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Abstract This work presents the achievement in drag reduction by use of Active Flow Control (AFC) on a generic bluff body.

The model consists of a simplified truck cabin, characterized by sharp edge separation on top and bottom edges and pressure

induced separation on the rounded vertical front corner. The pressure induced separation reproduces the flow separation occurring

at the front A-pillar of a real truck. Hybrid Partially Averaged Navier-Stokes (PANS) simulations are compared with wind tunnel

experiments. The Reynolds number for both simulations and experiments is Re = 5× 10
5 based on the inlet velocity U∞ and the

width of the model W = 0.4 m. A validation of the hybrid CFD model on two flow configurations is followed by a CFD study

on the optimal actuation frequency able to minimize the aerodynamic drag. PANS accurately predicts the flow field measured in

experiments and a notable drag reduction by means of AFC is observed in a numerical study.

INTRODUCTION

The flow impinging the front window of a truck cabin separates at the A-pillar, Fig. 1a. The recirculation bubble

not only creates drag that deteriorates the performance of the entire truck, but also noise and soiling affecting the

comfort of the driver. Introduction of an Active Flow Control (AFC) (violet arrows in Fig. 1b) enables reduction and

suppression of the recirculation bubble benefiting the overall performance, Fig 1b.
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Figure 1. a) the natural behavior of the flow. b) the actuation and its effect

The AFC technique was employed effectively in bluff body studies [1, 2], and reviews of this technique are provided

by Gad-el-Hak [3] and Brunton et al. [4]. In [5], the actuation of the flow field around an A-pillar was studied

numerically, where interesting results were found on the nature of the front separation and its suppression. However,

many aspects such as the influence of the Reynolds number, 3-D effects and the actual feasibility of the actuation in

a real case need to be investigated. Thus, experiments and hybrid unsteady numerical simulations are conducted to

study the flow around a simplified truck cabin. The Partially Averaged Navier-Stokes (PANS) method is used in this

work. PANS was already proven to be effective for different bluff body flows [6–8], but its limits and potential must

be investigated more deeply. This paper reports a validation study on the PANS method and the investigation of the

separation mechanism’s nature and its control, achieving the following goals:

• PANS simulations are validated with experiments for two different flow configurations, at two yaw angles.

• The unactuated flow PANS simulations have been post processed by means of modal decomposition POD and

FFT, investigating the nature of the separation mechanism.



• An optimal actuation frequency is found.

NUMERICAL DETAILS

The computational domain is described by Fig. 2 and Tab. 1. All the dimensions are scaled with the model width

W = 0.4m.
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Figure 2. a) The numerical domain. b) Top view of the model and the observed domain. The red arrows indicate the position of

the actuation slot and the direction of blown and sucked air through it.

Table 1. Dimension of the numerical domain scaled by the model width W = 0.4 m. R is the non-dimensional radius of the

rounded corners.

H L I K S R
1 0.9 17.5 3 4.5 0.05

A homogeneous Neumann boundary condition is applied at the outlet. The surfaces of the body and the wind tunnel

walls are treated as no slip walls. A time varying velocity Uafc = 0.26Uinf sin (t2πfa), where fa is the actuation

frequency, is set at the actuation slot. The actuation is highlighted by red arrows in Fig. 2b). A finite grid plane, placed

at z = H/2 (the coordinate system and the origin is given in Fig. 4), is used to sample snapshots of the flow field, Fig.

2b).

The governing flow equations used in this work are the incompressible partially averaged Naviers-Stokes (PANS)

equations [9].
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where τ(Vi, Vj) is the generalized second moment [10] and represents the effect of the unresolved scales on the

resolved field. The Bousinnesq assumption is now invoked to model the second moment:

τ(Vi, Vj) = −2νuSij +
2

3
kuδij . (3)

Here ku is the unresolved kinetic energy, Sij = 1
2 (∂Ui/∂xj + ∂Uj/∂xi) is the resolved stress tensor, and νu =

Cµζuk
2
u/εu is the viscosity of the unresolved scales where ζ = v2u/ku is the velocity scale ratio of the unresolved

velocity scale v2u and ku. v2u refers to the normal fluctuating component of the velocity field to any no-slip boundary.

At this stage three transport equations for ku − εu − ζu and a Poisson equation for the elliptic relaxation function of

the unresolved velocity scales are necessary to close the model. Thus the complete PANS k−ε− ζ−f model is given



by the following set of equations:
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k2
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is the unresolved turbulent viscosity. Pu = −τ(Vi, Vj)

∂Ui

∂xj
is the production of the unresolved turbulent

kinetic energy and is closed by the Bousinnesq assumption, Eq. 3. The coefficients C∗

ε2 and Cε1 are defined as:
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are the counterpart of the unresolved kinetic energy and dissipation, respectively. In

this way fk and fε contribute to changing the turbulent transport Prandtl number contributing to the decrease of the

unresolved eddy viscosity [11]. The constants appearing in 4 are:

Cµ = 0.22; Cε2 = 1.9; c1 = 0.4; c2 = 0.65; σk = 1; σε = 1.3; σζu = 1.2.

Lu and Tu are the length and time scales defined by using the unresolved kinetic energy:
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where

Cτ = 6; CL = 0.36; Cη = 85.

A more detailed explanation of the construction of the equations is given in [12, 13]. Parameters fk and fε are the

key factors that make the model act dynamically. fk and fε are the ratios between resolved to total kinetic energy and

dissipation, respectively, and they can assume values between 1 and 0 according to the selected cut-off. The dynamic

parameter was proposed as the ratio between the geometric averaged grid cell dimension, ∆ = (∆x∆y∆z)
1/3, and

the Taylor scale of turbulence, Λ = (ku+kres)
3/2

ε [14]:

fk(x, t) =
1

√

Cµ

(

∆

Λ

)2/3

. (5)

The PANS equations are discretized with the commercial finite volume CFD solver AVL FIRE [15]. AVL FIRE

is based on the cell-centered finite volume approach. The PANS are solved using a collocated grid arrangement.

Convective fluxes are approximated by a second-order upwind scheme called AVL-SMART in AVL Fire [15]. The

time marching procedure is done using the implicit second-order accurate three-time level scheme. The well known

SIMPLE algorithm is used to update pressure and velocity fields in order to satisfy the continuity equation.

THE EXPERIMENTS

Experiments are carried out in a closed circuit wind tunnel at Chalmers University with test section dimensions of

3.00 × 1.80 × 1.25 m3 and a speed range of 0-60 m/s. Figure 3a represents a CAD model of the wind tunnel test

section and the model in place. Figure 3b shows a real picture of the model in the wind tunnel. The oncoming flow

turbulence level was within 0.5%.



a) b)

Figure 3. The experimental model. a) CAD overview of the model and wind tunnel test section. b) The model placed in the

Chalmers’ wind tunnel.

The experimental model is equipped with arrays of pressure taps distributed along the front (A), windward (B),

leeward (C) and base (D) faces as shown in Fig. 4. Faces B and D are termed windward and leeward respectively,

also in the β = 0◦ con for simplicity. Every face is given a letter from A to D. Each face was equipped with a

horizontal and vertical array of pressure taps (dashed blue line in Fig. 4) for evaluation of the coefficient of pressure,

Cp, during the experiments. The pressure profiles of two configurations at yaw angles β = 0◦ and β = 10◦ have

been measured and compared with numerical simulations. The pressure system (NetScannerTM model 9116) has an

accuracy of ±0.2Pa. The sampling frequency used in the experiments was 1000Hz, and the pressure signals were

averaged over a period of 2s. The agreement of the results is discussed in the next section.

x

y

z

A
B

C
D

Figure 4. The model of a generic truck cabin. ( ) pressure taps distribution. ( ), position of the actuation slot. A front

face, B windward face, C base face, D leeward face.

RESULTS

This section is divided into two parts. A validation of PANS is first presented. Secondly, PANS are used to simulate

the effect of the actuation on the flow around the A-pillar of a generic truck cabin.

PANS accuracy and validation

PANS method is evaluated on two different flow cases. Both the first case at yaw angle β = 0◦ and the second at

β = 10◦ give good agreement between experiments and simulations. The meshes employed are relatively coarse for

the considered Reynolds number, Tab. 2. A well resolved Large Eddy Simulation (LES) would require a resolution

of ∆l+max < 30 and ∆s+max < 100 in the spanwise and streamwise directions, respectively [16]. Using meshes far

from being sufficient for a well resolved LES, Tab. 2, PANS gives results in good agreement with experiments, yet

capturing the dynamics of the flow structures. The details of the meshes are summarized in Tab. 2.



Table 2. Details of the computational grids

Case Medium grid Coarse grid

Number of cells 12 millions 6 millions

y+mean < 0.5 < 0.5
∆l+max < 300 < 450
∆s+max < 300 < 450
CFL < 1 < 1

The β = 0◦ configuration has been imulated on both medium and coarse meshes. The β = 10◦ configuration has been

simulated only on the medium grid.
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Figure 5. Cp profiles comparison, β = 0
◦. ( ) PANS medium mesh, ( ) PANS coarse mesh, ( ) experiments. A

front face, B windward face, C base face. Notation and coordinates refers to Fig. 4.

A small discrepancy between experiments and CFD is found in the prediction of the windward face flow. The flow in

this area is more complicated as compared to other faces. It includes separation, reattachment and strong 3-D effects

coming from the top and bottom separations. The shape of the vertical and horizontal profiles of face B, Fig. 6, is

conserved but shows an offset from the experimental data. On the other hand, the front face flow (attached flow), the

leeward and the base face flows (completely separated flow) are predicted accordingly to the experimental data, for

both yaw configurations and for the coarse mesh computed for β = 0◦ yaw.
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Figure 6. Cp profiles comparison, β = 0
◦. ( ) PANS medium mesh, ( ) experiments. A front face, B windward face, C

base face, D leeward face. Notation and coordinates refer to Fig. 4.

Actuation study

The medium mesh has been employed to study the actuation of the flow. The unactuated flow has been post-processed

with Proper Orthogonal Decomposition (POD) [17] and Fast Fourier Transform (FFT) modal analysis. As described

in [5], the separated flow of a rounded leading edge is mainly characterized by high-frequency shear layer structures

and low-frequency side wake structures. POD and FFT capture these structures and their frequencies, respectively.

In particular, the near wake structures are characterized by a normalized frequency F+ = fW/U∞ = 0.4, while the

shear layer structures are characterized by F+ = 3.0, Fig. 7.

a) POD, mode 2 POD, mode 6

b) FFT, F+
= 0.4 FFT, F+

= 3

Figure 7. a) Pressure POD mode 2 (left) and mode 6 (right); the colors indicate low (black) and high (white) pressure structures.

b) Spatial distribution of F+
= 0.4 (left) and F+

= 3 (right). The colors indicate where each frequency occurs the most (white)

and the least (black). Flow from left to right.

Thus, three different actuated cases have been simulated. The near wake frequency, F+ = 0.4, the shear layer fre-

quency, F+ = 3, and a third frequency, F+ = 8.3, have been used to actuate the flow. The actuation cases are

denoted Case1 (F+=0.4), Case2 (F+=3) and Case3 (F+=8.3). Evaluating the existence of an optimal control fre-

quency and finding a relation between actuation frequency and unactuated flow structures are of primary importance.

Aerodynamic performance and actuation effects are described in Figs. 8, 9, 10.
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Figure 8. a) Cd time history. b) Power Spectral density of the Cd . From left to right: unactuated flow, actuated at F+
= 0.4,

actuated at F+
= 3, actuated at F+

= 8.3. The red arrows indicate the power of the actuation frequency.
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Figure 9. Normalized streamwise velocity component. From left to right: unactuated flow, actuated at F+
= 0.4, actuated at

F+
= 3, actuated at F+

= 8.3. The black region represents the reverse flow areas. Flow from left to right.

Figure 8a and 8b show the drag coefficient time history and its Power Spectral Density highlighting the existence of an

optimal actuation frequency. Case1 shows a high decrease in drag, Fig. 8a, but introduces high induced fluctuations

that force the Cd to fluctuate at the actuation frequency. Indeed, the PSD of Case1 shows the highest peak at the

actuation frequency, Fig. 8b. Case3 shows a lower reduction of aerodynamic drag, but in this case the introduced

fluctuations are more limited, although they are dominant when considering its PSD, Fig. 8b. Case2 shows the

optimal case, with a Cd reduction of 50% and limited introduced fluctuations. Hence, its PSD, Fig. 8a, shows that

the actuation frequency is not dominant in the drag coefficient. Figure 9 shows the reduction of the recirculation

bubble for different actuations. Once again, Case2 shows the highest reduction of reverse flow. Nevertheless, Case3
shows a similar reduction compared to Case2. The higher Cd value, visible in Fig. 8a, is therefore explained by a

lower base pressure, as illustrated by Fig. 10.

-0.2 0 0.2

-1

0

y

C
p

Horizontal (C face)

Figure 10. Cp along the horizontal line on the base face (face C). Letters and coordinates refer to Fig. 4. ( ) unactuated flow,

( ) actuated at F+
= 0.4, ( ) actuated at F+

= 3, ( ) actuated at F+
= 8.3.



The actuation has a strong effect on the base pressure. Case3 (red line) shows a low Cp value along the base,

explaining its poorer aerodynamic performance when compared to Case2 (green line). On the other hand, the Cp

value of Case1 (blue line) is similar to the one in Case2, but, in this case, the aerodynamic performance is negatively

affected by the larger recirculation bubble occurring on the side of the model.

CONCLUSIONS

PANS simulations and experiments at Re = 5×105 were conducted to analyze the accuracy of PANS and to investigate

the actuation of the flow field around a generic truck cabin. The following goals have been achieved:

• PANS has been compared with experiments at two yaw configurations (β = 0◦ and β = 10◦). Results show

good agreement, highlighting the accuracy of PANS in calculating 3-D unsteady bluff body flows.

• The POD and FFT analyses have shown to be crucial in finding the key frequencies of the unactuated flow.

• Based on modal analysis results, three different actuation frequencies have been chosen to actuate the flow.

• An optimal actuation frequency has been found, (F+ = 3). This gives a notable reduction of drag by 50%.
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