦.

Using the expression given by Equation (2), we may obtain aligned periodic boundary
conditions on weak form by only modifying the mirror function ϕper. Since the shifting
distance s depends only on α and l�, the shifting is valid also for cracks that do not pass
through the center of the RVE.
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(a) Standard mirror function.
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(b) Shifted mirror function. The shift-
ing distance s is given by s = l�/ tanα.

Figure 1: RVE with boundary divided into image (Γ+
�) and mirror (Γ−�) parts, with

standard mirror function (a) and shifted mirror function (b). The symbols denote related
points on Γ+

� and Γ−�.

3 RESULTS

To demonstrate the effect of aligning the boundary conditions, we consider an RVE
consisting of hard bulk material and a curved band of softer material (Figure 2). The
RVE is deformed in x-direction and the resulting effective stress is shown in Figure 2.
As can be seen, severe stress concentrations occur when using unaligned BCs, whereas
aligned BCs lead to a more uniform stress field.
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Figure 2: Effective stress in an RVE computed with unaligned (left) and aligned (right)
weakly periodic boundary conditions. As can be seen, severe stress concentrations occur
on the upper and lower boundaries when unaligned BCs are used.
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