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ABSTRACT: Air cavity and air chamber concepts have been proven to be an efficient way for

drag reduction in low-speed ships. Series of experiments were conducted in the SSPA cavita-

tion tunnel to simulate the working conditions of an air filled cavity under the hull of a ship.

In this paper, study is extended with a numerical validation using a CFD Open Source solver,

OpenFOAM R© (OF). Volume of fluid (VOF) approach, which uses phase volume fraction (α) is

used to compute the incompressible two-phase viscous flow. The influence of different numeri-

cal methodologies on the advection of α is studied. Different schemes from diffusive first-order

to higher order TVD (Total Variation Dimensioning) schemes like SUPERBEE are tested. Re-

sults are also drawn from counter-gradient convective flux implementation in OF VOF approch.

Conclusions are drawn from the wave profile, wave sloshing pressure force and viscous force.

It was observed that, as more compressive interface capturing methods were used, the aft force

was better predicted but distorts the wave profile and under predicts the beach plate force.

1. INTRODUCTION

A promising drag reduction technique is based on air induced lubrication under the hull of the

ship. Various air induced lubrication techniques have been researched in the past [1], [2], [3], [4]

and [5]. There are different techniques for the same; one of the most effective ones is where air

is injected into a specifically profiled cavity or recess located under the hull. A steady air layer

formed inside this cavity curtails the wetted surface and consequently reducing the skin-friction

drag of the hull.

Various studies have been carried out by SSPA in collaboration with Stena Teknik and

Chalmers (Sweden), on the hull and cavity profiles, starting out with Stena P-MaxAir and later

Stena AirMax with 1:12 model scale. To simplify the test case for the accurate experimental

measurement and testing, a simplified hull cavity profile was constructed inside a rectangular

cavitation tunnel. Series of experimental testing, [6], were carried was out in the SSPA cavita-

tion tunnel on this simplified cavity profile. The experiments mimicked the working condition

of the air cavity under the hull, under steady flow conditions. Details of the geometry are given

in section 1.1. Predominately, research in this field has been confined to experiments. In this

paper, research accentuate computational analysis of the experiments conducted.

1.1 Geometry

Fig. 1a shows the three dimensional geometry on which computational study was conducted

to replicate the experiments. In experiments, width of the tunnel is extended further than the

width of the cavity to nullify the side wall effects. The rectangular water channel is 9.6m in

length, 1m in width and 1.5m in height. An air filled cavity of 6m length and 0.1m height lies

on top of this channel. The cavity has backward-facing step at the upstream end and gentle

forward recline at the downstream end, which forms the closure of the cavity. The cavity roof

have a length of 5.7m after which the beach plate starts. The beach plate have an acute angle



of 18.43◦ (with respect to the flow direction) or a length ratio of opposite side to adjacent side

as 1:3. the air inlet has height of the 0.08m and 1m width. Fig. 1b, shows the schematic two

dimensional model of air cavity ship. Here, Pc is cavity pressure and P0 is pressure at the corner

of the backward-facing step. P0 is taken as zero for this study and pressure at the air-inlet is

specified relation to P0.
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Figure 1: (a) The 3D geometry for air cavity test case. (b) A schematic model of the air-cavity

profile. The direction of the flow of water and air is from left to right as illustrated by the arrows.

2. NUMERICAL FORMULATION

2.1 Governing equations

The governing equation for isothermal and incompressible, immiscible fluids include the conti-

nuity and momentum equations given as,
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where, Fσ is the volumetric surface tension force, gi is the gravitational acceleration, ρ is the

material density and p is the pressure.

2.2 Volume of Fluid

The Volume of Fluid (VOF) method [7], is defined with scalar variable, α, to distinguish two

liquids with different material properties in a computational domain. The interface is smeared



over the cells where α ∈ [0,1]. At the interface, computation of viscosity, density and surface

tension vary according to computation of this α variable.

The advection equation of α is given as,

∂α
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∂x j
−α

∂v j

∂x j
= 0, (2)

For large density ratios, the main challenge for advecting the α variable is to preserve the mass

conservativeness while guaranteeing boundedness. OpenFOAM uses an algebraic approach

based on the counter-gradient transport to advect the volume fraction α, [8]. This scheme

adds a compressive term to the α advection equation in order to retain the conservativeness,

convergence, and boundedness [9], which reduces to zero as the mesh is refined. This advective

equation can be written as,

∂α
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+

∂αv j

∂x j

+
∂vc

jα(1−α)

∂x j

= 0. (3)

where vc ensures compression (vc = vl − vg, l and g stands for liquid and gas, respectively),

while the ∂/∂x j guarantees conservation and α(1−α) guarantees boundedness. Additionally,

compressive factor cα is used to increase compression as,

vc = min(cα|v|,min|v|)
∇α

|∇α|
(4)

2.3 Computational setting

For computational validation, a specified experimental case [6], was chosen where in the pres-

sure at the air inlet and water velocity are specified. The water inlet velocity is 2m/s (corre-

sponds to 16 knots cruising speed of the real ship) and pressure at the air inlet is -100 Pa. Note

that, the pressure specified (pρgh) is absolute pressure minus ρgh. The pressure is specified

to attain an air-inlet flux of the 0.001132m3/s which corresponds to an air inlet velocity of

the 0.0165m/s. The outlet pressure (pρgh) has fixed zero value to give reference pressure and

stability in the domain. Additional boundary conditions are given in table 1.

The fluid is assumed to be incompressible. Turbulence is modelled with Reynolds-averaged

Navier–Stokes (RANS) equations, with k−ω SST turbulence model, and with the wall models

for turbulence kinetic energy (k) and specific dissipation (ω). The surface tension coefficient

is taken as 0.0072 N/m and the surface tension is calculated by the Continuum Surface Force

Model (CSF) without the density averaging proposed by Brackbill et al. [10].

Equations for velocity and pressure are solved using the Pressure Implicit with Splitting

of Operators (PISO) [11]. Two pressure correction steps are used ensuring that the continuity

residuals remained always below 10−7. Pressure correction equation is solved with Precon-

ditioned Conjugate Gradient solver preconditioned with a Generalised Geometric-Algebraic

Multi-grid method and Gauss-Seidel smother with two sweeps.

The α variable, velocity and turbulent quantities are solved with Gauss-Seidel solver. The

convective term is discretised by the Gaussian integration with the limited linear or linear up-

wind differencing. Limited linear is the linear scheme limited to keep it bounded and linear

upwind differencing (LU) involves two upstream values. Euler is used for time discretisation.

2.4 Interface Capturing

Many schemes to capture the non-linear convective term in the Navier-Stokes equation have

been developed over the years. The boundedness while discretisation of this convection term



Field Water-inlet Air-inlet Walls Outlet

prgh (Pa) Vc -100 Vc zero

U (m/s) 2m/s Pc zero zero gradient

α 1 0 zero gradient zero gradient

k (m2/s2) 0.015 1.02×10−4 wall function zero gradient

ω (s−1) 2.13 0.2635 wall function zero gradient

Table 1: The boundary conditions for the air cavity case. Here, prgh is p−ρgh, Vc is velocity

corrected pressure gradient and Pc is the pressure corrected velocity. The sides of the tunnel are

given symmetric conditions.

has been a widely discussed research. OpenFOAM uses blending differencing scheme as,

φ f = (1− γ f )φ
UD
f + γ f φCD

f (5)

where φ f is the flux at the face between cell i and i+ 1. φUD
f is the face flux from upwind

differencing which is first order and bounded and φCD
f is the face flux from central differecing

which is second order but violates boundedness. The blending factor, γ f , is evaluated on the

limiting functions.

φi φi+1φi−1 φf

Flow direction

Figure 2: Variation of φ across the face

The families of total variation diminishing (TVD) and normalised variable diagram (NVD)

differencing schemes are the well established and accepted among many others. All of these

use some sort of an unboundedness indicator in order to determine the parts of the domain

where intervention in the discretisation is required and limits the face value to give oscillation-

free (free of overshoots and undershoots) solutions. Also, according to the TVD and NVD,

any differencing scheme that is more than first-order accurate must be non-linear in order to

guarantee boundedness. Non-linearity of the differencing scheme is introduced through the

dependence of the flux limiter in accordance to TVD/NVD criteria. In TVD scheme, face flux

is written as,

φ f = φi +
1

2
ψ(r)(φi+1+φi), (6)

where ψ(r) is the limiting variable [12]. Two schemes, that are studied in this paper are given

in the table 2.

2.4.1 CICSAM

The CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes) scheme imple-

mented here [15], has some changes from Ubbink [16]. The upwind cell flux is defined as,

φ∗i−1 = φi+1 −2(∇φi ·d f ), (7)



Name Limiter function ψ(r)

Van Leer [13]
r+ |r|

1+ r

SUPERBEE [14] max[0,min(2r,1),min(r,2)]

Table 2: Schemes used for α convective term. Here r = (φi −φi−1)/(φi+1−φi)

where d f is the vector between the cell centers of the donor (cell i) and acceptor (cell i+ 1)

cells, pointing from the donor cell towards the acceptor cell. The above approximation does

not guarantee a bounded φ∗i−1, therefore it is necessary to bound it with known bounds of φ.

The bounds can be either the maximum and minimum value of the whole flow or local values

derived from the cell’s nearest neighbours, φmin
i−1 ≤ φ∗i−1 ≤ φmax

i−1 . The flux at the cell is defined in

the form of NVD as,

φ̃i =
φi −φ∗i−1

φi+1 −φ∗i−1

. (8)

Here it is assumed that v f ·S f > 0.

The derivation of CICSAM is completed with the definition of weighting factor (γ f ) which

is based on the cosine of the angle (θ f ) between the vector normal to the interface (∇φi) and the

vector d f . The cosine of the angle is defined as,

cosθ f =

∣

∣

∣

∣
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|∇φi||d f |

∣

∣

∣

∣

. (9)

There are three switching factors, k1,k2 and k3 that are used to work across different Courant

numbers (Co f ) in mesh domain. These switching factors are defined as,

k1 =
3Co2

f −3Co f

2Co2
f +6Co f −8

, k2 =Co f , k3 =
3Co f +5

2Co f +6
. (10)

Definition of weighting factor (γ f ) is given in the table 3.

2.4.2 Interface Compression

Interface compression scheme, [17], is based on the generic limited scheme but, it does not use

the NVD/TVD functions. The scheme is used for the counter-gradient convective term in the α
transport equation. It is defined as,

γ f = 1−max[(1−4φi(1−φi))
2,(1−4φi+1(1−φi+1))

2]. (11)

2.4.3 Flux corrective transport

Another way to guarantee boundedness is flux corrective transport (FCT), first introduced by

Boris and Book [18], and later generalised and extended to multi-dimensions by Zalesak,

[19]. The boundedness is guaranteed by limiting the face flux in contrast to the face values

of TVD/NVD schemes. But, FCT was found to be working well for analytical steady cases but

non-mass conservative for practical cases [20].

OpenFOAM guarantees boundedness and stability to its solver with this flux corrective

transport termed as multi-dimensionsal limiter for explicit solution (MULES), which is in lines

with Zalesak et al. [19] implementation. The semi-implicit variant of MULES, first executes



when 0 < φi ≤ k1

φCM
f = φ̃i/Co f

γ f =
φCM

f −φ̃i

1−φ̃i

when k1 < φi ≤ k2,

φHC
f = φ̃i/Co f

φUQ
f = [8Co f φi +(1−Co f )(6φi +3)]/8

φCM
f = cosθφHC

f +(1− cosθ)φUQ
f

γ f =
φCM

f −φ̃i

1−φ̃i

when k2 < φi < k3,

φUQ
f = [8Co f φi +(1−Co f )(6φi +3)]/8

φCM
f = cosθ+(1− cosθ)φUQ

f

γ f =
φCM

f −φ̃i

1−φ̃i

when k3 ≤ φi ≤ 1, γ f = 1 (backward scheme)

else γ f = 0 (upwind scheme)

Table 3: HC - Hyper-C scheme [16], UQ - ULTIMATE-QUICKEST scheme [16] and CM -

CICSAM. Here, when face flux (v f ·S f > 0), γ f = 1− γ f and vise versa.

an implicit predictor step, based on purely bounded numerical operators, e.g. Euler implicit

in time, upwind for convection, etc., before constructing an explicit correction on which the

MULES limiter is applied. All cases in this paper uses this MULES limiter.

3. RESULTS AND DISCUSSIONS

Air injected inside the cavity maintains an air layer. A wave is generated inside the cavity which

reattaches at the beach plate, making a pressure force there. Fig. 3a shows the computational

visualisation of the 3D wave surface hitting the beach plate. Fig. 3b shows the pressure contours

with the velocity that illustrates the recirculation of air inside the cavity. Some of the air that

leaks from the cavity is carried by the water along aft plate which reduces the wall shear stress

and therefore the computed force.

Pressure induced force is the dominant contribution to the beach plate, whereas, force due

wall shear stress is dominant in cavity and aft plate. The wall shear stress inside the air cavity

is negligible due to small air velocity compared to that of water.

Table 4, shows the aft forces and cavity forces (cumulative forces from the cavity-roof and

beach plate). Measurements from various numerical settings are compared and validated with

experimental results. The forces computed is a summation of viscous (kinematic and turbulent)

and pressure force.

With case A, case E and case J, all setting are identical except α convection scheme where

it changes from Van Leer to SUPERBEE to CICSAM respectively. From case A to E to J, it

can be seen, from Fig. 4, that the aft force gets closer to the experimental value but the beach

force deviates. Same trend can be observed from case B to F to K, where the only change

with respective to cases A, E and J is using linear scheme instead of limited linear scheme for

counter-gradient α term. Moreover, the aft force is closer to experiments for case B with respect

to case A but vice versa for beach force. Thus, when more compressive linear scheme is used,

the aft force is predicted better, but under-predicts beach force. More compressive schemes

distorts the wave profile formed inside the cavity which results in under-predicted beach force.

Same is observed from case E to F and case J to K.
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Figure 3: (a) Visualisation of the 3D wave surface hitting the beach plate, (b) Pressure (pρgh =
p−ρgh) contour at the beach region of cavity. Velocity vectors are also shown.

Case ∂αv j/∂x j
∂vc

jα(1−α)/∂x j cα Aft (N) (Err.%) Cavity (N) Sum (N) (Err.%)

A Van Leer LL 0.5 6.65 (32.96) 13.20 19.85 (12.90)

B Van Leer linear 0.5 7.20 (27.41) 10.72 17.92 (21.36)

C Van Leer linear 1 9.18 (07.45) 10.61 19.79 (13.16)

D Van Leer IC 1 9.20 (07.25) 10.50 19.70 (13.55)

E SUPERBEE LL 0.5 8.00 (19.35) 12.60 20.60 (09.61)

F SUPERBEE linear 0.5 8.20 (17.33) 10.40 18.60 (18.38)

G SUPERBEE linear 1 9.40 (05.24) 09.75 19.15 (15.97)

H SUPERBEE linear 2 8.70 (12.29) 08.90 17.60 (22.77)

I CICSAM LL 0 1.05 (84.87) 18.02 19.07 (16.32)

J CICSAM LL 0.5 9.61 (03.13) 10.20 19.81 (13.07)

K CICSAM linear 0.5 9.66 (02.62) 09.71 19.37 (15.00)

L CICSAM IC 0.5 9.58 (03.42) 10.30 19.88 (12.77)

M CICSAM LL 1 9.81 (01.10) 09.30 19.11 (16.14)

N CICSAM LL 2 9.05 (08.77) 09.53 18.58 (18.47)

Exp. [6] - - - 9.92 12.87 22.79

Table 4: Comparative force measurement for different schemes. Here, IC is the interface-

compression scheme. Limited linear scheme is used convective term (∂viv j/∂x j) for all cases

except case C
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Figure 4: Forces for different cases from table 4, normalised with the experimental value.

When comparing cases F,G and H, forces are quite similar to each other, and thus it can

concluded that scheme linear, limited linear and interface compression does not make a huge

difference to wave capturing and multiphase wall shear stress.

For cases I, J, M and N, cα value (see Eq. 3), is increased while keeping other values iden-

tical. It can be seen from Fig. 4 that similar tread is followed for case J and M. But, when cα
is increased to 2 (case N) from 1 (case M), aft force reduces and beach force increases, con-

tradicting the expectation. This proves to conclude that over-compression with the nonphysical

cα is undesirable after a certain value. Furthermore, Fig. 5 shows the wave profile for different

value of cα with SUPERBEE and CICSAM schemes for convective α term. The wave profile

matched well in the upstream of the cavity, but varies at the beach plate region.

4. CONCLUDING REMARK

The air cavity concept was studied computationally, with focus on the interface capturing be-

tween two phases, air and water. It was realised that, when more compressive techniques are

used to better capture the interface in the boundary layer, it distorts the wave profile formed in-

side the cavity. Thus, a balance was required to capture both without compensating too much on

the other. Moreover, finer meshes are required to nullify the effects of turbulence and schemes

to better predict the results.
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Figure 5: The wave profile inside the cavity is shown. Profiles are iso-surface of the VOF

variable, α at 0.5; (a) three cases F, G and H (b) Four cases I, J, M and N; from Table 4
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