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Diagnostic Review with Digital Pathology
Design of digital tools for routine diagnostic use

Jesper Molin

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Digital pathology is a novel technology currently being implemented world wide. This

thesis summarizes four years of HCI and visualization research and provides an overall
understanding of designing workstation software for pathologists. A human-centered
design approach has been used to create a number of design interventions.

The thesis covers three main areas of inquiry: Understanding pathologists’ problem
solving processes during diagnostic review, how to build di�erent digital tools to support
those processes, and how to incorporate digital image analysis algorithms when building
these tools.

The thesis consist of a kappa that provides background and context, to the remain-
ing appended papers. The papers describe studies covering, pathologists’ navigation
strategies in gigapixel sized images, the usability of di�erent input devices and structured
reporting interfaces, how principles from volume rendering can be used for multi-scale
images, and how make to use of machine learning algorithms to support pathologists’
diagnostic processes.

Together, these design projects show how digital pathology images can be used
to create tools to make pathologists more productive. This will make it possible for
pathology laboratories to replace their diagonstic work�ow using glass slides, with a
work�ow based on digital images.

Keywords: Digital pathology, Human-computer interaction, Visualization.
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Chapter 1

Introduction

The diagnostic review of cancer could be greatly improved with a new set of tools.
Pathologists have been reviewing tumor tissue samples under the light of the microscope
for over a century, but that is changing. Digital scanners are able to create gigapixel-sized
digital images of the tissue in a few minutes, computer software can present the digital
images on a computer display in real time, and algorithms can automatically detect and
count the number of cells in the tissue. The technology already exists, but has not yet
been transformed into e�ective tools that are widely used. The aim of this thesis is to
narrow that gap by contributing knowledge needed to design useful digital diagnostic
tools.

Around 60,000 new cancer patients are diagnosed in Sweden every year. This means
that every third person can expect to be diagnosed with cancer in their lifetime. However,
two out three cancer patients survive thanks to improving treatments [54].

One of the most successful strategies has been to divide tumors into di�erent subtypes
and tailor the treatment for each speci�c tumor. Currently, cancer tumors are divided
into around 200 subtypes. This strategy has put a tremendous burden on pathologists, the
specialists that perform the subtyping, with average turn-around times to review a case
being around four weeks in some Swedish regions. In other words, every other patient
has to wait over a month to get a diagnosis, which delays the treatment and causes a
great deal of unnecessary worry.

The pathology lab and the pathologists play a crucial role in cancer care. Based on
analysis of tissue specimens and other cell samples, they characterize cancer disease and
deliver diagnostic reports. Such a report is a primary source of information to guide the
oncologist’s decision on treatment options for the patient, such as chemo-, radiation-
and/or immunotargeted therapies.

A recent 2012 report commissioned by the Swedish government [105], concluded that
the resources provided to Swedish pathology departments are insu�cient to ensure an
adequate number of pathologists, both for clinical work and research. In fact, neighboring
countries have the double amount of pathologists per capita compared to Sweden. At the
same time, the annual amount of cancer diagnoses per capita has increased with 1-2%.
This steady increase is mainly ascribed to an ageing population [54].

It is in this context that digital pathology comes in, and it has recently gained traction
as a serious technology for usewithin routine diagnostics. However, the �rst commercially

3



4 1.1. Thesis overview

available digital scanner was launched already around 15 years ago. Today’s scanners can
be loaded with hundreds of glass slides that are scanned at a pace of a few minutes per
slide. The scanner creates images in the gigapixel range, at least two orders of magnitude
larger than a modern digital camera. The compressed size of a typical image scanned in
400 times magni�cation is around 1 gigabyte. This means that the yearly digital storage
needs of a medium-sized pathology laboratory is counted in hundreds of terabytes. This
is a large amount of data, but it becomes increasingly manageable as storage prices
continue to decrease.

Thus, the basic technology needed to perform diagnostic review digitally already
exists. It is however still unclear exactly what the technology could be most useful
for. This thesis project was started in order to shed light on this problem and to use a
systematic approach to design innovations using digital pathology images.

1.1 Thesis overview

The systematic approach used is human-centered design. A human-centered design
approach starts with the user in focus and builds systems tailored to typical tasks and
environments. It usually involves a number of prototypes before the �nal systems are
built, which are evaluated in order to improve the next iteration of the prototype.

The thesis describes this approach applied to the digital pathology �eld. The presented
work is multi-disciplinary research based on design processes and evaluations from
established HCI research methodology.

The thesis consists of an extended summary and background, a so called Kappa, and
of eight appended papers. The Kappa consists of an introduction to the diagnostic work
of pathologists and to what digital pathology is. This is followed by an introduction to
the three main areas of research that are relevant to this thesis. First, digital pathology is
described from the aspect of visual search and exploration. This includes sensemaking
theory, perception research on visual search and multi-scale visualization systems that
have been studied within HCI. The second area of research is within computer vision
and image analysis. The description covers existing algorithms and applications. The
aim with this section is to get a sense of how well existing image analysis algorithms
can perform in a pathology context. The third area compares how HCI and human-
centered design research di�ers from common research methodology used within the
medical domain. The aim here is not to give a comprehensive overview of all research
methods, but to highlight di�erences. This methodological background is needed in order
to understand why the prototypes presented are quite di�erent from those developed
under other paradigms.

The results chapter then presents a review of the appended papers under three
di�erent themes that match the di�erent theoretical backgrounds. The �rst theme covers
results concerning the diagnostic problem solving in multi-scale images. The �ndings
in our papers are presented and related to relevant literature in the Visual search and

exploration chapter. The second theme concerns how to design systems that measure
quantitative properties of the images using machine learning and visualization. The
results cover a human-centered approach to automation in digital pathology. The third
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theme compares the design process used in this thesis with a similar process found in
the literature.

The purpose of the Kappa is to give an overview of the literature available within
digital pathology and to provide an overview of the results reported in the separate
papers. The papers upon which this thesis is built, are attached as an appendix in the
end.

1.2 Digital Pathology

The pathology discipline has its basis in the over 150 year old tradition of microscopic
diagnostic review of tissue samples. Tissue samples are collected by surgeons or other
clinicians and sent to the pathology lab for analysis. In Sweden, typically, the largest
hospital in each county is equipped with a pathology lab that receives tissue specimens
or a bodily �uid from other departments or hospitals. The pathology lab processes
the material, creates glass slides with pieces of the specimens, and �nally a pathologist
reviews the content on the glass slide and dictates a report that is sent back to the referring
physician. As this thesis focuses on histopathology, the microscopic study of diseased
tissue, the process on of how to analyze bodily �uids (cytology) has been omitted in the
following description.

The typical tissue specimens arrive at the pathology lab in a plastic box �lled with
formalin. A pathologist or lab technician performs a grossing examination of the specimen.
This examination consists of measuring, sketching, and sometimes taking photos of the
specimen. Small pieces of tissue are cut out for further analysis, see Figure 1.1(a).

These pieces are further processed in a sequence of chemical solutions by an automatic
processing machine (b) and then embedded into para�n blocks (c). From these para�n
blocks, small sections of tissue are sliced using a microtome. The microtome is able
to create micrometer thin sections, which are placed on glass slides. At this stage the
resulting sections are almost transparent. In order to reveal the tissue structures, the glass
slides are stained with di�erent colors that attach to di�erent types of structures. For each
specimen, this process can result in a large set of glass slides (d). Finally, the pathologist
reviews the content of the glass slides with a microscope and dictates a report. This
work is typically organized as a sequential production line in multiple steps, consisting
of di�erent kinds of processing and selection steps as in Figure 1.2.

If the patient has given written consent, the glass slides and the embedded blocks are
stored for future research and follow-up purposes. The initial processing and the staining
have become automated and are nowadays performed by a set of machines. However,
the work�ow is still driven and supervised by lab technicians. In a digital work�ow, the
produced glass slides are scanned in a digital scanner, creating digital slides for review
with digital workstations.

While the use of digital images is pervasive in other medical disciplines, pathology
is still, with a few exceptions, performed by reviewing glass slides with microscopes.
For a long time, the main reason has been technical limitations related to scanning
technology and storage capacity. The image size of a scanned slide has been considered
enormous. In the maximum scanning magni�cation, the images are sampled at a pixel
density of 0.25 microns per pixel. This means that a standard sized glass slide, 75x25
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Figure 1.1: The process of producing glass slides. (a) Small pieces of tissue are selected
for processing. (b) The machine processing the pieces of tissue. (c) A piece of tissue
embedded in a para�n block. (d) A tray of glass slides ready for review.

Fixation Staining DiagnosticsProcessing ReportingGrossing Embedding Sectioning

Figure 1.2: The histopathology lab work�ow.

mm, requires a digital image of 30 gigapixels to be fully reproduced. This size is three
orders of magnitude larger than a current high-end digital camera. However, since most
glass slides contain large areas without pieces of tissue on them, and since lossy image
compression algorithms can be used, it is possible to reach an average �le size of about 1
GB per scanned slide in full resolution. While this �le size is still large, it is manageable
considering today’s continuously falling prices on storage.

Paper 1 presents the current state-of-the-art in digital pathology in depth. It is worth
mentioning that only a few years back it became possible to produce digital images of
all the slides in a pathology lab. A recent review presented a timeline of digital images
within pathology: The �rst digital image of a pathology slide was taken in 1968, the
�rst digital remote viewing system (telepathology) was demonstrated in 1986, the �rst
frozen section service using telepathology came in 1987, the �rst commercial system for
telepathology was available in 1994, and the �rst commercial whole slide scanner was
launched year 2000 [75].
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Figure 1.3: Examples of histology images of breast cancer (left) and skin cancer (right).

Before the age of whole slide scanners, it had only been possible to take snapshots
of small regions. Whole slide scanners, the dominating technology today, brought a
capability to create full resolution images of glass slides, generally called whole slide
images (WSI). WSI �les contain thousands of small image tiles, in multiple magni�cations,
thereby supporting fast retrieval and display in any �eld of view. Multiple magni�cation
levels enable quick panning and zooming, very similar to the navigation experience of
using a microscope. The software accompanying the scanners has therefore been referred
to as virtual microscopes. To show the general appearance of WSIs, samples of a breast
cancer and a skin cancer are provided in Figure 1.3.

Pathologists review these images and create a report that is sent back to the clinician
ordering the study. The pathologist performs this analysis by detecting visual features
that are associated with di�erent conditions. A number of common visual features can
be seen in Figure 1.3. The breast cancer to the left is, for example, clearly invasive
since the dark blue malignant cells grow into to the surrounding fatty tissue (white
bubbles). This visual feature is associated with a higher risk of metastasis. Both tumors
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are hyperchromatic, meaning that the nuclei belonging to the cancerous cells are more
dark blue than normal. In the skin cancer to the right, the blue islands of cancer cells can
be seen even in the lowest magni�cation.

The pathology report always contains a diagnosis and a short description of the
microscopic and macroscopic �ndings. Many types of cancer reports also include a
histological grade, predictive values, and surgical margins. A histological grade, often
based on the appearance of the cancer cells and their growth pattern, estimates overall
prognosis for a patient’s survival. Predictive values are used to guide whether a speci�c
treatment option is suitable for a speci�c tumor and is often based on special stainings. A
surgical margin is a measure of the shortest distance between a tumor cell and a border
marked with ink, visible both macroscopically and microscopically.

Another important function is to participate in multi-disciplinary conferences, to
discuss �ndings for complicated cases with Radiologists, Oncologists, Surgeons and other
medical specialties involved in cancer care.

In Sweden, licensed medical doctors become pathologists by going through a �ve year
long trainee program at a pathology department. The program is aimed at learning all the
skills necessary to be able to perform macroscopic examination, microscopic diagnostics,
and autopsies. Current trainee program guidelines from the professional organization
in Sweden state, among many other things, that at least 6,700 cases should have been
reviewed under supervision, seven courses in morphological diagnostics attended and
a scienti�c project of 10 weeks performed [57]. Reference books and medical literature
are used extensively as study material, but the skill is mostly learned directly from
experienced pathologists. For a beginner’s introduction to the diagnostic review skill,
the author recommends Molavi [69].

Digital pathology is the domain that the work in the thesis has been performed in, and
especially the diagnostic work with microscopic images. The next section will introduce
three theoretical areas and how they relate to this domain.



Chapter 2

Background and theory

Three major areas form the theoretical basis of the results in this thesis. The �rst area
is visual search and exploration, which are common activities in many domains, and
established research can help us understand how this works within digital pathology.
Second, since computer vision and image analysis will be used throughout the thesis,
this area will be introduced from a human-centered perspective. A number of application
areas and their state-of-the-art accuracy will be presented. And third, human-centered
design practice will be compared to medical research practice to give background to the
methods used in this thesis.

2.1 Visual search and exploration

The focus of this thesis is the pathologists’ work at the digital workstation, which naturally
is very similar to the work performed when reviewing at the microscope. When using
the microscope, a pathologist reviews cases by visually inspecting glass slides. The
microscope allows them to search for diagnostic features. The pathologist can pan around
within a glass slide by moving it using the stage knob or directly with a �nger if the slide
holder is removed. The microscope is equipped with multiple objective lenses that are
mounted on a rotating wheel. The magni�cation of the mounted objectives typically
range from 1x to 40x, and, adding the static eyepiece magni�cation of 10x, the pathologist
can quickly adjust the total magni�cation between 10x and 400x. It is also common to
have a microscope with a secondary eye-piece in order to facilitate collaboration and
tutoring. A picture of such a microscope is given in Figure 2.1.

In a workplace study [88, 85], this review process of panning and zooming with the
lenses was analyzed based on recorded videos of working pathologists. They highlighted
the pathologist’s need to organize and collect information from diverse sources, to
collaborate with colleagues, and to ensure patient safety by double checking the details
on the request and the �nal report.

While certain parts of the pathologists’ work and artefacts are domain speci�c, many
generic traits are shared with other professions. Consider for example the stunning
similarity between the histology image of an invasive breast cancer and satellite imagery
of Stockholm in Figure 2.2. The resolution has been matched so that the size of a typical

9
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Figure 2.1: The pathologist’s microscope describing the parts used when reviewing
cases. Photo by Anna Bodén and used with permission.

Figure 2.2: Interactive map of Stockholm compared to an image of a breast cancer tumor,
equally zoomed out from the maximum zoom level. The map to the left was taken
from openstreetmap.org, © OpenStreetMap contributors, and is used under the CC
BY-SA-license (creativecommons.org) and the ODBL (opendatacommons.org).

building is the same as the size of a cell. Considering that both are biological phenomena,
growing within the constraints of its environment, the similarity should not be surprising.

While the imagery is very similar, the typical user of satellite images use them as
maps, in order to �nd locations or visualize directions in their daily life. In contrast,
the pathologist tries to analyze the images in order to derive a diagnosis and to guide
treatment strategies. More similar users are found within oceanography or geology [82],
where satellite images are used to investigate, analyze, and to produce reports. Another
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similar user is the intelligence analyst [81], who investigates, analyzes and produces
reports as well, but mostly based on textual data.

Considering these similarities, it becomes rational to connect the work of the pathol-
ogists to more general theories or disciplines of research. This thesis embraces the idea
that theories are excellent tools for connecting empirical observations between multiple
disciplines.

In the coming sections, related work will be presented within three �elds of research,
which are the most relevant to the �ndings in this thesis: Sense-making, Visual search
and Multi-scale user interfaces.

2.1.1 Sensemaking

Sensemaking theory has its foundations in studies of how humans process information
and solve problems. A foundational approach to problem solving was introduced by
Newell, Simon [71] that de�nes the general problem space as consisting of:

1. An initial state
2. A goal state that is to be achieved.
3. Operators that transform the problem from the initial state to the goal state in a

sequence of steps.
4. Constraints on the application of operators that must be satis�ed.

In an initial attempt to model the problem of diagnosing a set of glass slides this typically
means that:

Initial state: There is a set of glass slides with possibly diseased tissue sections from
a human being.

Goal state: The goal is to characterize the disease, if any, and communicate this in
the form of a written report.

Operators: Operators are di�erent actions, such as panning, zooming, and other
procedures that are used to diagnose the disease.

Constraints: External constraints of the imaging technique like the staining or the
microscope or internal constraints like lack of knowledge, limited human short-
term memory etc.

These categories are interdependent, so that if the external constraints change, e.g. if
microscope is replaced by a computerized workstation, action operators like physically
organizing the glass slides or changing focus might be super�uous, whereas other action
operators like reviewing two slides side-by-side or in stack mode, might be in demand.

To study a speci�c problem space, di�erent recording devices can be used. Randell
et al. [88] used video recording of pathologists working at their desks to study which
tools they use at a macro level, excluding the detailed glass slide review. Eye-trackers
can be used to study operators’ eye-movements [107], and with a digital workstation it is
convenient to record the navigation made within the digital slides [109]. To study how
pathologists think is more complicated since current technology does not o�er automatic
elicitation of human reasoning. Ericsson and Simon [23] describes an alternative method
to systematically study human thinking called protocol analysis. The method consists
of asking participants to think out loud while performing a task, recording their verbal
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Table 2.1: Protocol analysis codes identi�ed in a study by Crowley and Naus [17] of
expert pathologists reviewing cases on a microscope.

Category Most common operators Occurrence
[%]

Data examination:
- Identi�cation Identify-structure, Locate-lesion, Identify-

histopathologic-�nding
29

- Comparison Compare-cue-to-normal, Compare-�ndings-
from-multiple-locations

3

- History Read, Identify-historical-cue 4
Data exploration and
explanation

Associate-location, Note-absent-�nding,
Evaluate-salience

7

Data interpretation Statement-of-hypothesis, Con�rmation-with-
present-�nding, Set-goal-identify-or-examine

31

Control processes Evaluate-own-ability-or-knowledge, Assess-
di�culty

1

Operational processes Operator-verbalization 5
Goal-setting (part of other codes) 7
Unique hypotheses (part of other codes) 12

statements and encoding the statements iteratively to make sense of the statements. This
method was used by Crowley and Naus [17], to map out pathologists’ verbal reasoning
when reviewing cases with a microscope. They identi�ed numerous thinking operators
that were classi�ed into di�erent categories and measured the di�erence in the use of
them between novice, intermediate and expert pathologists. To exemplify the di�erent
ways of thinking that a pathologist might use, Table 2.1 provides a sample of the thinking
operators used by the expert group participating in that study.

This type of modelling of operators has also been performed for other medical disci-
plines. Within medical imaging diagnostics, there are for example a study of the verbal
reasoning of cardiologists [41], and a study of the tasks of radiologists interacting with a
CT workstation [7].

The main principle is to divide a problem solving task into smaller concepts. This
type of modelling can be performed in many di�erent ways. Wei and Salvendy [114]
divide cognitive task analysis models into four families: (1) observations and interviews,
(2) process tracking, (3) conceptual techniques and (4) formal models. In Table 2, a few
typical methods from each category have been listed.

Crowley and Naus [17] point out that histopathological review is a problem solving
process that is especially suitable to model with the information processing approach.
This is because the microscope invites the pathologists to perform the review by serially
searching the slides in a single �eld of view. When (or if) the pathologists start to
perform this review with digital workstations, this assumption might no longer be true.
Digital workstations might invite the user to perform visual comparisons, jumping
between distant locations or manipulate the display in di�erent manners that make
the review process become more parallel, and therefore more complicated to model. A
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Table 2.2: Di�erent knowledge elicitation methods that can be used perform a cognitive
task analysis.

Observation and in-
terviews

Process tracking
Conceptual
techniques

Formal
models

Observation
Cognitive

walkthrough
Error analysis ACT(-R)

Unstructured
interview

Verbal reports
Conceptual

graph analysis
GOMS

Structured interview Protocol analysis Diagraming ARK
Questionnaires

more appropriate approach would therefore be to use sensemaking theory, which is
more targeted towards describing the process of analytical thinking using interactive
visualizations on computer workstations.

Pirolli and Card [81] describe sensemaking as a task that consists of "information
gathering, re-representation of the information in a schema that aids analysis, the de-
velopment of insight through the manipulation of this representation, and the creation
of some knowledge product or direct action based on the insight." For a pathologist this
process could be represented by the following process:

Histology slides (information)→Findings (Schema)→Conclusions and hypothesis
(Insight)→The pathology report (Product).

Pirolli and Card [81] use this model to describe the typical work of an intelligence
analyst. They model the analytical process in two main loops, the foraging loop, where
the analyst searches for information, and the sense-making loop, where the analyst makes
sense of the information found in order to produce a report.

Arguably, this process can be adapted to the histopathology diagnostic process in a
straightforward manner, as shown in Figure 2.3. However, similarly to the case of the
intelligence analyst, it should be remarked that:

1. Most of the pathologist’s work consists of extracting information and repackaging
it as a report without much analysis, i.e., easy cases where the diagnosis becomes
evident as soon the specimen is put under the light of the microscope.

2. Higher-level thinking such as hypothesizing and schematizing can be used to reject
�ndings in early stages. Treanor et al. [109] argue that this process helps the
pathologist to avoid cluttering the mind with less important �ndings.

Studies comparing novice and expert pathologists, have found some evidence to
support the view that novice pathologists are able to detect large part of the �ndings
in the foraging loop, but are unable to create su�cient schema to produce an accurate
diagnosis [17, 66].

Since the microscope does not o�er convenient means of storing image information
throughout the analytical process (that is: foraging and sense-making), pathologists
memorize most of the found evidence, schema, and generated hypotheses. One way to
overcome this limitation is to verbalize the �ndings and to keep scribbles on the glass
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Figure 2.3: Sense-making for pathologists, in a diagram style adopted from Pirolli, Card
[81]. Arrows pointing upward represent forward or bottom-up reasoning, whereas
arrows pointing downward represent backward or top-down reasoning.

slides [88]. Considering the limited capacity of the visual working memory [64, 116], this
represents an important opportunity when designing a digital workstation for pathology.
Other opportunities for digital pathology can be found in Shneiderman’s taxonomy [95],
which lists operations common when exploring data within information visualization:

1. Overview: Gain an overview of the entire collection.

2. Zoom: Zoom in on items of interest.

3. Filter: Filter out uninteresting items.

4. Details-on-demand: Select an item or group and get details when needed.

5. Relate: View relationships among items.

6. History: Keep a history of actions to support undo, replay, and progressive re�ne-
ment.

7. Extract: Allow extraction of sub-collections and of the query parameters.
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Current digital pathology workstations usually provide means to support operation
(1), (2), and (4), whereas the ability to �lter, relate, keep a history of, and extract data
when exploring pathology images represent opportunities for research.

2.1.2 Visual search

In histological review, the information foraging loop is driven by visual search processes
in the form of navigation and vision. There, more speci�cally, navigation consists of
virtual navigation, i.e. panning, zooming, and rotation of the image slide, as well as
physical navigation in the form of eye and head movements that move relative to the
screen. If the screen is large, physical navigation also include movements of the full body
[5].

The vision system can be divided into foveal and peripheral vision. The fovea is
the small part of the retina where it is possible see in the eye’s full resolution, whereas
the remainder of the retina corresponds to the peripheral vision. Ware [113] provides
the following rule of thumb, the size of the fovea is the size of the nail of the thumb
when held at arm’s length distance from the eye. Ware [113] further lists the three types
of eye-movements in humans: saccadic, smooth-pursuit, and convergent movements.
Saccadic eye-movements are rapid moves between �xations. The time it takes to move
between �xations varies between 20 and 180 ms, whereas the �xations last between 200
and 400 ms. Smooth-pursuit movements enable the eye to lock onto a target, and to
follow it when it moves within the visual �eld, or if the target is �xed and the body is
moving. Convergent movements deal with objects in visual �eld moving towards or
away from us.

Performing visual search is a complex task that involves at least all of the mechanisms
described above. There exist multiple empirically based models that describe this visual
search process. These theories share a view that the visual system �rst has a parallel
processing that triggers saccadic movements acting as starting points for more accurate
processing. The parallel processing step uses peripheral vision to detect either high local
contrast from the surrounding or using top-down processes to detect speci�c items that
are di�erent from the surrounding independent of the local situation [113].

A number of studies have made use of eye-tracking to study pathologists’ eye move-
ment during slide review. Braxton et al. [13] tested the correlation between mouse pointer
movement and gaze. Brunyé et al. [14] used gaze as an index of expertise. Tiersma et al.
[107] characterized two types of eye-movement: a scanning type and a selective type.
Krupinski [60, 61] attributed these characteristics to a di�erence in expertise since experts
were more selective and spent more time on relevant features instead of scanning quickly
through everything.

Another interesting e�ect was reported by Bombari et al. [11], who showed that
top-down visual processes might cause con�rmation bias. In their experiment, each
participating pathologist was asked to grade the malignancy of individual nuclei while
�rst being shown an image of the architecture of the tumor. A high-grade architecture
caused the participant to unconsciously search for nuclei that looked more high-grade
and a low-grade architecture caused them search for low-grade nuclei.
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Most of the above research addressed visual search patterns in regards to static
images. However, due to the sheer size of pathology slides, case reviewing requires
virtual navigation. A number of studies have been performed on virtual navigation
in pathology: comparing navigation between novice and expert pathologists [66, 76,
109], studying students taking an examination [112], and correlating gaze coordinates
with digital slide coordinates [14]. These studies mainly used recordings of navigation
behavior, represented as heat maps, to compare the di�erence in explored regions between
di�erent study groups. Heat maps display what the pathologists have looked at, but does
not display the dynamics of navigation, ignoring sequences of movements and �xations.
In a single study [67], programmatic rules of the dynamic properties of the navigation
were used to automatically locate regions of interest in pathology slides, but the dynamic
behavior was not studied in itself. The dynamic behavior is important to understand
in order to design the user interface, especially with respect to the input device used to
navigate the slides.

A number of recent studies by Jaarsma et al. [52, 51, 50] combined eye-tracking
recording and navigational tracking to the behavior of pathologists with di�erent levels
of expertise. They were not able to reproduce eye-tracking �ndings recorded on static
images, and recommended focusing problem-solving studies on navigational tracks [51].
They further highlighted a number of general di�erences. Experts were found to spend
more time in low magni�cation than novices. Experts also tended to express their prob-
lem solving in comparative terms (normal, abnormal, atypical), whereas intermediates
described speci�c pathologies (invasion, in�ltration, lymphocytes), and novices described
what they saw using descriptive words about color and shape (purple, pink, round). The
design of digital workstation tools should take these �ndings into consideration and
support pathologists at all levels of expertise. A good design should also aid pathologists
to become experts, and should give incentive to the development of expert traits. As was
remarked earlier, expert traits might change as the design of the diagnostic review tool
changes. In other words, what characterizes an expert today might not be same with a
new set of tools.

Another visual search phenomenon worth highlighting is that of inattentional blind-
ness. In a well-known study, a group of participants were asked to count the number
of ball passes between a group basketball players in a recorded video. However, the
participants were not told the video also showed a person dressed in a gorilla costume
traversing the scene. Since the participants were focused on counting, around half of
them failed to report seeing the gorilla [70]. This study was recently reproduced in a
medical setting. A picture of a gorilla was inserted into a stack of CT images of a lung.
Trained radiologists were then asked to search through the images for lung nodules. The
detection rate of the gorilla was very low—20 out of 24 radiologists failed to detect it
even though the gorilla was visible for an average of 5.8 seconds. Furthermore, 12 of
the radiologists directly looked at the gorilla image for an average of 0.5 seconds but
still failed to detect it [21]. As a consequence it is thus not safe to assume that all visible
areas on a display are being looked at or that visual features being looked at have been
attended to.

E�cient and accurate histological reviews depend on the images displayed. Knowl-
edge about the human visual system should thus be incorporated into workstation design.
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Large high-resolutions screens have been shown to reduce review time when using
digital workstations, probably due to less time spent performing virtual navigation [84].
This reduction has been shown to make digital case review as fast as review with the
microscope [86, 108]. However, it is not evident that total review time will decrease,
even if the work at digital workstations becomes more e�cient at visual search than
with a microscope. Randell et al. [87] recorded use patterns indicating that the increased
comfort of digitally navigating between slides, may cause pathologists to more often
revisit previously reviewed slides. This is problematic considering the current lack of
pathologists, since increased e�ciency in navigation is being used to increase their overall
accuracy rather than having them report on more cases.

To design workstations that support visual search in the way pathologists need, their
diagnostic review process needs to be studied in further detail, especially the dynamic
behavior of virtual navigation. The design of search within large data spaces is not a
new topic. A large body of research already exists within the �eld of human-computer
interaction (HCI). In the following section, related literature on multi-scale (or zoomable)
user interfaces will be presented.

2.1.3 Multi-scale visualization

Virtual navigation has for long been needed for information spaces larger than can be
completely shown on a display. Beard and Walker [7] divide the information spaces
into those that are naturally meaningful to map two-dimensionally such as large images,
maps, or medical images, and those without this natural mapping such as di�erent kinds
of graph data. Since pathology images are natural to map two-dimensionally we will
here focus on that part of the HCI research.

In order to display images too large for the display, you either have to truncate it
by only showing a part of the image, or to shrink it by showing a smaller version of
the image, or to distort it by showing certain parts in higher magni�cation, using for
example �sh-eye views [26]. A convenient way to express di�erent display modes for
multi-scale data spaces is by using scale-space (or space-scale1) diagrams [27]. In scale-
space diagram, a �xed-size viewport is used to represent the device’s �eld of the view in a
three-dimensional space, where two dimensions represent the extent, and the remaining
dimension represents the zoom level. An example of a scale-space diagram is depicted in
Figure 2.4, where panning and zooming with a microscope is shown.

To select what is displayed the user can then use di�erent input devices or soft
interfaces. Early GIS systems made use of SQL like query languages for navigation [25]
to speci�c addresses within a large database of maps. A similar interface is still used
extensively to search for locations in online maps, however the SQL queries have been
replaced by keyword and natural language search queries. Early display manipulation
techniques include using scroll bars or cursor keys for panning (or roaming) within the
data space. Scroll wheels on mice were not popularized until mid-90s, so zooming had to
depend on other means.

1In Furnas et al. [27], the term space-scale is used, but in this thesis the word order has been reversed
to avoid confusing the technical reader.
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Figure 2.4: Depicting zooming and panning actions on a microscope using scale-space
diagrams. The microscope’s circular �eld of view remains the same size, but when
zooming in by switching the lens it projects to a smaller area of the tissue. Photograph
of microscope is used under CC-BY-SA license.

HCI research within this �eld has typically compared alternative interface design
solutions for di�erent speci�c applications, in di�erent laboratory tasks, or both. The
studies have, e.g., investigated speci�c interfaces for visual comparison [56, 82, 63],
interactions that are relevant when using di�erent kinds of tools [38, 96], displaying
the location of o�-screen items [6], changing representation of items depending on the
zoom level [78], speci�c input devices for navigation [31, 101, 103, 100, 102], and how
to smoothly perform a run-over from point A to B in scale space [115]. Experimental
navigation tasks are of particular interest in this thesis. These laboratory tasks can be
divided into pure navigation tasks in which a user knows where to navigate, and into
search and exploration tasks.

Pure navigation tasks can, for example, include techniques for quick navigation
in large documents [46] or navigation to targets within a map [43]. Pure navigation
tasks were formalized into a multi-scale version of Fitt’s law (a law to predict pointing
performance [24]) by work of Bourgeois [12] and Guiard [36]. The typical pathologist
does not, however, know where to go since the diagnosis is generally performed on a new
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Figure 2.5: Three common zoomable interfaces. Pan+Zoom is a basic interface where
you pan by dragging and zoom using the scroll wheel of the mouse. Overview+Detail
enable navigation by clicking or dragging in an overview where the full information
space is visible. Focus+Context is when it possible to magnify the area around the mouse
pointer, this may for example be implemented as a distorted �sh-eye view, or as in the
�gure, with a small window following the mouse pointer.

piece of tissue every time. Therefore, studies within multi-scale search and exploration
are more relevant.

Search tasks have been performed by asking participants to �nd a speci�c target
within an information space using di�erent navigation techniques either in laboratory
tasks or for di�erent applications. The predominant interaction techniques consist of
Pan+Zoom (P+D), Overview+Detail (O+D), and Focus+Context (F+C); all shown in Figure
2.5.

Pietriga et al. [79] proposed a laboratory search task in order to perform application
independent evaluation of navigation techniques, and compared the three techniques
presented above. In their study, O+D performed best in terms of task completion time.
In a related laboratory study, Hemminger [42] compared two keyboard based methods,
scrollbars, P+Z, and a �sheye F+C for a systematic search task common in medical
imaging. They found that P+Z outperformed the others in user satisfaction, whereas F+C
was the least preferred technique.

Hornbæk and Frœkær [45, 44] studied navigation techniques and patterns for reading
large electronic versions of academic papers. The same three techniques were evaluated in
two di�erent tasks: a reading task followed by writing an essay, and a question answering
task, searching for answers in the text. Users were most satis�ed with the using the O+D
interface. Users read faster with the F+C interface, but this was at the cost of a lower
degree of text retention. When analyzing the reading patterns a few key navigation tasks
were identi�ed. For the essay task, most participants started with an initial orientation
by quickly �ipping through the full paper followed by a linear reading of the full paper
from start to end, and �nished by reviewing the paper. In the question answering task,
the navigation instead consisted of searching for targets, reading the found targets and,
in the overview condition, jumping directly to parts already visited. In another study
of navigation in maps [43], similar results were found, the participants were slower but
reported higher levels of satisfaction when navigating with an overview. Hornbæk and
Frœkær [44] proposed that this is because an overview invites users to perform additional,
perhaps unnecessary, explorations and that the overview helps users to remember what
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areas that have already been visited. These behaviors increase the quality of the task
performance but could potentially increase task completions times. This �nding is similar
to the �nding within pathology presented in the previous section that the revisitation
rate of already reviewed slides increased when the digital interface was used, which
provided more convenient means to switch between slides [87].

A recent development in multi-scale navigation are techniques that take advantage
of information in the underlying image, so called topology-aware navigation. This can
for example be a �sheye that adapts to the size and shape of the object under the lens
[80] or a gravity model that slightly steers the navigation onto targets [55].

A limitation of the laboratory search tasks above is that the goal has been to �nd a
speci�c target, which is, at least, qualitatively di�erent from a search task where a target
is not present. Another issue that has received little attention is what e�ects that these
techniques might have when being used extensively, and for long durations of time.

Overall, the HCI �eld contains a number of studies that like pathology deal with
large amount of data in multi-scale information spaces. The theoretical frameworks that
have been developed for these other domains can be reused within digital pathology,
and can be used to feedback contributions and insights from digital pathology research.
One major di�erence is the assumption in existing HCI research that there exists large
amounts of conceptualized information that can be visualized and �ltered. With a raw
digital pathology image there is only access to the pixels. This means that if only the
pixels could be turned into objects, it would possible to reuse a great deal of the existing
literature. This mapping is usually performed by making use of a computer vision system.
The get an understanding what current systems are capable of, the next section will go
through what these could potentially be capable of doing within the digital pathology
domain.

2.2 Computer vision and image analysis

Computer vision is a �eld of computer science aiming at generating descriptions or
models of the world using one or more images of it [106]. Digital Image Processing
on the other hand refers to processing digital images by means of a digital computer
[32]. Comparing these two approaches, computer vision is more related to arti�cial
intelligence, with the aim to trying to reproduce human perception in the machine. A
third term, Digital Image Analysis lies somewhere in-between the two. Gonzalez, Woods
[32] provide a useful separation of digital image processing into three levels: Low-level
processing only uses primitive operators and both the input and output of the processing
is an image. This includes simple forms of contrast and color enhancements. Mid-level
processing takes an image as input and detect intermediate features or segments, such as
edges, textures, contours, or coherent areas. High-level processing recognizes objects
and relates more to computer vision and digital image analysis.

The di�erent levels of processing can be performed in many ways, but machine
learning is now perhaps the most common technique to implement the mapping of the
result, especially from the mid-level output to a high-level output. In machine learning
[10], the idea is that instead of trying to �gure out a deterministic function or algorithm to
solve a certain problem, you provide a set of examples, here in the form of image features,
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together with a set of true values, training data. The machine learning then �gures out
how the algorithm or function should look like. Two types of machine learning are
particularly relevant to digital pathology: classi�cation and regression. In classi�cation,
you take a set of image features together with a set of classes and you automatically
construct the function. For example, to build a breast cancer detector system, you need
images from two classes, both cancerous tissue and non-cancerous tissue, to feed into the
system. In regression, you take set of image features together with a set of continuous
values and you automatically construct the function. For example, a survival risk score
estimator system, then you need a set of images, where each has a risk score attached to
it. The di�erences between the two concern what training mechanisms that are most
suitable to use and how the training data is structured.

When automatic systems are built using these systems, the output properties are
what matters. Exactly how that output is derived within the system is secondary. This
means for example that accuracy and speed are important properties for the design and
end-user, but whether it uses a neural network or a random forest to derive that output
can be left to the engineer to �gure out.

A common distinction among image analysis practitioners, is between unsupervised
features and handcrafted features. Unsupervised features mean that the image analysis
practitioner do not explicitly choose the mid-level features, and this is one of the main
advantages with so called deep learning approaches that have recently been developed
[59]. This can be achieved by training on a large dataset without a ground truth [2] or by
training on a similar dataset where a large number of labels are available [3].

Handcrafted features are mid-level features that the image analysis practitioner
actively chooses, for example, edge structures or color hue. Madabhushi et al. [65]
argue for a third distinction of features: domain inspired features that are a subclass
of handcrafted features speci�c to the application domain. This includes for digital
pathology, for example, that the entropy of gland angularity is a good feature for the
analysis of prostate cancer [65]. However, this distinction does not say anything about
whether the features are interpretable by pathologists. The view in this thesis is instead,
that these distinctions are useful for image analysis research, but are less valuable for the
end-user to understand. In the following section, this user-centric view will be used to
summarize what existing image analysis algorithms can do within digital pathology.

2.2.1 Image analysis in digital pathology

A number of reviews describe the types of algorithms that are available today. Gurcan et
al. [37] reviewed image analysis methods aiming at creating Computer Aided Diagnostic
tools, describing the whole chain from useful pre-processing methods such as color
normalization and image registration, to feature extraction and object detection methods.
Di Cataldo et al. [19] reviewed common steps involved in scoring of IHC slides as well
as algorithm used to score these slides. Riber-Hansen et al. [89] reviewed the use of
image analysis in a clinical setting whereas Hamilton et al. [39] reviewed use of image
analysis for biomarker research, and Veta et al. [111] focused on image analysis for breast
cancer pathology. Irshad et al. [47] provided a deep technical account of methods used
for detecting and classifying nuclei, and a recent smaller review by Madabhushi, Lee
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[65] discussed the use of Big data and Deep learning within digital pathology. Based on
these reviews, we will now discuss the state-of-the-art for di�erent digital pathology
applications, the algorithms’ performance and their shortcomings from a human-centered
perspective. To compare the di�erent algorithms, the F1-score will be used when available
for the cited sources.

Nuclei detection, counting and scoring Immunohistochemistry staining attaches to
the nucleus, the cytoplasm, the cell membrane or combinations of these. Nuclei detectors
and cell membrane scoring are the most commonly used algorithms. Nuclei detectors of
IHC-stained images perform at an accuracy level around 80-90%. Qi et al. [83] compared
di�erent segmentation scores and reached an F1-score (recalculated from the reported
precision and recall values) of 0.83 with their own algorithm, and others’ F1-scores
ranging from 0.60-0.81. For a task of counting 200 nuclei, this means that for the top score
0.83, the end-user would have to remove 34 nuclei that have been falsely counted and add
34 nuclei that have been missed to reach a perfect score, if we assume that the algorithm
is balanced. A related task on detecting nuclei on H&E images reaches detection rates
slightly higher than that, when using more sophisticated methods. Sirinukunwattana et
al. [98] used Deep Learning methods to reach an F1-score for epithelial nuclei of 0.88
(extracted from their chart in Fig 7). The accuracy depends heavily on the evaluation
methods used and the dataset that was used for evaluation, but these numbers give an
approximate performance of the state-of-the art performance of nuclei detectors.

However, to report for example the Ki-67 label index, it is also possible to estimate
the percentage value directly without using nuclei detection as an intermediate state.
Tuominen et al. [49] detected pixels belonging to epithelial nuclei, without segmenting
them, and used the ratio of positive and negative pixels to calculate the Ki-67 positivity.
This decreases the sensitivity of the algorithm to the di�cult task of separating fused
nuclei, but also make the result more abstract since it is not directly connected to manual
cell counting. This could potentially make it harder to detect systematic errors. Gud-
laugson et al. [35], use a well calibrated nuclei area ratio based system, and reach good
concordance with a manual ground truth based on systematic sampling (stereology), and
better prognostic power than a manual approach. Speci�c errors of nuclei area systems
have not been studied, but for example Tuominen et al. [49] removed two "outliers" from
their study due to weak staining and due to bad camera contrast. On the other hand, the
high prognostic power of these systems has been reproduced [99].

Hotspots and tumor hetereogeneity Tumors can often be heterogeneous. This
means that if the nuclei is counted in only a small area, the selection of the area to
measure can induce quite substantial error [9]. Once the nuclei have been detected it is
possible to model the heterogeneity andmake hotspot selections as is used by the software
in [99]. It is also possible to make hotspot selection based on more direct measurements,
such as the staining component, which is much faster than detecting every individual
nuclei [72]. Laurinavicius et al. [62] used calibrated nuclei detectors to model the whole
tumor to investigate di�erent heterogeneity measurements, and established that bimodal
positivity was an independent predictor of overall patient survival. Bimodal positivity
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refers to that there are two dominant populations of cells that have signi�cantly di�erent
positivity.

Mitosis detection Mitosis detection algorithms go beyond cell detection algorithms
in that when cells are detected, they also need to be classi�ed as being a mitotic �gure.
Mitosis detection are used in many types of cancer as a diagnostic feature, and is also
part of the Nottingham Histological Grade that is used to grade breast cancer tumors.
In the MITOS-challenge [90], the best performing algorithm reached an F1-score of the
detection rate of 0.78. The state of the art is arguably better represented by the AMIDA13
challenge, which used a more realistic setting where 14 di�erent research groups submit-
ted algorithms for evaluation on a common dataset [110]. The best performing algorithm
(from the same team as MITOS) in the evaluation reached a F1-score of 0.61, using a
deep learning approach. In the latest challenge, TUPAC16, the best performing algorithm
reached a F1-score of 0.652. It is natural that these results are lower than pure nuclei
detection considering that this is both a detection and a classi�cation task.

Prostate cancer grading Prostate cancer grading is usually performed using the Glea-
son system [18], which is based on classifying glandular growth patterns disregarding the
appearance of the cells making up the glands. Note that the latest ISUP consensus meeting
have modi�ed the system and recommend using the term Grade Groups 1-5 [22]. The
glandular patterns that should be detected have not changed, so existing image analysis
research based on the old classi�cation scheme are still valid. A number of algorithms for
this purpose have been developed. For example, Doyle et al. [20] �rst detected glandular
nuclei using the same approach as is used within IHC counting, to derive architectural
features, and combined these with texture features. The algorithm was then evaluated on
hand-selected image patches with a single homogeneous growth pattern at the Gleason
level. This resulted in a classi�cation system with accuracies of 0.77 for Gleason 3, 0.76
for Gleason 4, and 0.95 for Gleason 5 with the most balanced of the evaluated systems.
Both Gorelick et al. [33] and Jacobs et al. [53] used super-pixels and derived features to
use in a classi�er. The former study reached an accuracy of 0.72 in their most di�cult
experiment (leave-one-patient out), and the latter study reached a Gleason 3 accuracy
of 0.85 and a Gleason 4 accuracy of 0.77. Again it is hard to compare di�erent studies,
since they use di�erent datasets and evaluation metrics. If these accuracies were directly
translated to a visualization where the predicted class would correlate to the underlying
image the user would consider around 10-30% of the area to be wrongly classi�ed.

Metastasis detection in lymph nodes Perhaps the most promising algorithmic per-
formance to date is given by the CAMELYON16 challenge [15], that compared algorithms
for detection of metastases in lymph nodes. The best performing algorithm had a AUC-
value of 0.92 at the submission deadline. If submissions after deadline are included, the
best performing algorithm had a AUC of 0.97. Note that AUC values do not translate
directly to F1-score, which has been used so far.

2Personal correspondence.
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Tissue characterization and Prognostication The previous paragraphs report a
number of detection level accuracies. This represents the accuracy of when pixels are
turned into objects such as cells and glands. These results are not very encouraging, and
a pathologist would likely outperform these algorithms if given an appropriate protocol
de�nitions and the necessary amount of time to perform the detection tasks. However,
this does not mean that these algorithms cannot be useful. An algorithm can be used
to process a much larger amount of information than a pathologist has the time to go
through, and this information can then be averaged together and statistically outperform
the pathologist on high-level tasks. A number of studies have evaluated such approaches.

Beck et al. [8] built a prognostic model directly from mid-level image features and
skipped the normal middle steps of mitoses, glandular structures and cell morphology,
that added prognostic information beyond the manual grading system. Laurinavicius
et al. [62] showed that bimodality features built from non-perfect nuclei detectors also
added prognostic information. Stålhammar et al. [99] also used nuclei detectors to create
a proliferation score that was at least on par with the manual method. These studies
show that automation can be helpful in creating diagnostic systems in di�erent modes of
operation. It is, however, still unclear whether these modes of operation are the best from
a usability perspective, since non of them are fully automatic. The �rst mentioned study
[8] used TMAs to perform the analysis, meaning that a pathologist had already chosen the
representative area for analysis. The second study [62] used a manual time-consuming
calibration procedure to derive its values, and the third study [99] added the manual
work of creating consequent cytokeratin stain, which was co-registered with the Ki-67
staining in order to easily distinguish tumor nuclei. This thesis tries to bridge this gap by
building systems based on semi-automatic tools with good usability and e�ciency for
the end user.

2.3 Human-centered design in medicine

The past sections described di�erent areas of research providing knowledge and building
blocks necessary to design a digital workstation for pathologists. Design interventions
within medicine need to be understood both from a medical perspective but also from
a design perspective. These two aspects are not always easy to combine, since they
have arised from di�erent traditions. In this �nal section in the background, these two
perspectives and how they might be combined will be described.

2.3.1 Building evidence in medicine

Evidence-based medicine is the current predominant view within western medicine. It
means that the practitioner should strive towards including as much external clinical
evidence as possible, combined with individual expertise to make clinical decisions with
the patient in focus. Evidence is used to decide whether a novel practice is better than
the current best practice. Evidence is commonly seen as, but not limited to, randomized
trials, meta-analyses and other types of controlled experiments. Even though the term
was �rst formally de�ned in 1996 by Sacket et al. [93] as “the conscientious and judicious
use of current best evidence from clinical care research in the management of individual
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patients”, Claridge et Fabian [16] notes that evidence-based medicine has been developed
through centuries of medical practice. They further list how evidence should be valued.
One or many large randomized trials are valued the most, whereas descriptive studies,
clinical experience, and outcomes from expert committees should be less valued. Evidence-
based medicine has also been criticized. Greenhalgh et al. [34] highlight problems this
system: that industry distorts evidence and increasingly sets the research agenda, that
the vast amount of evidence is di�cult to overview, that statistical signi�cance takes
precedence over actual signi�cance, and that algorithmic rules are emphasized over good
judgement.

The evidenced-based medicine view has a large impact on what scienti�c studies are
seen as important and how di�erent outcomes are judged. For example, one of the most
common types of study performed within the digital pathology domain is a comparative
validation of the review with a microscope and digital workstation. A recent meta-review
found 38 such comparative studies, covering over 5000 case reviews, but concluded
that more research was needed since the studies were too heterogeneous to perform a
meta-analysis [30].

Statistical testing of quantitative measurements are favored. Within digital pathology,
and pathology in general, a large number of studies are measured either by its predictive
value, prognostic value, or by its concordance. Predictive value translates to whether the
diagnostic categorization is able to predict if the patient responds to a particular drug,
treatment or similar. Prognostic value is from a statistical point of the view the same type
of measurement, but the term is reserved for predictions about outcome in untreated
individuals [48]. Concordance refers to the degree to which di�erent pathologists make
the same diagnostic decision when presented with the same case. These concepts relate
to validity and reliability. If the predictive or prognostic value is high, it means that the
diagnostic method has a high validity and is able to inform actual clinical decisions at a
population level. High concordance means high agreement between multiple pathologists
doing the same diagnostic task. This increases the reliability for the individual patient,
i.e., the probability of an erroneous diagnosis for an individual patient is low. A good
diagnostic test should both have high predictive value and concordance, even though the
measures can be interdependent.

When evaluating digital image analysis algorithms, the methods are very similar to
when evaluating diagnostic procedures. However, concordance cannot meaningfully
be measured, since most algorithms produces the same result every time. Instead the
variability of algorithms is estimated by assembling ground truth datasets. A ground
truth dataset consists of a number of images that have been manually annotated by one
or more pathologists. The type of image and the type of annotation di�er from case to
case. For di�erent prostate cancer detection algorithm the annotations types di�er: one
study meticulously contoured all areas by a physician into nine di�erent classes [33],
whereas another study focused on contouring areas of homogenous tissue of six classes
[20]. These annotations are then considered being the ground truth, and an automatic
algorithm is evaluated against how well it can reproduce that ground truth. This type
of experiment is not able to say anything about whether an algorithm could possibly
outperform the pathologist, since the ground truth dataset is created by the pathologists.
To do that, studies comparing the predictive value of the automatic method against the
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manual method need to be performed.
These statistical metrics form the basis of evaluation in the digital pathology domain,

and papers are judged on how well they perform on these metrics, and how sound the
statistical method of the particular study is. And the idea is that once a diagnostic method
or procedure is better than current best practice, that practice should be updated with
the new �ndings. This forms a sort of community level design process were poor designs
are slowly replaced with new better ones.

2.3.2 HCI and design research

HCI and design research concern the creation of new artefacts and how well they work in
the larger context. Simon [97] sees design as courses of action aimed at changing existing

situations into preferred ones. This is based on an idea that design and other arti�cial
sciences can be considered being science if they are seen as reproducible processes. This
means that a certain design process can be seen as useful if it again and again produces
successful outcomes, even though the actual outcomes are di�erent. The outcomes
instead depend on the context within which the design process is carried out. This view
�ts well into the problem of creating new tools for pathologists. Another view on design
is that design practice and science should be kept separate, since science tries to be true
at all times [104]. With this strict view on science, medicine cannot be seen as a science
either, since evidence-based medicine is based on continuously updating the current best
practice. For this thesis, this distinction is less important and instead the view is that
design can inform medical practice and vice versa. But when it comes to the research
practice within HCI and design compared to medicine, there are a number of larger
di�erences, which the next sections will try to highlight.

2.3.3 The role of iteration

Design improvements are the product of an iterative process. The development of
diagnostic methods can also be seen as iterative; a new method can build on an old
method. The main di�erence between design and medicine lies in the pacing of the
iterations. To put it bluntly, from a design perspective it seems outrageous that the
medical community has spent the time to perform 38 studies [30], comparing basically
the same digital workstation with the microscope, when the same amount of time could
have been spent developing a better one! In design, the number of iterations are more
important, and only small studies are performed that are aimed at gaining as much
information in order to inform the implementation the next iteration. A now established
rule of thumb in design literature states that �ve users is enough for evaluations. This
rule has its basis in a cost-bene�t analysis investigating how many new usability issues
are found in a system when more users are added to a study [73]. When performing
usability studies to support an underlying design process it can, for example, be better to
perform �ve studies with �ve participants, than one study with 25 participants.

Digital pathology is considered to be the domain of inquiry for this thesis. When
designing for a novel domain, it is common in the HCI literature to �rst perform a ground-
ing study, followed by an iterative design process and evaluation of a �nal prototype.
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For example, Santosa, Wigdor [94] �rst performed a �eld study to explore how people
used multiple devices such as computers, tablets and smartphones together. This was
then followed up by making an iterative design intervention, to make a software that
leveraged the ground work, and making a multi-device problem solving software in a
second study [40]. Similarly, Knaving, Wozniak et al. [58] �rst presented a grounding
study in the form a ethnographic study of amateur runners and their motivations. This
was then followed up with a design intervention in the form a portable device that could
be worn during races [117]. Within digital pathology, a similar design approach was used
by Randell et al. who tried to understand pathologists working with microscopes [85,
88], and then used that knowledge to design and evaluate a digital workstation (e.g [87]).

2.3.4 The context of studies

Medical studies of diagnostic techniques are quite good at creating a realistic evaluation
setting for their controlled studies. The most common approach is to validate novel
methods for large cohorts of patients, where the diagnostic task is incorporated into
everyday work. A common drawback from the HCI perspective is that while the number
of cases is large, the number of pathologists participating in the studies is usually low.
However, concordance studies usually contain a large number of participants. Because
these are performed as controlled studies, where the response is the most important,
the process of how the response is generated is not recorded. This means that when a
medical study �nds a problematic situation or design, it is di�cult to understand the
underlying reason. In an HCI study, dependent variables are almost always recorded
along with some sort of qualitative data to aid understanding of the process by which
the response is generated. In the controlled studies performed within the scope of this
thesis, both quantitative and qualitative recordings have been performed, which help us
understand how diagnostic decisions are made.

This summarized the overall design approach used throughout the di�erent studies.
Note that the words HCI and design has been used interchangeably and that there is a
lot more nuance to these concepts if you look more deeply into to the design literature.
A more detailed record of the methodology that has been used is provided within each
paper.
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Paper summary

Based on the presented background, we will now shortly summarize the eight included
papers, P1-P8, in this thesis. The topics of the papers were chosen iteratively throughout
the PhD project. Roughly, two or three projects were developed simultaneously and when
one paper was �nished, another project was initiated based on the previous projects. This
approach created a somewhat coherent story between the di�erent papers. The papers
are presented in a rough chronological order, except P6, that was one of the �rst projects
but is easier to understand if it is read later.

In total, �ve evaluations of high �delity prototypes are presented, these have �ve
(in P2), six (in P3), two (in P4), four (in P6), and eight (in P7) pathologists participating
in the study. This is su�cient to provide an acceptable understanding of the use of the
prototype, but the statistical tests in the studies are quite low-powered and are only able
to detect large di�erences in the quantitative measurements. The aim was to gain a rich
understanding of the digital pathology domain, many smaller studies were therefore
prioritized over one or two larger studies.

The type of studies di�ers between the papers. P1 and P2 can be seen as grounding
studies, and P3-P7 represent the development and evaluation of di�erent design inter-
ventions. The last paper (P8), is instead based on design re�ection, where we try to look
back at the earlier work and derive generalizable design advice.

This work builds upon the work by Randell et al. who grounded their investigations
by studying the work with microscopes. In contrast, our work is based on user studies
of the �rst generation of digital workstations instead of with microscopes. This made it
possible to perform more iterations further into the future within the limited time of the
thesis work. This also limits our design space so that, for example, telepathology with
video cameras mounted on microscopes are not even considered [77].

P1: Implementation of large-scale routine diagnostics using whole slide imag-

ing in Sweden. This paper presents hands-on experiences from implementing whole-
slide imaging within a medium-size pathology laboratory. The paper describes how
digital pathology can be practically implemented in order to perform diagnostic review
of routine cases. This means that the laboratory processes need to be adapted because
the scanners are more sensitive to artefacts than when pathologists review slides with
the microscope. The main bene�ts of performing the review with computer workstations
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have been the improved ergonomic situation (especially with respect to neck problems),
the improved overview of a glass slide, and the possibility to review cases from a distance.
In a questionnaire sent out to the users of the system, a number of drawbacks with the
�rst generation of the digital solutions were identi�ed. Some of the drawbacks were later
addressed within projects of this thesis:

1. The speed of digital review was not faster than with the microscope.
2. Digital annotations were not used as much as expected.
3. The digital reporting of a case was not more convenient.
4. The automatic counting algorithms were not used as much as expected.
5. The navigation of the digital slides could be improved.

P2: Slide navigation patterns among pathologists with long experience of digi-

tal review In order to improve the navigation of digital slides, it was important to
understand what normal navigational patterns were and how they could vary. This
could potentially guide a number of design interventions. Since the aim was to support
the design process, the study focused on dynamic properties of the movement. This
meant that heatmaps and similar that had already been studied were left out. Instead
the navigation tracks of �ve pathologists reviewing a set of representative cases were
recorded together with their think-aloud statements. Using a thematic analysis of the
movements, six di�erent types of movements were identi�ed and analyzed. A main
result that is relevant for the following studies was that more than half of the navigation
time was spent on tedious panning back and forth within the digital slide, a pattern
we named Cover panning. This exploration pattern was used to determine whether a
diagnostic �nding was absent in a slide. This is distinctly di�erent from what we called
Sporadic panning, which is also pure panning but with a more random direction of search.
This type of movement was associated with an opportunistic search, meaning that the
pathologist believed that a particular �nding should be present in a slide and tried to �nd
it as soon as possible. Another important navigation strategy that was used was to point
at �ndings, and then quickly zoom in and then zoom out, which was named Dip-zooming.
These highlighted navigation strategies can support the design of the digital workstation
in many ways. In P3, these insights were used to design navigation with a number of
input devices. In P7, visualization techniques was used to reduce the need for cover
panning, replacing it with Dip-zooming.

P3: A comparative study of input devices for digital slide navigation. The pur-
pose of this study was to evaluate di�erent input devices for navigation in diagnostic
review. An initial limitation was set to input devices already available on the market to
increase the likelihood of creating something that could actually be used. The design
process aimed at adapting each of the selected input devices to support the exploration
patterns described in the previous paper. A standard computer mouse, a portable touch-
pad device, and a 6-DOF controller (a puck that senses when it is pushed and twisted in
di�erent directions) were used as a basis for di�erent software implementations. Each
implementation went through an iterative design process to ensure good performance
before they were evaluated. The evaluation estimated the di�erence in physical and
cognitive load between the devices using the established NASA-TLX method. The study
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also captured the six pathologists’ user experience performing diagnostic review with
the devices. Both the computer mouse and the 6DOF-controller performed well, whereas
the touchpad performed poorly. When asked directly after the study, �ve out of six
pathologists preferred the 6DOF-controller over the computer mouse. Informal observa-
tions when visiting pathology departments after the publication of the study seems to
support the �nding that using a touchpad for digital pathology is generally a bad idea,
and it is hardly used by anybody. A number of pathologists still like the 6DOF-controller
and use it in their daily work, but many prefer using the computer mouse. A few users
have acquired a 6DOF-controller and uses it for zooming and for easy access to hotkeys,
whereas panning is performed with the computer mouse. A future follow-up study could
look further into this bimanual control, but could also evaluate the NASA-TLX method
as a predictor of future performance.

P4: Improving the creation and reporting of structured �ndings during digital

pathology review. The idea with this paper was to combine structured reporting with
a shoe-boxing interface adapted for diagnostic review. Historically, the main purpose of
structured reports has been to categorize measurements in order to allow for automatic
data extraction, in contrast to the free-text reports that are predominant at most hospitals.
Shoe-boxing interfaces were described in the sensemaking section as an interface that
facilitate the temporary storage of �ndings, such as diagnostic key images or di�erent
tumor measurements. This paper reports on a design-based research study with the
aim to develop an understanding of the design space for structured reporting within
digital pathology. The paper reports �ndings from the design process and a small user
study with the �nal prototype. This paper touches upon two of the user needs reported
in the paper P1: that digital annotations were not used as much as expected and that
digital reporting was not more convenient than reporting at the microscope. To simplify
the study, we decided to make an optimized interface to only review and report on a
particular kind of diagnoses: partial mastectomies. The �nal evaluation resulted in very
optimistic users, but the study does not tell us much about whether this approach could
be generalized to other pathology domains. This shows a very interesting future avenue
of research since this way of reporting could be relevant also for domains other than
pathology within medical imaging.

P5: Towards gradingGleason score using generically trained deep convolutional

neural networks. This study was a �rst of two studies investigating how image anal-
ysis can be developed and used within digital pathology. This describes the algorithm
development of a larger project, where an interactive prototype using the algorithms
also were developed. The algorithm uses a deep learning network that had been trained
on photographic images. The top of the network was then discarded and replaced with
a random forest machine learning component that uses the deep learning features to
re-train on prostate cancer growth patterns. The paper describes a purely technical eval-
uation of the approach. The technical validation used cross-validation of the algorithm’s
predictions on a ground-truth dataset, which consisted of image patches of prostate
cancer with a homogeneous grade for all glands. The most interesting result from this
thesis’s point of view, is that when the algorithm is evaluated in full resolution, the patch
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accuracy was 81% compared to ground truth. When the overall score was calculated,
combining the classi�cation result from multiple patches, the overall accuracy increased
to 89%. This highlights that there is a trade-o� between resolution and overall accuracy.

P6: Feature-enhancing zoom to facilitate Ki-67 hot spot selection. This paper
was the �rst of two to investigate an idea to use image �lters to modulate the visibility
of di�erent image features in low magni�cation in a pathology slide. The purpose with
this approach was to visualize the pathology slides in a way that di�erent diagnostic
tasks become easier to perform. In this �rst paper, the focus was on selecting a Ki-67
hotspot. This is a common task, at least in Sweden, where breast cancer pathologists
are supposed to select an area consisting of 200 cells, where the percentage of positive
cells is as high as possible. This is a challenge, since the brown positive nuclei are not
visible in low magni�cation, which makes it impossible to see the whole slide at the
same time as the nuclei is visible. The paper presents a feasibility study of an attempt at
making the nuclei visible in an interactive prototype. The presented method included
color deconvolution to separate out the positive staining component, and Gaussian kernel
�ltering combined with a linear contrast enhancement to make the nuclei larger. The
method was applied on the full size of the image in the highest magni�cation, which was
then subsampled. The subsampled separated stain channel was then combined so that
the staining component was visible in low magni�cation whereas the original image was
maintained in high magni�cation. This created an e�ect of zooming in into the original

image. The visualization system was evaluated in a user study with four pathologists.
The study compared the accuracy of detecting hotspots with and without the system,
by letting the users select between pairs of possible hotspots in low magni�cation. The
study also included a short debrie�ng interview after the trials with each participant. A
number of important �ndings were reported that were used to support the next design
iteration in the subsequent paper.

1. The design pattern to zoom into the original image was well received.
2. The transition between low and high magni�cation was not smooth enough.
3. It was di�cult to see what was tumor cells, since the background intensity had

been decreased too much.

P7: Scale Stain: Multi-Resolution Feature Enhancement in Pathology Visualiza-

tion. This paper used the understanding gained in the �rst study (P6) to create a new
and improved version of the visualization. The enlargement mechanism in the previous
version was replaced with max-value subsampling, which performed the enlargement
and subsampling in the same processing step. This created a smooth transition between
low and high magni�cation. The tumor cell visibility problem was solved by making the
method interactive: it is possible to modify the sensitivity of the visibility enhancement
and how much of the background staining that should be visible. The processing method
also became computationally parallelizable, which was necessary in order to make the
method suitable for routine deployment. The �nal system was evaluated in a usability
study with eight pathologists. The study measured e�ciency and accuracy of two di-
agnostic tasks (hotspot selection and bacteria detection), recorded navigation using the
same method as in P2, and included a short debrie�ng interview. The use of the tool



Chapter 3. Paper summary 33

for two diagnostic task resulted in a 15% e�ciency increase at maintained accuracy. As
predicted, the behavior of the participants changed completely when the visualization
tool was used. Without the tool, the participants in the study used Cover-panning in
medium magni�cation in order to conclude absence of �ndings. When the targets was
visible in low magni�cation with the tool, a number of Dip-zooms were instead used to
check the most suspected regions of interest.

P8: Understanding Design for Automated Image Analysis in Digital Pathology.

The last paper in the thesis, in contrast the other papers, was based on design re�ection.
The aim with this study was to look back at a number of design activities and try to extract
generalizable results. To make this study possible, design artefacts that were created
throughout the PhD project was saved and organized in order to make a retrospective
analysis possible in line with Obrenovic [74]. The analysis generalizes on experience
from three image analysis projects. The �rst project included corresponds to P6 and
P7, which was especially well documented. The prostate cancer project presented in P5
included a few user studies that were performed within the PhD projects but have not
been published separately. I was also involved in a commercial project at Sectra aiming
at creating an automatic cell counting tool, which included substantial user study data
that have not been published either. These three projects make up a large basis of data.
The data comes from di�erent projects, but are still from within a con�ned scope.

The paper presents a retrospective analysis of the di�erent design artefacts that were
created during these three projects in order to be able to distill actionable design consider-
ations that another designer could reuse in a similar scenario. Four main considerations
were derived:

The �rst consideration, Design to improve veri�cation and correction, is a consequence
of the fact that when automation is implemented in practice, the manual task is trans-
formed into a veri�cation and correction task. This means that in order for automation to
be bene�cial, the time it takes to verify and possibly to correct the result will determine
the e�ciency of the whole system. There are many ways to visualize a result, and the
interaction design should aim at exploring di�erent visualization, calibration, and explo-
ration interfaces to achieve good e�ciency. The need for veri�cation is independent of
the accuracy of the algorithm, if the algorithm is below the non-perfect level.

The second consideration, Design for algorithm transparency, communicates that
it is still important to consider the errors that naturally occur. This means that the
designer should make sure that errors that occur are transparent to the user. A major
problem with creating such designs is to be able to communicate the algorithmic results
without occluding important information in the original image. This becomes even more
challenging, if the algorithm outputs useful uncertainty information, which can increase
the amount of occlusion even more.

The third consideration, Support veri�cation on di�erent levels of detail, talks about
how to support the speed-accuracy trade-o� in a veri�cation scenario. Depending on
how close a certain score or estimated percentage value is to a clinical decision border, the
need for good accuracy varies. This means that the veri�cation task that the pathologist
performs needs to be possible to perform quickly in some cases, and more careful in other
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cases. This can be implemented, by visualizing the result on di�erent levels of detail, that
the user can choose between in order to modulate the speed.

The last consideration, Design for communication with clinicians, echoes the conclu-
sions in P1 and P5 that reporting �ndings is important for a digital workstation in general.
But in the context of automation reporting can be even more important. Assume that the
time it takes to automatically count a number of nuclei and verify and correct the result
is the same time as it takes to manually count all the cells. If the task is performed in
the �rst way, the value can automatically be inserted in the �nal report and be traceable
back to the original count. If it is done manually, the value instead needs to be dictated
and transcribed, which decreases the overall e�ciency. This means that designing how
the �nal values are reported can be one of the major time savers and not the task itself.
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Discussion

By reviewing the papers that are included in this thesis, a number of interesting discus-
sions can be derived. The following sections will discuss reoccurring themes and relate
them to the presented background.

4.1 Cognitive strategies in multi-scale images

A number of the presented papers study how to solve problems in large multi-scale
images. This relates to a number of areas covered in the background section: theory
of problem solving, how human visual search process work, and how existing design
solutions for multi-scale images look like.

The results from P1 and P2 pointed towards that systematic search by panning were
important tasks for pathologists. Current digital interfaces do not support this task well.
A standard P+Z interface requires the user to restart the panning movement over and
over again, which is not a sustainable task for pathologists to perform. An O+D interface
increases the convenience slightly, since the user can hold the mouse button down in
the overview in order to pan over large areas using the increased panning sensitivity.
Users reported in P1, that this was the major panning strategy to get past limitations of
the interface. In P3, a number of input devices were tailored to support this task well. A
lock function was introduced for the computer mouse, so that clicking the mouse wheel
increased the sensitivity to a similar level to that of the overview. The 6DOF-controller
has a high sensitivity mode close to the end of the puck’s movement range, and the
touchpad has a double click and hold function that also increased the sensitivity. All
these individual features were well received by the users, even if the touchpad solution
overall performed poorly in the evaluation.

These design solutions could also work well within similar domains working within
large two-dimensional spaces. Many applications today include similar lock functionality,
where the mouse controls the scrolling using rate control instead of using position control.
In future research, it would be interesting to investigate the di�erence in document
navigation performance between the two types of lock modes. That is, to examine
the apparent similarity between the navigation patterns that pathologists performed
in Paper II and the reading patterns described in the study by Hornbaek, Frokaer [44].
The behaviors described in their paper (quickly �ipping through a paper, systematically
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searching for targets, and jumping to already visited part in the overview) all have analogs
with pathology navigation.

In the same paper [44], it was suggested that an overview invites readers to perform
additional, perhaps unnecessary, explorations. A recent study with pathologists came
to the same conclusion, where the additional explorations were seen as increasing the
quality of the review [87]. Increasing the quality is of course bene�cial but it does not
help pathologists to produce more reports with less resources. This phenomenon might
therefore be problematic, considering the current lack of pathologists in Sweden. An
import research question is therefore: How can interfaces be designed that increases the
e�ciency while the quality is maintained?

Designing to support these systematic search tasks is crucial to improve the pathol-
ogists’ work since it is made up to a large extent of time spent examining tissue. This
can be performed as in P3 by implementing support for the task manually using input
devices, or as in P6 and P7 by using an alternative visualization. A third approach, which
is more commonly mentioned in the literature, is to use di�erent digital image analysis
algorithms. In practical applications, as is argued in P8, it is a good design idea to stack
the automatic approach on top of the manual and visualization approaches so that there
is a fallback in place when the automation fails.

One of the most important �ndings from P2 was the role of cover panning in order to
conclude the absence of a particular �nding. Knowing that something is absent requires
considerably more work than knowing that something is present. Therefore, for many
tasks the pathologist needs to exhaustively search an area, making sure that everything
has been covered. Because of the top-down processes in the visual system, it is only
possible to search for one feature at the time. On the other hand, if something is present,
the pathologist only needs to perform opportunistic search in the form of sporadic
panning. Only if that something is not found, it is needed to perform an exhaustive
search. This was re�ected in P2, where cover panning represents systematic search, and
sporadic panning represents opportunistic search.

Interestingly, this distinction of the movement were only based on studying the
navigational patterns within the image, and not using any of the think-aloud data. But
when the think-aloud data were correlated with navigation patterns, this distinction
became clearer.

This type of problem-solving can also be compared with the haystack problem; �nding
a needle in a haystack is hard, but to conclude there is no needle at all is a lot harder.
In reality it is di�cult to guarantee that something very small is not present, so in the
pathology report it is often written that an exhaustive search have been performed for X,
but that there is no guarantee that X has not been missed. The visualization approach
presented in P7 tries to remedy this problem by guaranteeing a close to 100% sensitivity
for stained objects.
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4.2 Image to object mapping and how to deal with its

errors

In the background section it was established that there exists a large body of research
dealing with information visualization. In order to make use of those techniques in digital
pathology images, the image pixels need to be turned into objects. Computer vision
and machine learning are techniques that can be used for this purpose. State-of-the
art algorithms can turn pixels into cell nuclei with around 80-90% accuracy and detect
malignant prostate glands at a similar level of accuracy. This level of performance is
impressive, but it still means that many errors need to be corrected in order to reach a
perfect mapping between the pixel-based image and the detected objects.

Our �rst application dealing with this problem was the application described in P6: a
prototype that enhances the pixels belonging to positive nuclei without turning them
into detected nuclei. In P6, a feasibility study with users was performed of a technically
simple algorithm to perform this enhancement. In P7, this prototype was then further
developed by improving the enhancement algorithm and by adding di�erent interactive
patterns that was learned during the feasibility study.

A comparison of the enhancement method presented in P6, P7 and a reference color
deconvolution is given in Figure 4.1. The �gure highlights the progressive design im-
provements. The method in P6 increased the comparative performance between areas of
di�erent positivity. However, it lacked the ability to maintain visibility for areas with
low positivity. This was improved in P7, where the area with 9% positivity has a much
higher visibility.

Something that is not visible in the �gure, and di�cult to reproduce on paper alto-
gether, is the improved continuity between the low and high magni�cation representation.
This was something that users complained about in P6, but did not bring up even when
asked for in P7.

The enhancement methods improved the task that was performed, since they made
the positive nuclei more visible. They make use of what normally seen as a preprocessing
step for nuclei segmentation, but the methods do not take the step to make objects out of
the pixels. Maintaining this conceptual connection between the original image and the
output of the automatic system does however not require creating a smooth transition
between the two. In a development project at Sectra, which is brie�y mentioned in P8,
two types of cell counting visualizations were highlighted, see Figure 4.2. With one of
the types, it is very hard to know whether the detected cells are actual cells, and it is not
possible to detect whether a nucleus is positive or negative, because the visualization has
lost the conceptual connection with the original image, which means that the user has to
think or act in order to verify the result. This increases the cost of comparing the class of
the detected object and the class of the image.

As soon as the pixels are turned into detected nuclei, existing information visualization
techniques can be used. The selection of techniques is however limited by two factors.
First, the spatial correlation between the visualization and the background image needs
to be maintained similarly to geographical information systems. Second, the conceptual
connection to the background needs to be maintained, i.e., it cannot be occluded.
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Original image Color deconvolution at low magnification

Enhancement method in Paper 6 Enhancement method in Paper 7

~9%

~17%

Figure 4.1: Comparison of two enhancement methods and standard color deconvolution
[92]. Compare how the two highlighted areas are reproduced in low magni�cation.

(a) Result visualization that
occludes cells

(b) Result visualization where it is pos-
sible to see the result

Figure 4.2: Comparing two types of visualizations to report automatic cell counts.
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Lobo et al. [63] compared di�erent interfaces to detect errors between spatially
matched satellite images and maps. This is a very similar situation, since the satellite
images have a photographic nature similar to the pathology images, and a map has a
graphical nature in the same way as a counting overlay. That study recommends using
translucent overlays to make these comparative tasks over showing the graphics and
the image side-by-side, or di�erent interactive blending and lens methods. Our design is
most similar to the translucent overlay but blends the graphics with the image by local
translation. This points towards that �ndings in digital pathology can be translated to
GIS systems and back. A future study interesting for both domains would be to reproduce
the Lobo study but focus on di�erent ways of creating overlays, not only translucent
ones.

It is possible to envision a number of scenarios where being able to detect errors in
the pixel-to-object mapping is a crucial task. First, algorithms tend to fail unpredictably
and non -linearly [4]. Figure 4.3 displays an algorithm that has an estimated F1-score
of 0.80 in line with the state-of-the-art. It completely fails when there is a non-speci�c
staining component that a pathologist would not even think about if counting manually.

An appropriate visualization method can ensure that a large number of errors are
detected, which is especially important in the pathology setting described in this thesis.
The detected error can then be used in many ways. The most common way is probably
to alert the algorithm designer who can then make sure that the same error does not
occur again. In the example in the �gure, an edge �lter solved the problem. The role of
the visualization is here to make sure that these errors are discovered in the �rst place.

The visualization could also be used to improve a machine learning algorithm more
directly. By letting the user record the errors and correct them, the corrections could
be used to improve the algorithm themselves. This approach was recently used for
example to label photographic images [68], and involves modeling the inherent noise
that arise from user corrections. One of our collaborators are exploring this approach
based on pathologists’ corrections, with promising preliminary results, pointing towards
an exciting future avenue of research.

Visualization can also preserve a richness of the data, which an automatic decision or
descriptive statistic is not able to do. As reported in the background section, Laurinavicius
et al. [62] used nuclei detection algorithms to detect and classify all the tumor nuclei
in a large set of Ki-67 breast cancer slides. This was then used to look at di�erent
heterogeneity measurements and their connection with overall patient survivals. Their
carefully calibrated nuclei detection algorithm made it possible to detect these patterns.
By using the method developed in P7, this tumor heterogeneity can be visualized without
detecting the nuclei in the �rst place, which results in a rich understanding of the
positivity distribution. In Figure 4.4, two tumors with di�erent bimodality using the
novel visualization technique are displayed.

I would argue that there many similar opportunities to visualize pathology images in
di�erent ways, to perform exploratory research based on digital images. There are also
many opportunities in designing di�erent clinical tools that make use of visualization
techniques. In P8, the aim is to present advice to perform design work in building such
tools. There are probably many solutions to the design problems that are described. The
point is that by using the developed design guidelines, it is possible to speed up the design
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Figure 4.3: Automatic algorithms can fail unexpectedly when in front of an unknown
situation. The image displays automatically counted positive (brown) nuclei by an
algorithm with an estimated F1-score of 0.8. The non-speci�c staining component
is counted as positive nuclei and the estimated percentage reaches 64% instead of a
percentage below 10%.

High positivity
Low positivity

High bimodality Low bimodality

Medium positivity in whole tumor

Hotspot containing

200 cells

Figure 4.4: Example of di�erent bimodalities as described by Laurinavicius et al. [62]
of two breast tumors with similar overall Ki-67 positivity. The staining expression has
been enhanced by the method described in P7.
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A  Nuclear counting B  Hotspot selection C  Prostate grading

5X

1  Select medium magnification

2  Make sure nuclei are visible
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2  Zoom in on the 
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    then click on the errors
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3  Measure all the 
    biopsy lengths and
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4  Dictate the report

1  Pan through 
    the biopsies.

2  Change the classifications
    that are wrong.

3  Automatically 
    generate the 
    final report.

Manual task

With automatic aid

Figure 4.5: Figure from P8, comparing manual tasks (A-C) and how those tasks can be
transformed when an automatic algorithm is used to build an interactive tool.

process by �rst trying out solutions that have worked before. During the development of
a digital workstation, the reformulation tactic also apply to the tools that are developed
because digital images are used instead of glass slides.

As a general rule, the visualization and the interface design for presenting and inter-
acting with algorithmic output should be a designed experience where the algorithmic
characteristics are combined with e�cient visualizations and pathologists’ capabilities.
When this design work is performed, it is useful to think about how di�erent diagnostic
tasks can be reformulated. In P8, three examples are given how this could work: for cell
counting, hotspot selection and the prostate cancer grading. The corresponding �gure is
provided in Figure 4.5.

Overall there are many possibilities to perform HCI or visualization research within
digital pathology to make sure that the power of automatic algorithms can be turned into
patient bene�t by being implemented in clinical routine pathology.

4.3 Comparing design processes

A human-centered design process starts with the user in focus, but there is no guarantee
that a process carried out at one place, can be reproduced within another context. This
thesis together with its appended papers, form a design process that has been publicly
documented, which has been carried out as a research process with industry connection
in Linköping. Interestingly, a similar human-centered design process was carried out to
design a workstation for digital pathology called the Leeds Virtual Microscope (LVM)
[87], which largely predates this thesis. The leader of that process has co-authored P7 and
P8, but the design processes have for the most part have been carried out independently.
Now there exists an in-depth description of the design decisions taken in their process,
published by Ruddle et al. [91]. This gives us a great opportunity to compare two separate
design processes sharing the same purpose.
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Directed
panning Cover panning

Sporadic
panning

Zooming
in

Zooming
out Dip-

zooming

Pan-only
navigate

Pan-only search
Pan & Zoom Zoom-only

Paper II

Ruddle et al. [12] Pan between
slides

Figure 4.6: Comparing the time spent on di�erent navigation strategies between the
study presented in P2 and Ruddle et al. [91]. In order to match the percentages, a few
categories have been merged.

In P2, the pathologists’ movements across the digital images were conceptualized in
categories called navlets. A similar conceptualization was published by Ruddle et al. [91],
who de�ned meta-actions similar to the navlet concept. Comparing the de�nitions, the
Directed panning navlet is almost exactly the same as the Pan-only navigate meta-action.
Cover panning and Sporadic panning navlets can be combined into the Pan-only search

meta-action. With respect to zooming however, all actions need to be merged into a single
category in order for them to be comparable. A comparison of the reported percentages
is given in Figure 4.6.

The statistics from the two di�erent workstation with similar cases are largely repro-
duced between the two studies. The largest di�erence is that the amount of zooming was
higher in P2 and that the amount of directed panning was higher in the Ruddle study.
This can be due to di�erences in the user interfaces, that di�erent cases were used, or
that di�erent pathologists participated in the studies. Overall, the navigation behavior is
very similar considering the di�erences.

Slightly di�erent evaluation methods were used to study the navigation. In P2 the
navigation patterns were recorded together with think-aloud statements. This means
that we know more about the participant’s goal setting behavior. Our view was that the
main reason why a participant revisited a certain area was to search for one thing at the
time. This type of goal setting data is harder to record otherwise. Another insight made
possible by the think-aloud statements were that we saw cover panning as something
associated with concluding absence, whereas sporadic panning is a type of opportunistic
search, when there is perceived high prevalence of the sought-after feature. However,
the Ruddle et al. [91] study has higher validity since their method is less intrusive; the
think-aloud method is known to slow the review down and could have an e�ect on the
time spent on di�erent activities [23]. This means that their recorded behavior is likely
to be more accurate than the study presented in P2.

When comparing the design process of both workstations a number of shared design
goals can be detected that have resulted in di�erent design solutions. To highlight these
di�erences, a number of di�erent common challenges are listed next, along with their
respective design solutions.

Cognitive lag A cognitive lag is introduced when pathologists have to jump between
regions of interest by panning and zooming.
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LVM Regions of interest can be identi�ed and retained in a large thumbnail. This makes
it possible for the user to click in the thumbnail to quickly jump between them and
remember where they are.

Linköping Supports shoe-boxing of regions of interest. One button is designated to store
a �eld of view and two other buttons are designated to cycle through stored views.

Systematic search The diagnostic review is mostly made up by systematically search-
ing for �ndings with panning.

LVM A gaming mouse is used to make sure this task can be performed as fast as possible,
and a large display is used so that the pathologist see as much information as in
the microscope.

Linköping The visualization method presented in P6 and P7 reduces the need to perform
for a number of tasks. For the remaining tasks the 6DOF controller is con�gured to
optimize comfort and e�ciency.

Panning sensitivity It is problematic to make small panning movements when the
sensitivity is high due to the large magni�cation.

LVM The large thumbnail decreases the size ratio between the detail view and the
overview. This makes it easier to control the panning movements, since the magni-
�cation di�erences are less than normally provided by digital pathology interfaces.

Linköping The mouse-lock functionality uses a multiplier of the panning which is less
than the ratio between the main view and the overview. This makes it possible to
steer the movements by looking in the overview but controlling the main view.

Rate and position control Rate control is good to support systematic search tasks,
but fast position control is preferred when working fast.

LVM The game device that can be used in a portable setting performwell in an evaluation,
and the mouse performed well in another controlled study.

Linköping Both the The 6-DOF controller and the position controlled mouse performed
well in a comparative evaluation.

Microscope similarity in navigation

LVM The LVM is like a microscope in the way that zooming is performed in the middle
of the display. This increases the cost of performing dip-zooming but is a more
intuitive starting point for a pathologist used to working with a microscope.

Linköping To get an overview, the design forces the pathologist to zoom out before
zooming in again since the large thumbnail is missing from the design. This is the
same mechanisms used in the microscope, when you switch to low magni�cation
lens to get an overview before you zoom in again.
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Microscope dissimilarity in navigation

LVM The thumbnail system makes it really fast to jump between di�erent ROIs, which
also was a common behavior and increased compared to when the microscope was
used in their evaluation study.

Linköping The mouse pointer based interface makes it easy to do frequent dip-zooms in
the image, quickly switching between low and high magni�cation and making the
connection between them. This design is highly bene�cial in order to be able to
support the visualization method described in P6 and P7.

The two design processes have chosen to focus on di�erent aspects of the usage,
and have made di�erent trade-o�s that have resulted in di�erent design solutions. Both
solutions show what a human-centric design process can accomplish and they both
perform well when evaluated with users. In contrast, the predecessor system used in P1
appears to have been developed from a technical perspective, without consideration of
the design goals that the Linköping and Leeds e�orts targeted.
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Conclusions and suggestions

Each paper has its own conclusion, but to make the results more accessible, this chapter
describes what di�erent roles within the digital pathology community should take away
from this thesis.

5.1 Implications for pathologists

Digital images have the potential to transform how diagnostic review in pathology is
done. It is the novel technology paradigm that makes this possible, but the new solutions
and tools also has to be purposefully designed.

It seems that a digital workstation can today be built to improve the ergonomics of
the image review compared to with the microscope. This was the main reason behind the
initial transformation as is described in P1. It is also possible to personalize the way that
slides are navigated using di�erent input devices as was described in P3. Both the speci�c
implementation of the computer mouse and the 6-DOF controller got a task-load index
below 50, which is considered a good score compared to similar studies. This makes it
possible to switch between devices for di�erent tools, but also throughout the day. This
further improves the ergonomic situation.

The ergonomics can also be improved by removing tedious tasks. In P2 it was shown
that over half of the time was spent on systematic search tasks that required large amounts
of panning. In P7, we designed a prototype that removes the need for systematic panning,
which not only increased the e�ciency but also should be bene�cial for the ergonomic
situation.

Digital tools could also make you as a pathologist smarter. In this thesis a number of
methods have been presented that could reduce the cognitive burden during the diagnostic
process. In P4, a model that supports shoe-boxing of diagnostic �ndings was presented.
This means that �ndings that need to be kept in mind when a microscope is used, can
e�ciently be stored as an annotation within the reporting structure, releasing cognitive
resources for the diagnostic review. The enhancement method that was described in P6
and P7 can make positively stained nuclei visible in low magni�cation. This means that
a complicated comparison task can be performed by direct visual comparisons instead
of trying to remember the positivity ratio of di�erent �elds of view. In P8, a number of
diagnostic aids were presented that show feasible ways to delegate tedious tasks to the
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computer to increase the understanding of a speci�c case. If it only takes 20 seconds to
count the number of nuclei compared to a couple of minutes, it will be possible to count
�ve di�erent areas and compare the di�erent counts. These things and many others could
contribute to a better e�ciency and accuracy of the diagnostic review. Digital images
still have some limitations when it comes to image quality, which needs to be addressed
in order to detect very small image features. These special cases are fairly predictable,
but it is important as a pathologist to be informed about these limitations by reading or
performing validation studies. Once these minor issues have a technological solution, it is
therefore likely that the overall accuracy and e�ciency of digital review can outperform
traditional review with a microscope.

This improved diagnostic power be used either to make the diagnostic review faster
or to make it more accurate. Considering that the number of treatment options for cancer
care is currently increasing, I think it is most likely in the short term that the increased
diagnostic power will be used to improve the accuracy with a maintained number of
pathologists diagnosing the same amount of cases per year.

5.2 Implications for image analysis practitioners

The development and evaluation of image analysis algorithms for pathologist use could
be improved. Overall, better performing algorithms are of course bene�cial, but the
development of faster algorithms could be just as important, especially for interactive
use. In interactive systems it is possible to divide the algorithm into a pre-processing part
and a processing performed on the �y, which is possible with the algorithm presented in
P6. This decreases the amount of time that pathologists have to wait.

To support the design of result visualization, an error analysis of the �nalized algo-
rithm would help tremendously. This could be incorporated into the normal quantitative
evaluation that is usually performed. A novel algorithm is usually evaluated on unseen
data and the errors are reported statistically using F1-score, AUC or similar. When this
evaluation is performed, it could also be possible to perform a qualitative evaluation of
the errors. In order to help the design of the result visualization, it would be bene�cial
to know: How often do di�erent types of errors occur? When and why do they occur?
Each error type could then be summarized in a small description and reported together
with an example image. Even though this type of analysis is commonly carried out by
practitioners, it is not common practice to report it. This is unfortunate since it could be
tremendously helpful to support the development of systems in accordance to guidelines
in P8. The qualitative error analysis of pathologists’ diagnostic review by Gilbertsson
et al. [29] could be used as an inspiration. A number of recent image analysis studies
do provide a small qualitative error analysis, which could also be useful to look at. Ali,
Madabhushi [1] and Gertych et al. [28] provide a number of example images comparing
their presented method with a reference method, but it is only focused on when the
reference method fails. A better approach from the interaction designer’s perspective is
shown by Veta et al. [110] who presents a number of example mitoses that none of the
evaluated algorithm were able to detect, and by Xu et al. [118] who shows a visualization
of di�erent false positives and false negatives. These qualitative analyses are encouraged



Chapter 5. Conclusions and suggestions 47

and could be improved by some kind of systematic sampling of examples where one
example for each error type is provided.

The performance measurement of an algorithm depends on its intended use. For
example, if an algorithm is designed to exclude benign cases, the evaluation needs to
focus on the performance of the algorithm when operating at a sensitivity close to 100%.
If a system is built to detect nuclei and to show the result to the users for them to correct,
the accuracy of the nuclei detection is the most important to evaluate. When designing
a system for end-users it can therefore be a good idea to start with �guring out how
the result will be communicated, and then focus the development of the algorithm to
perform well in that context.

5.3 Implications for HCI

Pathologists are experts at problem solving in scale-space images, and as a profession
their review practice has been developed through 150 years. This means that younger
domains working with scale-space images probably can learn a great deal by studying
how they work.

They have a vast vocabulary of describing di�erent morphological phenomena that
are common, which helps them remember what they see when reviewing cases. They
are able to navigate extremely quickly and prefer a much higher panning and zooming
sensitivity than the one used in, for example, Google Maps.

Most HCI research for scale-space images has focused on the usability of using GIS
systems, and it is uncertain whether guidelines derived from studies in that single domain
are generalizable to other scale-space images. Digital pathology could therefore be an
especially interesting domain to perform HCI research in, in order to validate established
principles. Ruddle et al. [91] quite clearly showed that guidelines concerning the size of
the overview in a zoomable workspace do not hold up for digital pathology images. In P7,
we increased the e�ciency with only 15% for the hotspot selection task, which involved
a quantitative visual comparison of multiple regions of interest. This results seems low
considering the complexity of the task, compared to a visual comparison study with a
laboratory task described by [82].

Digital pathology is therefore a great domain to test established ideas within HCI.
The domain is also accessible to most HCI practitioners – most university hospitals have
a pathology department, and soon they will be using digital images in their daily practice.
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