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Abstract

The statistical decay of light and heavy water from ionic water clusters of 4 - 22 molecules
was measured in vacuum. The rate constants were found to be increasingly favored
towards evaporation of light water compared to the heavier isotopologues, with increasing
cluster size. Calculations of the partition functions of H2O, HDO and D2O are presented
and used to investigate the origin of the observed rate constants. Competing effects
were found between the higher partition function and the higher dissociation energy
of the heavier isotopologues, leading to an overall favored H2O evaporation. The rate
constants are found to depend exponentially on the deuterium concentration in the
cluster, which may be explained by a second order indirect interaction between deuterium
and neighboring hydrogen bonds in the cluster.
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1
Introduction

W
ater is one of the most abundant molecules in the universe. It has been
observed 12 billion light years away[1] as well as in the interstellar medium
and on many planets in our solar system. Apart from the importance of
water in astrochemical, biological and atmospheric processes it is also in-

teresting because of its many unique properties. These include a high surface tension,
large heat capacity and a lower density in the solid phase compared to the liquid. It is
therefore no surprise the extent to which water has been studied, both macroscopically
and microscopically, over a long period of time.

Here on earth, water clusters play an important role in atmospheric processes and in
particular in climate modeling seeing as water vapor is the most abundant greenhouse
gas. Most ionized water clusters are formed in the troposphere by collisions with cosmic
rays, where they trigger cloud formation[2]. The study of clusters is also a means of un-
derstanding some of the interesting properties of water in bulk. Many characteristics of
bulk water arise from the nature of the intermolecular hydrogen bond, and by studying
clusters we can probe this bond on the smallest scales.

The exchange of one or more hydrogen in the molecule with a deuterium is a com-
monly used technique to probe some properties of the hydrogen bond. Studies on the
isotope effects of water in bulk have found differences between light and heavy water in
the melting point[3] as well as in the evaporation[4]. A recent study found the presence
of broken bonds between molecules to be 50% more common for the hydrogen than the
deuterium bonds in bulk water[5]. Calculations of the energy of the bond have found
similar effects when substituting hydrogen for deuterium. The difference in evaporation
and condensation is also used in paleothermometry to determine the temperature of a
sample based on the heavy-water fraction. Observing these differences experimentally
in the smallest clusters is often difficult and extensive studies are devoted instead to
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CHAPTER 1. INTRODUCTION

calculating their geometrical structure and attributes.

The experiment that is presented in this thesis aims at studying some of the small-
est protonated water clusters (H2O)NH+, with N = 4 - 22. These are comparatively
easy to produce and manipulate using electric fields. By substitution of hydrogen with
deuterium we hope to measure the isotope effects in the spontaneous evaporation of
molecules from the clusters. Using a mixture of heavy- and light-water in the source,
we will observe the decay of different isotopologues at the same time, with the same
energy distribution. This allows us to rule out several potential causes of the measured
asymmetry between H2O, HDO and D2O.

The clusters are produced in an electrospray ionization source at atmospheric pres-
sure. They enter into vacuum and are mass selected in a quadrupole filter. They can
then evaporate freely for some time before we measure the decay products in a time-
of-flight mass spectrometer. Each cluster size, N , and deuterium composition, D = 0 -
(2N+1), will be mass selected and the evaporation spectrum recorded. This way we will
probe the decay by emission of all three molecules at the same time. The details of the
experimental setup and procedure are found in Chapter 3. We will analyze the spectra
with regard to the difference in evaporation between light and heavy water. The ratio
of evaporation will depend on the number of deuterium in the clusters, and this is fac-
tored out to retrieve the relative decay rate constants of each isotopologue (Section 4.4).
These are in turn analyzed using the theory of thermal decay and the calculations of the
partition functions and temperatures in Chapter 2, to yield the difference in dissociation
energies. The number of evaporated molecules will also be analyzed, as a function of
cluster size and deuterium content (Section 4.2). Results and some immediate analysis
and discussion is presented in Chapter 4. The thesis will end with some conclusions and
comparison of our results with previous work, in Chapter 5.

The main contributions of this thesis are:

• The direct observation of isotope effects in the evaporation of H2O, HDO and
D2O in water clusters of 4 - 22 molecules. This is expressed quantitatively as the
relative rate-constants of each isotopologue. The ratio of rate-constants increases
with cluster size up to N = 10 and remains nearly constant in larger clusters.
In the larger clusters we find a significant difference in the evaporation, with an
average ratio 1 : 0.55 : 0.43 of the rate constants kH2O : kHDO : kD2O. (Section
4.4)

• Calculation of the internal partition functions of H2O, HDO and D2O, that are
needed to analyze the measured rate-constants. Lists of experimental energy-levels
and their associated quantum numbers are used to calculate the canonical partition
functions. The importance of nuclear spin statistics in the partition functions, and
by extension the rate-constants, is verified. The ratio of ZH2O : ZHDO : ZD2O is
calculated to be constant between 30 - 500 K, and amounts to 1 : 4.9 : 5.8. (Section
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CHAPTER 1. INTRODUCTION

2.2)

• Relating the observed rate-constants using the theory of thermal decay and the
evaporative ensemble to a difference in dissociation energies. The difference is
found to increase with cluster size, which (amongst other things) reflects the av-
erage number of hydrogen bonds in the cluster. In clusters N = 9 and larger the
dissociation energy of HDO is 25.8 meV higher than for H2O, the dissociation en-
ergy of D2O is 31.0 meV higher than for H2O and the dissociation energy of D2O
is 6.4 meV higher than for HDO. (Section 4.4)

• The direct observation that the heat capacity does not significantly depend on the
number of deuterium in the cluster, by looking at the fraction of clusters that have
decayed in the experimental time window. (Section 4.2.2)

• Relating the exponential deuterium dependence of rate constants to second order
interaction effects that a deuterium has on neighboring hydrogen bonds. (Section
4.5)
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2
Theory

I
n this chapter some of the theory and calculations that are needed to analyze
the experiment are presented. The first part deals with the statistical unimolec-
ular decay of particles where an expression for the rate constant will be derived.
Section two of this chapter presents calculations of the internal partition functions

of the free H2O HDO and D2O molecules. In Section 2.3 the results of the two previous
sections are used to estimate the temperatures of clusters in the experiment. Most of
the equations in this chapter are from the book ”Statistical Physics of Nanoparticles in
the Gas Phase” by K. Hansen [6] where more detailed derivations can be found.

2.1 Unimolecular decay rate constants

All thermodynamic systems tend to equilibrate to their surroundings. This means that
a cluster that is excited above the ambient temperature will lose some energy to its
surroundings by collisions or through emission of particles or radiation. Unlike the loss
of fragments through direct detachment, e.g. when an atom absorbs a photon with the
energy of the electron affinity to detach an electron, the equilibration to the environment
is a statistical process in which the energy is dispersed throughout all the degrees of
freedom in the cluster prior to decay.

Such a process can be described by the principle of detailed balance, as was first
suggested by Weisskopf for the emission of small fragments from nuclei [7]. The principle
states that in a statistical process with a stationary environment, the rate of moving from
one state to another is equal to the rate of moving in the opposite direction. The rates
can be defined as the rate constants kdecay and kformation in units of inverse time, times
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2.1. UNIMOLECULAR DECAY RATE CONSTANTS CHAPTER 2. THEORY

the relative density of each state,

ρp(E)

ρp(E) + ρr(E)
kformation =

ρr(E)

ρp(E) + ρr(E)
kdecay. (2.1)

Here ρp(E) and ρr(E) refer to the product and reactant level densities. As an analogy
we can think of Eq. (2.1) as the statement that if you have a bee inside your house and
the density of bees is higher around your house, opening the window is more likely to
invite another bee in than it is letting the first one out. 1

The level density ρ(E) is a useful measure of the number of quantum states of a sys-
tem at a given energy. It will re-appear many times in this thesis and therefore merits
some closer inspection. In the form ρ(E)dE it is the number of states in the interval dE.
For simple systems of one or more independent harmonic oscillators this can be calcu-
lated exactly [8], whereas more complicated systems of oscillators coupling to rotations
and electronic states will at best rely on approximations.

The level density is also used to define what we mean by the temperature of a micro-
scopic cluster in vacuum. The usual thermodynamic notion of a canonical temperature
involves the exchange of energy of our cluster with a heat bath that is sufficiently large
that the temperature of the heat bath itself is not affected by the exchange. Tempera-
ture is then defined through the level density of the heat bath ρh(E) via the Boltzmann
factor,

e−εi
d ln ρh(E)

dE = e
− εi
kBT , (2.2)

that gives the relative population of each state εi in the cluster. In this sense it may
seem strange to talk of a temperature of our isolated clusters that cool through emission
of particles and not through equilibration to the walls of the machine. Instead the
microcanonical temperature of a cluster is used with the cluster itself acting as a heat
bath.

d ln ρ(E)

dE
=

1

kBT
(2.3)

The level density is now that of the cluster itself. Although this definition is valid for
a cluster of many degrees of freedom, it is important to stress that this is a different
concept of temperature than the canonical temperature.

Returning to eq (2.1), the rate constant for attachment of an incoming particle to a
cluster confined in a volume V takes the form,

kformation(εt) =
1

V
σ(εt)v, (2.4)

1It is an empirical observation of the author that bees fly in random directions according to a stochastic
process, which is the assumption that is required for this analogy to be valid.
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where σ(εt) is the attachment cross-section, v =
√

2εt/m is the velocity of the incoming
particle and εt is the kinetic energy of the particle. m refers to the reduced mass of the
cluster and incoming particle. Thus we can re-write equation 2.1 as,

kdecay(E, εt) =
1

V
σ(εt)v

ρp(E)

ρr(E)
, (2.5)

where εt now takes on the role of kinetic energy of the emitted fragment.
The product level density ρp(E) can be evaluated as the convolution of the level

density of the daughter cluster ρd with the level density of translations, ρf (εt), and the
internal level density of the evaporated fragment ρf (εf ),

ρp(E) =

∫ E

0
ρt(εt)ρf (εf )ρd(E − Ea − εt − εf )dεtdεf . (2.6)

Ea is the dissociation energy of the molecule and εt and εf correspond to the energy
carried away by the molecule as kinetic and internal energy.

The number of translational quantum states in the interval dεt of the fragment emit-
ted into volume V is,

ρt(εt)dεt = 4π
√

2
V m3/2

h3
ε

1/2
t dεt. (2.7)

We will insert this expression for ρt into Eq. (2.5) and integrate over the kinetic energy.

kdecay(E) =

∫ E

0

m

π2h̄3σ(εt)εt
ρf (εf )ρd(E − Ea − εt − εf )

ρr(E)
dε, (2.8)

Asuming the kinetic energy of the fragment is small compared to the internal energy
of the daughter cluster, Ed = E − Ea − εf − εt, we can expand ρd(Ed) around Eα =
E − Ea − εf to easier evaluate this integral. The level density is a strongly varying
function of energy and a better approximation in this case is to expand the logarithm
and re-exponentiate to obtain,

ρd(Eα − εt) = exp (ln [ρd(Eα − εt)]) (2.9)

≈ exp
(

ln [ρd(Eα)]− ∂ ln ρd(Eα−εt)
∂εt

εt

)
(2.10)

= ρd(Eα)e
−εt

∂ ln ρd(Eα−εt)
∂εt (2.11)

= ρd(Eα)e−εt/kBTd , (2.12)

where the definition of the microcanonical temperature was used in the last equality. The
logarithmic derivative is evaluated at Ed which corresponds to the daughter temperature
Td. This approximation is a neat trick to simplify many expressions involving the level
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density that will appear in this thesis. The integral in Eq. (2.8) is evaluated by first
noting that[2],∫ E

0
εte
− εt
kBTd dεt ≈ (kBTd)

2

∫ ∞
0

εt
kBTd

e
− εt
kBTd d

(
εt

kBTd

)
= (kbTd)

2. (2.13)

The rate constant is now close to its final form,

kdecay(E) =
m

π2h̄3 〈σ〉(kBTd)
2 ρf (εf )ρd(E − Ea − εf )

ρr(E)
, (2.14)

with 〈σ〉 representing the cross-section averaged over kinetic energy,

〈σ〉 =

∫ E
0 σ(εt)εte

−εt/kBTddεt∫ E
0 εte−εt/kBTddεt

. (2.15)

We can treat the internal energy of the evaporated fragment εf in a similar fashion if
we assume this is also small compared to Ed. As we have seen from Eq. (2.12) the
expansion of ρd(E −Ea − εf ) around E −Ea will produce ρd(E −Ea) exp (−εf/kBTd).
Unlike the translational level density we don’t know the explicit form of ρf (εf ). Instead
we note that the integral of the level density times a Boltzmann factor produces the
canonical partition function Zint,

Zint =

∫ ∞
0

ρf (εf )e
−εf
kBTd dεf (2.16)

The internal partition function is calculated for H2O, HDO and D2O in section 2.2.
Putting the results together we have now obtained a useful expression for the rate con-
stant for evaporation of molecules from a cluster.

kdecay(E) =
m

π2h̄3 〈σ〉(kBTd)
2Zint

ρd(E − Ea)
ρp(E)

, (2.17)

where the subscripts d and p now refer to the daughter and parent clusters. The only
assumption that was made in this derivation is that the cluster retains most of its
internal energy after the decay. This expression will be helpful to understand the origin
of the different rate constants in Chapter 4. The following two sections of this chapter
are devoted to finding the partition functions Zint and daughter temperatures Td that
appear in this expression.

2.2 Partition functions of H2O, HDO and D2O

The internal partition function that appears in Eq. (2.17) was computed for all three
water species using the canonical expression,

Zint =
∑
i

(2Ji + 1)gi exp

(
− Ei
kBT

)
. (2.18)
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2.2. PARTITION FUNCTIONS OF H2O, HDO AND D2O CHAPTER 2. THEORY

where i runs over all rotational states of the system. gi and Ei are the degeneracies
and energy levels of each state. We can assume that the water molecules are in their
vibrational and electronic ground states. The first excited vibrational state of H2O has
an energy of 0.18 eV, and with a temperature of ≈ 150 K the contribution from the
Boltzmann factor in Eq. (2.18) is on the order of 10−7. The temperature T of the water
molecule is defined using the parent cluster as the heat bath, assuming that the frag-
ment is so small as not to carry away a significant amount of the energy or the degrees of
freedom from the cluster. The microcanonical temperature of the cluster is evaluated at
the energy Ed = E−Ea−εf , where εf is the energy carried away by the fragment. This
corresponds to the daughter temperature. In this way we can treat quantities like the
partition function of a free water molecule canonically, as having a temperature equal to
the microcanonical temperature of the daughter cluster.

The spin-statistical degeneracy gi is analyzed in the following manner. The Pauli
principle leads to constraints on the parity of the molecular wavefunction, Ψtot, to be
antisymmetric under interchange of identical fermions P (Ψtot) = −Ψtot. This applies
to interchange of the hydrogen in H2O about the symmetry axis. Bosons on the other
hand, such as the deuterium nuclei in D2O, must produce a total molecular wavefunction
that is symmetric under parity P (Ψtot) = +Ψtot . The parity of the combined molecular
wavefunction is a combination of the rotational (Ψrot), nuclear (Ψnuc), vibrational (Ψvib)
and electronic (Ψel) parities.

P (Ψtot) = P (Ψrot)P (Ψnuc)P (Ψvib)P (Ψel) (2.19)

The vibrational and electronic ground state is symmetric under exchange of nuclei
so only rotational and nuclear parities need to be considered. Therefore if the rotational
wave-function of H2O is of even parity P (Ψrot) = +Ψrot, the nuclear wave-function must
be of odd parity P (Ψnuc) = −Ψnuc corresponding to the antisymmetric singlet state of
two spin 1/2 particles,

|Ψ−nuc〉 =
1√
2

(| ↑↓〉 − | ↓↑〉). (2.20)

The antisymmetric rotational wave function P (Ψrot) = −Ψrot on the other hand leads
to constraints on the nuclear wave-function to be symmetric P (Ψnuc) = Ψnuc, which is
the 3-fold degenerate triplet state. The symmetric and antisymmetric spin degeneracy of
H2O and D2O is 3:1 and 6:3 correspondingly. There are no parity constraints on HDO
and all states have a degeneracy corresponding to the number of combinations of the
combined hydrogen and deuterium system. A single spin 1/2 particle has two possible
projections and a spin 1 has three and thus all states are 6-fold degenerate. We will now
move on to find the parity and energy levels of the rotational states of an asymmetric
top molecule.

The asymmetric-top rigid-rotor Hamiltonian is given by

ĤR = AĴ2
a +BĴ2

b + CĴ2
c , (2.21)
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where A,B,C are the rotational constants, A ≡ h̄2/(2IA), with axes defined such that
IA < IB < IC . They are listed for the three water isotopes in table 2.1.

H2O HDO D2O

IA (10−40g cm2) 1.0220 1.2092 1.8384

IB (10−40g cm2) 1.9187 3.0654 3.8340

IC (10−40g cm2) 2.9376 4.2715 5.6698

gsymmetric 3 6 6

gantisymmetric 1 6 3

Table 2.1: Moments of inertia and spin degeneracies of the three different water isotopes
from [9].

The asymmetric top wavefunction can be approximated as a combination of the
prolate (IA < IB = IC) and oblate (IA = IB < IC) symmetric-top wavefunctions. For
a symmetric-top molecule the rotational quantum number J and the projection of J
on the top axis KA (KC) of the prolate (oblate) symmetric top is enough to determine
the rotational energy-levels. The wavefunction of the symmetric top rigid rotors are
linear combinations of spherical harmonics YJ,M (θ, φ). Under a parity transformation
(θ, φ)→ (π − θ, φ+ π) we have,

YJ,M (θ, φ)→ YJ,M (π − θ, φ+ π) = (−1)JYJ,M (θ, φ), (2.22)

where M is the quantum number specifying the orientation of the angular momentum
in the laboratory reference frame and gives rise to the (2J+1) degeneracy in Eq. (2.18).
Thus the parity of the rotational wavefunction is given by (−1)J .

The symmetric-top eigenfunctions |JKAM〉 and |JKCM〉 for the prolate and oblate
rotors, form a complete basis for the asymmetric top hamiltonian,

|JτM〉 =
∑
i

cτi|JKiM〉 (2.23)

where τ = KA −KC , is an index for each of the (internal) 2J + 1 angular momentum
projections. KA = 0 represents the limiting case of the oblate symmetric top state and
KC = 0 corresponds to the projection of J entirely in the prolate symmetric top state
KA. In total KA + KC amounts to J or J + 1 and the parity of the |JτM〉 level is
therefore (−1)τ [10].

The asymmetric top hamiltonian is only analytically soluble up to J = 3, and for
higher rotational levels Eq. (2.21) must be diagonalized numerically. Using lists [11]
[12] that combine the numerical approach with spectroscopic data, we obtain the energy
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levels and associated quantum numbers (J,KA,KC) that are needed to evaluate Eq.
2.18. To illustrate how the partition function is calculated the ten lowest rotational
energy levels and the parameters needed are listen in Table 2.2.

Ei [cm−1] J Ka Kc (parity) gi (parity) Z’ (100K)

0 0 0 0 (+) 6 (+) 6.00

12.1170 1 0 1 (-) 3 (-) 13.56

20.2592 1 1 1 (+) 6 (+) 27.01

22.6843 1 1 0 (-) 3 (-) 33.50

35.8782 2 0 2 (+) 6 (+) 51.41

42.0693 2 1 2 (-) 3 (-) 59.59

49.3396 2 1 1 (+) 6 (+) 74.35

73.6763 2 2 1 (-) 3 (-) 79.54

74.1422 2 2 0 (+) 6 (+) 89.87

70.4475 3 0 3 (-) 3 (-) 97.49

Table 2.2: The parameters used to calculate the partition function of D2O using Eq. (2.18).
The columns are from left to right: Energy of the rotational state, the quantum numbers
associated with the state and the spin degeneracy factor gi from the condition that the
combined nuclear and rotational wavefunction must be symmetric under parity. The last
column is the calculated partition function at 100K including the given and lower energy
levels.

The partition functions calculated using all the available energy levels in [11] and
[12] are plotted in Figure 2.1.
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Figure 2.1: Internal partition functions for H2O, HDO and D2O, ranging from 0-500 K

Calculation of the partition functions of different water isotopes are the first result
of this thesis, and in the next section they will be used to estimate the temperature
of the clusters. In section 4.4 we will need the ratio of partition functions and these
are plotted in figure 2.2. The ratio of ZH2O : ZHDO : ZD2O (henceforth Z0 : Z1 : Z2)
is fairly constant in the temperature range 30 − 500 K and amounts to 1 : 4.9 : 5.8.
It is noteworthy that at a significant contribution to the difference is the nuclear spin
statistics of different isotopes, and not only their moment of inertia. This is clearly seen
in the ratio of Z2/Z1 which is close to unity.
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2.3 Temperature estimates

In order to compare the derived rate constant in Eq. (2.17) with experimental data we
need to get an idea of the microcanonical temperature of the cluster. Since we are unable
to observe the decays that happen immediately after creation in the source, the hottest
clusters will not be seen in the experiment. There is a maximum temperature Tmax,N ,
depending on the dissociation energy Ea,N , above which the cluster will have already
decayed before the experimental time window. The added subscript N now indicates
that the maximum temperature and dissociation energy depends on the cluster size. We
can find Tmax,N by writing the rate constant in the Arrhenius form

k(T ) = ωe−Ea/kBT (2.24)

where we identify ω as the pre-factor to the ratio of level densities in Eq. (2.17),

ωN =
mN

π2h̄3 〈σN 〉(kBTN )2Zint(TN ). (2.25)

In the absence of other cooling channels (radiative, electronic emission etc.) the highest
temperature of the clusters will obey the condition,

ωe−Ea,N/kBT ≈ 1

t0
(2.26)

⇒ T =
Ea,N

kB ln(ωt0)
(2.27)

The decay time t0 is the time from entry into vacuum to after mass selection which
corresponds to the earliest decay we can measure. The temperature T is an average
between the parent and daughter temperature of the clusters, so to retrieve the maximum
daughter temperature Tmax,N we will subtract half the dissociation energy from the
internal energy of the cluster,

Tmax =
Ea,N

kB ln(ωt0)
−
Ea,N
2CN

. (2.28)

CN is the cluster size dependent heat capacity that has been reported previously for
protonated water clusters (H2O)NH+ in [13]. The clusters are all accelerated to the
kinetic energy of 1eV and the flight path from creation to the first observable decays is
0.245m long. This means that t0 = 154µs, for N = 4, which scales with

√
m for the

bigger clusters. ω will be estimated below in order to obtain the temperatures.

Since the frequency factor is itself a function of temperature, ω = ω(T ), the process of
calculating the temperature and recalculating ω at this new temperature will be iterated
until the temperature converges to a fixed value. In the calculation of ωN the cross-
section for attachment of a molecule to a cluster will be assumed to be the geometrical
cross-section 〈σ〉 = σN . For two spherical bodies of radii rN and r1 it takes the form,

σN = π(rN−1 + r1)2 = πr2
1((N − 1)1/3 + 1)2 ≈ πr2

1N
2/3, (2.29)
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where we have assumed that the radius rN scales with N1/3. As the spherical radius of
a free water molecule the value r = 2 Å is used [14]. Table 2.3 shows the calculated ωN
and maximum daughter temperature of different cluster sizes as well as some parameters
used in the calculation. Note that since ωN enters into the logarithm, an error of factor
2 alters the value of Tmax a few percent at most.

N Zint(Tmax) ωN [×1017s−1] Ea,N [eV] Tmax,N [K]

4 3 0.0003 0.685 26

5 15 0.0232 0.379 42

6 21 0.0556 0.374 66

7 30 0.1545 0.425 89

8 39 0.3151 0.466 108

9 47 0.5351 0.496 122

10 53 0.7648 0.513 133

11 56 0.9337 0.512 138

12 55 0.9708 0.490 137

13 56 1.0659 0.484 138

14 56 1.1200 0.472 138

20 59 1.6510 0.459 143

21 58 1.6686 0.452 142

22 49 1.1547 0.393 126

Table 2.3: The maximum temperature for each cluster size and the parameters used to cal-
culate it using Eq. (2.28). The columns are from left to right: Cluster size, internal partition
function, frequency factor ω, dissociation energies and maximum daughter temperature.

The temperature in Eq. (2.27) corresponds to an upper cutoff between the parent
and daughter internal energy distribution of the clusters,

Emax,N = CV
Ea,N

kB ln(ωt)
. (2.30)

The differential of this cutoff energy with respect to time will yield the decrease in
maximum energy with time. After multiplication by the energy distribution g(E) we
obtain the decay rate R, i.e. the change in population over time,

R = g(E)
CVEa,N

kB ln2(ωt)t
. (2.31)
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We see that the number of decays over time is directly proportional to the heat capacity
of the cluster. This observation will be useful when analyzing the metastable decay in
section 4.2. We also see that the rate is proportional to the dissociation energy. This
may be counter-intuitive since it suggests that the a higher dissociation energy will lead
to more decays.
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3
Experiment

T
he experiment was performed in collaboration with Mauritz Ryding and Einar
Uggerud from the Department of Chemistry at Oslo University, Bertil Dyne-
fors from the Department of Physics at Chalmers University of Technology and
Klavs Hansen from the Department of Physics at the University of Gothenburg.

The instrument used was a modified Q-Tof 2 mass spectrometer from Waters Corpora-
tion, UK. A schematic overview of the different regions of the instrument is shown in
Figure 3.1.
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CHAPTER 3. EXPERIMENT

Figure 3.1: Schematic overview of the Q-Tof 2. c© Waters Corporation. Used with
permission.

The clusters are produced in an electrospray ion source at atmospheric pressure,
and enter the vacuum part of the instrument through differentially pumped chambers.
A specific cluster size and composition can be selected in the linear quadrupole filter.
The clusters can then decay freely for some time before they reach the Time-Of-Flight
mass-spectrometer (TOF MS), where the mass to charge ratio m/q of incoming ions
are detected. Some sections of the instrument relevant for the current experiment are
detailed in Section 3.1. The experimental procedure is described in the Section 3.2 and
the final part of this chapter, Section 3.3 will deal with data handling and data reduction.
More details about the experimental setup and similar experiments are found in [15].
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3.1 Q-tof II

3.1.1 Electrospray ionisation source

LIQUID

CAPILLARY WITH

 ~ +kV POTENTIAL

NEBULISER GAS IONIZED CLUSTERS

Figure 3.2: Schematic overview of the principles of electrospray ionization.

Electrospray ionization is a way of producing ions from a liquid that was first realized
in the 1980’s and subsequently awarded John Fenn with a Nobel Prize in Chemistry for
its use on bio-molecules[16]. The liquid under study is fed through a needle that is held
at a potential of a few keV. When this potential is strong enough the liquid will form a
cone at the end of the needle (Taylor cone) and become ionized before finally escaping
the needle as a jet of ionized droplets (See Fig. 3.2). A nebulizer gas will evaporate
the droplets further and is used to decrease the size of the ionized clusters. Doubly
charged water droplets will easily separate into singly charged species because of the
added coulomb repulsion, and will not need to be considered in this experiment. The
ions will then be accelerated by a fixed potential and led into vacuum through a series
of differentially pumped chambers.
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3.1.2 Quadrupole mass filter

IONS

NON-

RESONANCE ION

RESONANCE ION

Figure 3.3: Schematic overview of the principles of a quadrupole mass filter.

The mass selection of a specific (or a range of) cluster sizes and compositions is achieved
with a linear quadrupole mass filter. Four metal rods are arranged symmetrically around
and parallel to the axis of the ion beam (See Figure 3.3). By applying a voltage over each
opposing pair of rods Φ+ and Φ−, one can make the trajectories of ions with unwanted
mass to charge ratios m/q unstable. The potentials can be described as,

Φ+ = +(U + V cosωt),

Φ− = −(U + V cosωt),

where ω = 2πν is a radio frequency alternating current with amplitude V and U is a
static direct current. For a positive ion beam the positive DC potential of Φ+ will repel
the ions towards the center axis. Since the lower m/q is displaced more easily than the
higher by the oscillating AC field, U and V and ν can be tuned so that all ions just below
the desired ratio m/q will eventually hit the rod and be neutralized whereas the higher
m/q will be less displaced by this field and survive through the filter. In a similar way
Φ− can be used to filter out the higher m/q ions. The DC potential is now attractive
towards the rods but low m/q ions are kept from hitting them by the oscillating AC
current. When combined these rods allow us to select a range of mass to charge ratios
that will pass though the quadrupole. In the case where all ions have the same charge,
this is effectively a mass filter that is used to select for a specific cluster size with a
given number of deuterium in the cluster. Only the decays that happen between mass
selection in the quadrupole and the TOF MS are detected in the experiment.

3.1.3 TOF MS

A time-of-flight mass-spectrometer is another way of determining the mass to charge
ratio m/q of incoming ions. Ions of charge q exposed to a static field U will have a
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potential energy Ep = qU . As they accelerate this potential energy will be converted
into kinetic energy Ek = 1

2mv
2. In the end the velocity will depend on the mass and

charge as v =
√

2qU/m. The travel time to detection at a known distance d is then

t =
d√
2U
·
√
m

q
. (3.1)

By detecting the time passed after acceleration by the potential U we can measure the
ratio m/z.

This only works if the initial kinetic energy of the ions are the same, which is not
always the case. Flight time uncertainties due to the small kinetic energy and spatial
variations in the beam is minimized by using a reflectron. It consist of a constant
electrostatic field and ions entering the region with higher energies will penetrate the
field deeper before being reflected and therefore take slightly longer to reach the detector.
This way the beam is focused so that all ions with the same m/q will reach the detector
almost simultaneously irrespective of the initial spread in spatial and kinetic distribution.
This allows for a very good m/z resolution.

The detector is a micro-channel plate that amplifies the signal as an electron multi-
plier when an incoming ion deposits some energy in one of the micro-channels.

3.2 Experimental procedure

A syringe and syringe pump was used to feed various fractions of pure H2O and pure
D2O to the electrospray needle at ∼ 10µLmin−1 in order to produce the desired cluster
composition with good intensity. The ions were accelerated to Elab = 1eV of translational
energy when entering vacuum and consequently the flight time through the different re-
gions of the QTOF 2 will be determined by their mass, charge and the path lengths of
each region. The flight times scale as

√
m as shown in eq. 3.1.

The pressure in the quadrupole region varied between 8 − 10 × 10−6mbar and the
TOF pressure varied between 4− 5× 10−7mbar for the duration of the experiment.

The TOF spectra were calibrated by putting pure H2O in the syringe and comparing
the calculated mass of (H2O)21H

+ (379.23 u) with the observed value (379.22 u). The
quadrupole was then tuned to allow full intensity of this peak (mass ±0.2 u). A second
calibration point with (H2O)4H

+ (73.05 u) was used to cover a long range of cluster
sizes accurately. Finally the calibration was tested with a NaCl-solution which showed
good agreement with calculated masses.
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Figure 3.4: Two raw spectra with no mass selection showing masses 70-280 u, correspond-
ing to cluster size N = 4-14. Blue spectrum was aquired with 10% D2O in the source and
red spectrum with 50% D2O. No intensity normalization was done.

Figure 3.4 shows two raw spectra without mass selection, i.e. with the quadrupole
off, using a 50/50 (red) and 90/10 (blue) ratio of H2O/D2O in the syringe. Each peak
corresponds to a specific cluster size and composition (H2O)NH

+ with D hydrogen
substituted for deuterium, ranging from D = 0 to D = 2N + 1. The shift in intensity
towards higher deuterium content in the clusters as a function of the D2O fraction in
the source is clearly seen, and will be analyzed in Section 4.1.

20



3.3. DATA HANDLING CHAPTER 3. EXPERIMENT

245 250 255 260 265 270
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Mass (u)

In
te

n
s
it
y
 (

c
o

u
n

ts
)

Figure 3.5: Raw spectrum with mass selection m = 265 u, corresponding to cluster size
N = 14 D = 12. The three daughter-peaks correspond to loss of D2O, HDO and H2O from
left to right.

Every possible composition of cluster sizes N = 4 to 14 and N = 20 to 22 was
individually mass-selected in the quadrupole and the evaporation spectrum recorded.
An example of an evaporation spectrum of N = 14, D = 12 is shown in figure 3.5. The
large peak is the number of un-evaporated clusters and the three small peaks correspond
to the number of clusters that have evaporated D2O, HDO and H2O from left to right.
This way the relative weights of each decay channel is measured at the same time, under
the same conditions.

The heavy- to light-water ratio in the source was tuned to give good intensity of
the specific peak under study, typically around 200-300 counts/s in the parent peak.
Each spectrum was recorded over 1-2 minutes to accumulate at least 2000 counts in the
integrated daughter-peaks. Peaks of lower intensity were run longer. There is an overlap
in mass between different D-compositions of two neighboring clusters, as can be seen in
fig. 3.4. Extra care was taken with the D2O fraction in the source to ensure that the
right cluster size was being observed.

3.3 Data handling

Each evaporation-spectrum was imported into MATLAB. The instrument saves the accu-
mulated mass spectrum from the buffer memory at given intervals (scans) and the counts
in each mass channel was summed up over all scans of the spectrum. The parent- and
daughter-peaks were integrated over their corresponding mass channels ±0.1u. Daughter
peaks that should not be observed, (e.g. corresponding to loss of H2O in a heavy water-
only cluster), ranged from 0 − 8% of the branching ratios. These ”ghost peaks” were
visible when the intensity of the parent cluster was below 30 counts/s and are assigned
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to contaminations. The contaminations were subtracted in the following manner. HDO
peaks were corrected by interpolating the HDO-loss, normalized to the total intensity,

IHDO/(Iparent + IH2O + IHDO + ID2O), (3.2)

between the two cluster compositions corresponding to only hydrogen (D = 0), and
only deuterium (D = 2N + 1), for each N. Ii refers to the integrated intensity of each
peak. The intensity-normalized counts were then subtracted from each HDO peak in
the given cluster size. Similarly for H2O and D2O there are two deuterium compositions
with each cluster size, for which no evaporation should occur. An average over these
two intensity-normalized counts was subtracted from all compositions. The correction
of contaminations is easily illustrated by using the branching ratios,

Bd =
Id

I0 + I1 + I2
, (3.3)

with d = 0, 1, 2 corresponding to H2O, HDO and D2O respectively. They are plotted
with the original data (symbols) and corrected data (lines) for one cluster size in figure
3.6. The figure also shows the statistical uncertainty of the measured branching ratios.
Black points indicate an evaporation spectrum that was reproduced on a different day,
and shows the reproducibility of the experiment to be good.
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Figure 3.6: Branching ratios of H2O, HDO and D2O shown as squares, triangles and
circles respectively, for cluster size N = 11. The lines are the corrected data as detailed
in this section. Black crosses indicate a spectrum that has been measured twice to check
reproducibility.
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4
Results and Analysis

T
his chapter presents the analysis and results of the experiment, starting with
the isotope distribution of the clusters in section 4.1, to see how the clusters
are produced. The metastable decay fractions are presented in section 4.2, as
a function of cluster size and deuterium content. Some observations are made

regarding how the clusters are produced and their heat-capacities. Branching ratios are
the relative weights of each decay-channel and they are presented in section 4.3, along
with a comparison of the expected branching ratios if the rate constants were identical.
The most significant result of this thesis is presented in 4.4, where we find the relative
rate-constants as a function of cluster size and the difference in dissociation energies to
explain the rate-constants. Finally in 4.5 we observe how the rate constants depend on
the number of deuterium in the cluster.

4.1 Isotopic distribution

By using the full spectrum with no mass selection as seen in figure 3.4, we can analyze
the distribution of isotopes reaching the TOF MS. These distributions correspond to a
combination of what is produced in the source and the decay before the TOF. If the
2N + 1 sites in a cluster is occupied by D deuterium independently and at random with
probability p of choosing deuterium for any site, we will have a binomial probability
distribution of isotopes with each cluster size N .

B(D) =

(
2N + 1

D

)
pD(1− p)2N+1−D (4.1)

A χ2 test for goodness of fit was employed to determine whether the observed distribu-
tions are binomial.

χ2 =

2N+1∑
D=0

(Ie(D)− If (D))2

σ2
Ie

, (4.2)
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where Ie(D) is the experimental integrated peak value and If (D) = c · B(D) is the
expected value in the case of a binomial distribution. The uncertainty of the integrated
peak is σIe =

√
Ie and the variance in the denominator is therefore σ2

Ie
= Ie(D). The

normalization factor c can be determined analytically by varying χ2 with respect to c
and finding the minimum value.

dχ2

dc
= 0 =⇒ (4.3)

−2
2N+1∑
D=0

1

Ie(D)
[(Ie(D)− c ·B(D)) ·B(D)] = 0 (4.4)

=⇒ c =

∑2N+1
D=0 B(D)∑2N+1

D=0 B(D)2/Ie(D)
(4.5)

The probability p is determined numerically by varying p between 0− 1 in equation 4.2
and choosing the p that gives the smallest value of χ2. Figure 4.1 shows two spectra
with 50% and 80% D2O in the source, fitted with binomial distributions according to
this procedure.
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Figure 4.1: Spectra showing integrated peaks of N = 21−24 fitted with binomial distribu-
tions (solid line). Top spectrum acquired with 50% D2O in the source and bottom spectrum
acquired with 80% D2O in the source.

With the χ2 per degree of freedom we find the binomial distribution to give reasonable
agreement with data with the exception of clusters N = 3 and N = 4. Clusters N = 5-
26 give consistently good agreement although they tend to be wider than the binomial
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distribution. Figure 4.2 shows the fitted value of p as a function of cluster size for
different source D2O fractions.
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Figure 4.2: The fitted value of the deuterium fraction p according to the binomial fit as a
function of cluster size N . From top to bottom the specta were acquired with 100%, 80%,
66%, 50%, 20%, 10% and 0% D2O in the source respectively.

With the exception of the very smallest clusters, p is seen to be constant which is an
indication of how the clusters are created before entering the TOF. If the clusters are
created by repeated evaporation from larger clusters, p would decrease with increasing
cluster size. The reason for this is that if the loss of hydrogen species is favored, more
and more deuterium is left behind in smaller clusters. The fact that p is constant in
figure 4.2 can therefore either mean that the rate-constants are not significantly different
for loss of H2O compared to D2O, or that clusters do not decay much before detection.

We can estimate how many molecules are lost to evaporation before equilibrating to
the vacuum temperature in the machine. With a heat capacity of 6kB per molecule[13]
the internal energy of the cluster with temperature T will be

E = N · 6 kB · T (4.6)

The clusters are created at room temperature (E = N · 0.16eV) and assuming a vacuum
temperature of roughly 100 K (E = N · 0.05eV) we have a difference in internal energy
of ∆E = N · 0.11eV. We will assume a constant heat capacity which is a good approx-
imation for large clusters. With a dissociation energy of ≈ 0.45eV [17] the cluster will
lose on average N ·0.11/0.45 or N/4 molecules before reaching equilibrium temperature.
From this we can conclude that all cluster sizes are produced in the source and do not
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decay much before stabilizing. As an example cluster N = 12 will lose three molecules
before stabilizing. Even with different decay rate-constants this will not significantly
change the isotope distribution of smaller clusters which explains why the probability p
is constant.

The average value of p as a function of the D2O fraction in the source is plotted in
figure 4.3. There is a shift towards higher deuterium content than in the source that
may be explained by more evaporation of light water. It is also clear from the pure H2O
and pure D2O spectra that there are contaminations in the machine of both light and
heavy water.
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Figure 4.3: The fitted value of the deuterium probability p averaged over cluster sizes
N = 6-26 as a function of the D2O fraction in the source. The line is the expected curve in
case there was a 1:1 relation between the deuterium fraction in the source and the observed
probability.

4.2 Metastable fractions

The term ”metastable decay fractions” refers to the fraction of clusters that have un-
dergone decay in the experimental time window. The fraction is defined as the ratio
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between the number of evaporated clusters and the total intensity,

fm =
I0 + I1 + I2

I0 + I1 + I2 + Iparent
. (4.7)

This is analyzed as a function of cluster size in Section 4.2.1 and deuterium content in
Section 4.2.2.

4.2.1 Evaporated fraction vs. cluster size

The evaporated fraction from cluster compositions with all three decay channels present,
D = 2 - (2N − 1), is plotted as a function of the cluster size N in figure 4.4.
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Figure 4.4: The fraction of evaporated water-molecules versus cluster size.

The cluster size dependence looks as expected with the evaporation increasing smoothly
for larger clusters. This reflects the heat capacity and dissociation energies of the water-
clusters. The heat capacities of protonated water clusters have been shown to be nearly
linear in cluster size [13] with Cv,N ≈ 6(N − 2) · kB and the decay rate was shown in
Eq. 2.31 to be proportional to the heat capacity. If the dissociation energies Ea,N were
identical we would expect the evaporated fraction in figure 4.4 to be linear in N . The
deviation from linearity seen is therefore attributed to a difference in dissociation ener-
gies from different cluster sizes. The anomaly around N = 21 is also apparent and has
been attributed to a geometrical shell closing at this ’magic number’, after which the
dissociation energy is lower for clusters N = 22 and larger[17]. The smaller dissociation
energy of N = 22 also results in the lower end of the energy distribution of the daughter
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N = 21 to be shifted towards lower energies, which explains why this cluster evaporates
less than the neighboring N = 20. As mentioned above, the dissociation energies and
heat capacities of protonated light water clusters have been reported previously and will
therefore not be treated in detail here.

4.2.2 Evaporated fraction vs. deuterium content

The evaporated fraction of molecules as a function of the relative deuterium content in
the cluster is plotted in fig. 4.5. It is seen to be nearly constant within each cluster
size. The fluctuations are not due to statistics and most likely reflect varying source
conditions. From this figure we can conclude that the heat capacity is constant with
respect to the number of deuterium in the cluster, i.e. a light water cluster shows little
or no difference in heat capacity from a heavy water cluster. As a comparison, the heat
capacity of liquid heavy water in bulk and at room temperature has been measured to
be 13% higher than the heat capacity of of light water [18].
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Figure 4.5: Total metastable decay fraction as a function of the relative deuterium content
for all cluster sizes decreasing from top to bottom. Colors correspond to the cluster sizes
as in figure 4.4. The dashed line is a the expected increase in evaporation from bulk water
because of the higher heat capacity of bulk D2O.

The observation of similar heat capacities also relates to the level densities of the
clusters. The level density of a cluster can be expressed using the entropy in the following
way [6],

ρ(E) ≈ 1

2
√
CvT

eS(T ), (4.8)

where the canonical entropy S(T ) is defined as

S(T ) =

∫ T

0

dE

T ′
=

∫ T

0

CvdT
′

T ′
. (4.9)
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We can conclude that if the heat capacities Cv are the same irrespective of D, the entropy
and level densities will be similar as well, assuming the heat capacities are similar at
lower temperatures as well. This approximation is very useful in Section 4.4 when we
want to compare level densities of clusters that are similar except for their deuterium
content.

4.3 Branching ratios

Branching ratios are a measure of the relative losses through each competing decay
channel, defined as,

Bd =
Id

I0 + I1 + I2
, (4.10)

with d = 0, 1, 2 corresponding to loss of H2O, HDO and D2O respectively. B0, B1 and
B2 is plotted for N = 4 in Figure 4.6.
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Figure 4.6: Branching ratios of H2O (squares), HDO (triangles) and D2O (circles), for
cluster size N = 4. The lines are the populations of the different isotopes as described in
the text.

The asymmetry towards higher H2O evaporation is apparent in all cluster sizes from
N = 5 and larger. If we plot the branching ratios as a function of relative deuterium
content D/(2N + 1) we find that all clusters N = 9 and larger scale. This is plotted in
Figure 4.7.
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Figure 4.7: Branching ratios of H2O (blue), HDO (green) and D2O (red), for cluster sizes
N = 9 - 14 and N = 20-22, plotted as a function of the relative deuterium content in the
cluster D/(2N + 1). The lines are the populations of the different isotopes as described in
the text.

The branching depends on the decay rates as well as the population of d = 0, 1, 2
in the cluster. Assuming full statistical mixing (scrambling) of H number of hydrogen
and D deuterium (with H +D = 2N + 1), the relative population of each isotopologue
in the cluster is given by [19]

P0 =
H

H +D

H − 1

H +D − 1
, (4.11)

P1 = 2
H

H +D

D

H +D − 1
, (4.12)

P2 =
D

H +D

D − 1

H +D − 1
. (4.13)

They are obtained by counting the number of different ways in which one can fill the two
sites of a water molecule with d = 0, 1, 2, from a cluster of H hydrogen and D deuterium.
The populations are plotted as solid lines in figure 4.6 and 4.7. If the rate constants were
identical and the distribution of deuterium completely random in the cluster we would
expect Bd to equal Pd. The fact that Bd and Pd is observed to be nearly identical in
figure 4.6 is a good indication that the cluster does not significantly discriminate the
deuterium to a certain configuration. For the larger clusters plotted in Figure 4.7 there
is a clear deviation from the populations, indicating isotope effects.
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As a measure of the asymmetry towards more H2O evaporation we can take the
difference between the observed branching ratios and the populations P0, P1 and P2.
This is plotted as a function of cluster size in figure 4.8, where we can see that the
branching ratios are increasingly favored towards loss of H2O with cluster size. This
tendency stabilizes at around N = 11 after which the difference between the populations
and branching remains constant.
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Figure 4.8: Average difference between experimental branching ratios and the populations
of each isotope in the clusters as a function of cluster size. Squares are for H2O, Triangles
indicate HDO and circles are D2O.

4.4 Relative rate constants

This section will expand the analysis of the branching ratios from the previous section in
order to observe the true isotope differences without the influence that the populations
P0, P1 and P2 have. The number of decayed molecules of each isotopologue has several
contributing factors,

fd = kdPd∆τI
′
ptφ (4.14)

where ∆τ is the time from mass selection (quadrupole) to detection (TOF), I ′p is the
parent cluster intensity in s−1, t is the accumulation time of the spectrum and φ is the
detection efficiency. Here we are interested in the relative decay rate constants kd.
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The probabilities P0, P1 and P2 are divided out of the branching ratios so that we can
compare the rate constants kd ∝ Bd/Pd directly. Since the four last factors of equation
4.14 are identical for different d they will cancel out and the relative rate constants are
given by kd/kd′ = (Bd/Pd)/(Bd′/Pd′). Note that kd describes a rate constant under a
somewhat constructed cluster scenario that is independent of the number of deuterium in
the cluster. These rate constants correspond to what they would be if the entire cluster
was of the evaporated species. Even though these are not physical rate constants they
are easily compared with each other and the derived expression for the rate constant in
Eq. (2.17), and therefore serve their purpose well. The ratio of Bd to Bd′ · (Pd/Pd′) is
plotted in fig 4.9.
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Figure 4.9: Comparison of branching ratios for cluster size N = 9 and larger, with the
relative populations divided out. The area of the markers are inversely proportional to one
standard deviation. The slope represents the average ratio of decay rates kd/kd′ .

All the plotted curves for N = 9 and larger is seen to overlap nicely and the average
ratio of rate constants are found here as the slope with k0 : k1 : k2 := 1 : 1

1.8 : 1
2.2 = 1 :

0.55 : 0.43. This means that light water decays from clusters with more than twice the
rate of heavy water, with the rate constant of HDO in between. The fact that all cluster
sizes larger than N = 9 fall on the same line is remarkable but in accordance with figure
4.7 and 4.8 where the asymmetry evens out at around N = 10.

We can relate the observed ratio of rate constants to a difference in dissociation
energies of the isotopes by taking the ratio of the derived expression for the rate constant
from eq. (2.17).

kd
kd′

=
µd
µd′

σd(E)

σd′(E)

Zd(Td)

Zd′(Td)

(
Td
Td′

)2 ρd(E − Ea,d)
ρd′(E − Ea,d′)

(4.15)
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If the ratio of level densities had the same energy argument, we could now use the
observation of section 4.2 and assume the level densities to be the similar since they
only differ one deuterium from each other. The level density is, however, a strongly
varying function of energy so even a small difference in the dissociation energies ∆Ed,d′ =
Ed′ − Ed is not negligible. Assuming the difference in dissociation energies ∆Ed,d′ is
small compared to the internal energy of the daughter cluster E − Ea,d we can expand
the logarithm of ρd′(E − Ea,d′) around E − Ea,d,

ρd′(E − Ed′) = ρd′(E − (Ed + ∆Ed,d′)) (4.16)

≈ ρd′(E − Ed)e−∆Ed,d′/kBT . (4.17)

This first order approximation allows us to evaluate the level densities in eq. (4.15) at
the same internal energy and we can set the ratio to unity. In this approximation the
relative rate constants are reduced to,

kd
kd′

=
µd
µd′

Zd(Td)

Zd′(Td′)

(
Td

Td′ −∆Ed,d′/Cv

)2

e−∆Ed,d′/kBTd (4.18)

The ratio of partition functions was calculated in section 2.2 and the ratio of reduced
masses µ0 : µ1 : µ2 is close to 0.9 : 0.95 : 1. Further, we will assume the ratio of at-
tachment cross-sections σ(E) to be unity. By using the calculated maximum daughter
temperature from section 2.2 we can relate the observed ratios of rate constants to the
difference in dissociation energies for the different isotopologues. With a daughter tem-
perature of T0 ≈ 140K for N = 9- 22 and the ratio of partition functions of Z0 : Z1 : Z2

of 1 : 4.9 : 5.8 we find the difference in dissociation energies to be ∆E0,1 ≈ 25.8meV,
∆E0,2 ≈ 31.0meV and ∆E1,2 ≈ 6.4meV. These values reflect the average number of hy-
drogen bonds and the relative strengths of the H and D bond, which is discussed further
in Chapter 5.

We now move on to establish the relative rate constants for the smaller clusters as
well. The average kd/kd′ = (Bd/Pd)/(Bd′/Pd′) vs. cluster size N is plotted in figure 4.10.
The ratio of decay rates is seen to increase up to N = 11, after which they converge to
the average value of k0 : k1 : k2 := 1 : 0.56 : 0.43 as observed previously. Figure 4.10
represents one of the main results of this thesis, where we have extracted the relative
rate constants of light and heavy water as a function of cluster size. The rest of this
section will be devoted to explaining the difference, using the derived expression for the
rate constant eq. (2.17).
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Figure 4.10: Relative decay rates averaged over D for each cluster size. Circles correspond
to k0/k2, squares k0/k1 and triangles k1/k2. The error-bar represents a typical root mean
square deviation of the data points that were averaged over. The largest deviation was for
k0/k2 which is plotted at the 1σ level.

We will now treat these relative rate constants in the same manner as in eq. 4.18
to see how the dissociation energies changes with cluster size. The temperatures and
partition-functions in table 2.3 are used along with Eq. (4.18) to find ∆Ed,d′ . The
extracted difference in dissociation energies ∆Ed,d′ is shown by cluster size in figure
4.11.
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Figure 4.11: Difference in dissociation energies vs. cluster size. Circles correspond to
E2 − E0, squares E1 − E0 and triangles E2 − E1.
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The difference in dissociation energies increases almost linearly with size and flat-
tens out around N = 12. This observed size dependence tells us something about the
structure of the clusters. On average one expects more hydrogen bonds per molecule
with increasing cluster size, up to the point where adding another molecule does not sig-
nificantly change the number of bonds and structure. The extracted energies represent
another main result of this thesis since they are useful in of themselves and they relate
to both isotope effects and hydrogen bonds.The observed difference will be compared
with previous experiments and calculations of the difference in bond-strength between
H and D bonding in Chapter 5.

4.5 Rate constants vs. D

In the previous section we assigned the ratio of rate constants partly to a difference
in energy of the hydrogen and deuterium bond. Apart from the bonds that need to
be broken between hydrogen in the evaporating molecule and oxygen in the cluster
(henceforth d-bonds), we also expect hydrogen isotopes in the cluster to bond with
the oxygen in the molecule (henceforth O-bonds). In this manner we expect the rate
constants to be affected by the number of deuterium in the cluster.

We can find out how the rate constants depend on D, by using the branching ratios
and Eq. (4.14) and (4.7) as,

Bd/Pd =
Id

I0 + I1 + I2

1

Pd
=

kdPd∆τI
′
ptφ

I ′pt(fm/(1− fm))

1

Pd
(4.19)

=
kd∆τφ

(fm/(1− fm))
= c · kd, (4.20)

where c is a constant. We have used the results of section 4.2.2 that the metastable decay
fraction fm does not depend on D. It is also assumed that ∆τφ does not significantly
depend on D and are similar for d = 0, 1 and 2. Bd/(PdZdµd) is plotted in fig 4.12 for
clusters larger or equal to N = 10.
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Figure 4.12: Branching ratios with the populations Pd and partition-functions Zd divided
out as a function of relative deuterium content D. d = 0, 1, 2 from top to bottom. These are
directly proportional to the rate constants kd. Lines are exponential fits to the decay rates
vs. deuterium content. Exponential coefficients are 0.93, 0.88 and 0.80 for d = 0, 1, 2.

The rate constant is exponential in the deuterium concentration in the cluster,
D/(2N + 1), with slightly different exponential factors. The internal partition-functions
Zd of the evaporated water molecules as well as the reduced mass µd have been divided
out so that the D-dependence reflects only the ratio of daughter- to parent- level-density,

Bd/(PdZdµd) ∝
ρN−1,D−d(E − EaN,D,d)

ρN,D(E)
. (4.21)

The daughter temperature and cross-section are assumed not to depend on D or d and
therefore do not give rise to the observed exponentials. We can try to reconstruct the
observed dependence by modeling the factors that contribute to the dissociation energy.
Based on the simplest model that accounts for the difference in hydrogen bond energies
of hydrogen and deuterium we can express the total energy in the parent and daughter
cluster as,

EN,D = EN + ∆E ·D, (4.22)

EN−1,D = EN−1 + ∆E ·D, (4.23)

where ∆E is the difference in energy per deuterium added to the cluster. The dissociation
energies EaN,D,d for losing d = 0, 1 and 2 are in this case simply the difference in energy
between parent and daughter cluster,

EaN,D,d = EN,D − EN−1,D−d = EaN,D,0 + d ·∆E. (4.24)
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Since we are interested in the exponential dependence and not the absolute values, we
can relax the assumption that ∆E is linear in d, and just use the obtained values of
∆Ed,d′ from the previous section. This means relaxing the condition that changing two
hydrogen bonds for deuterium has exactly twice the effect of changing one. This model
does not yet explain the observed exponential D-dependence and second order effects
will have to be included.

The model is modified to introduce an interaction between the deuterium D in the
environment and the d-bonds between the evaporated molecule and the rest of the cluster,

EaN,D,d = EaN,D,0 + ∆Ed,d′ + γ
D − d
2N − 1

. (4.25)

Here γ is the change in dissociation energy of the d-bonds in case all the hydrogen
around the evaporated molecule are substituted for deuterium. The probability that the
deuterium interacts with the evaporated molecule is just the deuterium concentration
(D − d)/(2N − 1). Similarly the deuterium d in the molecule will have an effect on the
O-bond energy and this term is also added to yield,

EaN,D,d = EaN,0,0 + ∆Ed,d′ + γ
D − d
2N − 1

+ d · ξ D − d
2N − 1

. (4.26)

ξ is the change in O-bond energy for every deuterium d in the evaporated molecule. This
model is used to relate the observed exponentials to interactions between deuterium in
the cluster and deuterium in the evaporated molecule. These second order interactions
could be caused by the change of vibrations, electron configurations, symmetries and
other effects on the bonds when substituting hydrogen with deuterium.

The daughter level density in Eq. (4.21) is expanded around E − EaN,0,0 such that,

kd ∝
ρN−1(E − EaN,0,0)

ρN,D(E)
e

1
kBT

(−∆Ed,d′−γ
D−d
2N−1

−d·ξ D−d
2N−1)

, (4.27)

which can be directly related to the observed exponentials. With d = 0 we are seeing
only the γ term of k0 and the observed slope in figure 4.12 is γ = −0.93 kBT or γ ≈ 11.5
meV. This γ is used to find ξ from the slopes of k1 and k2 to be ξ = 0.08kBT ≈ 0.97
meV. By dividing out the exponential factors that depend on d from k0, k1 and k2, i.e.
∆Ed,d′ and the ξ term, all the points should fall on the same curve. This is plotted in
figure 4.13.
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Figure 4.13: Branching ratios with PdZdµd and exp (−∆Ed,d′ − dξ(D − d)/(2N + 1)) di-
vided out as described in the text with ξ = 1 meV. These are plotted as a function of the
deuterium concentration in the cluster. Blue, Green and Red points correspond to d = 0, 1, 2
respectively.Area of the symbols are inversely proportional to one standard deviation.

If this model is an accurate representation of the physical mechanism behind the ex-
ponential D dependence, we have learned that although the deuterium bond is stronger
than the hydrogen bond, this effect is weakened by the second order interactions. A
molecule sitting in a deuterium-only environment before evaporating will have 12 meV
lower dissociation energy from ’indirect effects’ compared to the hydrogen only environ-
ment. This effect is altered in the opposite direction when instead adding deuterium
to the molecule that evaporates. Each deuterium addition to the evaporated molecule
decreases the interaction γ-effect by 8% and again leads to an increase in dissociation
energy. These opposite γ- and ξ-effects are not yet understood. It is unclear whether
the observed effects are indeed because of a difference in dissociation energies or rather a
change in the level density itself with added D. Even if it is the energy it is not unlikely
that this model is too simplistic to accurately represent such a complex system. This
will be discussed further in the next chapter.
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5
Discussion and conclusions

A
n expression was derived in Chapter 2 for the statistical decay of water
molecules from a cluster, Eq. (2.17). In this expression there are several po-
tential causes of the observed difference between the rate constants of light and
heavy water. One of these that was only briefly mentioned is the cross-section

σ. Since we are dealing with polar molecules and ionic clusters it is not at all certain that
σ is geometrical in nature, as was assumed in Section 2.2. The temperature calculation
is, however, insensitive to the exact form of σ, and the approximation is valid. In taking
the ratio of rate constants we have also ignored the difference in cross-sections between
H2O, HDO and D2O. If the geometrical cross-section is used, we know D2O to be slightly
smaller because the heavier mass of deuterium leads to a more localized vibrational dis-
placement about the equilibrium position. Compared to the dissociation energies which
enter exponentially in the level-density and the ratio of partition-functions this difference
is still negligible.

It is interesting to note that the partition functions and in particular the spin sta-
tistical degeneracies increases the evaporation of D2O and HDO almost a factor 6 and
5 respectively, since they have more final states to decay to. This is contested by the
different dissociation energies to favor H2O decay in the end. Thus we have competing
effects in the evaporation between the partition functions and the stronger hydrogen-
bonds of deuterium.

The relative rate-constants of water isotopologues was measured under near identi-
cal conditions in vacuum. The rate-constants are very similar to each other at N = 4
and branch off towards more H2O decay with increasing cluster size. This tendency
stops at N = 12 where the ratio remains constant, with kH2O : kHDO : kD2O close to
1 : 0.56 : 0.43. As a comparison a study of ice-layers in bulk reported the desorption of
H2O to be favored by a factor 2.2 compared to D2O [4]. The observed difference was
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ascribed to a difference in the principal moments of inertia and the measured difference
in dissociation energies of 39meV. This is consistent with the findings of this thesis which
found the difference to be 32 meV in clusters N = 9 and larger. This indicates that the
larger clusters are ice-like in the structure of their bonds. The observed size-dependence
can be attributed to an increase in the average number of hydrogen-bonds. The quan-
titative analysis of the number of bonds and comparison with structure-calculations of
water-clusters is outside the scope of this thesis. A study of isotope effects in evaporation
from water-ammonia clusters NH+

4 (H2O)3 concluded that the relative rate constants for
evaporation of H2O, HDO and D2O was close to 1 : 0.71 : 0.56 [20]. A comparison
with Figure 4.10 shows this ratio to correspond to the what we observe in cluster size
N = 5− 7 in pure water clusters.

Some of the simplifications that was made to arrive at the dissociation energies,
may be too optimistic for the smallest clusters. More specifically, the rate-constant and
temperature estimates are based on the evaporated fragment being small compared to
the cluster. It is therefore important to stress the large systematic uncertainty in the
dissociation energies of the smallest clusters. It is possible to expand the level densities
to second order to better account for the smallest clusters where Ea may be a significant
part of the internal energy of the cluster. A finite heat-bath correction to the temper-
ature can also be employed to further improve the analysis. By modeling the explicit
form of the level density, ρ(E), of clusters with different deuterium content it would be
possible to better determine the difference in dissociation energies, without having to
rely on the assumption that they are independent of D.

We have seen in Section 4.5 that the difference in dissociation energies is not sim-
ply a question of adding energies of individual bonds, but may include collective effects
and interactions between bonds as well. In some sense this is reassuring, because the
observed ∆Ed,d′ are not linear in the deuterium content of the evaporated molecule,d,
but it also introduces an uncertainty in what ∆Ed,d′ correspond to physically. These
can not be taken strictly to be the difference in in bonding energy, but should instead
be regarded as an ’effective energy’ which may have several non-trivial contributions.

A difference of 7.4 meV was measured between a single hydrogen and deuterium-
bond for the water dimer in a Kr matrix [21]. Another study comparing hydrogen and
deuterium bonds between water and an Iodide anion measured the competing inter- and
intra- molecular effects to yield a difference of 6.9 meV in total [22]. Many studies have
also been devoted to calculating the expected difference and usually fall between 8 - 13
meV per deuterium bond [23] [24]. These can be compared with the difference between
HDO and D2O from this thesis of ∆E1,2 = 6.4 meV, but it is unclear exactly how they
are related. Reference [23] also calculated the difference in bonding energy if the bonding
hydrogen isotope is ionic and found the effect to be reversed, with ionic hydrogen bind-
ing 17.3 meV stronger than ionic deuterium which also applies to the current experiment.
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Through this seemingly simple experiment we were able to show that the heat ca-
pacity of water clusters is not significantly altered by the number of deuterium in the
cluster. The relative rate constants were extracted for all clusters which show a smooth
size dependence and a significantly higher rate of losing the light water species com-
pared to the heavier. Using calculations and derived expressions the rate constants were
explained in terms of the partition function and different dissociation energies for wa-
ter isotopologues. We also found the rate constants to increase exponentially with the
deuterium concentration in the clusters. This led to the possible observation of some
interesting second order interaction effects though the simple model developed.

Before publication of an article the following things should be addressed to make the
analysis more rigorous.

• Approximation of the cluster temperatures should include higher order terms and
the finite heat bath correction. Expansions of level densities should also include
higher order terms to correctly describe the smallest clusters as previously dis-
cussed.

• Some underlying assumptions should be investigated further, such as the different
cross sections, the assumption of complete scrambling used for finding the popu-
lations and the assumption that level densities do not depend on the number of
deuterium.

• A more advanced model of the dissociation energy can be developed to understand
the physical nature of ∆E, γ and ξ.
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