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Summary. We consider an alternate surface reconstruction strategy based on geometry
data which is conventionally employed in the finite element modelling of elastic shells.
In comparison with the usual strategy, a more accurate approximation of the shell mid-
surface is obtained, so that differentiation of the chart giving the approximate mid-surface
can solely be used to estimate the fundamental forms of the surface, which are needed
so as to express the 2-D equations of shell theory. In the case of the lowest-order surface
data, this is in contrast with the conventional approximation which does not make it
possible to obtain curvature information naturally via the straightforward differentiation
of the chart.

1 INTRODUCTION

Classical shell theory seeks simplifications to solving 3-D elasticity equations over a
thin curved body by employing unknowns that depend on only two curvilinear coordi-
nates associated with the shell mid-surface. Nevertheless, conventional finite element
approximations of elastic shells applied in engineering are seldom formulated by use of a
classical shell model, since traditional discrete geometry data does not generally offer the
precise description of a smooth mapping (chart) which enables to express the placement
of a shell in its reference configuration in terms of normal coordinates. Therefore, an
approximate representation of the shell body must then be created in the first place.

The approximation of shell geometry is conventionally based on given information
about the position and the director vector (the unit normal to the exact mid-surface) at the
nodes of finite elements. The usual engineering representation of the shell body is then an
outcome of simultaneous equal-order interpolation of the mid-surface coordinates and the
director field. Importantly, this approach has been utilized to develop common structural
analysis methods known as (isoparametric) general shell elements or, alternatively, as
degenerated solid shell elements.
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Although the Lagrange interpolation is usually employed to obtain the approximate
mid-surface, the standard initial data actually contains enough information for recon-
structing a significantly better approximation via requiring additionally that the normal
to the approximate mid-surface agrees with the director specified at the nodes. Never-
theless, it seems that the possibility of utilizing such improved surface reconstruction has
not been widely noted in engineering literature on shells, although we mention a paper1

by Destuynder et al. where related ideas have been applied (it should also be noted that,
from the same lowest-order data, higher-order approximations other than what we con-
sider could be derived by using the macroelement strategies such as Powell-Sabin splines
or reduced Hsieh-Clough-Tocher triangles). In addition to describing some technical as-
pects related to the improved surface reconstruction, we shall briefly discuss its utility,
with special reference to the development of computational methods for elastic shells.

2 IMPROVED SURFACE RECONSTRUCTION

To describe the key ideas, assume that the lowest-order surface data is supplied so
that we can construct transformations f̃ : K̂ → E3 that elementwise yield a surface
approximating the exact mid-surface as

f̃(x̂) =
4∑

k=1

λ̂k(x̂)pk, (1)

where pk give the coordinates of nodes with respect to a single frame of reference as-
sociated with an orthonormal basis and λ̂k are the bilinear Lagrange interpolation basis
functions defined over a reference element K̂ = [−1, 1]× [−1, 1].

Instead of performing the bilinear transformation to obtain a surface patch with straight
edges, we may first apply the Hermite interpolation to obtain polynomial space curves
of higher degree which shall be used to represent the boundaries of an alternate surface
patch. This is possible since the shell director data basically specifies the set of tangent
vectors to the exact mid-surface at a node pk as

VT
k = { p− pk ∈ R3 | (p− pk) · dk = 0, with p ∈ E3 }, (2)

where dk is the shell director given at the node.
Technically we may generate polynomial space curves of degree 3 as follows. Given

a pair of connected nodes pi and pj associated with the position vectors ri and rj,
respectively, we first create a local coordinate frame by associating its origin with the
position vector ro = 1/2(ri +rj) and by creating its orthonormal basis {k1,k2,k3} in the
following way. The third basis vector k3 is first required to point into the same direction
as the vector di + dj. We then define vij = rj − ri and perform the Gram-Schmidt
procedure to obtain a new orthogonal vector, which we select to be the first basis vector
k1. We finally use the requirement of right-handedness to select k2.
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The positions of the two nodes are now expressed with respect to the local frame to
obtain their coordinates zr = zrk, with k ∈ {i, j} and z2k = 0 by construction. Setting
E = [z1i , z

1
j ] ⊂ E1, we then seek a polynomial curve E 3 z1 7→ (z1, 0, ϕh(z1)) with

ϕh(z1) =
2∑

k=1

[(ψ̂k ◦ f−1
E )(z1)ϕk + hE/2 · (ψ̂2+k ◦ f−1

E )(z1)ϑk], (3)

where hE = z1j − z1i > 0 is a length parameter and fE is an affine mapping between the

points of Ê = [−1, 1] and E, with fE(−1) = z1i and fE(1) = z1j . In addition, ψ̂k : Ê → R
give the Hermite interpolation basis functions for the space of third-order polynomials
defined over Ê, with the degrees of freedom ϕk and ϑk chosen in the standard manner so
that we have

ϕk = ϕh(z1k) and ϑk = Dϕh(z1k)[k1]. (4)

To select these scalar coefficients, we now reparametrize the curve to obtain the mapping
cij : Ê → E3 defined by σ̂ 7→ (fE(σ̂), 0, ϕh(fE(σ̂))). Finally, the conditions that the curve
passes through the nodes pk and that the tangent vectors ċij(σ̂) to the curve evaluated
at the nodes belong to the sets of tangent vectors VT

k lead to the unique selection

ϕk = z3k and ϑk = −dk · k1

dk · k3

, (5)

where dk · k3 6= 0 can be assumed to hold without a practical restriction. We note that,
as the tacit here is that the shell mid-surface is smooth, the boundary curves should give
optimally accurate O(h4E) descriptions of the mid-surface location in Lp (to derive such
an estimate, one may consider the distance between the polynomial curve and the curve
which is formed as an intersection of the exact mid-surface with the plane z2 = 0).

After repeating the curve reconstruction for all connected nodes, the finite element
blending technique (transfinite interpolation2) may be applied to obtain a surface patch
whose boundaries agree with the cubic space curves obtained before. To proceed, we now
redefine the mapping cij : Ê → E3 such that cij(σ̂) gives the coordinates of the boundary
curve points with respect to the global frame of reference. By utilizing the finite element
blending, the improved approximation of the mid-surface is written as

f(x̂1, x̂2) = f̃(x̂1, x̂2) + f 12(x̂
2, x̂1) + f 23(x̂

1, x̂2) + f 43(x̂
2, x̂1) + f 14(x̂

1, x̂2) (6)

where the functions f ij : [−1, 1]× [−1, 1]→ R3 are associated with the curved edges and
are of the form

f ij(r, s) = hij(r)[cij(s)− 1/2(1− s)pi − 1/2(1 + s)pj], (7)

with hij(r) = 1 for the value of r corresponding to the edge curve cij(Ê) and hij(r) = 0
for the value of r corresponding to the opposite edge curve which does not intersect with
cij(Ê).
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The simplest way to satisfy the conditions for the blending functions hij is to employ lin-

ear interpolation functions. This leads to the mapping f : K̂ → E3 where f(x̂) ∈ [S3(K̂)]3,
with S3(K̂) the serendipity finite element space of degree 3. In view of approximation
theory, the order of error in the serendipity approximation may generally depend on
the shape of the surface patch. To avoid a possible degradation of convergence order,
one may seek an alternate mapping f in terms of an augmented finite element space
V (K̂) = S3(K̂) ⊕ B(K̂) where B(K̂) is spanned by bubble basis functions that vanish
on the boundary ∂K̂. The part B(K̂) should ideally be chosen such that the condition
Qr(K̂) ⊆ V (K̂) holds for r = 3, with Qr(K̂) the space of all polynomials which are of at
most degree r in each variable x̂i, i = 1, 2 (note that Qr(K̂) ⊆ S3(K̂) holds only for r = 1).
The case r = 3 corresponding to use of bicubic polynomials can generally be expected
to give fourth-order accurate approximation in Lp. To handle this case, we may generate
two additional curves so as to connect diagonally two nodes which nevertheless are not
connected via a real edge of the element (alternatively, consider K̂ to be a macroelement
for two alternate third-order subtriangulations of K̂). Now, each of the two additional
curves can be evaluated at two points to obtain O(h4E) accurate surface location at four
distinct interior points in order to find the coefficients for the bubble functions.

3 CONCLUDING REMARKS

If we let fS : K̂ → S ⊂ E3 to denote the mapping between the points of the reference
element and points that belong to the surface patch corresponding to the improved surface
reconstruction, we can thus create a new surface mesh Th contained in the physical point
space such that its elements are the images S = fS(K̂). By construction this surface mesh
is continuous and, also, its tangent plane at each node pk is uniquely defined.

A potentially useful aspect of the improved surface reconstruction is that it brings us
closer to concepts of classic shell theory, as elementwise systems of normal coordinates
can be defined and the differentiation of the mapping giving the approximate mid-surface
can solely be used to obtain ingredients for expressing 2-D shell equations. For example,
elementwise estimates of the curvatures of the mid-surface can be computed naturally.
Indeed, the strategy based on the straightforward differentiation of the chart does not work
in general when the lowest-order Lagrange interpolation of the mid-surface coordinates
is used, so a surface reconstruction of higher degree than usual is indeed a necessity for
making such approach to work.
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