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Summary. Electromagnetic transducers convert mechanical energy to electrical energy
and vice versa. Effective passive vibration damping of flexible structures can therefore
be introduced by shunting with an accurately calibrated resonant electrical network that
contains a capacitor to create the desired resonance and a resistor to dissipate the cor-
rect amount of vibration energy. The modal interaction with residual vibration forms
not targeted by the resonant shunt is represented by supplemental flexibility and inertia
terms. This leads to modified calibration formulae that maintain the desired damping
performance in the case of flexible structures with substantial modal interaction.

1 ELECTROMAGNETIC TRANSDUCER

The force f exerted by an electromagnetic transducer is proportional to the coil current
I. When introducing the motor constant K the transducer force is given as1

f = KI (1)

The current I in the electromagnetic transducer is governed by the representative electrical
network model in Fig. 1(a), with an alternating voltage source

Vem = iωKu (2)

proportional to the velocity amplitude iωu of the structure at transducer location. The
dynamics of an electromagnetic transducer are commonly modeled by the voltage source
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Figure 1: Electrical representation of an electromagnetic transducer with shunt Z(ω) (a) and equivalent
mechanical model with stiffness and frequency dependent dashpot placed in series (b).
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Vem placed in series with both a resistor Rem and an inductor Lem. Conservation of
energy in the network in Fig. 1(a) is secured by Kirchhoff’s voltage law, which leads to
the apparent mechanical force-displacement relation

u =

(

Lem

K2
+

Z(ω) +Rem

iωK2

)

f (3)

This relation identifies the two terms as a spring with stiffness K2/Lem placed in series
with a dashpot with viscous parameter K2/(Z(ω) +Rem), see Fig. 1(b).

2 MODAL ANALYSIS

The governing equation of motion for the flexible structure can be written as
(

− ω2M + K
)

u + wf = fe (4)

where the transducer force f is applied to the structure via the connectivity vector w.
Thus, the transducer force is energetically conjugated to the previously introduced trans-
ducer displacement u = wTu. Typically, shunt damping is calibrated based on an assumed
single mode response u = ur, where ur is the modal coordinate associated with the reso-
nant mode shape vector ur, normalized to unity at transducer location (wTur = 1). How-
ever, this simplified representation neglects any modal interaction with the other (residual)
vibration modes. Therefore, the modal transducer displacement ur is augmented by terms
representing flexibility and inertia contributions from the residual modes2,

ur = u+

(

ν ′

r
−

ω2
r

ω2
ν ′′

r

)

f

kr
(5)

The force f is here normalized by the modal stiffness kr and the corresponding residual
mode coefficients inside the parenthesis are then determined as

ν ′

r
= krw

TK−1
r
w − 1 + ν ′′

r
, ν ′′

r
= krw

TK−1
r
KK−1

r
w − krw

TK−1
r
w (6)

where the modified stiffness matrix Kr is shifted by the inertia contained in the resonant
vibration mode,

Kr = K− ω2
r

(

M−
(Mur)(Mur)

T

uT
r
Mur

)

(7)

It is observed that the resonant mode dynamics are not altered by this modification of
the stiffness matrix, as shown by the modal stiffness uT

r
Krur = uT

r
Kur = kr.

The modal force-displacement relation is obtained by eliminating the actual transducer
displacement u in (3) by the augmented representation in (5),

ur =

(

kr
K2

Lem + ν ′

r
+

kr
K2

Z(ω) +Rem

iω
−

ω2
r

ω2
ν ′′

r

)

f

kr
(8)

Here the first two terms represent a spring, while the last term introduces inertia by an
inerter element. The remaining term in the parenthesis contains the shunt impedance
Z(ω), which in the following section is chosen as a classic series RC-network.
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Figure 2: Equivalent vibration absorber with residual mode corrections.

3 DESIGN OF RESONANT SHUNT

It follows from Fig. 1(a) that the coil inductance and resistance appear in series with
the shunt, and furthermore the residual mode contributions in (3) also appear as additive
terms in a flexibility formulation, whereby they represent equivalent mechanical compo-
nents connected in series. Thus, a series RC shunt is now introduced because the coil
and residual mode contributions can then be fully absorbed and single mode calibration
principles may be used directly to determined the optimal shunt tuning. In a series RC
shunt the supplemental resistance Rs and capacitance Cs form the impedance function

Z(ω) = Rs +
1

iωCs
(9)

By substitution into (8) a modal flexibility relation is obtained for a mechanical element
with a spring, viscous dashpot and inerter placed in series, see Fig. 2. It is given as

ur =
1

K2

(

Lr +
Rr

iω
−

1

ω2Cr

)

f (10)

introducing the modal inductance Lr, resistance Rr and capacitance Cr,

Lrkr
K2

=
Lemkr
K2

+ ν ′

r
, Rr = Rem +Rs ,

kr
K2Cr

=
kr

K2Cs
+ ω2

r
ν ′′

r
(11)

The stiffness, damping and inertance of the equivalent mechanical vibration absorber in
Fig. 2 can now be determined by the readers most preferred calibration principle for an
assumed single-mode system and subsequently applied to the flexible structure because
the interaction with residual modes is explicitly represented by ν ′

r
and ν ′′

r
in the modal

inductance Lr and capacitance Cr, respectively.
A suitable compromise between large modal damping and effective frequency response

mitigation is obtained by the so-called balanced calibration with equal modal damping,
previously used for tuning of mechanical vibration absorbers2 and piezoelectric shunt
damping3. For this calibration procedure a desired damping ratio ζdes can be introduced
to define a modal coupling coefficient κr ≃ 8ζ2des. The modal inductance, resistance
and capacitance are then determined by the calibration formulae derived for an assumed
single-mode structure. In normalized form they are obtained as

K2

kr

1

Lr

= κr ,
K2

kr

ωr

Rr

=
√

1
2
κr ,

K2

kr
Crω

2
r
= κr (12)

The actual values Lem, Rs and Cs are then finally determined by (11).
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Figure 3: Dynamic amplification curves for modes 1 and 3 with ζdes = 0.05.

4 NUMERICAL EXAMPLE

An electromagnetic transducer with a series RC-shunt is now placed between the two
bottom floors of a ten-storey shear frame structure2. For modes r = 1 and 3 the residual
mode correction factors are {ν ′

r
, ν ′

r
} = {4.78, 0.13} and {30.03, 9.05}, respectively. The

desired damping ratio is ζdes = 0.05, corresponding to a dynamic amplification factor
DAF = 10. A complex modal analysis shows that the two damping ratios associated
with the targeted vibration form is ζ1 = {0.0500, 0.0499} and ζ3 = {0.0505, 0.0494}, while
the equal damping property is lost when the residual mode correction is not included:
ζ01 = {0.0293, 0.0660} and ζ03 = {0.0071, 0.0668} when ν ′

r
= 0 and ν ′′

r
= 0. Figure 3 shows

the dynamic amplification curves for harmonic loading of the flexible shear frame structure
targeting modes 1 and 3. The amplitude curves obtained by the corrected calibration
formulae (solid line) recover the desired flat plateau and a maximum DAF ≃ 10, while
the maximum DAF for r = 1 and 3 without correction is 15.6 and 62.1, respectively.
Thus, the residual mode correction, represented by the two parameters ν ′

r
and ν ′′

r
, is

important to include when the desired damping level and harmonic response amplitude
is obtained for a flexible structure with multiple vibration modes.
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