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Summary. A fully periodic representative volume element featuring a periodic topology,
a periodic mesh and periodic boundary conditions is known to perform the best for de-
termining effective material properties. However, the set-up of such finite element model
can become a cumbersome task and might significantly reduce the overall efficiency.

In this contribution we examine multiple methodologies of setting up finite element
models for homogenization purposes that extenuate these difficulties. A systematic study
indicates that a fully periodic topology and mesh discretization with periodic boundary
conditions is not necessary in order to identify effective macroscopic material parameters.

1 Introduction

Modern and complex materials are developed to serve the needs of modern machinery
and their components. These materials often possess a distinctive microstructure at a
certain length scale which significantly influences the macroscopic material behavior. The
prediction of the mechanical deformation behavior to enhance the material design and
production process is challenging, if it is necessary to consider microstructural information.
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State of the art methodology is to only consider a small, but representative part of the
structure, namely a representative volume element (RVE), featuring all relevant charac-
teristics of the microstructure1,4,6. Within finite element simulations fully periodic RVEs
featuring a periodic topology, a periodic mesh and exact periodic boundary conditions
are known to perform best4. However, setting up such models and integrating these in
the engineering practice might become cumbersome.

The aim of this contribution is a systematic evaluation of the influences on the macro-
scopic responses when relaxing the strong requirements of full periodicity3.

2 Model setup

We follow the efficient RVE generation process described in Schneider et. al2 to cre-
ate and mesh three-dimensional, random, non-overlapping matrix-inclusion RVEs with
arbitrarily placed spheroidal particles. The used algorithm is very efficient, robust and
automized to produce high quality meshes while keeping the total number of elements at
a manageble minimum.

Linear elastic and elastic-plastic behavior for the matrix material is considered. We
investigate the behavior of two phase contrasts α = EMatrix/EInclusion = GMatrix/GInclusion with
α = 100 (soft inclusions mimicing rubber toughened polymerblends) and α = 0.01 (stiff
inclusions mimicing short fiber reinforced materials).

Figure 1: RVE with 100 inclusions under shear loading, exemplarily shown: periodic tetrahedral mesh
under periodic boundary conditions.

Three different RVE sizes are considered via 10, 50 and 100 inclusions, respectively
the characteristic ratio of RVE size to inclusion size l/d = 0.49, 0.28 and 0.23. The mi-
crostructural generation process yields periodic and non-periodic RVEs. Furthermore we
investigate three variants of discretization, namely periodic tetrahedral meshes (PMESH),
non-periodic tetrahedral meshes (NPMESH) and voxel meshes (VOXEL). For the de-
termination of macroscopic material responses kinematic uniform boundary conditions
(KUBC), periodic boundary conditions (PBC) and static uniform boundary conditions
are applied to all finite element models. Due to the fact of the requirement of a peri-
odic mesh, when applying periodic boundary conditions, a form of approximate periodic
boundary conditions (PBCTIE) are introduced to the models with non-periodic meshes.
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Following the suggestions of Yuan5, a constraint formulation typically available in com-
mercial finite element software is utilized1. A statistical study is given to support the
results and extenuate artificial findings due to the randomness of the RVE generation
process in considering 20 random RVEs per realization. Tensile and shear loadings are
applied.

3 Conclusion

Figure 2 exemplarily shows the normalized shear modulus of all realizations for different
shear contrasts. All simulations are normalized to the fully periodic reference solution with
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Figure 2: Normalized macroscopic shear modulus for all realizations for different phase contrasts α.

100 inclusions.
Amazingly the macroscopic responses are seemingly independent of the chosen combi-

1In the used software Abaqus the TIE-constraint formulation is applied.
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nations of periodic and non-periodic topologies or meshes. Very similar material behavior
is predicted in each case with variations of only a few percent independent of the phase
contrast.

With regard to the boundary conditions the phase contrast plays an important role.
For a small phase contrast α static uniform boundary conditions perform better than kine-
matic uniform boundary conditions and vice versa. However, the approximate periodic
boundary conditions are a good choice in either case.

In summary, good alternatives exist to circumvent the cumbersome task of setting up
a fully periodic RVE, questioning the indispensable necessity of fully periodic RVEs.
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