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Summary. We present and analyze a generalized finite element method for the qua-
sistatic linear thermoelasticity problem. The numerical method proposed is based on the
localized orthogonal decomposition technique first presented and analyzed in5.

1 INTRODUCTION

In many applications the expansion and contraction of a material exposed to tem-
perature changes are of great importance. This phenomenon is modelled as a system
consisting of a hyperbolic elasticity equation, describing the displacement, coupled to a
parabolic heat equation, see e.g.1. If the inertia effects are negligible, the hyperbolic term
in the elasticity equation can be removed. This leads to an elliptic-parabolic system, often
referred to as quasistatic, which we study here. This system is essentially of parabolic
type. The classical finite element method for the thermoelastic system is analyzed in2,
where convergence rates of optimal order are derived for problems with solution in H2 or
higher.

When the elastic medium of interest is strongly heterogeneous, like in composite ma-
terials, the coefficients are highly varying and oscillating. Commonly, such coefficients
are said to have multiscale features. For these problems classical polynomial finite el-
ements fail to approximate the solution well unless the mesh width resolves the data
variations. To overcome this difficulty, several numerical methods have been proposed,
see for instance3,4,5.

In this work we present a generalized finite element method based on the local or-
thogonal decomposition technique introduced in5. This method builds on ideas from the
variational multiscale method3,4, where the solution space is split into a coarse and a fine
part. The coarse finite element space is modified such that the basis functions contain
information from the heterogeneous material data and have support on small patches. We
prove convergence of optimal order that does not depend on the derivatives of the rapidly
varying coefficients.
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2 PROBLEM FORMULATION

Let Ω ⊆ Rd, d = 2, 3, be a polygonal/polyhedral domain describing the reference
configuration of an elastic body. For a given time T > 0 we let u : [0, T ]×Ω → Rd denote
the displacement field and θ : [0, T ]× Ω → R the temperature.

We assume small displacements and define the strain tensor as ε(u) = 1
2
(∇u +∇uᵀ).

Assuming further that the material is isotropic, Hooke’s law gives the (total) stress tensor,

σ̄ = 2µε(u) + λ(∇ · u)I − αθI,

where I is the d-dimensional identity matrix, α is the thermal expansion coefficient,
and µ and λ are the so called Lamé coefficients. The materials of interest are strongly
heterogeneous which implies that α, µ, and λ are rapidly varying in space.

The linear quasistatic thermoelastic problem takes the form

−∇ · (2µε(u) + λ∇ · uI − αθI) = f, in (0, T ]× Ω, (1)

θ̇ −∇ · κ∇θ + α∇ · u̇ = g, in (0, T ]× Ω, (2)

where κ is the heat conductivity parameter, which is assumed to be rapidly varying in
space. We consider mixed boundary conditions for both equations.

We make the following assumptions on the data

1. κ ∈ L∞(Ω,Rd×d), symmetric,

0 < κ1 := ess infx∈Ω inf
v∈Rd\{0}

κ(x)v · v
v · v

, ∞ > κ2 := ess supx∈Ω sup
v∈Rd\{0}

κ(x)v · v
v · v

,

2. µ, λ, α ∈ L∞(Ω,R), and

0 < µ1 := ess infx∈Ωµ(x) ≤ ess supx∈Ωµ(x) =: µ2 < ∞.

Similarly, the constants λ1, λ2, α1, and α2 are used to denote the corresponding
upper and lower bounds for λ and α.

3. f, ḟ ∈ L∞(L2), f̈ ∈ L∞(H−1), g ∈ L∞(L2), ġ ∈ L∞(H−1), and θ0 ∈ V 2.

We now turn to the weak formulation and define the following subspaces of H1

V 1 := {v ∈ (H1(Ω))d : v = 0 on Γu
D}, V 2 := {v ∈ H1(Ω) : v = 0 on Γθ

D}.

We arrive at the following weak formulation2. Find u(t, ·) ∈ V 1 and θ(t, ·) ∈ V 2, such
that,

(σ(u) : ε(v1))− (αθ,∇ · v1) = (f, v1), ∀v1 ∈ V 1, (3)

(θ̇, v2) + (κ∇θ,∇v2) + (α∇ · u̇, v2) = (g, v2), ∀v2 ∈ V 2, (4)

and the initial value θ(0, ·) = θ0 is satisfied. Here we use σ to denote the effective stress
tensor σ(u) := 2µε(u) + λ(∇ · u)I.
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3 NUMERICAL APPROXIMATION

We will use the classical finite element approximation as a reference when designing
the multiscale approach.

3.1 Classical finite element approximation

We consider finite element spaces of piecewise linear continuous functions V 1
h and V 2

h

that resolves the data variations well. For the discretization in time we consider, for
simplicity, a uniform time step τ such that tn = nτ for n ∈ {0, 1, ..., N} and Nτ = T .
The classical finite element method with a backward Euler scheme in time reads; for
n ∈ {1, ..., N} find un

h ∈ V 1
h and θnh ∈ V 2

h , such that

(σ(un
h) : ε(v1))− (αθnh ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1

h , (5)

(∂̄tθ
n
h , v2) + (κ∇θnh ,∇v2) + (α∇ · ∂̄tun

h, v2) = (gn, v2), ∀v2 ∈ V 2
h , (6)

where ∂̄tθ
n
h := (θnh − θn−1

h )/τ and similarly for ∂̄tu
n
h. Given initial data u0

h and θ0h the
system (5)-(6) is well posed and leads to an optimal convergence order2.

3.2 Generalized finite element

We define V 1
H and V 2

H analogously to V 1
h and V 2

h , but with a larger mesh size H > h.
Furthermore, we use the notation N = N 1 ×N 2 to denote the free nodes in V 1

H × V 2
H .

We introduce an interpolation operator IH = (I1H , I
2
H) : V 1

h × V 2
h → V 1

H × V 2
H . Note

that I1H is vector-valued. We now define the kernels of I1H and I2H

V 1
f := {v ∈ V 1

h : I1Hv = 0}, V 2
f := {v ∈ V 2

h : I2Hv = 0}
The kernels are fine scale spaces in the sense that they contain all features that are not
captured by the (coarse) finite element spaces V 1

H and V 2
H . Now, we introduce a Ritz

projection onto the fine scale spaces. For this we use the bilinear forms associated with
the diffusion in (3)-(4). The projection of interest is thus Rf : V

1
h × V 2

h → V 1
f × V 2

f , such
that for all (v1, v2) ∈ V 1

h × V 2
h , Rf(v1, v2) = (R1

f v1, R
2
f v2) fulfills

(σ(v1 −R1
f v1) : ε(w1)) = 0, ∀w1 ∈ V 1

f , (7)

(κ∇(v2 −R2
f v2),∇w2) = 0, ∀w2 ∈ V 2

f . (8)

Note that this is an uncoupled system and R1
f and R2

f are classical Ritz projections. We
define the multiscale spaces

V 1
ms := {v −R1

f v : v ∈ V 1
H}, V 2

ms := {v −R2
f v : v ∈ V 2

H}. (9)

We can now formulate the multiscale method; for n ∈ {1, ..., N} find ũn
ms = un

ms + un
f ,

with un
ms ∈ V 1

ms, u
n
f ∈ V 1

f , and θnms ∈ V 2
ms, such that

(σ(ũn
ms) : ε(v1))− (αθnms,∇ · v1) = (fn, v1), ∀v1 ∈ V 1

ms, (10)

(∂̄tθ
n
ms, v2) + (κ∇θnms,∇v2) + (α∇ · ∂̄tũn

ms, v2) = (gn, v2), ∀v2 ∈ V 2
ms, (11)

(σ(un
f ) : ε(w1))− (αθnms,∇ · w1) = 0, ∀w1 ∈ V 1

f . (12)
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where θ0ms = R2
msθ

0
h. Furthermore, we define ũ0

ms := u0
ms + u0

f , where u
0
f ∈ V 1

f is defined by
(12) for n = 0 and u0

ms ∈ V 1
ms, such that

(σ(ũ0
ms) : ε(v1))− (αθ0ms,∇ · v1) = (f 0, v1), ∀v1 ∈ V 1

ms. (13)

The term un
f accounts for variations in the coupling coefficient α which is not affecting

the multiscale spaces.
The multiscale basis functions can be proven to decay exponentially. This allows for

localizetion of the computation of the multiscale basis functions to vertex patches of k
layers of coarse elements with k ≈ log (H−1). We let the localized approximations be
denoted by {ũn

ms,k}Nn=1 and {θnms,k}Nn=1.

4 ERROR ANALYSIS

The main theoretical result is an a priori error bound presented in the following theo-
rem.

Theorem 4.1. Let {un
h}Nn=1 and {θnh}Nn=1 be the solution to (5)-(6) and {ũn

ms,k}Nn=1 and
{θnms,k}Nn=1 the solution to the localized version of (10)-(12). For n ∈ {1, ..., N} we have

∥un
h − ũn

ms,k∥H1 + ∥θnh − θnms,k∥H1 ≤ C(H + kd/2ξk)
(
∥g∥L∞(L2) + ∥ġ∥L∞(H−1)

+ ∥f∥L∞(L2) + ∥ḟ∥L∞(L2) + ∥f̈∥L∞(H−1)

+ t−1/2
n ∥θ0h∥H1

)
.

We will also provide numerical examples which confirms our theoretical findings.
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