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Photoluminescence (PL) properties of In0.2Ga0.8As/GaAs0.96Bi0.04/In0.2Ga0.8As quantum well

(QW) grown on GaAs substrates by gas source molecular beam epitaxy were studied by varying

excitation power and temperature, respectively. The type-II transition energy shifts from 1.149 eV

to 1.192 eV when increasing the excitation power from 10 mW to 150 mW at 4.5 K, which was

ascribed to the band-bending effect. On the other hand, the type-II PL quenches quickly along with

fast redshift with the increasing temperature due to the relaxation of the band bending caused by

the thermal excitation process. An 8 band k�p model was used to analyze the electronic properties

and the band-bending effect in the type-II QW. The calculated subband levels and transition energy

fit well with the experiment results, and two thermal activation energies of 8.7 meV and 50 meV,

respectively, are deduced. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962288]

I. INTRODUCTION

Recently, GaAsBi compounds have been considered to

be promising materials for fiber-optic communication laser

diodes with an efficient extension of light emitting wave-

length, a relatively temperature-insensitive wavelength, and

a reduction of Auger recombination.1–3 The incorporation of

a small amount of Bi atoms into GaAs strongly reduces the

band-gap energy (84–91 meV/%Bi)4–6 and, in addition,

decreases the temperature coefficient of the band gap from

0.45 meV/K to about 0.15 meV/K.2,7 For GaAsBi with Bi

contents of above 10%, the spin–orbit splitting energy (DSO)

becomes larger than the band gap, and thus, the hot-hole-

generating Auger recombination and the inter-valence band

absorption processes are expected to be suppressed.1,8,9 So

far, light emitting diodes (LEDs) with GaAs0.94Bi0.06 as

active regions have shown a good room-temperature electro-

luminescence at about 1.20 lm.10 Meanwhile, the electri-

cally pumped GaAs-based lasers with three GaAs0.94Bi0.06

active quantum wells (QWs) have been fabricated success-

fully with the lasing wavelength up to 1.06 lm.11 However,

the room temperature emission at longer wavelengths by

using conventional type-I GaAsBi QWs grown on GaAs is

rather limited due primarily to the difficulty in incorporating

a high content of Bi (>6%) and simultaneously retaining the

high optical quality.12–14 The reported maximum growth

temperature for fabricating device in the molecular beam

epitaxy (MBE) is about 380 �C, and only 4%–6% Bi is incor-

porated in the GaAsBi active layer.2,11,15,16

It is well known that the type-II band structure allows a

QW with less lattice mismatch to achieve longer emission

wavelength and the type-II heterostructures employing the

InGaAs(N)/GaAsSb system on GaAs have been previously

demonstrated to be promising for laser emitting at

1.55 lm.17,18 Moreover, a type-II structure enables the energy

band bending effect, which induces a blue shift in photolumi-

nescence (PL) when the excitation power increases. Generally

speaking, the mechanism of this effect has been discussed in

terms of a triangular potential model in which the photo-

generated electrons and holes form a dipole layer, creating a

triangular-like potential at the interface,19 while Jo et al.20

found that the dominant contribution to the blueshift origi-

nates from the variation of the QW energy level after perform-

ing a self-consistent approach including the excitonic effect.

On the other hand, the thermal escape of electrons from the

GaAs well into the GaAsSb barrier is responsible for the PL

quenching observed in the temperature dependent PL spectra

of type-II GaAsSb/GaAs multiple quantum wells.19

Recently, we have grown the new type II InGaAs/

GaAsBi/InGaAs QW by gas source MBE.21 The emission

wavelength was extended to 1070 nm at 4.5 K, longer than

943 nm and 1006 nm from the corresponding type-I InGaAs

and GaAsBi QW, respectively. Our experimental and theo-

retical results show that this new kind of heterostructure may

provide an interesting alternative to the type-I GaAsBi mate-

rial for a near infrared generation. However, the spectros-

copy property of this system has not been deeply explored.

In this paper, the PL properties of the type II InGaAs/

GaAsBi QW have been investigated by varying excitation

power and temperature, respectively. Meanwhile, an 8 band
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k�p model combined with space charge effects was used to

analyze the electronic properties and the bending effects

observed in the experiment.

II. EXPERIMENTS

The type-II structure, which consists of 100 nm GaAs

buffer/8.5 nm In0.2Ga0.8As/7.8 nm GaAs0.96Bi0.04/8.5 nm

In0.2Ga0.8As/100 nm GaAs cap layers, was grown on semi-

insulating GaAs (001) substrates using a V90 GSMBE sys-

tem equipped with effusion cells for In, Ga, and Bi. As2 was

cracked from arsine at 1000 �C, its flux was controlled by

regulating the gas pressure in the gas line, and the substrate

temperature was measured by a thermocouple. For the

growth of InGaAs/GaAsBi/InGaAs active region, the sub-

strate temperature was decreased to 410 �C. No dislocations

were observed during the high-resolution cross section TEM

characterization, indicating such thick three-layer wells

grown at low temperature remain elastically strain, and the

details of the growth condition as well as the composition

determination can be found elsewhere.21 A diode pumped

solid-state (DPSS) laser (k¼ 639 nm) was used as the excita-

tion source.

III. RESULTS AND DISCUSSION

A. Excitation-dependent PL

Figure 1 shows the 4.5 K PL spectra of the InGaAs/

GaAsBi/InGaAs QW under different excitation intensities.

Two peaks between 1.10 eV and 1.35 eV were observed. One

peak located at 1.313 eV, labeled as P1, corresponds to the

type-I transition in InGaAs layers, while the other peak at a

lower energy with a much broader and intense feature,

labeled as P2, originates from the type-II transition between

the electrons in the InGaAs conduction band and holes con-

fined in the GaAsBi valence band. When the incorporated Bi

content reaches up to 4%, the valence band offset (VBO) of

GaAsBi/InGaAs increases to such that most holes are con-

fined in the GaAsBi layer causing the type-II radiative

recombination. From the PL spectrum excited under a low

power of 10 mW, it can be obtained that the energy differ-

ence between the peak P1(1.315 eV) and P2(1.149 eV) is

about 166 meV, which is close to the estimated VBO of

169 meV for In0.2Ga0.8As/GaAs0.96Bi0.04 heterojunction.21

The FWHM of the P2 are about 132 meV, which is much

broader than the P1 of 25 meV. Such a broadening effect is

related to the non-uniform distribution of Bi and/or Bi clus-

ters in the GaAsBi layer.22

Surprisingly, we observed a giant blueshift under a mod-

erate excitation intensity. As shown in Fig. 2, the PL peak

energy of P2 has a shift of about 41 meV, and its FWHM

increases when the pumping intensity changes from 10 to

200 mW, while those of P1 are almost not affected. The

blueshift rate decreases, and its value as well as the FWHM

eventually saturates to be about 1.192 eV and 143 meV,

respectively, when the excitation power increases beyond

150 mW. This peculiar behavior cannot be ascribed to radia-

tion heating, which should cause a shrinkage in the band

gap. Also, the giant blueshift is hard to be assigned to the

state filling of the localized states from the interface rough-

ness or alloy potential fluctuations since it can be easily satu-

rated at lower excitation power because of the low density of

the localized states in comparison to the density of states for

the QW ground states. In GaAsBi alloys, the carrier localiza-

tion is a well-known phenomenon, and the so called S-shape

behavior can be seen in the temperature dependent PL under

the low excitation conditions.23,24 In addition, Baranowski

et al.25,26 found that the PL kinetics are strongly influenced

by the band bending effects as well as the carrier localization

effects in type II GaAsSb/GaAs QWs using a time-resolved

PL spectroscopy, suggesting that further investigations of the

carrier localization phenomena in this InGaAs/GaAsBi QW

are needed to evaluate its quality and perspectives for device

applications. We believe that the underlying mechanism of

the observations results from the band bending effect, which

is intrinsic for the type-II band alignment of In0.2Ga0.8As/

GaAs0.96Bi0.04 heterojunction, similar to the cases of GaAs/

GaAsSb19 and InGaAs/GaAsSb.27 It is commonly accepted

that the band-bending effect is caused by the spatial separa-

tion of the photo-excited or electrically pumped carriers in a

FIG. 1. The 4.5 K PL spectra of In0.2Ga0.8As/GaAs0.96Bi0.04/In0.2Ga0.8As

QW under different excitation powers.

FIG. 2. The dependence of the peak energy (a) as well as the FWHM (b) of

P1 and P2 on excitation power. A strong blueshift and saturation of P2 with

the increase of excitation power are observed.
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type-II QW, in which the type-II transition energy is

expected to increase proportionally with the third root of the

excitation density due to the steepness raising of a

triangular-like confining potential.19 For the In0.2Ga0.8As/

GaAsBi type-II QW, electrons are confined in the InGaAs

layer, and holes are localized in the GaAsBi layer. Indeed, a

cubic curve as shown in Fig. 2(a) fits well with the experi-

mental results with an excitation power below 150 mW.

When the excitation power exceeds 150 mW, the energy

blueshift as well as the FWHM broadening of P2 stops. This

behavior can also be explained by the band bending model.

Due to the band bending, there will be a potential barrier for

electrons and holes in the GaAsBi and InGaAs layer, respec-

tively. If the band bending is large enough, the barrier is able

to prevent the photo-excited carriers from transferring from

the high-energy band to the low-energy band, and the blue-

shift therefore saturates.

Figure 3 displays the dependence of integral PL intensi-

ties of P1 and P2, labeled as I1 and I2, on the pumping power

P, respectively. We can see that the I1 increases linearly

while the I2 shows a sublinear behavior with the increasing

of P, respectively. For the semiconductor with a low back-

ground carrier density, the relationship between I and P can

be reduced to a simple power law as I / Pm, where m¼ 1, 2,

or 2/3 corresponds to radiative, Shockley-Read-Hall non-

radiative, and Auger recombination, respectively.28 The

slope of the plot in Fig. 3 is fitted as m¼ 1 and 0.71 for P1

and P2, respectively, which indicates that the dominant car-

rier recombination mechanisms for the InGaAs/GaABi type

II QW mainly include radiative and Auger recombination at

4.5 K.

B. Temperature-dependent PL

Figure 4 shows the temperature dependent PL spectra

with a fixed excitation of 120 mW measured at temperature

varying from 4.5 K to 290 K. We can see that both the peak

energy and intensity of P1 and P2 decrease with the increas-

ing temperature. Especially for P2, the PL intensity

decreases gradually with the increasing temperature from

4.5 K to 130 K and then quenches quickly when temperature

increases beyond 160 K. In addition, compared with the

41 meV redshift of P1, a larger redshift of P2, i.e., 84 meV as

illustrated in Fig. 4, was found when increasing the tempera-

ture from 4.5 K to 190 K. The energies and FWHMs of P1

and P2 are summarized in Fig. 5, and no obvious S-shape

behaviors of the two peaks are observed at a low tempera-

ture, indicating the carrier localization effect maybe satu-

rated at this excitation conditions. For the peak energy of P1,

it can be analyzed using the Varshni relationship29 of

E ¼ E0 � aT2=ðbþ TÞ; (1)

where E0 is the fundamental excitonic transition energy at

absolute zero temperature, a and b are the adjustable param-

eters. The constant a is related to the electron-phonon inter-

action, and b is closely related to the Debye temperature. As

shown in Fig. 5(a), for P1, the best fit to the experimental

data is obtained with a¼ 0.486 meV/K, b¼ 197 K, and

E0¼ 1.313 eV. The values of a and b are very close to those

of bulk In0.2Ga0.8As.30 However, for P2, with temperature

increasing from 60 K to 160 K, a much faster redshift was

observed. The FWHM of P2 remains at around 140 meV for

T< 60 K and almost increases linearly with temperature for

60 K< T< 160 K, while that of P1 is almost not affected in

FIG. 3. The dependence of integral PL intensity of P1 and P2 on pumping

power.

FIG. 4. The temperature dependent PL spectra of InGaAs/GaAsBi/InGaAs

QW measured with a 120 mW excitation power.

FIG. 5. Dependence of the PL peak energy as well as FWHM of P1 and P2

on temperature.
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the temperature range up to 130 K as shown in Fig. 5(b). The

redshift cannot be explained by the thermal population of the

electron and hole states with high-k values, which have a

high probability of radiative recombination since the PL

maxima should shift to higher-photon energies relative to the

effective band-gap energy. This behavior is also related to

the band bending effects in type-II QWs, where the quantum

confinement becomes less pronounced with the increasing

temperature. At a high temperature, the ability of the

triangular-like potential to confine carriers is reduced since

the photo-excited carriers can be thermally excited to escape

from the InGaAs/GaAsBi interface. The relaxation of the

band bending leads to a much faster reduction of effective

band gap in the type-II QW than that of in bulk or a normal

type-I QW like InGaAs. As shown in Fig. 5, about a 43 meV

redshift contribution by band bending relaxation is deduced

by comparing the temperature dependent behaviors between

P1 and P2. Thus, the flat-band transition energy of P2 is esti-

mated to be 1.142 meV at 4.5 K. In Fig. 6, we display the

Arrhenius plots of the intensity as well as the integral inten-

sity of the P1 and P2, respectively. The solid lines are calcu-

lated by the expression

I ¼ I0=ð1þ C1e�E1=kT þ C2e�E2=kTÞ; (2)

where I0 is the integral PL intensity at 0 K, C1 and C2 are

constants, and E1 and E2 are the thermal activation energies.

For the integral intensity of P2, as depicted in Fig. 6, the

obtained E1 and E2 values of the PL quenching are 8.7 meV

and 50.0 meV, respectively. It should be noted that the

deduced thermal activation energy of E1 is sensitive to the

accuracy of PL data obtained in the low temperature range,

while E2 is sensitive to the certainty of the PL data measured

at a relatively high temperature. Thus, a similar value of E1,

i.e., 8.4 meV, is deduced from the temperature dependence

of the integral intensity of P1 as the line shapes of P1 mea-

sured at T< 100 K are fixed as shown in Fig. 4. However,

the weak PL features of P1 measured beyond 100 K lead to a

large deviation when deducing the thermal activation energy

of E2. The origination of the two thermal activation energies

of E1 and E2 will be discussed later.

C. Electronic properties

In order to interpret the band bending effect and the PL

quench observed in our experimental results, it is necessary

to calculate the energy levels and wave-functions under dif-

ferent injection levels for the structure described above.

Thus, a semi-quantitative analysis of the band bending based

on the 8 band k�p model has been performed. In the calcula-

tions reported in this paper, band offset ratios of 60:40

between the strained InGaAs and GaAs and 24:76 between

the strained GaAsBi and GaAs were used, respectively.6,31

The transformation of GaAsBi and In0.2Ga0.8As to form a

type-II configuration from a type-I configuration is estimated

to occur near a Bi concentration of 1.3%. A schematic dia-

gram of the conduction and valence bands in the active

region of our structure is shown in Fig. 7(a), where the

valence band edge of GaAs is taken to be zero energy. The

GaAsBi hole QW, which is 7.8 nm thick and has a nominal

Bi content of 4%, is sandwiched between the two 8.5 nm

In0.2Ga0.8As electron QWs. We have used the material

parameters21 to solve Schr€odinger’s equation for flat band

conditions as well as for carrier injection by performing self-

consistent calculations. The calculated energy levels within

the schematic band diagram and the selected envelope wave

functions are shown in Fig. 7.

For the flat band, as shown in Fig. 7(a), in the conduc-

tion band, the thin GaAsBi layer allows the electron wave-

functions in the InGaAs QWs to couple, resulting in two cou-

pled solutions, symmetric (e1S¼ 1.403 eV) and anti-

symmetric (e1A¼ 1.408 eV), which are confined in the

InGaAs QWs. The first electron excited sate (e2¼ 1.465 eV)

shows localized features in GaAsBi layer. In the valence

band, the heavy and light hole solutions are strongly confined

to the GaAsBi layer. The calculations show that, due to the

difference in the heavy and light hole masses, two heavy

hole energy levels (HH1¼ 0.239 eV; HH2¼ 0.203 eV) occur

in the GaAsBi QW at lower energy than the first light hole

solution (LH1¼ 0.178 eV). In the InGaAs layer, the first

heavy hole solution (hh1¼ 0.072 eV) is confined in the

FIG. 6. Logarithm of the PL and PL integral intensity of P1 and P2 versus

reciprocal temperature together with the respective activation energy fit.

FIG. 7. The 4.5 K bulk bandedge profiles and selected wave functions calcu-

lated for flat band (a) and injecting e-h density 2.2 � 1012 cm�2 (b).

Legends for wave functions and the corresponding electron and hole sub-

band energy levels are depicted in the figure.
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InGaAs QWs. The type-I transition energy between e1S and

hh1 with an overlap of 93% is 1.331 eV. The 29% overlap of

the wave-functions enables the type-II transitions between

the e1S and the HH1 with a transition energy of 1.164 eV.

Both the transition energy values are about 20 meV larger

than the experimental observation discussed previously, i.e.,

1.313 eV and 1.142 eV, respectively. The deviation may

result from the underestimation of about 2% In content in the

InGaAs layers.

For the band bending, we consider the change of the

non-equilibrium carrier density due to photo-excitation. As

shown in Fig. 7(b), when the injected e-h pair density

increases to 2.2 � 1012 cm–2, two approximately triangular

wells are produced due to the strong band bending near the

InGaAs/GaAsBi interface. Meanwhile, the quasi-Fermi level

of the photo-generated electrons (fe) has not exceed the e2,

while that of holes (fh) is just reaching to the 2HH subband

level, indicating that the photo-excited electrons and holes

are majorly accumulated in the InGaAs and GaAsBi, respec-

tively, and the band bending will be triggered when there is a

further increase in the e-h density. Due to the band bending

effect, both the electron and the hole subband levels

decrease. However, the HH1 subband level shift is larger

than the e1S subband level, and as a result, the transition

energy of P2 shows a blueshift about 36 meV. Meanwhile, it

should be noted that, with the increasing of the band-bending

effects, the wave functions of the e1S and 1HH states will

penetrate further into each other, and thus, the ground elec-

tron and hole wavefunctions become less spatially separated

and the structure tends to be type-I. This is the reason that

the blueshift rate of P2 will be slowed down and the peak

energy of P2 will be saturated at a high excitation power.

It should be noted that the band bending model based on

the k�p method works in the case of low temperature since

the thermal activation process of the injected carriers is not

considered. The temperature dependent PL behavior summa-

rized in Fig. 4 shows that the band bending can be relaxed

when the temperature increases up to 160 K due to the ther-

mal activation of carriers. In addition, two activation ener-

gies of E1¼ 8.7 meV and E2¼ 50.0 meV, which are deduced

from the temperature dependent integral intensity of P2, are

close to the value of the energy difference between e1S and

the e1A (5 meV), and the first delocalized state e2 (62 meV)

as indicated in Fig. 7. This implies that the thermal escape of

electrons from the ground state localized near the InGaAs/

GaAsBi interface into the whole QW is responsible for the

PL quenching in the InGaAs/GaAsBi/InGaAs QW near

room temperature. Thus, we can expect that increasing In

content should be useful for the room temperature PL emis-

sion of the InGaAs/GaAsBi type II QW due to the improve-

ment of electron confinement. Furthermore, for the fact that

no PL at room temperature was observed in the type II

InGaAs/GaAsBi QW under the excitation of 120 mW, a

great number of non-radiative centers, produced during the

low temperature growth of the active region, are also proba-

bly responsible for this issue. Further optimization of the

growth conditions, such as increasing the growth tempera-

ture of the two InGaAs layers, is needed to reduce the non-

radiative centers and improve the material quality for device

applications.

Figure 8(a) shows the subband energies as well as quasi-

Fermi levels as a function of the injected e-h sheet density

based on the calculation. Also, the calculated energy shifts of

P1 and P2 are also shown in Fig. 8(b). The blueshift of P2 is

about 36 meV and 40 meV when the fh and the fe just exceed

the HH2 and e1A subbands, respectively. With a further

increase of injecting density to 4 � 1012 cm�2 as shown in

Fig. 8, the blueshift of the transition energy P2 due to the

strong band bending tends to be saturate at 48 meV, which is

close to the experiment observation of 50 meV. For the type I

transition P1, the calculation results suggest a redshift due to

the band bending effect, which is not consistent with the exci-

tation power dependent PL spectra as shown in Fig. 1. As

reported in Ref. 21, the Bi segregation in the growth direction

takes place, and the maximum Bi concentration appears at

much closer to the upper InGaAs/GaAsBi interface. This is

caused by the relatively high growth temperature for GaAsBi

since the Bi surface segregation can be enhanced with the

increasing growth temperature.32 The transition of P1 we

observed most likely originates from the lower InGaAs layer

where the possibility of achieving the type II band alignment

in the lower GaAsBi/InGaAs interface is small, and thus, the

band bending effect is negligible. If the P1 originates from the

upper type II InGaAs/GaAsBi quantum well, the relaxation of

the band bending will slow down the redshift of P1, while this

was not observed in the temperature dependent PL, and fur-

ther work is required to confirm it.

IV. SUMMARY

In summary, we have reported several peculiar behav-

iors in the PL spectra of InGaAs/GaAsBi type II QWs related

to the band bending caused by the dipole formation by

FIG. 8. The calculated changes of subband energy levels and the quasi-

Fermi levels with varying e-h sheet density injected in the InGaAs/GaAsBi/

InGaAs QW based on the 8 k�p model (a). The calculated transition energies

of P1 and P2 are also plotted (b).
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separation of electrons and holes, including a giant blueshift,

a saturation effect, and the relaxation of band bending due to

the thermal excitation process. The experimental results are

well explained by the k�p model. Our results are instructive

for understanding the optical properties in the InGaAs/

GaAsBi type-II semiconductor heterostructures.
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