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Non-targeted transcriptomic 
effects upon thyroid irradiation: 
similarity between in-field and  
out-of-field responses varies with 
tissue type
Britta Langen1,2, Nils Rudqvist1, Johan Spetz1, John Swanpalmer1,3, Khalil Helou4 & 
Eva Forssell-Aronsson1,3

Non-targeted effects can induce responses in tissues that have not been exposed to ionizing radiation. 
Despite their relevance for risk assessment, few studies have investigated these effects in vivo. In 
particular, these effects have not been studied in context with thyroid exposure, which can occur e.g. 
during irradiation of head and neck tumors. To determine the similarity between in-field and out-of-
field responses in normal tissue, we used a partial body irradiation setup with female mice where the 
thyroid region, the thorax and abdomen, or all three regions were irradiated. After 24 h, transcriptional 
regulation in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid was analyzed using 
microarray technology. Thyroid irradiation resulted in transcriptional regulation in the kidney medulla 
and liver that resembled regulation upon direct exposure of these tissues regarding both strength of 
response and associated biological function. The kidney cortex showed fewer similarities between the 
setups, while the lungs and spleen showed little similarity between in-field and out-of-field responses. 
Interestingly, effects were generally not found to be additive. Future studies are needed to identify 
the molecular mechanisms that mediate these systemic effects, so that they may be used as targets to 
minimize detrimental side effects in radiotherapy.

Radiation biology is based on the paradigm that DNA double-strand break induction is the hallmark event 
upon ionizing radiation (IR) exposure that determines cellular outcome1. Observations of non-targeted effects 
in experimental and clinical settings have challenged this paradigm, which has been frequently reviewed (and 
discussed) in recent years2–8. Based on the context, non-targeted effects are also termed ‘bystander effect’ for 
unirradiated cells in the vicinity of irradiated cells, ‘abscopal’ or ‘out-of-field’ effects in external irradiation, or 
‘long-range bystander effects’ or ‘systemic effects’ when regarding a complex physiological setting2–8. The ques-
tion has been raised whether non-targeted effects represent a new paradigm in radiation research or simply the 
fact of biological complexity8. It has also been proposed that the frequency of reported clinical abscopal effects 
may increase due to the increasing use of stereotactic ablative body radiation therapy and hypofractionation 
techniques9. While the underlying mechanisms of in vivo abscopal bystander effects remain elusive3, it has been 
reasoned that normal tissue responses in radiotherapy are highly complex and that the degree of non-targeted 
effects are not only related to the irradiated volume or physical irradiation parameters8,10. Non-targeted effects 
are considered relevant for radiation therapy, both for use as a novel therapeutic target and for improvement of 
risk assessment4,8,11–16.
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Recent work demonstrated non-targeted responses in lung and liver tissues upon partial body irradiation 
(5 Gy) of the lower abdomen using 300 keV X-rays17,18. While IR exposure from external beam radiation therapy 
or X-rays may be localized, exposure from i.v. administered radiopharmaceuticals in radionuclide therapy is 
systemic. In clinical practice, free radionuclides and radiolabeled carrier molecules are used for diagnostics and 
therapy. During metabolism or degradation of radiolabeled carrier molecules, radionuclides can be liberated 
from the carrier molecules and accumulate in normal tissue. In the case of 131I and 211At, the thyroid gland is a risk 
organ due to high uptake similar to that of stable iodide19–24. However, basically all tissues show uptake of these 
radionuclides, although to a much lesser degree that generally varies between tissues25.

Knowledge of normal tissue response to low-dose exposure from radionuclides in vivo, however, is still 
scarce. Another issue that has not been sufficiently addressed in both the experimental and clinical setting are 
systemic effects between tissues. Specifically, differential uptake of 131I or 211At creates a concomitant low-dose and 
high-dose exposure setting within the body. In this case, responses in the kidneys, liver, lungs, and spleen would 
not only be subject to (very) low absorbed dose from radionuclide decay in the tissue, but may also respond to 
IR-induced effects in the thyroid, since the thyroid gland regulates metabolic function throughout the body. The 
nature of potential systemic effects could be ‘physiological’ due to disrupted hormone regulation in the thyroid, 
or radiation-associated in the sense of ‘long-range non-targeted effects’.

In previous studies using BALB/c nude mice as a model system, we observed distinct similarities in 
genome-wide transcriptional regulation between the thyroid and various non-thyroid tissues despite large  
differences in absorbed dose levels from 211At26,27. We hypothesized that observed responses in non-thyroid tissues 
resulted, in part, from systemic factors originating from the dominantly irradiated thyroid gland27. Differential 
regulation of thyroid hormone (TH)-responding genes even at very low absorbed doses in non-thyroid tissues 
supported this hypothesis28,29.

The aim of this study was to confirm systemically induced transcriptional regulation in non-thyroid tissues 
after IR exposure of the thyroid. An external partial body irradiation setup was used to preclude differential expo-
sure throughout the body as was the case in previous studies using i.v. administered radionuclides, i.e. to exclude 
concomitant IR-induced regulation in each tissue from regulation induced by thyroid-dependent systemic effects.

Results
Total transcriptional regulation in response to partial body irradiation. The total number of tran-
scripts and corresponding genes that were significantly regulated 24 h after exposure are shown for each tissue 
and each irradiation setup in Table 1. Microarray data was validated using the quantitative real-time polymerase 
chain reaction (QPCR) assay. (For QPCR results, please refer to Supplementary Table S1.) Regarding the number 
of regulated transcripts, an additive effect between the partial body irradiation setups was not observed in the 
kidney cortex, kidney medulla, lungs, or thyroid, i.e. the result for group C was not the “sum” of the results for 
group A and B. The spleen might suggest an additive effect in this context, but the effect on upregulation was not 
consistent, since the number of upregulated transcripts decreased distinctly upon combined irradiation (group 
C) compared with non-thyroid tissue irradiation (B). In contrast, a potential trend towards an additive effect was 
seen in the liver, but it should be noted that the total number of regulated transcripts upon combined irradiation 
(group C) was somewhat higher than a strict addition would suggest.

In the kidney cortex, kidney medulla, and liver, irradiation of the thyroid (group A) resulted in an overall 
transcriptional regulation that lay on a similar–if not higher–level as when only non-thyroid tissues (group B) 
were irradiated. In contrast, few transcripts were regulated in the lungs and spleen when only the thyroid was 
irradiated (group A). The kidney medulla showed the highest number of regulated transcripts (252–274 tran-
scripts) at all irradiation setups, which was at least twice as many as observed for the other tissues. Interestingly, 

Tissue

Irradiated tissue (group)

Thyroid (group A)
Kidneys, liver, lungs, spleen 

(group B)
Kidneys, liver, lungs, 

spleen, thyroid (group C)

Kidney cortex 62 (53)
↑ 10 (9)

89 (80)
↑ 33 (32)

84 (78)
↑ 50 (46)

↓ 52 (44) ↓ 56 (48) ↓ 34 (32)

Kidney medulla 252 (243)
↑ 204 (199)

274 (262)
↑ 228 (221)

259 (238)
↑ 141 (138)

↓ 48 (44) ↓ 46 (41) ↓ 118 (100)

Liver 62 (56)
↑ 25 (21)

36 (33)
↑ 11 (10)

132 (109)
↑ 59 (48)

↓ 37 (35) ↓ 25 (23) ↓ 73 (61)

Lungs 3 (3)
↑ 3 (3)

70 (62)
↑ 9 (6)

29 (27)
↑ 18 (16)

↓ 0 (0) ↓ 61 (56) ↓ 11 (11)

Spleen 17 (16)
↑ 3 (3)

133 (121)
↑ 67 (60)

135 (116)
↑ 37 (33)

↓ 14 (13) ↓ 66 (61) ↓ 98 (83)

Thyroid 115 (102)
↑ 35 (30)

17 (16)
↑ 10 (9)

25 (24)
↑ 25 (24)

↓ 80 (72) ↓ 7 (7) ↓ 0 (0)

Table 1.  Number of significantly regulated transcripts and genes. Numbers indicate the total number 
of significantly regulated transcripts in irradiated mice compared with non-irradiated controls. Number 
of corresponding genes are shown in parentheses. Up-arrow indicates upregulation; down-arrow indicates 
downregulation.
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the kidney medulla also showed a decidedly higher number of regulated transcripts than the thyroid when only 
the thyroid was irradiated (group A). Comparing exclusive irradiation of non-thyroid tissues (group B) with 
combined irradiation of all tissues (group C), the total number of regulated transcripts was similar in the kidney 
cortex (89 vs. 84 transcripts), kidney medulla (274 vs. 259 transcripts), and spleen (133 vs. 135 transcripts), but 
the ratio between up- and downregulation differed distinctly between both irradiation setups. In the liver and 
lungs, irradiation of non-thyroid tissues (group B) or all tissues (group C) showed larger differences, however. 
The highest number of regulated transcripts in the liver occurred in group C (132 transcripts), whereas the lungs 
showed a distinct peak in group B (70 transcripts); up- and downregulation also differed in these tissues. In the 
thyroid, exclusive irradiation (group A) resulted in a distinctly higher response (115 transcripts) than irradiation 
in combination with the other tissues (25 transcripts, group C); however, the latter was on a similar level as tran-
script regulation in the absence of thyroid irradiation (17 transcripts, group B).

In general, the extent of up- and downregulation in each tissue differed between irradiation setups. The only 
notable exception was observed in the kidney medulla where irradiation of thyroid (group A) and irradiation of 
non-thyroid tissues (group B) resulted not only in a similar number of regulated transcripts, but also in a similar 
ratio (ratio: 4.3–5.0) of up- vs. downregulation. Interestingly, this ratio decreased distinctly (ratio: 1.2) when all 
tissues were irradiated (group C), while the total number of regulated transcripts remained similar.

Gene regulation in a tissue shared across irradiation setups. Comparison analysis identified genes 
in the liver and kidney medulla that were regulated across all irradiation setups (Fig. 1). For further information 
regarding probe ID and transcript ID of respective transcripts, please refer to Supplementary Fig. S1. Shared tran-
script regulation across all irradiation setups was not observed in the kidney cortex, lungs, spleen, and thyroid. In 
the liver, 6 genes (6 transcripts) were identified, with 5 thereof being continuously downregulated. In the kidney 
medulla, 98 genes (101 transcripts) were identified which made up around 40% of the total number of regulated 
transcripts (cf. Table 1). In contrast to the liver, the majority of genes (77 of 98) were continuously upregulated. In 
both tissues, all genes maintained the same direction of regulation irrespective of irradiation setup. Differential 
regulation was on a comparatively low level in both tissues with maximum log2 ratios of 1.95 and − 1.86 up- and 
downregulation, respectively. In total, these genes were regulated in a similar fashion irrespective of the irradiated 
region, i.e. whether or not the tissue was exposed to ionizing radiation.

The similarity between thyroid-specific gene regulation and regulation in the investigated non-thyroid tis-
sues was analyzed between different exposure setups (Fig. 2). For further information regarding probe ID and 
transcript ID of respective transcripts, please refer to Supplementary Fig. S2. For each non-thyroid tissue, data 
from each irradiation setup (groups A–C) were compared individually with thyroid data from group A. As such, 
the analysis gave information on the shared gene regulation between thyroid tissue upon thyroid irradiation 

Figure 1. Transcripts regulated at all irradiation setups. The figure shows the transcripts that were regulated 
after 24 h across all irradiation setups in the liver and kidney medulla with respective log2 ratios for each 
irradiation setup (irradiated tissue(s), i.e. groups (A–C). In the kidney cortex, lungs, spleen, and thyroid, no 
transcripts were continuously regulated across all irradiation setups. Positive numbers indicate upregulation 
(green), negative numbers indicate downregulation (red).
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and regulation in non-thyroid tissues for each irradiation setup. Few similarities in specific gene regulation were 
observed in this comparison analysis: in the kidney cortex, lungs, and spleen, no genes were shared with the 
thyroid when only thyroid was irradiated (group A); in the kidney medulla and liver, 5 and 3 genes were shared 
with thyroid in this setup (group A), respectively. Regarding irradiation of non-thyroid tissues (group B), all 
non-thyroid tissues except for the liver shared at least 2 regulated genes with the thyroid (group A). When all 
tissues were irradiated (group C), the number of transcripts shared with the thyroid increased somewhat in all 
tissues except for the spleen. Log2 ratios of shared transcripts were generally low in the non-thyroid tissues but 
somewhat higher in the thyroid. The only genes that were regulated in a non-thyroid tissue across all irradiation 
setups (groups A–C) and were also regulated in the thyroid (groups A) were identified in the kidney medulla: 
Pvalb and Pgam2 (continuously downregulated), Gjb2 (continuously upregulated), and Klk1b27 (continuously 
downregulated in the kidney medulla, but upregulated in the thyroid).

Regulation of IR- and TH-associated signature genes. The number of regulated genes in the 
IR-associated and TH-responding gene signature generally differed between the tissues at the same irradiation 
setup (Fig. 3). For information on gene name, probe and transcript ID, and log2 ratio of regulated IR-associated 
and TH-responding genes, please refer to Supplementary Tables S2 and S3, respectively. Interestingly, regulation 
of both gene signatures was observed in the kidney medulla (Fig. 3B) and in the liver (Fig. 3C) in the absence 
of direct ionizing radiation exposure, i.e. when only the thyroid was irradiated (group A). In contrast, signature 
gene regulation was not detected in the kidney cortex (Fig. 3A), lungs (Fig. 3D), and spleen (Fig. 3E) for that 
condition (group A). The largest overall response was observed in the kidney medulla followed by the liver and 
kidney cortex.

IR-associated signature genes were detected in all investigated non-thyroid tissues upon irradiation (groups 
B–C), as were TH-responding signature genes. The average number of regulated genes for either signature was 
higher in the kidney cortex, kidney medulla, and liver than in the lungs and spleen. A clear dominance of a 
signature was only observed in the liver for TH-responding genes (specifically group A) and in the spleen for 
IR-associated genes (groups B–C), while the kidney cortex indicated a trend towards TH-responding genes upon 
irradiation of non-thyroid tissues (group B). In the kidney medulla, the number of regulated genes was com-
paratively high but on the same level for each signature irrespective of irradiation setup. The lungs exhibited the 
lowest overall number of regulated signature genes among non-thyroid tissues and showed the lowest response 
in IR-associated genes (groups B–C). Interestingly, regulation of TH-responding genes in the lungs outweighed 
IR-associated genes when all tissues were irradiated, which was not observed among the other tissues for that 
condition (group C). In the thyroid (Fig. 3F), signature gene regulation was only observed when the tissue was 
irradiated (group A) but not upon irradiation of non-thyroid tissues (group B) or when the thyroid was irradiated 
in combination with non-thyroid tissues (group C). Compared with the non-thyroid tissues, the response was low 
with only one regulated gene for each signature.

Often, the same genes were regulated when several signature genes were detected for two or more irradiation 
setups (cf. Supplementary Tables S2 and S3). In general, average log2 ratios (i.e. absolute values of up- and down 

Figure 2. Shared transcript regulation among thyroid and other tissues at differential exposures. The figure 
shows the log2 ratios of transcripts that were regulated after 24 h in a given non-thyroid tissue for at least one 
irradiation setup (groups (A–C)) and that were also regulated in the thyroid upon thyroid irradiation (group A).  
Positive numbers indicate upregulation (green), negative numbers indicate downregulation (red); ND, none detected.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:30738 | DOI: 10.1038/srep30738

regulation) lay on a similar level for IR-associated and TH-responding signature genes. The kidney cortex, kidney 
medulla, and liver showed the lowest average log2 ratios for either signature, i.e. 1.00, 0.86, and 1.05, respectively, 
for IR-associated genes and 0.85, 0.94, and 0.93, respectively, for TH-responding genes. Although the lungs and 
spleen had a lower response in the number of regulated signature genes, both tissues showed slightly higher 
average log2 ratios for both signatures (IR-associated genes, average log2 ratio: 1.20 (lungs) and 1.34 (spleen); 
TH-responding genes, average log2 ratio: 1.09 (lungs) and 1.75 (spleen)). Thyroid displayed the lowest number of 
regulated signature genes but also the highest log2 ratios for differential regulation: the IR-associated gene Gjb2 
was (up-)regulated with a log2 ratio of 2.19 (average of two probes) and the TH-responding gene Atp2a1 was 
(down-)regulated with a log2 ratio of (− 2.41).

Regulation profiles of associated cellular function. Categorization of enriched biological processes 
revealed similarities and differences between the irradiation setups with regard to cellular function (Fig. 4). In 
most tissues, no effect on DNA integrity and gene expression integrity was observed.

The highest level of regulation and the largest diversity across categories were observed in the kidney medulla. 
This tissue also showed the highest degree of similarity between the irradiation setups, meaning with regard to 
both regulated subcategories and intensity of regulation. In the kidney medulla, all main categories of cellular 
function were regulated at basically every irradiation setup, i.e. the only exception was found for DNA integrity 
when all tissues were irradiated (group C). It should be noted, however, that respective regulations of DNA integrity  
in groups A–B consisted of only one biological process. Between irradiation of thyroid (group A) and irradiation 
of non-thyroid tissues (group B), the highest similarity was observed for metabolism, stress responses, and organ-
ismic regulation. The other categories also exhibited similar trends for several subcategories. Distinct dissimilarity 
was only observed for cellular integrity, where irradiation of all tissues (group C) resulted in a distinctly stronger 
regulation (regarding number of subcategories, biological processes, and intensity of regulation) than irradiation 
of thyroid alone (group A). Despite the diverse regulation across categories, several cellular functions were not 
regulated at any irradiation setup on the subcategorical level in the kidney medulla, i.e. (DNA) damage and repair, 
transcription, cell cycle regulation, general cell cycle and regulation, signaling molecules, oxidative stress response, 
inflammatory responses, and behavior.

In the liver, cellular functions were regulated with less diverse patterns compared with the kidney medulla, 
i.e. fewer subcategories were regulated, yet the patterns also showed distinct similarities between all irradiation 
setups. Similar regulation patterns were seen in the categories cellular integrity, cell cycle and differentiation, cell 
communication, and stress responses, and to a somewhat lesser degree in metabolism.

In the kidney cortex, the diversity and intensity of responses resembled the liver. However, the regulation 
patterns upon thyroid irradiation (group A) were less similar to non-thyroid tissue irradiation (group B) or to 
combined irradiation of all tissues (group C). Between irradiation of non-thyroid tissues (groups B) and all tissues 
(group C), distinctly similar regulation patterns were observed in metabolism and stress responses, and to some 
extent in cell communication.

In the lungs and spleen, regulation patterns were distinctly dissimilar between all irradiation setups. Similar 
responses were only observed in the spleen between groups B and C in cell cycle and differentiation and metabolism.  
Also, regulation patterns were considerably less diverse compared with the kidney medulla and spleen, i.e. fewer 
subcategories were regulated.

The thyroid showed the highest level of regulation when thyroid was irradiated (group A), specifically in 
cellular integrity and organismic regulation, compared with the other exposure setups. Regarding metabolism, 
the total number of regulated processes was similarly high upon thyroid irradiation (group A, 10 processes) and 
upon irradiation of all tissues (group C, 13 processes), but the distribution on the subcategorical level differed 
distinctly. The lowest response in the thyroid was seen when only non-thyroid tissues were irradiated (group B). 
Interestingly, regulation patterns after irradiation of thyroid alone (group A) showed few similarities with thyroid 
irradiation in combination with non-thyroid tissues (group C).

Predicted pathway regulation of diseases and biological functions. Pathway analysis predicted 
the activation (or inhibition) state of associated diseases and biological functions. The thirty highest-ranked dis-
eases and biological functions according to z-score are shown (Fig. 5). Although significance of activation state 
(|z-score| >  2) was not achieved for a large proportion of these pathways in the kidney cortex, liver, and lungs, 
the obtained data did indicate trends towards similarity or difference of responses between the irradiation setups. 
Please refer to Supplementary Tables S4–S9 for complete lists of generated diseases and functions for the kidney 
cortex, kidney medulla, liver, lungs, spleen, and thyroid, respectively.

The highest degree of similarity–here meaning both activation state (activation or inhibition) and strength of 
prediction (activation z-score) between all irradiation setups was seen in the kidney medulla. Eighteen of these 
pathways identified upon thyroid irradiation (group A) were regulated with the same predicted activation state 
and, in most cases, similar z-score as when only non-thyroid tissues were irradiated (group B). Among these path-
ways, activation was more frequent than inhibition. Irradiation of all tissues (group C) showed a higher degree of 
similarity with irradiation of non-thyroid tissues (group B), although around one-third of the pathways were also 
predicted to be regulated in a similar manner upon thyroid irradiation (group A).

The liver showed less similarity in pathway regulation between the irradiation setups than the kidney medulla. 
Around one-third of the pathways were shared between thyroid irradiation (group A) and non-thyroid tissue 
irradiation (group B), which was somewhat lower than the number of pathways shared between non-thyroid 
tissue irradiation (group B) and combined irradiation of all tissues (group C). Only a minority of these pathways 
were shared between all irradiation setups. The activation state did not show a distinct tendency towards activa-
tion or inhibition as was observed in the kidney medulla.
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In the kidney cortex, only five pathways were shared between all irradiation setups and most instances thereof 
did not show a significant activation (or inhibition) state. Notably, only few regulation instances with weak pre-
diction strength were observed upon thyroid irradiation (group A). In contrast, around two-thirds of these thirty 
pathways were shared between irradiation of non-thyroid tissues (group B) and in combination with thyroid 
(group C). Although a tendency towards pathway inhibition was somewhat more frequent than activation, few of 
these instances had significant prediction strength.

In the lungs, pathway regulation was not predicted upon thyroid irradiation (group A; cf. Supplementary 
Table S7). Shared regulation between irradiation of non-thyroid tissues (group B) and irradiation of all tissues 

Figure 3. Transcriptional regulation in IR-associated and TH-responding gene signatures. The number 
(no.) of significantly regulated genes in either signature (thyroid hormone (TH)-responding genes, black; 
ionizing radiation (IR)-associated genes, gray) is shown for the kidney cortex (A), kidney medulla (B), liver 
(C), lungs (D), spleen (E), and thyroid (F). Regulation was measured at 24 h following irradiation of the collum 
(thyroid irradiated), abdomen & thorax (kidneys, liver, lungs, and spleen irradiated), or collum & abdomen & 
thorax (kidneys, liver, lungs, spleen, and thyroid irradiated). Please refer to Supplementary Tables S2 and S3 for 
further information on gene symbol, transcript ID, and log2 ratio of regulated genes.
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(group C) was distinctly less frequent than observed in the kidney cortex, kidney medulla, and liver. Although the 
vast majority of instances did not achieve significant prediction strength, a distinct trend towards inhibition was 
observed upon irradiation of all tissues (group C).

The regulation pattern in the spleen showed similarity to the lungs: pathway regulation upon thyroid irra-
diation was basically not detected (barring two exceptions, cf. Supplementary Table S8) and most regulation 
instances showed inhibition or a trend towards inhibition. In contrast to the lungs, however, the vast majority of 
pathways were shared between irradiation of non-thyroid tissues (group B) and irradiation of all tissues (group 
C). Moreover, the spleen generally showed stronger prediction strength and a higher number of shared pathways 
compared with lungs (cf. Supplementary Tables S7 and S8).

In the thyroid, the highest frequency of pathway regulation among the thirty highest ranked pathways was 
seen upon irradiation of the tissue (group A). In contrast, the frequency of pathway regulation upon exclusive 
irradiation of non-thyroid tissues was very low (group B). Only few identified pathways were shared between 
irradiation of thyroid (group A) and thyroid irradiation in combination with the other tissues (group C), also 
showing large discrepancy in prediction strength. Considering all identified pathways in the thyroid, activa-
tion (or trend towards activation) was somewhat more frequent than inhibition (or trend towards inhibition)  
(cf. Supplementary Table S9).

Discussion
Partial body irradiation of the thyroid gland resulted in transcriptional regulation in the kidney medulla and 
liver that resembled responses to irradiation of the thorax and abdomen. In the kidney cortex, the total number 
of regulated transcripts was rather similar between the irradiation setups, but the transcript-associated cellular 
functions displayed a higher degree of heterogeneity. The lungs and spleen exhibited basically no transcriptional 
regulation in the absence of direct tissue irradiation. In summary, out-of-field responses on the transcriptional 
level resembled in-field responses to varying extent depending on the type of tissue. This tendency was also 
in agreement with the tissue-specific tendency of TH-responding signature gene regulation. The regulation of 
TH-responding signature genes in the absence of thyroid irradiation, which was seen in all non-thyroid tissues to 
varying extent, might be due to down-stream effects of IR-induced gene regulation in each tissue, or–in certain 
part–might result from thyroid-dependent stimuli induced by scattered photons, which might have occurred 
upon large-field irradiation of the thorax and abdomen. It should be pointed out that the overall transcriptional 
response, as well as individual gene regulation and functional association, were studied in female mice and not in 

Figure 4. Response profiles of enriched biological processes categorized after cellular function. 
Significantly regulated transcripts were enriched for biological processes which were grouped in respective 
categories and subcategories of higher level cellular function. Regulation was measured 24 h following 
irradiation of collum (thyroid irradiated), abdomen & thorax (kidneys, liver, lungs, and spleen irradiated), or 
collum & abdomen & thorax (kidneys, liver, lungs, spleen and thyroid irradiated). The percentage of scored 
vs. filtered transcripts is illustrated as very low <  3% (very light blue), low 3–9% (light blue), medium 10–29% 
(blue), high 30–49% (dark blue), and very high ≥  50% (very dark blue). Numbers indicate the sum of regulated 
biological processes within a category or subcategory.
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a cohort including both sexes. Female BALB/c nude mice were chosen to match the respective tumor xenograft 
model that is routinely used in therapeutic pre-clinical studies. As such, before validation for both sexes, these 
results should not be generalized as sex-independent.

A pronounced effect on transcriptional regulation in thyroid tissue was expected upon exclusive irradiation 
of the thyroid with 2 Gy, which was in agreement with the 115 significantly detected transcripts. The cause of 
transcriptional regulation in the thyroid in the absence of irradiation remained a point of speculation. A possible 
explanation may be that the thyroid gland was subjected to absorbed dose in the mGy range at the border of the 
irradiated volume. In this scenario, low-level exposure may well have resulted in regulation of the 17 detected 
transcripts. Surprisingly, the total number of regulated transcripts in the thyroid lay on a similar level upon irradi-
ation of non-thyroid tissues and upon combined irradiation of all tissues. On a similar note, the overall transcrip-
tional regulation was decidedly lower in the thyroid upon combined irradiation with non-thyroid tissues than 
upon exclusive thyroid irradiation. In other words, absorbed dose to thyroid was found to not be the single factor 
influencing the strength of total transcriptional regulation in thyroid tissue. It is possible that transcriptional reg-
ulation in the thyroid underlay different mechanisms when a large volume of the body was irradiated. Whether 
this response was related specifically to one (or more) of the investigated non-thyroid tissues remained a point 

Figure 5. Pathway analysis of diseases and functions shared between irradiation conditions. IPA 
(Ingenuity®  Systems) was used to analyze regulation of pathways associated with diseases or biological 
functions (termed Diseases and Bio Functions) after 24 h following irradiation. Results for each tissue were 
obtained by comparison analysis across all irradiation setups. Calculated z-scores for activation (orange) or 
inhibition (blue) are shown for the 30 highest-ranked diseases and functions. For complete lists of regulated 
Diseases and Bio Functions in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid, please refer to 
Supplementary Tables S4–S9, respectively.
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of speculation. It may be possible to further investigate this point with exclusive irradiation of each non-thyroid 
tissue and subsequent analysis of induced transcriptional effects in thyroid tissue.

The systemic context between tissues in vivo has consequences for analyzing normal tissue responses to ioniz-
ing radiation when the tissue of interest underlies stimuli from another tissue that was (also) exposed to ionizing 
radiation. Barring variation between different biological endpoints, a quantified response would thus not be a 
monocausal effect resulting from ionizing radiation exposure, but may represent–to a certain extent–an effect 
induced by another tissue. The extent of similarity was analyzed by means of shared gene regulation across all 
irradiation setups, as well as data enrichment for functional pathway analysis. The kidney medulla showed a large 
number of genes that were regulated in a highly similar fashion at all irradiation setups; such a finding was also 
demonstrated in the liver, although the number of genes was comparatively low.

This finding raises the question how gene regulation in the kidney medulla should be interpreted upon in-field 
exposure when a large percentage of genes were also regulated when the tissue was out-of-field, i.e. when only the 
thyroid was irradiated. The analytical dilemma becomes even more apparent when considering that combined 
irradiation of the thyroid and non-thyroid tissues resulted in a distinctly similar regulation pattern in that gene 
set as was observed for the other two irradiation setups. The change extent of individual transcript regulation is 
a suitable measure to evaluate potential additive or even synergistic effects in the biological response. However, 
even log2 change values in this gene set for kidney medulla were basically on the same level and did not indicate 
additive effects between irradiations setups.

Furthermore, this finding has implications for biomarker discovery and risk assessment in radiotherapy 
when the thyroid is a risk organ, since down-stream responses in other organs, in particularly in the kidneys and 
liver, can also be expected. Understanding the complexity of in vivo responses, in this case regulatory depend-
ency between tissues, offers a new venue for estimating and counteracting side effects that may otherwise have 
appeared intangible or unrelated in non-targeted tissues. As such, these genes constitute a promising panel of 
biomarker candidates for assessing side-effects in non-irradiated tissues. Individual genes may even serve as 
molecular targets to modulate pathways to decrease detrimental tissue responses. However, the dose-response of 
this gene set needs to be assayed in future studies and longitudinal studies are necessary to link early transcrip-
tomic effects to long-term tissue health status.

In case of the thyroid gland, the physiological systemic context may appear obvious; however, to the best 
of our knowledge, the impact of the irradiated thyroid gland on non-thyroid tissue gene regulation has been 
suggested but not been demonstrated before27. Overall, considering all analytical endpoints and the extent of 
responses in the non-thyroid tissues upon thyroid irradiation (group A), the study demonstrated ‘relative thyroid 
dependence’ in transcriptional responses: the kidney medulla showed a high degree of ‘thyroid dependence’, the 
liver showed a high-to-medium degree of ‘thyroid dependence’, and the kidney cortex showed a medium degree 
of ‘thyroid dependence’. On the other hand, basically no ‘thyroid dependence’ was observed in the spleen. In the 
lungs, ‘thyroid dependence’ was not seen upon thyroid irradiation (group A), but an impact from thyroid irradi-
ation was observed when non-thyroid tissues were irradiated in combination with the thyroid (cf. lungs group B 
and C, Figs 4 and 5).

Interestingly, the biological consequence of ‘thyroid dependence’ appeared to be rather different for kidney medulla 
and liver. In the kidney medulla, the biological functions with highest similarity and activation z-score were associated 
mainly with immune responses and tumor proliferation. In the liver, in contrast, the highest ranking functions were 
associated with liver-related metabolic processes. This finding may indicate that non-targeted responses can manifest 
in disease-related processes or tissue-specific metabolic processes depending on the type of tissue.

The demonstrated phenomenon may be denominated as a ‘physiological systemic effect’, or a ‘physiological 
long-range non-targeted effect’. Nevertheless, systemically acting factors may also result from mechanisms exclu-
sively induced by ionizing radiation effects in the thyroid, i.e. additional factors that are to be distinguished from 
thyroid-specific signaling molecules such as thyroid hormones. Numerous types of non-targeted or bystander 
responses have been investigated and mechanisms for mediating these responses have been proposed6,7,30–33. 
The two main mechanisms of bystander responses are through gap junctions for cells in direct contact8,34,35 and 
through release of soluble factors8,13. The nature of long-range factors that mediated the observed out-of-field 
responses in this setting could not be deduced from microarray data. Likewise, potential ‘cross-talk’ between the 
kidneys, liver, lungs and spleen, which might have occurred in response to thyroid irradiation or upon IR expo-
sure, could not be assessed.

In conclusion, this study demonstrated long-range non-targeted responses in the kidney cortex, kidney 
medulla, and liver upon irradiation of the thyroid region. The quantity and associated biological quality of tran-
scriptional regulation in these tissues showed distinct similarities between in-field and out-of-field setups, and 
moreover, the extent of similarities varied with type of tissue. Further studies are needed to investigate the molec-
ular mechanisms through which out-of-field effects occurred in the kidneys and liver–and why they did not occur 
in a similar fashion in the lungs and spleen. Biological variables such as sex, age, or species (strain) may influence 
these effects and need to be considered as well. Another aspect to be addressed is the temporal dependence of 
long-range non-targeted responses, meaning when a non-targeted effect occurs in a distant tissue, how long it 
persists, and if responses would e.g. depict a peak or saturation effect. The dependence on absorbed dose, dose 
rate, and radiation quality also needs to be analyzed in detail if systemic effects are to be used for risk assessment 
in radiotherapy.

Methods
Irradiation of animals. Fourteen female BALB/c nude mice (CAnN.Cg-Foxn1nu/Crl; Charles River, 
Salzfeld, Germany) were aged to four months and had access to water and (autoclaved) food ad libitum. The study 
protocol was approved by the Ethical Committee for Animal Research at University of Gothenburg, Gothenburg, 
Sweden (Permit Number: 362/12). All animal procedures were carried out in accordance with the ethical 
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approval. Body measurements were performed on each animal using a caliper in order to assure similar geometry 
for irradiation planning. Distances were measured from nose to thyroid and from shoulder to base of the tail, as 
well as ventral-dorsal neck thickness, ventral-dorsal body thickness, and transversal body width.

For the irradiation, a linear accelerator (Varian Medical Systems; Palo Alto, CA, USA), with 4 MV nominal 
photon energy and a dose rate of 2.3 Gy/min was used. After anesthetization with an i.p. injection of Ketaminol®  
vet. (Intervet AB; Sweden) and Domitor®  vet. (Orion Pharma Animal Health; Sweden), the mice were placed on 
their stomach in a prone position, head to gantry, on a polystyrene bed. The animals were subdivided into four 
groups (A–D) according to geometric similarity described above. The irradiation setup for each group is illus-
trated in Fig. 6. In group A (n =  3), only the thyroid region, i.e. collum, was irradiated and the radiation field at 
the isocenter (1,000 mm) was 10 ×  10 mm. In group B (n =  3), the thorax and the abdomen were irradiated (field 
length and width: 60 ×  50 mm). In group C (n =  3), the thyroid region (collum) as well as the thorax and abdomen 
were irradiated (field length and width: 71 ×  50 mm). Sham control animals (group D, n =  5) were anesthetized 
but not subjected to irradiation. During the irradiation, the mice in each group were covered with 1 cm tissue 
equivalent material to achieve a relatively uniform dose distribution throughout the underlying tissue. A single 
absorbed dose of 2 Gy was administered in each case. The dose variation within the target volume was estimated 
to be 5%, and the cumulative uncertainty of the radiation dose was estimated to be less than 8%. Animals were 
injected i.p. with Antisedan (Orion Pharma Animal Health; Sweden) as an antidote to anesthesia. The entire 
procedure including anesthetization was completed within approximately 45 min and all efforts were made to 
minimize discomfort or stress for the animals.

Sample preparation and microarray analysis. Twenty-four hours after irradiation, the animals were 
killed under anesthesia (Pentobarbitalnatrium vet., i.p.; Apotek Produktion & Laboratorier AB; Sweden) via car-
diac puncture and the kidneys, liver, lungs, spleen, and thyroid were excised. The workflow of sample preparation 
and data processing is illustrated in Fig. 6. Organs were snap-frozen in liquid nitrogen and stored at − 80 °C until 
further sample preparation. The kidney cortex and medulla were dissected on dry ice and treated separately in 
the analysis. Several milligram of tissue were dissected on dry ice and homogenized using the TissueLyser LT 
(Qiagen; Hilden, Germany). Total RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen; Hilden, 
Germany) according to the manufacturer’s instructions. RNA integrity number (RIN) values were determined 
with the RNA 6000 Nano LabChip Kit and Agilent 2100 Bioanalyzer (Agilent Technologies; Palo Alto, CA, 
USA). All RNA samples had a RIN value of at least 6.0. RNA concentration was determined with the ND-1000 
Spectrophotometer (NanoDrop Technologies; Wilmington, DE, USA). RNA samples were subjected to Illumina 
MouseRef-8v2 Whole-Genome Expression BeadChips (Illumina; San Diego, CA, USA) for genome-wide 
transcriptional analysis. Microarray beadchips were processed at the Swegene Center for Integrative Biology 
Genomics DNA Microarray Resource Center (SCIBLU; Lund, Sweden). Data preprocessing and quantile nor-
malization were performed with the BioArray Software Environment (BASE, SCIBLU)36.

Microarray data validation. The QPCR assay was used to validate microarray data. Kidney medulla sam-
ples from group A and the control group were used for validation. For each sample, cDNA was synthesized from 1 
μ g total RNA, i.e. from the same RNA eluate committed to microarray analysis. The SuperScript™  III First-Strand 
Synthesis SuperMix (Invitrogen, Thermo Fisher Scientific; Carlsbad, CA, USA) was used for reverse transcription 
according to the manufacturer´s protocol. Seven genes that were significantly overexpressed in the microarray 
data (i.e. Akr1b3, Gjb2, Ndufb9, Slc11a1, Slc38a2, Trp53inp1, Vbp1) were selected for QPCR validation. For nor-
malization, three constitutive genes were chosen that showed homogeneous expression across the entire data set 
(Cplx1, Kcnc4, and Slc10a4). QPCR assays were performed using validated TaqMan®  Gene Expression Assays 
and the TaqMan®  Gene Expression Master Mix (Applied Biosystems, Thermo Fisher Scientific; Carlsbad, CA, 
USA). cDNA samples were run in triplicate for each assay and differential expression was quantified using the  
∆ ∆ Ct method.

Figure 6. Illustration of workflow. The illustration shows the different irradiation setups and the main steps of 
subsequent sample preparation and data analysis.
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Microarray data analysis. The microarray data used in this study have been deposited in NCBI’s Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with accession GEO:GSE66372. Nexus Expression 3.0 
(BioDiscovery; El Segundo, CA, USA) was used for data processing and statistical analysis as described else-
where37. Differentially expressed transcripts between irradiated groups and controls were identified according 
to the Benjamini-Hochberg method (false discovery rate adjusted p <  0.0138 and with a log2 ratio of at least 0.58. 
Ingenuity Pathway Analysis (IPA, Ingenuity®  Systems, www.ingenuity.com; Redwood City, CA) was used to pre-
dict downstream effects of transcriptional regulation regarding diseases and biological functions (Fisher’s exact 
test, p <  0.05)39. Transcript-associated Gene Ontology (GO, http://www.geneontology.org) terms were enriched 
for biological processes using Nexus Expression 3.0 (Fisher’s exact test, p <  0.05)40.

In order to obtain comprehensive profiles of cellular functions that were regulated at the transcriptional level, 
biological processes were categorized into eight main categories with over 30 subcategories according to ancestor 
charts in the Gene Ontology database (http://www.geneontology.org) as described previously27. The intensity 
of response was expressed by the percentage of scored vs. filtered transcripts of all biological processes grouped 
within a category or respective subcategory. Percentages were categorized as very low (< 3%), low (3–9%), 
medium (10–29%), high (30–49%), and very high (≥ 50%).

Signature gene analysis was used to evaluate the relative impact of direct IR exposure and TH-induced 
regulation on the overall transcriptomic response. The number of significantly regulated genes in each sig-
nature is taken as a relative measure of respective regulatory impact on regulation for each tissue across 
the different irradiation setups. The IR-associated gene signature was composed of 56 genes adapted from 
Snyder and Morgan41 and Chaudhry42. The thyroid hormone-associated gene signature was composed of 
61 TH-responding genes (and gene groups encoding multimeric protein) adapted from literature as pre-
sented previously28. The complete lists of IR-associated and TH-associated signature genes (including infor-
mation on known RNA expression levels of human homologs) are available as supplementary information 
(Supplementary Tables S10 and S11, respectively).
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