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Summary. We compare the relative accuracy and efficiency of high-order shell formula-
tions and state of the art linear triangular shell elements in challenging benchmark tests
featuring different shell deformation types.

1 INTRODUCTION

In the finite element modelling of shell structures parametric error growth, or locking,
is detected for various shell deformation types. The numerical phenomenon is especially
harmful in the standard lowest-order (p = 1) finite element approximation and significant
mesh over-refinement is sometimes needed to compensate for the effect. However, the level
of error amplification does not depend on the degree of the approximating polynomials
used in the FE approximation and considerably milder mesh over-refinement is needed at
higher values of p.

Another long standing approach to modelling of thin structures is the derivation of
special low-order (linear/bilinear) formulations that would avoid the parametric error
growth once and for all. For shells, the ultimate dream element is yet to be found but
there exist reduced-strain formulations that work very well on rectangular meshes, at
least .

2 MODEL SPECIFICATIONS

We base our calculations to Reissner-Mindlin type shell models formulated using curvi-
linear coordinates on the shell middle surface. Consequently, the shell displacement field
is then assumed to be of the form

U(z,y) = (ur(z,y) + COr(z, ))& (@, y) + w(z, y)ii(z, y), (1)
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where w = (uy,us) are the tangential displacements, w is the transverse deflection and
0 = (01, 6,) are the angles of rotation of the middle surface normal vector 7i(z, y).

Two model variants are considered. For the p-version, we use a geometrically exact
model based on a global chart (z,y) — r(x,y) whereas for the h-version we use a col-
lection of discrete charts (z,y) — Tk (x,y) corresponding to each element of the mesh,
see Figure 1. It should be mentioned that the discrete charts are never explicitly con-
structed but referred to only implicitly in order to calculate geometric curvatures over
each element!.
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Figure 1: Coordinate charts used for the p-version and the h-version, respectively.

3 NUMERICAL RESULTS AND CONCLUSIONS

As an example we show some numerical results obtained for the classical benchmark
problems involving a closed circular cylindrical shell and a closed doubly curved hyper-
boloid. The shells are loaded by a self-equilibrating external pressure which is assumed
axially constant but varies sinusoidally in the angular direction, see®?. When the ends
of the shells are left free from kinematic constraints, pure bending occurs and this is the
most severe case concerning the problem of membrane locking.

Figures 2 and 3 compare the accuracy of reduced-strain triangular shell elements similar
to the quadrilateral elements introduced in! to geometrically exact p-method. In these
cases, the accuracy of the specialized linear elements is comparable to the accuracy of the
quadratic elements based on standard variational principles. In fact, the linear method
appears to be locking-free when applied to the cylindrical shell. However, for general
geometries, sufficiently high polynomial order (p > 4) is required to achieve accurate
results for small values of the thickness.
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Figure 2: Cylinder with free ends: MITC3S (top) vs. Standard Quadratic (middle) vs. Standard Quartic
(bottom) formulations. The error indicator is the relative error in the strain energy and it is computed
for different values of the radius to thickness ratio R/t and mesh size h.
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Figure 3: Hyperboloid with free ends: Stabilized MITC3S (top) vs. Standard Quadratic (middle) vs. Stan-
dard Quartic (bottom) formulations. The error indicator is the relative error in the strain energy and it
is computed for different values of the radius to thickness ratio R/t and mesh size h.
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