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Summary. Configurational (or material) forces are computed based on a previously
derived thermodynamically consistent definition of material forces, in conjunction with
a gradient-enhanced constitutive theory. The primary problem solved for is based on a
mixed variational formulation. Under the proposed mixed formulation, no nodal smooth-
ing of internal variables for the computation of material forces is required at the post-
processing. Results are shown in terms of energetic quantities which stem from the
computed material forces. The mesh sensitivity of the latter quantities is examined
and compared to respective results based on local constitutive theory in a “standard”
displacements-based variational formulation.

1 INTRODUCTION

It is rather convenient in terms of computational cost and model development to com-
pute configurational forces for inelasticity via a “conventional” displacement-based vari-
ational formulation. However, under such discontinuous representation of the internal
variables field, simulation results of problems which involve sources of numerical singular-
ity (e.g. a crack-tip) exhibit “pathological” mesh dependence, see e.g. Tillberg et al.1. In
addition, as shown in Menzel et al.2, “no” accuracy is gained from constructing a mixed
variational formulation in terms of the displacements and the internal variables field.

In this work, configurational forces are computed based on a gradient-enhanced consti-
tutive theory. The primary problem solved for comprises a mixed variational formulation
in terms of the displacements along with a gradient-related field. The gradient-enhanced
constitutive theory, in conjunction with the continuous approximation of the gradient
field, provide sufficient regularity for the computation of material forces, especially for
larger values of the internal regularization parameter.
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2 VARIATIONAL FORMULATION IN MIXED-DUAL FORMAT

The primary problem comprises that of determining the fields u(x, t), ξ(x, t), k(x, t),

κdi(x, t) that satisfy‡

−σ(ε[u], k) ·∇ = 0 in Ω, (1)

κen(ε[u], k) + κdi − ξ ·∇ = 0 in Ω, (2)

g[k]− g(ξ) = 0 in Ω, (3)

k −∆t
∂φ∗

∂κdi
(κdi) = nk in Ω, (4)

where k denotes the internal variables structure, κdi is the dissipative stress field, φ∗(κdi)

is a dissipation functional in terms of κdi, ε[u] = [u ⊗∇]sym, and, g[k]
def
= k ⊗∇. The

Coleman-type equations read

σ
def
=
∂ψ

∂ε
, κen def

=
∂ψ

∂k
, ξ

def
=
∂ψ

∂g
, (5)

where the corresponding free energy for a gradient-enhanced dissipative material is intro-
duced as

ψ(ε, k, g) = ψloc(ε, k) + ψgra(g). (6)

The constitutive equation for g(ξ) in (3) is expressed as

g(ξ) =
∂ψ∗,gra

∂ξ
(7)

where ψ∗,gra(ξ) is obtained via a Legendre transformation w.r.t. the gradient variable g.
Employing the principle of virtual work and Green-Gauss theorem on (1)–(4) results

in the time-discrete semi-dual weak format of finding u, ξ such that

Ru(u, ξ; δu) =

∫
Ω

σ(ε[u], k{ε[u],χ[ξ]}) : ε[δu] dΩ− l(u)(δu) = 0, (8)

Rξ(u, ξ; δξ) =

∫
Ω

[
−k{ε[u],χ[ξ]} ? χ[δξ]− g(ξ) ? δξ

]
dΩ− l(ξ)(δξ) = 0, (9)

for suitable test functions δu, δξ. The linear forms (external work) in (8), (9) read

l(u)(δu) =

∫
Γ

t̄p · δu dΓ , l(ξ)(δξ) = −
∫

Γ

k̄p ? [δξ · n]p dΓ. (10)

Moreover, choosing to satisfy the weak form of (2) and (4) in a strong sense leads to
the “local” equations

RL(u, ξ, k) = k −∆t
∂φ∗

∂κdi
(χ[ξ]− κen(ε[u], k))− nk = 0. (11)

‡For brevity, all discussions on boundary conditions and trial and test spaces that naturally complete
the definition of the strong and weak formats, respectively, are omitted.
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3 CONFIGURATIONAL FORCES

In Runesson et al.3, it was shown that the mechanical dissipation D, may be split into
two parts, the configurational DCONF and the material dissipation part DMAT. Partial
variation of D and parametrization dẊ = W (X) dȧ of the update in the initial (unde-
formed) configuration result in G · dȧ, where G is a generalized crack driving force , ȧ is
equivalent to a crack advance rate and W is a scaling function of the configurational mo-
tion. In this context, the two parts of the total configurational force for gradient-enhanced
constitutive theory‡ can be written as

GCONF =

∫
Ω

−(∇W ) ·Σ dΩ, (12)

GMAT =

∫
Ω

[
−∂ψ
∂k

? [k ⊗∇]− ∂ψ

∂g
?
[
g ⊗∇

]]
W dΩ, (13)

where Σ
def
= ψI−HT·σ is Eshelby’s stress tensor in small strains setting andH = [u⊗∇].

4 NUMERICAL EXAMPLE

The smooth interphase problem defined by a square plate with centric hole subjected
to prescribed displacement u2 = 0.1 mm of the upper edge, see Fig. 1a, is outlined next.

u2(t)

x1

x2

x3

5.0 mm

20
.0

m
m

(a)

Young’s modulus, E [GPa] 200

Poisson’s ratio, ν 0.3

Yield stress, σy [MPa] 200

Characteristic stress, σC [MPa] 200

Gradient hardening modulus, Hg [GPa] 20

Viscoplastic time parameter, t∗ [s] 0.01

Total time of direct motion, tTOTAL [s] 0.05

(b)

Figure 1: (a) Geometry and Dirichlet boundary conditions on the displacements.
(b) Material parameters that enter the gradient-enhanced viscoplastic constitutive model.

A gradient-enhanced Bingham’s perfect viscoplastic model is used, i.e. k ≡ εp. The
semi-dual free energy of the model reads

ϕ(ε, εp, ξ) =
1

2
[ε− εp] : E : [ε− εp]︸ ︷︷ ︸

ψloc(ε,εp)

− 1

2Hgl2s
|ξ|2︸ ︷︷ ︸

ψ∗,gra(ξ)

. (14)

‡In local theory, (12) remains unchanged, while the latter term on the RHS of (13) vanishes.
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The dual dissipation potential φ∗(κdi) is defined here by

φ∗(κdi) =
1

t∗
η(F (κdi)) , F (κdi) =

√
3

2
|κdi

dev| − σy , η(F ) =
1

2

〈F 〉2

σc

, (15)

where all material parameters are introduced in the table of Fig. 1b. In Figs. 2a and 2b,
results in terms of energy release rates due to a virtual expansion of the hole are compared
for different values of the length scale parameter ls.
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Figure 2: Energy release rates for expanding hole. (a) Configurational part GCONF. (b)
Material dissipation part GMAT.

5 CONCLUSIONS

Configurational forces are computed based on a gradient-enhanced mixed variational
formulation. Unconditional convergence of energy release rates for finite values of the
regularization parameter is achieved. The behavior of a pure local constitutive model is
resembled as we let the regularization parameter tend to zero and for appropriate choice
of gradient-related boundary conditions.
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