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Summary. In this paper we discuss issues related to the theoretical as well as the compu-
tational format of gradient-extended crystal viscoplasticity. The so-called “primal” format
uses the internal variables and the displacements as the primary unknown fields. An alter-
native format is coined the “semi-dual format”, which in addition includes microstresses,
thereby defining a mixed variational problem. We compare the primal and semi-dual
variational formats in terms of pros and cons from a modeling as well as a numerical
viewpoint. We perform a set of numerical tests to investigate the rate of convergence for
errors in different norms.

1 INTRODUCTION

Crystal plasticity is the accepted model framework for incorporating microstructural
information in continuum theory with application to crystalline metals where dislocations
constitute the mechanism behind inelastic deformation. Various explicit models based on
this conceptual background have been proposed, for example by Gurtin et al1. However,
several modeling issues still await their resolution. An elegant way of unifying gradient
theory for different application models, including inelasticity, damage and phase-field
models, was presented by Miehe2.

The so-called “primal” format uses the internal variables and the displacements as the
primary unknown fields. An alternative format is coined the “semi-dual format”, which
in addition includes the microstresses and thereby define a mixed variational problem.

In this paper we focus on issues related to the theoretical and computational format of
material models with gradient variables. We compare the primal and semi-dual variational
formats in terms of pros and cons from modeling as well as numerical aspects.
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2 PROTOTYPE MODEL OF GRADIENT EXTENDED CRYSTAL VISCO
ELASTICITY

In the chosen prototype model for crystal inelasticity, the stress σ is given as

σ = Ee : [ϵ− ϵp(γ)], ϵp
def
= (hp)sym, hp def

=
M∑
α=1

γαsα ⊗mα, (1)

where ϵ is the strain, Ee is the elastic modulus and sα, mα are the slip direction and the
normal to the slip plane, respectively. The “slip” associated with the slip system (sα,mα)
is denoted γα. We thus treat γ as a set of internal variables∗.

Associated with each slip system, we introduce kinematic hardening that is represented

by the gradient variables gα
def
= ∇γα. The free energy density ψ is then proposed as the

additive decomposition

ψ
(
ϵ, γ, g

)
= ψe(ϵ, γ) +

M∑
α=1

ψg
α(gα),

where ψe is the contribution from elastic (stored) energy, whereas ψg
α are the contributions

from gradient hardening in the slip systems. More specifically

ψe(ϵ, γ) =
1

2
[ϵ− ϵp(γ)] : Ee : [ϵ− ϵp(γ)], ψg

α(gα) =
1

2
(lα)

2gα ·Hgra
α · gα (2)

where we introduced the gradient hardening tensors Hgra
α .

A dual dissipation function ϕ∗
α(τ

di
α ), that is associated with each slip system, is chosen

as ϕ∗
α = 1

t∗
Γ(|τdiα |) where τdiα are (scalar) “dissipative microstresses” that are energy-

conjugated to γ̇α.
In order to “close” the problem formulation, we need to establish the Biot equations

or microforce balance 3 which in this case read

τ enα + τdiα − ξenα ·∇ = 0 (3)

where the “energetic microstresses” τ enα = ∂ψ/∂γα and ξenα = ∂ψ/∂gα are energy conju-
gated to γα and gα respectively.

3 PRIMAL VARIATIONAL FORMAT

In order to establish the proper variational format, we introduce the suitable sets of
trial functions for displacements (U), slip variables (G) and dissipative microstresses (T).

∗With an underline we denote a tuple with the same number of elements as slip systems, i.e. γ =
(γ1, γ2, . . . , γM ).
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The primal variational format can be stated as follows: Find u ∈ U, γα ∈ Gα, and τ
di
α ∈ T

that solve ∫
Ω

σ(ϵ[u], γ) : ϵ[δu] dΩ = l(u)(δu) ∀δu ∈ U0, (4a)∫
Ω

[τ enα (ϵ[u], γ) + τdiα ]δγα dΩ +

∫
Ω

ξα(g[γα]) · g[δγα] dΩ = l(γ)α (δγα) ∀δγα ∈ G0, (4b)∫
Ω

[
γα −∆t

∂ϕ∗
α(τ

di
α )

∂τdiα

]
δτdiα dΩ =

∫
Ω

nγαδτ
di
α dΩ ∀δτdiα ∈ T,

(4c)

where U0, G0 and T are the pertinent test spaces. Here, we introduced the data in terms
of the linear functionals

l(u)(δu) =

∫
Ω

b · δu dΩ +

∫
Γt

t · δu dS and l(γ)α (δγ) =

∫
Γ
(γ)
t

t
(γ)
α δγα dS, (5)

while essential boundary conditions are incorporated implicitly in the formulation of the
trial sets.

3.1 DUAL VARIATIONAL FORMAT

In the (semi-)dual variational format we exploit a partial Legendre transformation to
ψ w.r.t. to the gradient variables gα:

ψ∗g
α (ξα) =

1

2

1

(lα)2
ξα ·H∗gra

α · ξα. (6)

The dual variational format thus becomes as follows: Find u ∈ U, ξα ∈ Xα, γα ∈ T, and
τdiα ∈ T that solve ∫

Ω

σ(ϵ[u], γ) : ϵ[δu] dΩ = l(u)(δu) ∀δu ∈ U0, (7a)∫
Ω

[−gα(ξα) · δξα − γα[δξα ·∇]] dΩ = l(ξ)α (δξα) ∀δξα ∈ X0, (7b)∫
Ω

[τ enα (ϵ[u], γ) + τdiα − ξα ·∇]δγα dΩ = 0 ∀δγα ∈ T, (7c)∫
Ω

[
γα −∆t

∂ϕ∗
α(τ

di
α )

∂τdiα

]
δτdiα dΩ =

∫
Ω

nγαδτ
di
α dΩ ∀τdiα ∈ T, (7d)

where we introduced the data in terms of the linear functional

l(u)(δu) =

∫
Ω

b · δu dΩ +

∫
Γu

t · δu dS and l(ξ)α (δξα) = −
∫
Γ
(γ)
u

γα[δξα · n] dS. (8)

In the dual formulation, Xα and X0 are the sets of trial and test functions, respectively,
for the fields ξα. A difference in the boundary conditions from the primary format is that
the type of the boundary conditions on the different parts of Γ have switched their roles.

3



Kristoffer Carlsson, Magnus Ekh, Fredrik Larsson, Kenneth Runesson

102.8 103 103.2
10−2

10−1

100

||e
(g
)||

g
/||

g|
| g

Primal formulation

p = −0.5

102.8 103 103.2
10−2

10−1

100
Dual formulation

p = −1

102.8 103 103.2
10−2

10−1

number of elements

||e
(γ
)||

γ
/||
γ|
| γ

p = −0.8

102.8 103 103.2
10−2

10−1

number of elements

l = 0.1

l = 0.2

l = 0.3

l = 0.4

p = −0.5

Figure 1: Convergence of errors in the slip
γ and its spatial derivative g = ∇γ for dif-
ferent values of the internal length scale l.

Parameter Value

Young’s modulus E 200 kPa
Poisson’s ratio ν 0.3
Norton exponent n 2
Edge modulus H⊥,α 0.1 E
Norton factor Cα 1 kPa
Regularization parameter t∗ 1000 s

Table 1: Parameters for the analyses

4 NUMERICAL RESULTS

The two variational formats are solved for approximately using lowest order finite ele-
ment approximations. We set up a polygon-shaped 2D single crystal with non-homogeneous
Dirichlet boundary conditions on the displacement field and microhard boundary condi-
tions for the slip (i.e. γα = 0). The crystal contains two slip systems at with slip direction
20◦ and 40◦. We define the error of a field in a point as the difference in the field between
the solution on a coarse mesh and the overkill solution, e(•) = • − •h. Figure 1 shows
the convergence with respect to mesh refinement of the error in the gradient of the slip
||e(g)||g/||g||g and the error in the slip ||e(γ)||γ/||γ||γ. Here ||g|| and ||γ||γ define the
pertinent norms for the gradient and plastic slip field, respectively. As expected, we note
that the error in slip is smaller for the primal format, whereas the approximation of the
gradient is superior in the (semi-)dual formulation.

5 CONCLUSIONS

We have presented two formulations of a crystal viscoelasticity model and examined
the convergence rate for different errors and showed that the dual formulation converges
faster for the gradient field while the primal formulation converges faster for the slip field.
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