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Summary. A numerical method to attain rate-independent results from a visco-plastic
formulation, but without pushing the numerics toward this cumbersome limit, is pre-
sented. The trick is to exploit the characteristic time introduced through the constitutive
material model to constitute a characteristic velocity at which the material response be-
comes rate-independent. The method apply to multiple problems of practical engineering
interest and is, here, demonstrated for cell model calculations.

1 INTRODUCTION

Visco-plastic constitutive models are used widely in the analysis of engineering struc-
tures, and numerous researchers frequently employ such frameworks to develop new ma-
terial models and numerical procedures. Visco-plastic models are particularly interesting
when corresponding rate-independent frameworks are too cumbersome to treat - or sim-
ply not exist. Thus, focus is often not aimed at the material rate-sensitivity, but rather
is the rate-independent results approximated by pushing the models toward this limit.
Approaching the limit, however, comes with the prize of strong non-linearity and conse-
quently unstable numerics. The present study compiles recent year work where a new
approach to reaching rate-independent results has emerged. The trick, here, is that the
rate-independent results are brought out without ever pushing the model toward the
strong non-linearity. The new approach boils down to exploiting the characteristic time
introduced through the constitutive material model which, in combination with the char-
acteristic length scale of the problem at hand, defines a characteristic velocity. The neat
thing is that specific macroscopic quantities (that obey certain monotonic behavior with
the rate-sensitivity) will remain constant, regardless of the chosen rate-sensitivity, when
a deformation rate is imposed according to the characteristic velocity. That is, the rate-
independent results for this specific macroscopic quantity are achieved for a numerically
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stable setting where rate-sensitivity prevails. This despite that the microscopic field may
not be the same for the two solutions. The numerical procedure is readily laid out for
a homogeneous stress/strain field, but what is intriguing is the fact that it also holds
for highly none-homogeneous fields and much complicated deformations. For example,
the characteristic velocity has been identified and exploited for problems such as crack
propagation (both isotropic’ and single crystals? at all scales), sheet rolling®, wire draw-
ing*, and voided unit cell calculations (see Section 2) - both in conventional finite element
frameworks and specialized steady-state models. The exploitation of the characteristic
velocity remains, however, for now to be a numerical “trick” and experiments that can
support its existence remain to the challenge.

2 PROBLEM FORMULATION AND MODEL DESCRIPTION

In the following, the characteristic velocity is demonstrated for a voided cell model (see
Fig. 1a), where the matrix obeys a visco-plastic material law. Here, taking as off-set a
full 3D framework based on the Fleck and Willis® visco-plastic strain gradient theory and
a small strain/deflection assumption. The adopted visco-plastic power-law reads;

14 (55) W

where oo and EP are the gradient enriched effective stress and strain quantities, respec-
tively, m is the strain rate-sensitivity, and g is the reference strain rate. The latter is of
key importance to the following approach to the rate-independent material response.
The unit cell consists of a rectangular block of matrix material that surrounds a
spheroidal void with aspect ratio, W = Ry/R; (and R; = R3), and a relative void
spacing x = Ry/L,. Here, R; and L; are the void radii in the three directions and the
dimensions of the unit cell, respectively. The boundary and loading conditions on the cell
are adopted from Tekoglu et al.® such that the average volume stress components; >,
Y 99, and > .o can be prescribed by the macroscopic straining; Ej; = U;/(2L;), where
U; are the normal displacements at the unit cell boundaries. Shearing of the unit cell is
omitted in the present study. All FE calculations are preformed with 20-node 3D elements
using reduced Gauss integration (2 x 2 x 2) for the displacement field, whereas 8-node 3D
elements with corresponding Gauss integration are used for the plastic strain rate field.

3 RESULTS AND DISCUSSION

By omitting strain hardening, the load-deflection curves develop as depicted in Fig. 1b.
Results are, here, shown for the case of a spherical void (W = 1) and a relative void spac-
ing of x = 0.4, for three different rate-sensitivities (m = [0.01,0.05,0.1]). By loading the
unit cell at two distinct deformation rates (log,o(Aa/Lagg) = [0.1,10]), it is found that the
average stress level increases monotonically with increasing rate-sensitivity at low defor-
mation rate and vice versa at high rates. This has to do with stress build-up/relaxation,
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Figure 1: a) Unit cell model and a typical mesh (W = 0.5), b) Average volume stress vs. deformation.

and a similar monotonic behavior with the rate-sensitivity can be observed of a wide
range of problems that exploit the visco-plastic relation in Eq. (1). As a consequence of
the monotonic behavior one can identify a characteristic velocity at which the response
becomes independent of the rate-sensitivity, and then directly extract the striven results
by imposing this rate along with any rate-sensitivity. Thus, without pushing the numer-
ics to the unstable limit of m — 0. For example, take the stress plateau reached in the
individual load curves from Fig. 1b, and display the stress as function of the deformation
rate (see Fig. 2). Clearly, by keeping all other parameters constant the curves intersect
in one point which uniquely defines the characteristic velocity for this parameter set.

In Fig. 2, the stress plateau obtained at the characteristic deformation rate is directly
comparable to the coalescence stress predicted by the so-called Thomason criterion (see
Tekoglu et al.%) shown as the thick solid (blue) curve. It is, here, worth noticing that the
utilized Thomason criterion is based on a J2-flow (rate-independent) theory, and yet it
matches almost perfectly to the value obtained at the characteristic deformation rate -
regardless of the rate-sensitivity, m.

4 CONCLUDING REMARKS

Despite the lack of experimental evidence for the characteristic velocity, it facilitates a
new approach to attain rate-independent responses of metallic materials characterized by
the visco-plastic relation in Eq. (1). This procedure can be summarized in three steps: (i)
ensure monotonic behavior with rate-sensitivity, (ii) perform sets of calculations for two
rate-sensitivities, m, and plot the quantity of interest vs. deformation rate, (iii) identify
the intersection point of the two curves which then reflects the rate-independent response.
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Figure 2: Average stress plateau vs. deformation rate with comparison to the (rate-independent) Thoma-
son criterion marked by the thick solid (blue) line.
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