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SE–701 82 Örebro, Sweden
e-mail: niclas.stromberg@oru.se

web page: https://www.researchgate.net/profile/Niclas_Stroemberg

Key words: RBDO, FORM, SORM, RBFN, DoE

Summary. The main contributions of this work concern reliability based design opti-
mization (RBDO) and radial basis function networks (RBFN). A new approach for RBFN
is suggested. Instead of defining the bias posteriori by adding extra orthogonality con-
straints, we suggest to simply add the bias a priori as a regression model of the sampling
set. In such manner, the global behavior is captured with the bias and the local behavior
is tuned in by the radial basis functions. A sequential linear programming (SLP) approach
for RBDO, using first order (FORM) as well as second order reliability methods (SORM)
for estimating probability of failure, is also derived and implemented. The derivation is
performed by introducing intermediate variables defined by the iso-probabilistic trans-
formation. Furthermore, the Taylor expansions of the reliability constraints are done at
the most probable point (MPP) according to the Hasofer-Lind approach. The MPP is
found by a Newton method using an in-exact Jacobian for variables with normal, lognor-
mal, Gumbel, gamma and Weibull distributions. In such manner, a linear programming
problem is established which is solved in sequence until convergence. The SORM-based
approach is then obtained by correcting the target of reliability using three different for-
mulas: Breitung, Hohenbichler and Tvedt. A number of established benchmarks are
solved using the proposed approaches for several variables, a large number of constraints
and high values on the targets of reliability. For instance, a most well-known problem of
two variables and 3 constraints are generalized to 50 variables, with the five different dis-
tributions treated simultaneously, and 75 constraints. The benchmarks are also solved by
performing design of experiments (DoE) and setting up corresponding RBFNs. Different
strategies for DoE are also studied, e.g. Halton, Hammersley, S-optimal and successive
screening sampling. In addition, we set up RBDO of a barrier by performing nonlinear ex-
plicit finite element analysis and adopting our SORM-based approach and the new RBFN
with a priori bias. The results demonstrate that the implemented methodology performs
most accurately and efficient.
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1 RBDO, RBFN and DoE

Let us consider a RBDO problem for one objective f = f(X) and a constraint g =
g(X), where X is considered to be a vector of NVAR uncorrelated random variables with
mean values µi which are collected in µ. The distribution of each variable is defined by
a probability density function ρi = ρi(x; θi), where θi = θi(µi) represents distribution
parameters that depend on the mean value. The corresponding cumulative distribution
function is defined by

Fi(x; θi) =

∫ x

−∞

ρi dx. (1)

Our RBDO problem reads
{

min
µ

E[f(X)]

s.t. Pr[g(X) ≤ 0] ≥ Ps,
(2)

where E[·] designates the expected value of the function f , Pr[·] is the probability of the
constraint g ≤ 0 being true and Ps is the target of reliability that must be satisfied.

We assume that the objective and the constraint are given as RBFNs. A radial basis
function network of ingoing variables xi, collected in x, can be written as

f(x) =

NΦ
∑

i=1

Φi(x)αi + b, (3)

where f = f(x) is the outgoing response of the network, Φi = Φi(x) represents the radial
basis functions, NΦ is the number of radial basis functions, αi are weights and b is a bias.
Examples of popular radial basis functions are

Φi(r) = exp(−θir
2), (4a)

Φi(r) =

{

rk if k > 0 is odd
rk log(r) if k > 0 is even,

(4b)

Φi(r) =
√

1 + θir2, (4c)

Φi(r) =
1√

1 + θir2
, (4d)

where θi represents given parameters and

r =
√

(x− ci)T (x− ci) (5)

is the radial distance. In the latter expression, ci is the center point for each radial basis
function.

The RBFN are fitted to DoEs established by Halton, Hammersley, S-optimal and/or
successive screening sampling. The Halton sequence and the Hammersley sequence are
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two examples of sparse uniform samplings generated by quasi-random sequences. Let p1,
p2,...,pD represent a sequence of prime numbers, where D is the dimension of a Halton
point defined by

xHal = xHal(k) = {Φ(k, p1),Φ(k, p2), . . . ,Φ(k, pD)} (6)

for a non-negative integer k. Furthermore, for any prime number p,

Φ(k, p) =
a0

p
+

a1

p2
+ . . .+

aM

pM+1
, (7)

where the integers a0, a1,..., aM are obtained from the fact that k can be represented as

k = a0 + a1p+ ap2 + . . .+ aMpM . (8)

A quasi-random set of N Halton points is now simply obtained by taking a sequence of
Halton points in (6) for k = 0, 1, 2,..., N − 1. By defining the Hammersley point as

xHam = xHam(k) =

{

k

N
,Φ(k, p1),Φ(k, p2), . . . ,Φ(k, pD−1)

}

, (9)

we can easily generate a set of Hammersley sampling points in a similar way as for the
Halton set.

2 A NUMERICAL BENCHMARK

Let us solve a most established RBDO benchmark with the algorithm implemented in
this work. The RBDO benchmark reads























min
µi

E[X1 +X2]

s.t.











Pr[20−X2
1X2 ≤ 0] ≥ Ps

Pr[1− (X1 +X2 − 5)2

30
− (X1 −X2 − 12)2

120
≤ 0] ≥ Ps

Pr[X2
1 + 8X2 − 75 ≤ 0] ≥ Ps,

(10)

where VAR[Xi] = 0.32. Typically, Ps is chosen to be Φ(3) ≈0.9987 and the distribu-
tion is the normal one. Here, we solve (10) for different values on the target of re-
liability Ps = {0.99, 0.999, 0.9999, 0.99999} and five different distributions, i.e. normal,
lognormal, Gumbel, gamma and Weibull. The corresponding target reliability indices are
βt = {2.33, 3.09, 3.72, 4.26}. The two latter targets are considerable higher than what is
typically reported. The algorithm performs also well for even higher targets such as e.g.
Ps = 99.9999%. The solutions are plotted in Figure 1 together with MCS-based scatter
plots. The problem in (10) has also been expanded to 50 variables and 75 constraints and
solved succesfully for different distributions simultaneously.
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Figure 1: Solutions and scatter plots for the analytical example. Column 1: normal, column 2: lognormal, column 3: Gumbel, column 4:

gamma and column 5: Weibull. Row 1: Ps = 0.99, . . ., row 4: Ps = 0.9999.
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