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Thesis for the degree of Doctor of Philosophy
EMIL RYBERG
Department of Physics
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Abstract

Halo nuclei are loosely bound systems consisting of a core plus valence nucleon(s). In so
called Halo, or Cluster, effective field theory, the core of the halo nucleus is treated as
an effective degree-of-freedom without internal structure. As such, Cluster effective field
theory is a low-energy model, appropriate for the typical momentum scales of halo physics.
The advantages of using effective field theory are the systematic way of improving results,
by including higher orders in the momentum expansion, and the rigorous error estimates
that are available at each order.

In this thesis we present a formalism for treating one-proton and two-neutron halo
nuclei in effective field theory, with an emphasis on charge radii, astrophysical S-factors,
and the renormalization of three-body states. We also discuss a new power-counting
scheme for heavy-core systems and introduce finite-size contributions.

For one-proton halo nuclei we derive formalism for S- and P-wave systems, which we
exemplify by studying the one-proton halo states 17F∗ and 8B, respectively. Of particular
significance are: (i) our calculation of the radiative capture cross section of 16O(p, γ)17F∗

to fifth order in the S-wave system and (ii) our derivation of a leading-order correlation
between the charge radius of 8B and the threshold S-factor of 7Be(p, γ)8B for the P-wave
system.

Our alternative power counting for halo nuclei with a heavy core leads to a new
organizational principle that demotes the naive leading-order contributions to the charge
radius for neutron halos. Additionally, in this new power counting we include the finite-size
effects of the constituents explicitly into the field theory and derive how their finite sizes
contribute to the charge radius of S- and P-wave one-neutron and one-proton halo states.

For two-neutron halo systems we derive the field-theory integral equations to study
both bound and resonant states. We apply the formalism to the 0+ channel of 6He. In
this three-body field theory we include both the 3/2− and the 1/2− channels of the α− n
subsystem, together with the 0+ channel of the n− n part. Furthermore, we include the
relevant three-body interactions and analyze, in particular, the renormalization of the
system.

Keywords: effective field theory, nuclear physics, halo nuclei, radiative capture, charge
radius, power counting, few-body physics, resonant state, renormalization
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Part I

Extended Summary

1 Introduction

Models are used in all of the natural sciences to interpret results and make predictions. As
such, the obtained results will be model dependent to a certain degree. In an effective field
theory (EFT) framework, these model dependencies are made as transparent as possible
and the uncertainties due to the choice of model can be reduced systematically. The
general aim of this thesis is therefore to exploit these strengths of the EFT framework to
make model-independent predictions of physical systems with associated error estimates.

In particular, this doctorate thesis presents an application of EFT to describe exotic
nuclear systems known as halo nuclei, or more precisely to one-proton and two-neutron
halo nuclei. In this first chapter we will introduce concepts of nuclear physics and EFT
that will be relevant for the remainder of the thesis.

Nuclear physics is the field in which the constituents of atomic nuclei and their
interactions are studied. The basic constituents of nuclei are protons and neutrons,
commonly refered to as nucleons. However, through the interactions of nucleons, mediated
by mesons, for example pions, one might argue that the ingredients of an atomic nucleus
are more involved. One can think of the nucleus as consisting of nucleons living in a sea
of pions. As such, the notions of constituents and interactions are tied tightly together.
We will therefore introduce the concept of degree-of-freedom, which is very similar to
that of constituent, with the difference that a degree-of-freedom is something that is
chosen; it is one of the ingredients that defines the model we are working with to describe
Nature. Thus, with a given number of degrees-of-freedom one can write down all the
possible interactions between them. For example, a model with only the nucleons as
degrees-of-freedom will only have contact interactions between these nucleons, while a
model with pions included will also have pion-nucleon and pion-pion interactions.

In Nature we have a large amount of different mesons other than the pions, and there
are also excitations of the nucleons that could be included as degrees-of-freedom. This
raises questions about how the degrees-of-freedom should be chosen; should quarks and
gluons be included? The quarks are confined within the pions and the nucleons and are
only made visible on the GeV scale, a scale high enough for nucleons to be created out of
vacuum. Therefore, although quarks and gluons are the degrees-of-freedom of quantum
chromodynamics (QCD), they are not directly relevant for nuclear physics. Though,
for example in Chiral EFT, the symmetries of QCD are used to constrain the possible
interactions between nucleons and mesons. Note also that even though quarks and gluons
are not relevant degrees-of-freedom for nuclear physics, it is a necessity to understand
how these combine into nucleons and mesons, if one wants to bridge the gap between
QCD and nuclear physics.

What about a model with only nucleons as degrees-of-freedom? Such a model would,
as stated above, only have contact interactions between the nucleons. These contact
interactions have a typical range of ∼ 1 fm, since the nucleons are extended objects with

1



this size. In such a model we can not really ask questions about the internal structure
of the nucleons, since then we will run into pion-physics as the pion mass1 is about
140 MeV = (1.4 fm)−1. In a sense, the nucleon-only model breaks down around the
momentum scale 140 MeV or the length scale 1.4 fm. Can such a nucleon-only model
still be useful for nuclear physics? What are the relevant scales?

One important momentum scale in nuclear physics is the pion mass, which can be seen
from the fact that the typical binding energy per nucleon is around or below B ∼ 10 MeV,
translating into a momentum scale

√
mB ∼ 100 MeV, where m ≈ 939 MeV is the nucleon

mass. There are a few systems though, that can be said to have a significantly smaller
momentum scale. The obvious example is the deuteron, which consists of a neutron and a
proton bound together by only 2.2 MeV. Thus, for the deuteron the relevant momentum
scale is of the order 45 MeV. However, for a system such as 4He, where the one-nucleon
separation energies and the excited states are around 20 MeV, the relevant momentum
scale is around 140 MeV. This means that 2H can be described accurately using only
nucleons, since the relevant momentum scale is smaller than the pion mass, while it is
questionable if 4He can.2 In this sense it becomes apparent that together with the choice
of degrees-of-freedom is also an implicit choice of breakdown scale for the model. The
concept of breakdown scale is of key importance for effective theories, which we will
discuss below.

A defining property of nuclear physics is also the list of relevant observables, that
is the quantities that theorists calculate and experimentalists measure. The most basic
observable of nuclear physics is energy: binding energies, excitation energies, and so
on. For example the 2.2 MeV binding energy of the deuteron and the first excited state
energy of 7Be at 0.43 MeV. Discrete quantum numbers, such as nuclear spin J and parity
π = ±, are of course also very relevant and these are usually combined in the notation Jπ.
Further, size and shape observables, such as the charge radius and the deformation, are
often studied. The observables listed above are examples of nuclear structure observables,
also called static observables. There are also dynamic observables, that is properties
having to do with nuclear reactions. These can for example be cross sections for transfer
reactions, capture reactions and elastic scattering. In this thesis we will present results
for three-body bound and resonant states, charge radii, elastic scattering and radiative
capture cross sections, while we use some energy levels and nucleon separation energies,
together with Jπ quantum numbers, as input for the calculations.

As have already been introduced above, the concept of basic constituents of the nucleus,
or choice of degrees-of-freedom for the problem at hand, will in a sense define what possible
interactions should be present in the chosen model. This will also set some limits on the
possible accuracy that can be achieved. It is at this stage of the thesis that we introduce
effective theories as a tool to understand nuclear physics, or physics in general. Effective
theories take the view that questions about a physical property come also with a statement
of the scale at which the property is measured, or viewed. For example, if asking about the
potential energy due to the pull of the Earth one should also state at what height above

1We work in units where ~ = c = 1 and we use MeV fm = 197.327 to convert energy into length.
2Note however that 4He have actually been considered at LO in Pionless EFT, with promising results

[1]. It will be interesting to see how the continued effort with the inclusion of effective-range corrections
influence this result.
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the Earth’s surface (at radius R), the question is asked. This, since for high altitudes h
above the ground one must use Newton’s law of gravitation V = −GM/(R+ h) +GM/R,
while close to the surface of the Earth the effective theory using the standard gravity g
gives the simpler answer Veff = hg. Of course, expanding Newton’s law of gravitation for
h� R, we reproduce the effective standard gravity potential, with g = GM/R2, together
with higher-order corrections in powers of h/R. For a large scale separation h � R
the effective description is therefore very accurate and the result can be systematically
improved by including higher-order corrections. However, around h ∼ R all the terms
in the h/R expansion will be of comparable size and therefore we say that the effective
picture breaks down at the length scale R. These key concepts: effective description,
separation of scales, higher-order corrections, systematic improvement and breakdown
scale, are central for the method and results of this thesis. This discussion of effective
theories as a way to view physics sets the foundation for the introduction of EFT in
Section 1.2.

The thesis is organized as follows: In the remainder of this introductory section we
discuss halo physics and EFT. In Chapter 2, we start by describing Halo, or Cluster,
EFT and discuss interactions, renormalization and power counting. Then we move on
to the study of heavy-core effects and how these modify the power counting, with focus
on finite-size effects and short-range contributions to the observable charge radius. This
part of Chapter 2 is based on Paper D. In Chapter 3 we present our work on one-proton
halo nuclei. The observables that we consider are charge radii, radiative capture cross
sections and low-energy elastic scattering parameters. The first part of Chapter 3, on
S-wave one-proton halo nuclei, is based on Paper A and Paper C, while the second part,
on P-wave one-proton halo nuclei, is based on Paper B. Next, in Chapter 4 we derive
the three-body scattering amplitudes relevant for low-lying states in 6He and we present
a renormalization analysis. A summary of the appended papers is given in Chapter 5.
Finally, in Chapter 6 we summarize the thesis with a discussion of Halo EFT and our
results, and provide an outlook.

1.1 Halo physics

The word halo comes from the ancient Greek word hálōs, which is used to describe the
optical phenomenon of a circle of light around the sun or the moon. In nuclear physics, a
halo nucleus has nothing to do with astronomy, but rather denotes a nucleus that has a
few of its nucleons located at larger distances than the remaining ones in the core. One
says that these outer nucleons form a nuclear halo around the core. Halo states were first
discovered by Tanihata et al [2] and Hansen and Jonson [3]. In Nature there are both
one-nucleon and many-nucleon halos, for example the one-neutron halo nucleus 11Be,
which can be seen as consisting of a tightly bound 10Be core and a loosely bound single
neutron, and the two-neutron halo 6He, consisting of two valence neutrons orbiting the
4He core. For an early review on halo physics, see for example Ref. [4].

However, the statement that a few of the nucleons are located in a halo around the
core is not completely accurate. We can not really measure the position of individual
nucleons in the nucleus. What we mean is strictly speaking that the wavefunction of the
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halo nucleus is very extended compared to the wavefunction of the core by itself, and that
the system is close to a few-nucleon threshold. Connecting this situation to observables
one can, for example, characterize a halo nucleus by properties such as a large charge
radius and small one-nucleon, or few-nucleon, separation energies.

A typical one-nucleon halo nucleus consists of a tightly bound core with a loosely
bound nucleon attached. The typical one-nucleon separation energy is around SN ∼ 0.1–
1 MeV. The core itself consists of several nucleons and these inner nucleons have momenta
which are nuclear-physics-like, that is of order the pion mass. The point here is that
the momentum of the valence nucleon, with respect to the core, is very small. Thus,
viewing the core as structureless, the relevant momentum scale for the nuclear halo is√
mSN ∼ 10–30 MeV, which is much smaller than the pion mass. The question then is

whether it is actually permissible to treat the core as structureless or, at least, to which
level of accuracy such a treatment works.

1.2 Effective field theory

The concept of EFTs was born with the work on effective Lagrangians by Weinberg [5]
and it is strongly connected to our discussion of effective theories above. With effective
we mean that we do not necessarily include all fundamental particles explicitly in our
model, but modify interaction potentials to account for those missing particles. For
example, weak-decay processes can be considered without using explicit vector bosons
as force-mediating particles, as was done by Fermi and others in the 1930s. This was
achieved using an effective coupling strength, the Fermi coupling GF, which can be given
in terms of the coupling constant of the weak force and the mass of the vector boson. That
is, even though the vector bosons are not explicitly included, the interaction strengths
does depend on the underlying physics. Other examples, from nuclear physics, would
be the Pionless EFT, where the only explicit degrees-of-freedom are nucleons, and the
Chiral EFT, where also pions are included. We will discuss the Pionless EFT in more
detail below. See for example [6] for a review on EFT in general and [7] for a review on
the nucleon-nucleon interaction in Chiral EFT.

The first thing to note about EFTs is that they only describe the physics below a
certain high-momentum scale, which we will denote khi. The momentum khi is called
the breakdown scale of the EFT. Having defined the breakdown scale, one should then
include all possible degrees-of-freedom below khi and exclude all the high-momentum
degrees-of-freedom. The excluded degrees-of-freedom, usually referred to as short-range or
high-energy physics, are implicitly included in the EFT in the form of low-energy constants
and short-range operators. The high-energy physics can be said to have been integrated
out and this leaves a mark on the remaining long-range model through the modification
of the interactions. To be able to remove the high-momentum physics and to define an
EFT, there must be a separation of scales klo � khi, where klo is a low-momentum scale
associated with the physics described by the EFT. The reason why such a separation of
scales is necessary is a matter of resolution, which can be visualized by thinking in terms
of wavelengths: If we measure a small object with low-momentum light, we will not be
able to resolve the internal structure of the object since the wavelength is too large. For
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very low-momentum probes we might not even see the object as anything else than a
point-like particle. Therefore, we are not able to resolve the short-range physics if the
momentum is smaller than khi.

In this thesis we use EFT, which means that we work in a quantum field theory, with
Lagrangians and quantum fields. The quantum field theory formalism is frequently used
for relativistic theories, for example the Standard Model for particle physics. However, in
this thesis we will only work in the non-relativistic limit of quantum field theory, which
in principle is equivalent to a standard Schrödinger-equation formalism. The reason why
we still choose to use quantum field theory is because it provides a more straightforward
way to improve on the theory by including higher-order corrections systematically. For
example, the concept of short-range operators is much more natural in a quantum field
theory and therefore this framework is convenient for developing effective theories.

The Lagrangian3 is an energy functional, with dimension energy/volume. Length
quantities scale as an inverse momentum while energies scale as momentum squared in a
non-relativistic theory. This means that the Lagrangian has scaling dimension equal to 5.
The Lagrangian contains both the kinetic-energy density terms of all the included fields,
and all the possible interaction terms between these fields. If we, for example, choose the
nucleons as our only degrees-of-freedom, we will only have nucleon-nucleon interactions.
For such a model the Lagrangian is

L = N†
[
i∂t +

∇2

2m
+ . . .

]
N−N†N†V̂2NN−N†N†N†V̂3NNN− . . . , (1.1)

where N is the nucleon field, V̂2 is the two-body interaction potential, V̂3 is the three-body
interaction potential, and so on. In the Lagrangian (1.1) we have suppressed both spin
and isospin indices on the nucleon fields as well as on the interaction potentials. The first
term, in square brackets, is the kinetic term and the dots refer to relativistic corrections
to the Schrödinger kinetic-energy operator. The dots at the far right indicate that there
exist many-body interactions to arbitrary number of nucleons. Note, however, that only
the V̂2 interaction potential will contribute if only two nucleons in total are present in the
system. Since the Lagrangian (1.1) has scaling dimension 5 and ∂t is of dimension 2, the
nucleon field must have scaling dimension 3/2 (note that powers of the nucleon mass does
not contribute to the scaling dimension in a non-relativistic nuclear physics theory).

By expanding the interaction potentials in powers of momentum and keeping only
the leading terms, we arrive at what we denote leading-order (LO) in the EFT. As
we have excluded contributions one order up in powers of klo/khi we expect that this
approximation generates an error that is proportional to this ratio. The momentum ratio
klo/khi is generally called the EFT expansion parameter. If we choose to include the
first two terms in the expansion we are doing a next-to-leading order (NLO) calculation,
with expected EFT error (klo/khi)

2; include yet an additional order and we are at next-
to-next-to-leading order (N2LO), and so on. This way of organizing the EFT is called
power counting. For the pionless Lagrangian (1.1) the LO term of the S-wave two-body
interaction would just be a constant in momentum space while the NLO term would be
given by a momentum-squared operator. In coordinate space, these first two interactions

3When we use the word Lagrangian we really mean Lagrangian density.

5



would correspond to a Dirac delta interaction, δ(r), and a nabla-squared acting on a Dirac
delta, ∇2δ(r).

Note that since the Lagrangian (1.1) includes terms of high dimension, it describes
what is typically, but inappropriately, called a non-renormalizable field theory. While
renormalizable theories only need a finite number of counter terms to absorb divergences,
the non-renormalizable ones need an infinite amount of counter terms. This would indicate
a problem of non-predictability. However, this is not the case if an effective perspective
is taken. The reason why one can still make predictions using non-renormalizable field
theories is that only a finite number of counter terms are needed at each order in the
momentum expansion. As such, a non-renormalizable theory is renormalizable order-
by-order and predictions can be made in regimes where the momentum is smaller than
the breakdown scale. The Standard Model of particle physics, which is a renormalizable
field theory, can as such in principle be valid for all momenta. However, when searching
for physics beyond the Standard Model, effective higher-dimension operators are used.
Furthermore, the effective description of the weak-decay process mentioned above is given
by a non-renormalizable field theory and it is valid below the mass of the vector bosons.
Even an effective quantum field theory of gravity is predictive [8], but only well below
the Planck mass. As such, it should now be clear that the concept of non-renormalizable
field theories make no sense in effective descriptions of Nature: it is a misnomer. And to
emphasize this point, let us quote Weinberg [9]: “Non-renormalizable theories, I realized,
are just as renormalizable as renormalizable theories.”

Even though it is true that non-renormalizable effective theories are renormalizable,
they may still be more complicated than so called renormalizable field theories. This is
mainly due to the fact that they typically have more parameters and these must be fixed
to data before predictions can be made. For example, for some observables we may even
run into a road block at a certain order in the form of a short-range operator, entering
with an undetermined parameter that we can not fit to data. This can either be due to
practical reasons, such as the lack of appropriate data, or formal reasons, such as the
short-range parameter appearing only for the observable under consideration. In such
a scenario one can say that there is an upper limit on the precision that the EFT can
achieve. We will discuss such cases in Chapter 3.

Parallel to the EFT expansion is the effective range expansion (ERE). The ERE is
a way to describe low-energy elastic scattering of two particles in terms of only a few
low-energy elastic scattering parameters. These parameters are the scattering length a,
the effective range r, the shape parameter P , and so on. The range of the interaction
needs to be finite for the ERE to be well defined and the size of the ERE parameters is
typically related to the range. The defining equation for the low-energy elastic scattering
parameters is the momentum expansion of cot (δ), where δ is the phase shift:

k2l+1 cot (δl) = − 1

al
+

1

2
rlk

2 + Plk
4 + . . . (1.2)

In Eq. (1.2) we have included the angular momentum quantum number l as a subscript
on the parameters and the phase shift, to make the defining equation more general.

The phase shift can be related to the differential elastic scattering cross section
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according to

dσ

dΩ
=

∣∣∣∣∣1k
∞∑
l=0

(2l + 1) exp (iδl) sin (δl)Pl(cos θ)

∣∣∣∣∣
2

, (1.3)

where Pl(x) is the lth Legendre polynomial. Eq. (1.3) implies that if a momentum
expansion is made, and only the zeroth-order term is kept, then the total cross section in
the low-momentum limit is given by

σtot → 4πa2
0 . (1.4)

Comparing Eq. (1.4) with a classical picture, with a geometrical cross section for the
particles, then the l = 0 scattering length looks much like the radius of the particle in the
extreme low-momentum regime. This geometrical picture is of course not correct in the
quantum world of nuclear physics and the scattering length can be very different from
the actual radius of the particle.

Coming back to EFTs, it is common to express the parameters in the EFT Lagrangian
in terms of the low-energy scattering parameters. It is preferable to use actual observable
quantities, such as scattering lengths and effective ranges, rather than non-observable
ones, such as coefficients of the interaction terms, when discussing and analyzing the
physics of the EFT. In EFTs for nuclear physics, the effective range typically scales with
the high-momentum scale khi, which is to say that it scales naturally. The scattering
length often scales unnaturally with the low-momentum scale klo. One would then say
that the low-momentum scale emerges due to a fine-tuning in the underlying short-range
physics. For example, the S-wave effective range for nucleon-nucleon elastic scattering is
of the order a few femtometers, while the scattering length is of the order a few tens of
femtometers in some channels. This shows the existence of a clear separation of scales in
the nucleon-nucleon system, and it is this separation of scales that is the basis for many
of the EFTs for nuclear physics.

In this thesis we will be concerned with the so called Halo EFT, or Cluster EFT, which
is similar to the Pionless EFT in the sense that pions are excluded. However, in Halo
EFT the relevant momentum scales are even lower than what they typically are in the
Pionless EFT, since extremely loosely bound systems are considered. Actually, in Halo
EFT not only nucleons, but also tightly bound clusters of nucleons, are used as effective
degrees-of-freedom, which then puts a much more severe constraint on the model through
a lower breakdown scale. This scale can be associated with the momentum scale of the
inner structure of these clusters. A hint of the typical breakdown scale for Halo EFT can
be given by the size of the cluster in question: If for example the cluster has a radius of
about 3 fm, then this defines the breakdown scale in length and it is translated into a
momentum breakdown scale of 60–70 MeV.
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2 Halo/Cluster effective field theory

Halo EFT gives an effective description of halo nuclei by treating the core of the halo
nucleus as an effective degree of freedom. This means that within this description the
core has no internal structure; it is a basic constituent. However, it is clear that the core
does consist of nucleons and therefore Halo EFT will not give a valid description of the
system for momenta high enough to resolve this internal structure. This is actually not a
severe restriction since much of the physics relevant to the characteristics of halo nuclei
occur at very low momenta. Expressed in another way, there is a separation of scales
present in halo systems such that the physics related to the structure of the core can be
well separated from the relevant low-energy physics.

Halo EFT was proposed in Ref. [10] in the context of describing the two-neutron halo
6He. In this paper, the resonant 4He+neutron system was studied, with the purpose
of using 5He as a stepping stone to the more interesting 6He halo nucleus. Since then,
this approach to study 6He has continued with efforts by several authors [11, 12, 13].
Descriptions of other two-neutron halos, using Halo EFT, can be found in Refs. [14, 15].
Halo EFT has also been applied to one-nucleon halos and few-cluster systems. In Ref. [16]
the electromagnetic properties of the one-neutron halo 11Be were studied. Since then
even more one-neutron halo nuclei have been analyzed, see Refs. [17, 18, 19]. The cluster
systems that have been considered are the resonant α-α scattering [20] and the reaction
d+ t→ n+ α [21]. The reason for Halo EFT to be applicable to these non-halo systems
is the existence of a separation of scales and therefore, if one was to stretch the concept
of halo systems, the unbound nuclei 5He and 8Be can be considered as halo-like, since the
α-n and α-α interactions have unnaturally large scattering lengths. A more appropriate
name for this EFT is then arguably Cluster EFT, since clusters of nucleons are treated as
basic constituents, and this is the name we will use in the remainder of this thesis. Much
of the work done in Cluster EFT builds on the work by Ref. [22].

Our work mainly regards the treatment of one-proton halo nuclei, but we have also
treated resonant states in two-neutron halo nuclei and formal aspects of heavy-core
systems.

2.1 One-neutron halos in effective field theory

In Chapter 3 we will consider charged-particle systems in Cluster EFT, where both the
strong nuclear force and the Coulomb interaction need to be treated non-perturbatively.
And in Chapter 4 we consider two-neutron halo states, where three-body scattering
diagrams need to be evaluated numerically in the presence of three-body interactions.
Before turning to these more involved systems we will consider one-neutron halo systems
and exemplify the approach with a derivation of the matching between the coefficients of
the EFT Lagrangian and the effective-range parameters, together with an introduction to
the power counting.

One-neutron halo systems such as 11Be and 19C can be studied in Cluster EFT [16, 18].
In 11Be there are two weakly bound states, the 1/2+ ground state with neutron separation
energy B0 = 0.50 MeV, and the 1/2− excited state with B1 = 0.18 MeV. These halo
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states can be modeled as a 10Be(0+) core field and a valence neutron field n interacting in
a relative S-wave or P-wave, respectively, with an unnaturally large scattering length. The
neutron separation energies are used to define the binding momenta for the ground state
γ0 =

√
2mRB0 = 29 MeV, and for the excited state γ1 =

√
2mRB1 = 18 MeV, where mR

is the reduced mass of the system. For a core of mass M and a neutron of mass m, the
reduced mass is given by mR = Mm/(M +m). We treat the binding momenta as our
low-momentum scales, that is γ0 ∼ klo or γ1 ∼ klo.

It is important to question the assumption of a structure-less 10Be core field, that is if
its internal structure is well separated from the momentum scales of the halo states. We
do this by considering the first core excitation, which is a 2+ state. The excitation energy
is E1 = 3.4 MeV, which defines a momentum scale corresponding to short-range physics
khi ∼

√
2mRE1 = 76 MeV. Thus, we note that we have a rather good separation of scales,

with EFT expansion parameters γ0/khi ∼ 0.4 and γ1/khi ∼ 0.2, and that this separation
is particularly good for the excited state of 11Be. These EFT expansion parameters
determine the rate of convergence in the order-by-order expansion and consequently also
provide the uncertainty estimate.

One should also consider possible resonant states in the 11Be system, since these can
give short-range contributions to, for example, radiative capture cross sections. The first
resonance is a 5/2+ state, 1.78 MeV above the ground state. Thus, for observables where
this resonance can contribute, it should define the breakdown scale of the EFT. To include
the resonance explicitly in a radiative capture calculation one would need to either include
D-wave mixing or the 2+ core excitation.

2.1.1 Interactions and power counting

In this section we write down the Lagrangian for a two-particle EFT, consisting of a
neutron and a 0+ core bound due to an unnaturally large scattering length. We will first
consider the neutron-core interaction to be of S-wave nature and then we will continue
with the more complicated P-wave system. This type of model is applicable for the two
halo-states of 11Be. In this section we will consider elastic scattering and charge form
factor observables and, as such, it will follow the work by Hammer and Phillips [16] closely.
However, we will also add on to this with our findings from Paper D.

We write the Lagrangian, relevant for the calculation of the charge form factor of the
S- and P-wave one-neutron halo state, as

L = L1 + L2 + LEM + . . . , (2.1)

where Ln denotes the n-body part and LEM consists of additional electromagnetic opera-
tors (both one- and two-body terms) that are not due to minimal substitution but still
contribute to the charge form factor observable. The dots denote terms that are of higher
order. The one-body part is given

L1 = n†s

[
iD0 +

D2

2m

]
ns + c†

[
iD0 +

D2

2M

]
c . (2.2)

Here, n (c) denotes the neutron (core) field, with mass m (M). The covariant derivative
is defined as Dµ = ∂µ + ieQ̂Aµ, with e > 0 being the elementary charge, Q̂ the charge
operator and Aµ the photon four-vector.
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The two-body part of the Lagrangian (2.1) is

L2 =σ†s

[
∆0 + ν0

(
iD0 +

D2

2Mtot

)]
σs + π†s

[
∆1 + ν1

(
iD0 +

D2

2Mtot

)]
πs (2.3)

+ g0

[
σ†snsc+ h.c.

]
+ g1

[
π†sCsks′c

(
(1− f)i

−→
∇k − fi

←−
∇k

)
ns′ + h.c.

]
. (2.4)

The auxiliary 1/2+ (1/2−) dicluster field σ (π) has been introduced for calculational
convenience. Its propagation, together with the interaction strength g0 (g1), define
the interaction between the neutron and the core up to the effective range. Thus, the
coefficients ∆0 and g0 (∆1 and g1) are parameters of the EFT to be fitted. The sign
ν0 = ±1 is present to allow for both a negative and a positive effective range, since we
define g0 as purely real. The same applies to ν1 and g1. Note that at LO the S-wave
dicluster field σs is static and thus the LO S-wave neutron-core interaction is ∼ g2

0/∆0.
The combination of derivative operators, using the convenient mass ratio f = m/Mtot, for
the P-wave interaction term makes sure that the Lagrangian is Galilean invariant. The
Clebsch-Gordan coefficient is defined as Csks′ =

〈
1k 1

2s
′
∣∣ (1 1

2

)
1
2s
〉
.

The third part of the Lagrangian (2.1) consists of photon-matter interactions that
are not included in L1 or L2, since they are non-minimal. Note, however, that there
are additional non-minimal electromagnetic terms than those that we include in LEM,
but these are either higher-order or do not contribute to the charge form factor. The
Lagrangian part, LEM, is given by

LEM =− n†s
eρ2
n

6

[
∇2A0 − ∂0 (∇ ·A)

]
ns − c†

Zceρ
2
c

6

[
∇2A0 − ∂0 (∇ ·A)

]
c (2.5)

− σ†s
ν0Ztoteρ

2
σ

6

[
∇2A0 − ∂0 (∇ ·A)

]
σs − π†s

ν1Ztoteρ
2
π

6

[
∇2A0 − ∂0 (∇ ·A)

]
πs .

(2.6)

As can be seen the operators are gauge invariant. Note also that they simplify in Coulomb
gauge, ∇ ·A = 0, and as such the relevant operators are of the form ψ†

(
∇2A0

)
ψ, for

ψ = n, c, σ, π. The ρ-parameters are to be fitted against charge form factor observables
and, actually, the ρn and ρc are the charge radii of the neutron and core, respectively. This
fact can be visualized through the insight that these operators give the photon-matter
Dirac-delta interactions a momentum-squared-dependent contribution, which means that
these interactions get a structure, or an extent. This is exactly what a charge radius is: a
modification to the trivial electric charge interaction, ∼ e 7→ e(1− r2

chQ
2/6).

Let us now have a look on the scaling dimension of all the interaction terms in the above
Lagrangian (2.1), since the dimension determines at what order in the power counting an
operator appears. Firstly, the dimension of the neutron and core fields is 3/2 and the
S-wave dicluster field, representing the intermediate state in the neutron-core interaction,
has dimension 2 (see for example [16] for a discussion of the scalings of dicluster fields).
As such, the terms in the one-body Lagrangian (2.2) has dimension 5, since ∂0 ∼ ∇2

scales as dimension 2 operators. Note also that A0 scales as 2 and A is of dimension 1.
In the two-body Lagrangian (2.4) there are effectively three S-wave terms: the ∆0-term,
the ν0 term and the g0 term. The ∆0 term scales as 4 and the ν0 term is at dimension
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Figure 2.1: The full neutron-core dicluster propagator, defined recursively using the bare
dicluster propagator and the irreducible self-energy.

6. The g0 term has a scaling dimension of 5. Note that the field theory is ill-defined
below dimension 5, since then the matter-fields can not propagate, nor interact. As such,
dimension 5 defines LO. In the Lagrangian part (2.6) the neutron and core terms have
scaling dimension 7 and the S-wave dicluster field term has dimension 8. In summary so
far, at LO we only have the Lagrangian part (2.2) and the ∆0 and g0 terms. At NLO
the ν0 term enters the field theory and its contribution is the effective range correction
as we shall see below. Then, at N2LO the neutron and core ∇2A0 terms enter with the
contribution due to the finite-size of the constituents. At N3LO the dicluster ∇2A0 term
enters and there is also an additional contribution due to the shape-parameter in the ERE
at this order, which would come in as a ∇4 term in the dicluster-term in the two-body
Lagrangian (2.4).

For the P-wave system the situation is somewhat different. Firstly, in the two-body
Lagrangian (2.4) the g1 term is of dimension 5, while both the ∆1 and ν1 terms are of
lower dimension (they are at dimension 2 and 4, respectively). As such, since LO is at
dimension 5, both the ∆1 and ν1 terms are needed at LO. Expressed in another way,
both the scattering length and the effective range are needed at LO to renormalize the
interaction. In the Lagrangian part (2.6) the P-wave dicluster field term has dimension 6,
which means that it enters already at NLO. The result of this is that the P-wave field
theory is only predictive at LO for the charge radius.

The power counting presented above is what we refer to as the standard power counting
for one-neutron halo systems. In Sec. 2.2 we will make some alterations to this power
counting, due to the effect of the core mass being much heavier than the neutron mass.

2.1.2 Elastic scattering and renormalization

The Lagrangian (2.1) comes with undetermined interaction parameters and these must
be fixed to observables. In such a fitting procedure we will also absorb divergences
into the parameters of the EFT, giving renormalization conditions. Typically, we fix
the interaction parameters to low-energy elastic-scattering observables, that is the ERE
parameters. As such, we will usually derive expressions for other observables in terms
of the ERE parameters. However, it is not always the case that we actually use ERE
parameters as input for our calculations. It is also possible to fit to a measured or
calculated asymptotic normalization coefficient (ANC), or to simply fit the interaction to
an observable such as the charge radius or radiative capture cross section. Anyway, in
this section we will show the renormalization of the S- and P-wave interactions in the
Lagrangian (2.1) in terms of the ERE parameters.

Let us start with the S-wave interaction. From the two-body Lagrangian (2.4) we
can write down the bare S-wave dicluster propagator. We can give this propagator for
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any four-momentum (E,p), but for the all the scenarios in this chapter we only need the
dicluster propagator for systems where the field is at rest:

iDbare
0 (E) = iDbare

0 (E,0) =
i

∆0 + ν0 (E + iε)
(2.7)

However, the bare propagator (2.7) does not describe the full S-wave scattering process
between the neutron and the core. For that we need the full dicluster propagator, which is
given in Fig. 2.1. The resulting full dicluster propagator can be written as a geometrical
series according to

iD0(E) =
i

∆0 + ν0 (E + iε) + Σ0(E)
, (2.8)

where Σ0 is the S-wave irreducible self-energy, definded by the neutron-core bubble in
Fig. 2.1. The irreducible self-energy can be written as an integral in momentum space
using the neutron and core propagators

iSn(p0,p) =
i

p0 − p2

2m + iε
(2.9)

and

iSc(p0,p) =
i

p0 − p2

2M + iε
, (2.10)

where (p0,p) is the four-momentum of the neutron or core field. The result is evaluated
as

iΣ0(E) =− g2
0

∫
d4p

(2π)4
iSc(p0,p)iSn(E − p0,p)

=− ig2
0

∫
d3p

(2π)3
Stot(E,p)

=
ig2

0mR

π2

(
L1 −

iπ

2

√
2mRE

)
. (2.11)

In the first step we perform the p0-residue integration in the lower half-plane to arrive at
an integration over the two-body propagator

iStot(p0,p) =
i

p0 − p2

2mR
+ iε

. (2.12)

In the second step we divide the integral into two terms. The S-wave irreducible self-energy

has a convergent part and a momentum-independent linear divergence Σdiv
0 =

ig20mR

π2 L1,
where the divergent integral L1 is defined according to

Ln =

∫
dppn−1 . (2.13)
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In the dicluster propagator (2.8) it can be seen that this momentum-independent divergence
must be absorbed by the parameter ∆0. Matching this to the elastic scattering t-matrix

at an energy E = k2

2mR
,

iT0(k) = − 2π

mR

1

cot (δ0(k))− ik
, (2.14)

we find the S-wave renormalization conditions

1

a0
=

2π

g2
0mR

(
∆0 + Σdiv

0

)
(2.15)

r0 =− 2πν0

g2
0m

2
R

. (2.16)

From the full dicluster propagator we can extract the LSZ-residue, or wavefunction
renormalization Z0 for a bound state at energy E = −B. It is given by

Z0 =

[
d
(
D0(E)−1

)
dE

]−1
∣∣∣∣∣∣
E=−B

, (2.17)

and using the ERE parameters of Eqs. (2.15) and (2.16) we write this as

Z0 =
2πγ0

m2
Rg

2
0

1

1− γ0r0
. (2.18)

We could rewrite this expression by replacing the g2
0 in the denominator using Eq. (2.16)

for the effective range. However, for many situations the denominator g2
0 factor will cancel

against another g2
0 factor from the diagram that is being renormalized by the LSZ residue.

The renormalization procedure for the P-wave system is similar, but more invloved
due to the additional powers of momentum from the P-wave interaction vertex. The bare
P-wave dicluster propagator is given by

iDbare
1 (E) =

i

∆1 + ν1 (E + iε)
(2.19)

and the full propagator can also be written as a geometrical series

iD1(E) =
i

∆1 + ν1 (E + iε) + Σ1(E)
. (2.20)

So far everything looks to be as straightforward as in the S-wave scenario. However, as we
shall soon see, there are two independent divergences in the P-wave irreducible self-energy
Σ1. This fact complicates the renormalization. In momentum space we can write the
self-energy as

i (Σ1(E))ij =− g2
1

∫
d4p

(2π)4
pipjiSc(p0,p)iSn(E − p0,p)

=− ig2
1

∫
d3p

(2π)3
pipjStot(E,p) , (2.21)
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where the p0 residue integral was performed. The angular integration dΩ kills all the
off-diagonal elements of pipj and as such we write Σ1 =

δij
3 (Σ1)ij . Therefore the resulting

integral becomes

iΣ1(E) =− ig2
1

6π2

∫
dpp4Stot(E,p)

=
ig2

1mR

3π2

(
L3 + 2mREL1 −

iπ

2
(2mRE)

3/2

)
. (2.22)

It is now clear that two renormalizations are needed at LO for the P-wave interaction,
since there are two independent divergences in the self-energy (2.22): one momentum
independent and one at order momentum squared. Thus we can see that in the P-
wave dicluster propagator (2.20) both the ∆1 and the ν1-terms are needed for proper
renormalization. Comparing with the P-wave elastic scattering t-matrix

T1(k) = − 6π

mR

k2

cot δ1(k)− ik3
, (2.23)

we get the renormalization conditions

1

a1
=

6π

mR

(
∆1

g2
1

+
mRL3

3π2

)
(2.24)

r1 =− 12π

mR

(
ν1

2mRg2
1

+
mRL1

3π2

)
. (2.25)

Note in particular that both the ∆1 and ν1 terms are needed at LO in order to renormalize
the P-wave interaction.

For the P-wave system the wavefunction renormalization can be written using the
ERE-paramters from Eqs. (2.24) and (2.25) as

Z1 = − 6π

m2
Rg

2
1

1

r1 + 3γ1
. (2.26)

If we rewrite the expression (2.26) by replacing the denominator g2
1 using the effective

range expression (2.25), we arrive at

Z1 =
1

r1 + 3γ1

(
r1

ν1
− 4

π
L1

)
. (2.27)

The reason why we spell this equation out explicitly is since we can now see that the
P-wave wavefunction renormalization has a divergent piece, coming from the L1 divergent
intergral. This will be important for the charge radius considerations in the next section.

2.1.3 The charge form factor

In this section we define the charge form factor and the charge radius for one-neutron
halo systems. We write down the formula for the charge radius up to N3LO for the
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Figure 2.2: A sketch of the general charge form factor diagram. The diagram consists of
an incoming and outgoing bound halo state, and a virtual photon leg. The crossed white
blob corresponds to the nucleus-photon interaction and defines the charge form factor of
the halo state.

S-wave one-neutron halo system and to NLO for the P-wave. We also point out that in
the standard power counting the Cluster EFT results are predictive up to N2LO for the
S-wave and only at LO for the P-wave.

The charge form factor is given in terms of the zeroth component of the electromagnetic
four-current Jµ, as

FC(Q) =
1

eZtot
〈k′|J0

EM|k〉 , (2.28)

where Q = k′ − k is the momentum transfer and Ztot is the total charge number of
the nucleus. Thus, the charge form factor can be calculated as the interaction of the
bound state nucleus with a virtual photon in the Breit frame, with energy ω = 0 and
momentum Q. The general form of such a diagram is shown in Fig. 2.2. The crossed
blob represents all possible interactions with the external virtual photon leg. We measure
this observable typically through elastic electron scattering on a nucleus. Of course, if
the nucleus is just a point particle, then J0

EM = Ztote and the charge form factor is
simply FC(Q) = 1. However, the atomic nucleus is an extended object, and as such
there are momentum-dependent corrections. Such corrections enter with constants of
proportionality given by the scale of the charge distribution. Therefore, we usually write
the charge form factor in terms of the charge radius rch:

FC(Q) = 1− r2
ch

6
Q2 + . . . (2.29)

The dots refer to terms of higher powers of the momentum. The functional form of the
expression (2.29) can be obtained by considering the momentum expansion of the Fourier
transform of the charge density. Experimentally the charge radius can be extracted
from, for example, elastic electron scattering or from measurements of the atomic isotope
shift. Theoretically, one typically calculates the point-proton radius and then adds the
contribution from the size of the constituents in quadrature to arrive at the charge radius.
Below we will present results for how different contributions to the charge radius appear
naturally in Cluster EFT and we will discuss at what order these terms enter.

In Paper D the resulting charge radius formula for an S-wave one-neutron halo is given
as

r2
ch =

1

1− γ0r0

(
r2
pt,LO + ρ2

c +
1

Zc
ρ2

n − γ0r0ρ
2
σ

)
, (2.30)
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where the LO point-particle result was calculated in [16]:

r2
pt,LO =

f2

2γ2
0

. (2.31)

In Eq. (2.30) we assume that rpt,LO ∼ γ0 ∼ klo and that ρc ∼ ρσ ∼ 1/r0 ∼ khi. For the
purpose of simplicity, let us neglect the neutron finite-size contribution ρ2

n/Zc. As such,
expanding in klo/khi we arrive at

r2
ch = r2

pt,LO︸ ︷︷ ︸
LO

+ γ0r0r
2
pt,LO︸ ︷︷ ︸

NLO

+ (γ0r0)2r2
pt,LO + ρ2

c︸ ︷︷ ︸
N2LO

+ γ0r0

(
ρ2

c − ρ2
σ

)
+ . . .︸ ︷︷ ︸

N3LO

+ . . . . (2.32)

In the formula (2.32) it can be seen that the finite-size of the constituent core enters at
N2LO and that an undetermined short-range parameter, ρσ, appears at N3LO in the
standard power counting. Thus, the theory is unpredictive at N3LO. Note also that
corrections due to the shape parameter enter at N3LO, but these are of no consequence
for the charge radius since it is unpredictive at that order anyway. In Ref. [16] the authors
denote r2

pt,LO/(1− γ0r0) as NLO instead, but they give this result relative to the charge

radius of the core. This means that they view their NLO result as the difference r2
ch − ρ2

c .
Note that the actual numerical contributions at each order is strange, since the N2LO
finite-size contribution is much larger than the LO result. We will come back to this
oddity in the next section on heavy-core power counting.

For the P-wave system the charge-radius formula, with explicit terms up to NLO, is

r2
ch = r2

pt︸︷︷︸
LO

+ ρ̃2
π︸︷︷︸

NLO

+ . . . , (2.33)

where the point-particle result was derived in [16] as

r2
pt = − 5f2

2γ1(3γ1 + r1)
(2.34)

and where we have defined
ρ̃2
π = −ν1Z1ρ

2
π . (2.35)

The parameter ρ̃2
π is allowed to take both positive and negative values. Note that the

wavefunction renormalization Z1 contains a divergent piece, which can be seen in Eq. (2.27).
This divergence is absorbed by the parameter ρ2

π. The resulting ρ̃2
π parameter is finite.

The fact that the short-range ρ2
π operator appears before the contribution due to the

finite extent of the constituents is troublesome. It results in the somewhat non-expected
fact that the charge radii of the constituents are irrelevant for Cluster EFT charge-radius
calculations of P-wave halo states. This is in contradiction to previous charge radius
considerations in EFT, for example the result of [16], where the charge radius of the
constituent 10Be core is added in quadrature to the point-particle charge radius result of
the P-wave halo state 11Be(1/2−).

Let us consider what would happen if we were to include the finite-size contributions
of the constituent core, but without the presence of the short-range ρ2

π operator. This
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finite size contribution enters through the ρ2
c operator in the Lagrangian part (2.6), via a

loop-diagram where the photon is attached to the core field. This diagram is basically the
same as the one that generated the r2

pt contribution, but with the photon-core interaction

replaced according to ieZc 7→ −i eZcρ
2
c

6 Q2. Note, however, that the point-particle result
r2
pt comes from the second-order term of a Q-expansion of an exponential function in the

integrand of this loop-diagram, while the core-contribution is already at order Q2. This
means that the charge radius of the core enters the resulting charge form factor of the
P-wave halo state as

−
Γ

(0)
loop

eZc

ρ2
c

6
Q2 . (2.36)

The Γ
(0)
loop is the zeroth-order part of the charge form factor loop-diagram, which is

divergent. It can be written as

Γ
(0)
loop =

eZc

r1 + 3γ1

(
3γ1 +

4ν1

π
L1

)
, (2.37)

where the divergent L1-part is explicit. Since the parameter ρ2
c is an observable (it has

been fixed to the charge radius of the core), this means that the core contribution comes
with a divergence that can not be absorbed. As such, it is not possible to add the
core contribution unless also the ρ2

π-operator is present, since the parameter ρ2
π is a free

parameter that can absorb the divergence.

2.2 Heavy-core systems

For two-body systems where one of the particles is much heavier than the other, certain
kinematical suppressions exist. These suppressions only appear for some specific contri-
butions to observables. For a one-neutron halo, the core mass, M ∼ Acm, can be much
heavier than the neutron mass. For example Ac = 10 � 1 for 11Be. This results in a
suppression of the point-particle result for the charge radius of the halo state, as can be
seen in Eq. (2.31), since f = 1/(Ac + 1). Actually, for 11Be this suppression is of the
order 100, which motivates us to modify the power counting for systems where the core is
heavy.

In the heavy-core power counting we do not only count powers of momenta, but also
factors of the core mass number, Ac, (or the mass factor f if that is more appropriate).
As an example, at LO in the heavy-core power counting the core propagator would be
static, that is

Sc(E,p) =
1

E − p2

2Acm
+ iε

→ SLO
c =

1

E + iε
, (2.38)

as the 1/Ac term would be considered higher order.

2.2.1 Heavy-core power counting

In the heavy-core power counting, which is outlined in Paper D, we want to both count
powers of momentum, klo/khi, and the large-Ac suppression. As such we will match these
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two expansion parameters according to

klo/khi ∼ 1/Axc , (2.39)

with x > 0. The choice of x depends on what system is under consideration. For example,
for a system with Ac = 10 and klo/khi ∼ 0.4 we find that x = 2/5 is appropriate.

If we go back to Eqs. (2.30) and (2.32), but assign powers of both klo/khi and 1/Ac to
the terms, we find the following:

r2
ch = r2

pt,LO︸ ︷︷ ︸
1/(k2loA

2
c)

+ γ0r0r
2
pt,LO︸ ︷︷ ︸

1/(klokhiA2
c)

+ (γ0r0)2r2
pt,LO︸ ︷︷ ︸

1/(k2hiA
2
c)

+ ρ2
c︸︷︷︸

1/k2hi

+ γ0r0

(
ρ2

c − ρ2
σ

)︸ ︷︷ ︸
klo/k3hi

+ . . . (2.40)

Thus, in the heavy-core power counting it is clear from Eq. (2.40) that if Ac is sufficiently
large, then the point-particle contribution is actually sub-leading. If klo/khi ∼ 1/Ac, then
the point-particle contribution, r2

pt,LO, and the finite-size contribution, ρ2
c , are both at LO.

As an example, we can analyze the case of 11Be(1/2+), where we argued that x = 2/5 is
a good choice. Then, we organize the terms as

r2
ch = ρ2

c︸︷︷︸
1/k2hi

+ γ0r0

(
ρ2

c − ρ2
σ

)︸ ︷︷ ︸
(klo/khi)/k2hi

+ (γ0r0)2
(
ρ2

c − ρ2
σ

)︸ ︷︷ ︸
(klo/khi)2/k2hi

+ r2
pt,LO + . . .︸ ︷︷ ︸

(klo/khi)3/k2hi

+ . . . . (2.41)

In Eq. (2.41), note that the point-particle contribution does not enter until N3LO, since
it scales three powers higher in klo/khi than the first term. Instead the LO result is given
by the finite-size contribution. Note also that already at NLO, given by the second term,
we have a short-range contribution due to the ρσ parameter and as such the field theory
for this system is only predictive at LO in the heavy-core power counting.

For P-waves the heavy-core power counting result for the charge radius is simply

r2
ch = ρ̃2

π︸︷︷︸
LO

+ . . . , (2.42)

that is an unknown parameter at LO. The point-particle contribution is proportional to
f2 and as such it is severly suppressed for a heavy core nucleus. Therefore Cluster EFT
in the heavy-core power counting is unpredictive for charge radii of P-wave neutron halo
states. This is of course a severe restriction of Cluster EFT applied to P-wave systems
with a heavy core, but one should emphasize that there exist more observables than the
charge radius and that these might be better behaved.
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3 One-proton halos in effective field theory

In the previous chapter, we introduced Cluster EFT and we demonstrated details on the
renormalization of S- and P-wave interactions. For neutron halos, the only interaction
is through the strong force, and due to a fine-tuning this kind of system becomes very
weakly bound. In this chapter we want to study one-proton halo nuclei using Cluster
EFT and therefore we must also introduce the Coulomb interaction.

There has been some work on charged systems within EFT, starting with the efforts
by Kong and Ravndal [23, 24, 25] and continuing with work on for example α-α scattering
[20] in Cluster EFT and 3He [26, 27] in Pionless EFT. Our work extends this list with
one-proton halo nuclei.

For some nuclear systems the Coulomb interaction can be treated as rather weak,
compared to the strong interaction. However, for proton halo systems this is not possible
since the relevant low-momentum scale klo of the system is of the same size or smaller than
the Coulomb momentum kC = ZcαmR, where α ≈ 1/137 is the fine-structure constant.
What this means is that for proton halo nuclei the very small binding energy is a result
of an interplay between the strong and the Coulomb interactions.

There are just a few one-proton halo candidates in the chart of nuclides, for example
the 1/2+ excited state of 17F, which consists mostly of a proton and an 16O(0+) core in a
relative S-wave. This excited state of 17F has a proton separation energy of only 0.1 MeV,
while the 5/2+ ground state is bound by 0.6 MeV. Since the first excitation of the 16O
core is at E1 = 6 MeV, 17F should be a perfect system to apply Cluster EFT on. Actually,
both the ground state and the excited state are well separated from the momentum scale
of the core excitation, and therefore both states can be treated in Cluster EFT. In this
work we have only included the excited state 17F∗ into the field theory. We show results
for the charge radius of 17F∗ and the radiative capture process 16O(p, γ)17F∗ in Sec. 3.2.
In order to also describe the ground state we would have to consider the D-wave nature
of the interaction.

Other examples of proton halo nuclei in Nature are the 8B one-proton halo nucleus,
where a proton and a 7Be core interact in a P-wave, and the two-proton halo 17Ne. To
be able to treat two-proton halo nuclei one would need to derive three-body Coulomb
propagators, which is beyond the present reach of our formalism. We have considered
the P-wave one-proton halo nucleus 8B and we have calculated its charge radius and the
S-factor for the radiative capture cross section 7Be(p, γ)8B. These results are presented
in Chapter 3.3. We also present a correlation between the charge radius and the S-factor.
This system has also been considered recently in Ref. [28].

3.1 Coulomb interactions

For low momenta the Coulomb interaction must be included to all orders and we do this
by using the full Coulomb propagator GC, shown in Fig. 3.1. The Coulomb propagator,
or Coulomb Green’s function, can be written in the spectral representation as

(r|GC(E)|r′) =

∫
d3p

(2π)3

ψp(r)ψ∗p(r′)

E − p2/(2mR) + iε
, (3.1)
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Figure 3.1: The Coulomb propagator, defined recursively. The shaded blob denotes the
resummation of the Coulomb interaction.

where we have represented it in coordinate space, using round brackets. For momentum-
space representations we will use angle brackets. We define the Coulomb wavefunction
ψp(r) by its partial wave expansion

ψp(r) =

∞∑
l=0

(2l + 1)il exp (iσl)
Fl(η, ρ)

ρ
Pl(p̂ · r̂) . (3.2)

Here we have defined ρ = pr and η = kC/p, with the Coulomb momentum kC = Z1Z2αmR,
where Z1 and Z2 are the proton number of the clusters. We also define the pure Coulomb
phase shift σl = arg Γ(l + 1 + iη). The partial-wave projected Coulomb wavefunctions Fl
and Gl can be expressed in terms of the Whittaker functions. The regular wavefunction
Fl is written using the Whittaker M-function according to

Fl(η, ρ) = Al(η)Miη,l+1/2(2iρ) , (3.3)

with Al defined as

Al(η) =
|Γ(l + 1 + iη)| exp [−πη/2− i(l + 1)π/2]

2(2l + 1)!
. (3.4)

The irregular Coulomb wave function, Gl, is given by

Gl(η, ρ) = iFl(η, ρ) +Bl(η)Wiη,l+1/2(2iρ) , (3.5)

where W is the Whittaker W-function and the coefficient Bl is defined as

Bl(η) =
exp (πη/2 + ilπ/2)

arg Γ(l + 1 + iη)
. (3.6)

Since we work with both bound-state and free Coulomb wavefunctions it is important to
note that the absolute value and the argument of the Gamma-function are defined as

|Γ(l + 1 + iη)| =
√

Γ(l + 1 + iη)Γ(l + 1− iη) (3.7)

and

arg Γ(l + 1 + iη) =

√
Γ(l + 1 + iη)

Γ(l + 1− iη)
. (3.8)
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The Gamow-Sommerfeld factor C2
η = |ψ(0)|2 is given by

C2
η = C(0, η)2 =

2πη

exp (2πη)− 1

= exp (−πη)Γ(1 + iη)Γ(1− iη) (3.9)

and we will also need its generalization to higher partial waves

C(l, η)2 = exp (−πη)Γ(l + 1 + iη)Γ(l + 1− iη) . (3.10)

Note in particular that

C(1, η)2 = (1 + η2)C2
η . (3.11)

While the total phase shift is σl+δl, the Coulomb-modified phase shift δl is what is usually
referred to as the phase shift. The Coulomb-modified ERE defines the Coulomb-modified
low-energy scattering parameters al, rl, . . . through the phase shift:

k2l+1C(l, η)2(cot δl − i) + 2kChl(η) = − 1

al
+

1

2
rlk

2 + . . . . (3.12)

The function hl is given by

hl(η) = p2l C(l, η)2

C(0, η)2

(
ψ(iη) +

1

2iη
− log (iη)

)
, (3.13)

where ψ is the polygamma function.

3.1.1 Partial-wave projected Coulomb Green’s function

We now continue by analyzing the Coulomb Green’s function (r1|GC|r2). It is useful to
express the Green’s function in its partial-wave expanded form

(r1|GC(E)|r2) =

∞∑
l=0

(2l + 1)G
(l)
C (E; r1, r2)Pl(r̂1 · r̂2) . (3.14)

The form of G
(l)
C is derived by using the Coulomb wavefunctions (3.2), using spherical

harmonics,

ψp(r) =
∑
l,m

4πil exp (iσl)
Fl(η, ρ)

ρ
Y ∗lm(θ, φ)Ylm(θ, φ) . (3.15)
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We start from the spectral representation (3.1). In the first step we use the orthogonality
of the harmonics and in the second step the addition theorem is used:

(r1|GC(E)|r2) =
∑
l1m1

∑
l2m2

∫
d3p

(2π)3
(4π)2

il1−l2 exp (iσl1 − iσl2)
Fl1 (η,ρ1)

ρ1

F∗l2
(η,ρ2)

ρ2

E − p2

2mR

× Yl1m1
(θ1, ϕ1)Y ∗l1m1

(θp, ϕp)Yl2m2
(θp, ϕp)Y

∗
l2m2

(θ2, ϕ2)

=
∑
lm

∫
d3p

(2π)3
4π
Fl(η, ρ1)F ∗l (η, ρ2)

ρ1ρ2

1

E − p2

2mR

× Ylm(θ1, ϕ1)Y ∗lm(θ2, ϕ2)

=
∑
l

(2l + 1)Pl(r̂1 · r̂2)

∫
d3p

(2π)3

Fl(η, ρ1)F ∗l (η, ρ2)

ρ1ρ2

1

E − p2

2mR

(3.16)

Thus, comparing Eqs. (3.14) and (3.16), the Green’s function for a specific partial wave is
given by

G
(l)
C (E; r1, r2) =

∫
d3p

(2π)3

Fl(η, ρ1)F ∗l (η, ρ2)

ρ1ρ2

1

E − p2

2mR

. (3.17)

It is convenient to use the Coulomb Green’s function in a non-integral form and
below we present such a form for the bound-state Green’s function. This can be done by
doing a partial-wave projection and forming the Green’s function as a product between
two independent Coulomb wavefunctions, satisfying one boundary condition each, in
accordance with the definition of Green’s function. For the r = 0 boundary condition
we must use the regular Coulomb wave function Fl, while to satisfy the condition for a
bound state at r =∞ we need to form the combination

iFl +Gl . (3.18)

This can be seen from the r →∞ asymptotics

Fl(η, ρ)→ sin (ρ− lπ/2− η log (2ρ) + σl) (3.19)

and
Gl(η, ρ)→ cos (ρ− lπ/2− η log (2ρ) + σl), (3.20)

using that for a bound state ρ = iγr, with γ > 0. The only combination that yields only
an exp (−γr) dependence is the combination given in (3.18). Therefore, the partial-wave
projected Coulomb Green’s function is

G
(l)
C (−B; ρ′, ρ) = −mRp

2π

Fl(η, ρ
′) [iFl(η, ρ) +Gl(η, ρ)]

ρ′ρ
. (3.21)

The normalization is given by the discontinuity of the slope at ρ = ρ′, according to

(∂r′ − ∂r)GC(E; pr′, pr)
∣∣∣
ρ′→ρ

=
1

f(r)
, (3.22)
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where f(r) = 2πr2/mR for the Schrödinger-Coulomb equation.
Many of the diagrams we consider will have a factor of a Coulomb Green’s function

with one end at zero separation. Using the identity

iFl(η, ρ) +Gl(η, ρ) = exp (iσl + πη/2− liπ/2)W−iη,l+1/2(−2iρ) (3.23)

and the limits

lim
ρ→0

F0(η, ρ)

ρ
= exp (−πη/2)

√
Γ(1 + iη)Γ(1− iη) (3.24)

and

lim
r→0

(
F1(η, ρ)

ρ2

)
=

1

3
exp (−πη/2)

√
Γ(2 + iη)Γ(2− iη) (3.25)

we can write the relevant objects for propagation down to zero separation as

G
(0)
C (−B; 0, ρ) = −mRp

2π
Γ(1 + iη)

W−iη,1/2(−2iρ)

ρ
(3.26)

for S-wave interactions and

lim
ρ′→0

(
G

(1)
C (E; r′, r)

ρ′

)
= i

mRp

6π
Γ(2 + iη)

W−iη,3/2(−2iρ)

ρ
(3.27)

for P-wave interactions. These results, Eqs. (3.26) and (3.27), are used when we evaluate
the proton halo loop-integrals in this chapter numerically.

3.2 S-wave one-proton halo nuclei – The 17F∗ state

In this section we present Cluster EFT formalism for calculating the charge radius and
the radiative capture cross section for a one-proton halo nucleus, bound by an S-wave
interaction between the core and the proton fields. We exemplify this formalism by
showing results for the one-proton halo state 17F∗. This section is based on the work
presented in Papers A and C.

3.2.1 Interactions

Using Cluster EFT we treat the one-proton halo state 17F∗(1/2+) as consisting of a proton
and an 16O(0+) core in a relative S-wave. The proton and the 16O core are therefore the
effective degrees of freedom of the field theory.

Since the core is a 0+ particle there is only one S-wave channel, namely J = 1/2+, and
thus the LO interaction is given by a single Dirac delta, δ(r). Higher-order interactions
between the constituents come in as higher and higher powers of derivatives of the Dirac-
delta, that is ∇2δ(r) and so on. By matching these interactions to low-energy scattering
parameters of the S-wave Coulomb-modified ERE

kC2
η(cot δ0 − i) + 2kCh0(η) = − 1

a0
+

1

2
r0k

2 + Pk4 + . . . , (3.28)
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one finds that the Dirac delta interaction δ(r) gives the scattering length a0 and the
derivative interaction ∇2δ(r) enters with the effective range r0, as is shown in Sec. 2
in Paper C. In Eq. (3.28) the Gamow-Sommerfeld factor C2

η = 2πη/(exp (2πη)− 1) and

the function h0(η) = ψ(iη) + 1
2iη − log (iη) are needed. Since each derivative scales as

the low-momentum scale klo, the ∇2δ(r) interaction should be suppressed by two orders
compared to the LO δ(r) interaction. However, for weakly bound systems such as halo
nuclei, the scattering length is unnaturally large compared to the natural scaling khi.
This implies that the ∇2δ(r) interaction is actually at NLO, as one can see from the
Coulomb-modified ERE Eq. (3.28), using that 1/a0 ∼ klo, r0 ∼ 1/khi and k ∼ klo. The
next interaction term ∇4δ(r) enters at N3LO, assuming that the shape parameter scales
naturally as P ∼ 1/k3

hi.
We will now treat the S-wave interaction using an auxiliary dicluster field in the

Lagrangian. The Lagrangian for a spin-0 core and a proton, interacting only in the S-wave,
using the dicluster field is given by

L = p†σ

(
iDt +

D2

2m

)
pσ + c†

(
iDt +

D2

2M

)
c + d†σ

[
∆ + ν

(
iDt +

D2

2Mtot

)]
dσ

− g
[
d†σcpσ + h.c.

]
. (3.29)

Here pσ, with the spin index σ = ±1/2 denotes the spin-1/2 proton field with mass m and c
the 0+ core field with mass M . The covariant derivatives are defined as Dµ = ∂µ+ ieQ̂Aµ,

with Q̂pσ = pσ, Q̂c = Zcc and Q̂dσ = (Zc + 1)dσ, where Zc is the proton number of the
core. The operator Q̂ is simply the charge operator. The dicluster field dσ has mass Mtot

and the vertex, where the dicluster field breaks up into a proton and a core, has strength
g. The parameter ∆ is needed for renormalization of the S-wave interaction. The energy
signature ν = ±1 of the kinetic term of the dicluster field is present to allow for the
possibility of a positive effective range, since we use the convention where the coupling g
is real.

From the Lagrangian (3.29) we extract the Feynman rules for the propagators and the
interactions. Firstly, the proton, core and the bare dicluster propagators are given by the
inverse of the kinetic terms in Eq. (3.29). This gives the proton propagator

iSp(E,p) =
i

E − p2

2m + iε
, (3.30)

the core propagator

iSc(E,p) =
i

E − p2

2M + iε
(3.31)

and the bare dicluster propagator

iD(0)(E,p) =
i

∆ + ν
(
E − p2

2Mtot
+ iε

) . (3.32)

This dicluster propagator is called bare, since it will be dressed by proton-core loops and
thereby gain an additional energy dependence in the denominator.

26



There is only one contact interaction vertex, which is given by the d†σcpσ term, and
its coefficient is −g. The Feynman rule for this vertex is given by

− ig . (3.33)

In addition we have three vertices, where an A0 photon interacts with the matter fields,
which happens through the iDt = i∂t − eQ̂A0, or νiDt, operators. Thus we have the
Feynman rules for the A0 photon interaction with the proton

− ie , (3.34)

the core
− ieZc (3.35)

and the dicluster
− iνe(Zc + 1) . (3.36)

The dicluster-photon interaction can be thought of as a two-body current. Finally, we
also have the vertices where a vector photon Ai couples to either of the matter fields.

The responsible operators are D2

2m , D2

2M and ν D2

2Mtot
, for interactions with the proton, core

and dicluster, respectively. We chose to work in the Coulomb gauge, where ∇iAi = 0,
and therefore the D2 operator is expanded as D2 = ∇2 + 2ieQ̂Ai∇i − e2Q̂2AiAi. In this
work we will only consider vertices with one photon field and therefore, using ∇ = ip, we
arrive at the Feynman rules for the Ai photon interaction with the proton

− i
epip
m

, (3.37)

the core

− ieZcp
i
c

M
, (3.38)

and the dicluster

− ie(Zc + 1)pidi

Mtot
. (3.39)

The momenta pp, pc and pdi are the momenta of the proton, core and dicluster, respec-
tively. Defining the relative momentum

p =
Mpp −mpc

Mtot
(3.40)

and positioning us in the center-of-mass (c.m.) frame, where pp = −pc, we have
pp = p = −pc. Note that for a single dicluster field in the c.m. frame we have pdi = 0,
which means that the Feynman rule (3.39) is identically zero. For the Feynman rules with
the vector photon Ai it is important to note that there are photon polarization vectors ε1
and ε2 needed also, which we will eventually multiply with the amplitudes.

The full dicluster propagator is defined in Fig. 3.2. In the c.m. frame it is constructed
from the bare dicluster propagator iD(0)(E, 0), Eq. (3.32), as the geometrical series

iD(E) =iD(0)(E, 0) + iD(0)(E, 0)iΣ(E)iD(0)(E, 0) + . . .

=
i

∆ + ν (E + iε) + Σ(E)
, (3.41)
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Figure 3.2: The full one-proton halo propagator, defined recursively using the bare halo
propagator and the irreducible self-energy.

Figure 3.3: The irreducible self-energy diagram for the proton-core pair.

where we have also introduced the irreducible self-energy Σ. The irreducible self-energy is
the bubble-diagram shown in Fig. 3.3, and it is simply given by (−ig)2, from the Feynman
rule (3.33), times the Coulomb propagator (0|GC(E)|0):

Σ(E) = −g2

∫
d3p

(2π)3

ψp(0)ψ∗p(0)

E − p2/(2mR) + iε
. (3.42)

The integral (3.42) is evaluated to1

Σ(E) = g2 kCmR

π
h0(η) + Σdiv . (3.43)

Note that the irreducible self-energy is formally infinite, with a divergent part Σdiv that is
independent of the energy. This is analogous to the renormalization procedure in Chapter 2.
The matching to low-energy elastic scattering parameters and the renormalization is given
in Sec. 2 of Paper C.

Whenever a bound state observable is to be calculated one needs to include the
wavefunction renormalization Z, such as to normalize the bound-state fields properly.
An easy example of such a wavefunction renormalization is for an uncharged S-wave
two-body system, with radial bound-state wavefunction u0(r) = exp (−γr). The proper
normalization is off by a factor of

√
2γ, which can be seen by evaluating the integral∫∞

0
dr|u0(r)|2. The wavefunction renormalization for the bound state is given by

Z =
1

ν + Σ′(−B)
(3.44)

and in terms of the effective range it can be written as

Z =
6πkC

g2m2
R

[
−3kCr0 +

6k2
C

mR

d

dE
h0(η)

]−1
∣∣∣∣∣
E=−B

. (3.45)

1See Ref. [24] for details on the integration.
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Note that for small values of γ/kC, the second term in the denominator of Eq. (3.45) can
be expanded as 1 +O(γ2/k2

C). It is instructive to compare the kC � γ limit

Z =
6πkC

g2m2
R

1

1− 3kCr0
+O

(
γ2

k2
C

)
(3.46)

with the wavefunction renormalization for a one-neutron halo [16]

Zneutron halo =
2πγ

g2m2
R

1

1− γr0
. (3.47)

While the universal low-energy physics for a one-neutron halo is defined by the momentum
scale γ, it seems as though the low-energy physics for a one-proton halo, in the limit
where kC � γ, is given in terms of a scale 3kC. One can now ask whether such a limit is
realized anywhere in Nature. We will consider the 17F∗ one-proton halo nucleus for which
we have γ/kC = 0.265, that is actually small enough for the limit to be qualitatively
realized. The consequences for 17F∗ are discussed in Sec. 5 of Paper C. One result is that
the separation of scales for the proton-core interaction is reduced to kC/khi, which can be
handled by fixing the wavefunction renormalization by the use of the ANC. The relation
to the ANC, A, is given by

Z =
π

g2m2
RΓ(1 + kC/γ)2

A2 . (3.48)

If we compare the expression (3.48) with Eq. (3.46) we note that these are basically
two different parameterizations of the LSZ residue: one in terms of the ERE parameters
and one in terms of the ANC. Both parameterizations are of course valid, but for some
cases one of them might be preferable to the other.

For 17F∗ we note that there is a fine tuning in the effective range such that the
denominator in Eq. (3.45) is very close to zero, that is the wavefunction renormalization
Z is extremely large. The large value for Z can be seen from the fact that the ANC for
17F∗ is very large (on the order of 80 fm−1/2 [29, 30]). This means that all observables
that involves the bound state, for example the charge radius and the radiative capture
cross section, are enhanced by a large factor Z. However, due to the large value of the
Coulomb momentum for this system, kC = 51.2 MeV, the Cluster EFT prediction for the
17F∗ charge radius is at a rather expected value anyway, as we will see in Section 3.2.4.

3.2.2 The charge form factor

We now turn to the calculation of the observable charge form factor, or more specifically
the charge radius. Including effective-range corrections there are two charge form factor
diagrams for an S-wave interaction, and these are shown in Fig. 3.4. In the following
parts of this section we construct these amplitudes and show how they give the charge
form factor of the system.

Charge form factor diagrams

The loop-diagram in Fig. 3.4(b), Γloop(Q), consists of a proton-core bubble, where the
external photon line couples to either the core or the proton, with Feynman rules given by
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(a) (b)

Figure 3.4: The charge form factor diagrams. (a) The tree-level diagram Γtree, where
the virtual photon couples to the halo field, and (b) the loop-diagram Γloop(Q), where
the photon couples to the core and the proton fields, respectively. The loop-diagram
depends on the momentum transfer Q, while the tree-level diagram only gives a constant
contribution to the charge form factor.

Eqs. (3.35) and (3.34), respectively. The shaded blobs denote the Coulomb resummation
and they are simply given by two-body Coulomb propagators 〈p′|GC(−B)|p〉, where the
angle brackets are used for momentum space. In total, therefore, we have one interaction
vertex between an A0 photon and either a core or a proton, two contact interaction
vertices with Feynman rule given in Eq. (3.33), two Coulomb propagators and three
momentum loops to be integrated over. In momentum space the loop-diagram is therefore
given by

Γloop(Q) =g2eZc

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3
〈p1|GC(−B)|p2 + fQ/2〉

× 〈p2 − fQ/2|GC(−B)|p3〉
+ [(f → 1− f) , (Zc → 1)] . (3.49)

Note that in using the two-body Coulomb propagators we have already performed the
energy residue integrals; the Coulomb propagators are at the bound state energy E = −B.
The [(f → 1− f) , (Zc → 1)] term is due to the fact that the photon can interact with
both the core and the proton. The mass ratio f = m/Mtot defines the differences in
kinematics for the proton and the core. The momentum dependencies in the Coulomb
propagators are relative momenta of the proton and the core. For example, in the loop
where the photon is attached to the core we define the proton momentum as p2, while the
core momentum is −p2 −Q/2 before the photon interaction and −p2 + Q/2 after. This
gives the relative momenta p2 + fQ/2 and p2 − fQ/2, respectively, using the defining
equation (3.40).

Performing a Fourier transform on each of the momentum-space kets and bras, we
arrive at the much simpler coordinate-space integral

Γloop(Q) = g2eZc

∫
d3r(0|GC(−B)|r) exp (ifQ · r)(r|GC(−B)|0)

+ [(f → 1− f) , (Zc → 1)] , (3.50)

where the coordinate space Coulomb propagators must be purely S-wave since they have
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one end at zero separation. Using Eq. (3.26) we write these propagators as

|(0|GC(−B)|r)|2 =
m2

R

(2π)2
Γ(1 + kC/γ)

2W−kC/γ,1/2(2γr)

r2

2

, (3.51)

where W is the Whittaker-W function. The integral (3.50) is now straightforward to
evaluate numerically.

The finite-size corrections from the constituent core and proton can be added straight-
forwardly to the loop-diagram (3.50), as was discussed in Paper D. We simply make the

substitution exp (ifQ · r) 7→ exp (ifQ · r)
(

1− ZXρ
2
XQ

2

6Ztot

)
, where X is p (c) for the term

where the photon couples to the proton (core). This full loop-diagram then includes both
the point-particle and the finite-size contributions.

The tree-level diagram in Fig. 3.4(a), Γtree, is from a two-body current operator, and
it enters with an effective-range correction. The diagram is simply

Γtree = νe(Zc + 1) , (3.52)

which is a constant. Following Paper D, we can straightforwardly add the short-range
contribution from the d†(∇2A0)d operator to the diagram (3.52). The full result then is

Γtree,full(Q) = νe(Zc + 1)

(
1− ρ2

dQ
2

6

)
. (3.53)

Summing the contributions from the diagrams, the full version of diagram (3.50) and
(3.53), we can arrive at the observable 〈k′|J0|k〉 in Eq. (2.28); we only need to normalize
the diagrams properly first. This is done with one square root of the LSZ residue factor,
Eq. (3.45), for each bound-state end of the diagrams in Fig. 3.4. The charge form factor
is therefore given in terms of the diagrams Eqs. (3.50) and (3.52) and in total one power
of the LSZ residue Z as

FC(Q) =
Z

e(Zc + 1)
(Γloop,full(Q) + Γtree,full(Q) + . . . ) (3.54)

where the dots refer to higher-order diagrams that we do not consider here.

Normalization of the charge form factor

At zero momentum transfer (Q = 0) the charge form factor must be equal to one, as
is evident from Eq. (2.29). In this section we show that this is indeed the case, using
Eq. (3.54) for the charge form factor.

At Q = 0 Eq. (3.50) reduces to

Γloop(0) = g2e(Zc + 1)

∫
d3r(0|GC(−B)|r)(r|GC(−B)|0) . (3.55)

Using the spectral representation of the Coulomb Green’s function

(0|GC(E)|r) =

∫
d3p

(2π)3

ψp(0)ψ∗p(r)

E − p2/(2mR) + iε
, (3.56)
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and orthonormality of the Coulomb wave functions∫
d3r ψ∗p(r)ψp′(r) = (2π)3δ(3)(p− p′) , (3.57)

Eq. (3.55) is simply

Γloop(0) =g2e(Zc + 1)

∫
d3p

(2π)3

ψp(0)ψ∗p(0)

(−B − p2/(2mR) + iε)2

=e(Zc + 1)Σ′(−B) , (3.58)

where we used Eq. (3.42) for the irreducible self-energy in the last step.
The form factor (3.54) at Q = 0 is now given by, using Eqs. (3.44), (3.52) and (3.58),

FC(0) =
1

ν + Σ′(−B)

1

e(Zc + 1)
(Γtree + Γloop(0))

=
1

ν + Σ′(−B)
(ν + Σ′(−B))

=1 , (3.59)

which demonstrates proper normalization.

The charge radius

We have shown that the charge form factor is properly normalized and it is straightforward
to show that the order Q term is identically zero, since it will integrate to zero in Eq. (3.50).
In obtaining the charge radius, we can therefore focus completely on the order Q2 term.

The charge radius rch is defined by the Q2 coefficient of the charge form factor,

according to Eq. (2.29), FC(Q) = 1− r2ch
6 Q

2 + . . . . Therefore, using Eq. (3.54), the charge
radius is given by

r2
ch =− 3

e(Zc + 1)
ZΓ′′loop,full(0)

= r2
pt +

1

1− 3kCr0

(
Zc

Zc + 1
ρ2

c +
1

Zc + 1
ρ2

p − 3kCr0ρ
2
d

)
, (3.60)

with

r2
pt = − 3

e(Zc + 1)
ZΓ′′loop(0) . (3.61)

The prime in Eq. (3.60) denotes a derivative with respect to the momentum Q. Thus, by
evaluating the integral (3.50) numerically and inserting the result into Eq. (3.60) together
with the charge radii of the constituents, the Cluster EFT charge radius result for a
given system can in principle be obtained. However, the short-range contribution 3kCr0ρ

2
d

enters already at N2LO if 3kCr0 ∼ 1, which is the case for 17F∗. As such the Cluster EFT
charge radius calculation for 17F∗ is only predictive to NLO.
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Figure 3.5: Sketch of the general radiative capture diagram. The diagram consists of
an incoming proton-core pair, which is given by a Coulomb wave function, an outgoing
bound halo state and an outgoing real photon. The crossed white blob indicates all the
possible relevant interactions. The direction of time is from right to left.

3.2.3 Radiative capture and the astrophysical S-factor

Radiative nucleon capture is the capture of a nucleon on a core, while emitting a photon.
There also exist radiative capture of clusters of nucleons, for example 3He(4He, γ)7Be,
and the formalism we present below can straightforwardly be extended to include these.
When the captured nucleon is a proton, the cross section is exponentially suppressed
at low energies, due to the repulsive Coulomb barrier; the proton must tunnel through
this barrier. Therefore, this process is very difficult to measure experimentally. However,
many of the important reactions in the nucleosynthesis are radiative capture processes
of charged particles and therefore, if we wish to understand how the elements in Nature
were created, we need to consider these processes.

The fact that these reactions are so hard to measure only makes them even more
interesting from the viewpoint of a nuclear theorist. Accurate cross-section predictions
is important input for the nucleosynthesis modeling. In the solar-fusion processes these
reactions occur at energies around 10 keV. Therefore, the effort of pinning down the exact
cross sections for radiative capture reactions is a joint venture between nuclear experiment
and theory, where experiments can only measure accurately down to some hundred keV
and theory can provide good models for extrapolation of the data down to threshold.

The conventional way of presenting radiative proton capture cross sections is through
the astrophysical S-factor

S(E) = E exp (2πη)σtot(E) , (3.62)

where E is the c.m. energy. The S-factor is defined in such a way that the exponential
Coulomb repulsion has been removed, and as such the S-factor is a much more convenient
object than the exponentially suppressed cross section σtot(E).

In Fig. 3.5 a sketch of a general capture diagram is shown. On the right side of the
diagram is the incoming proton-core pair, which interacts to all orders via the Coulomb
interaction. This incoming proton-core pair has a relative momentum p and energy
E = p2/(2mR), and can be described by a Coulomb wavefunction ψp. To the left are
the outgoing halo field with momentum −k, represented by the double-line, and the real
photon with four momentum (ω,k), in the zero-momentum frame. Energy conservation

implies that ω = −Mtot +
√
M2

tot + 2Mtot(E +B), where B is the binding energy or
one-proton separation energy. Considering energies much smaller than the total mass
Mtot we find ω ≈ B + E. The crossed white blob denotes all the possible interactions
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Figure 3.6: The LO radiative capture diagrams, where the incoming proton and core
interact with a real vector photon. Since the formed halo bound state is due to an S-wave
interaction, the incoming proton-core pair is in a relative P-wave, if only E1 capture is
considered. The direction of time is from right to left.

that can take place in the process, and it is these interactions that can be organized in a
power counting in the EFT.

In Sec. 4 of Paper C the radiative capture amplitude is derived up to N5LO. The LO
radiative capture diagrams is shown in Fig. 3.6. The resulting LO amplitude, is given by

A =− ig
√
Z eZcf

mR

∫
d3r G

(0)
C (−B; 0, ρ) exp (−ifk · r)∇ψp(r)

− [(f → 1− f) , (Zc → 1)] . (3.63)

One can understand Eq. (3.63) in terms of standard quantum mechanics. At the far right
there is an incoming Coulomb wavefunction ψp(r). In the middle we have the vector

current operator eZcf
mR

exp (−ifk · r)∇, corresponding to the interaction between the core
and the vector photon. And at the far left in the integrand is the bound state wavefunction

G
(0)
C (−B; 0, ρ) ∝ W−kC/γ,1/2(2γr)/r, given in Eq. (3.27). Due to the presence of one

bound-state field, there is a wavefunction renormalization
√
Z present. Of course the pho-

ton can couple to both the core and the proton and hence the − [(f → 1− f) , (Zc → 1)]
piece, where the minus sign can be traced back to the Feynman rule for the interaction
with the vector photon.

At NLO there are no additional capture diagrams. One could imagine new diagrams
where the vector photon couples through an operator ∇+ ieQ̂A, coming from the effective-
range correction, but such a diagram can only appear if initial-wave (strong) scattering is
included. In the field theory that we use, only the strong S-wave interaction is included,
while the incoming proton-core wave must be a P-wave due to the fact that the E1 photon
changes the angular momentum by one (remember that the final bound state is an S-wave).
However, the proton-core interaction receives a correction from the effective-range. This
correction appears in the LSZ-factor, as is given in Eq. (3.45) and it is the only correction
at NLO.

The shape parameter enters at N3LO, but it will also not add any new capture
diagrams, since they can only appear through initial-wave (strong) scattering. And
similarly as for the effective-range correction, the shape parameter enters as a correction
in the LSZ-factor (this is true for all corrections to the proton-core interaction). Thus, if
we use an ANC as input to constrain the parameters of the field theory, then the theory
will be determined to N3LO, since the ANC is proportional to the LSZ-factor according
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Figure 3.7: The N4LO radiative capture diagram. The direction of time is from right to
left.

to Eq. (3.48). As such, by fitting the interaction to an ANC the result is correct up to
N3LO.

At N4LO a short-range operator enters. The interaction term is given in Paper C as 2

[
D

(E1)
3/2 C

a
isCs

′

aj +D
(E1)
1/2 C

σ
isCs

′

σj

]
d†s′ (∂0Aj −∇jA0)

(
c
←→
∇ ips

)
+ h.c. . (3.64)

The coefficients D
(E1)
3/2 and D

(E1)
1/2 correspond to the two possible spin-channels in the

incoming P-wave wavefunction. Note that the gauge-invariant operator (∂0Aj −∇jA0) is
non-minimal. Counting dimensions of the operator we find that it scales as dimension 9,
which is four orders above LO.

The contribution due to the N4LO operator is through the diagram in Fig. 3.7, resulting
in the amplitude

B = D(E1)
√
Zω exp (iσ1)p

√
(1 + η2)C2

η . (3.65)

In this amplitude we have, for simplicity, introduced the combined coefficient D(E1). Note
that the photon energy-dependence comes from the ∂0 and the last part comes from

the P-wave integral
∫

d3k
(2π)3 kψp(k) (see the appendix of Paper B). Note that the next

operator that contributes to the radiative capture cross section appears at N6LO, which
is discussed in Paper C. As such this calculation is valid to N5LO.

By multiplying the amplitude Eq. (3.63) with the photon polarization vectors εi (note
that both A and εi are vector quantities) and squaring, we arrive at the differential cross
section, Eq. (3.66)

dσ

dΩ
=
mRω

8π2p

∑
i

|εi · A|2 , (3.66)

where in Coulomb gauge we have the Ward identity

εi · k = 0 . (3.67)

Once Eq. (3.63) has been multiplied with the photon polarization vectors the angular

2There is a typo in Paper C, where the subscript is written as 5/2 instead of 3/2.
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Figure 3.8: The astrophysical S-factor for 16O(p, γ)17F∗, plotted as a function of the c.m.
energy E. The Cluster EFT results are fitted, at N3LO and N5LO, to the experimental
data by Morlock et al. [31]. The Morlock data is shown without the uncertainty due to
the absolute normalization. The error bands are given by the omission of higher-orders.

integrals are easily evaluated and we arrive at the integral

∑
i

|εi · A|2 =

∣∣∣∣∣√Z sin θ(cosφ+ sinφ)
4πgeZcf exp (iσ1)

mRp

×
∫

dr G
(0)
C (−B; 0, ρ)j0(fωr)

∂

∂r
[rF1(kC/p, pr)]

− [(f → 1− f) , (Zc → 1)]

∣∣∣∣∣
2

, (3.68)

which can be calculated numerically. The P-wave Coulomb wavefunction, F1, was
introduced in Sec. 3.1. Note that the result (3.68) depends on the angles φ and θ. These
are the angles that are integrated over when going from the differential cross section (3.66)
to the total cross section.

3.2.4 Results for the halo state 17F∗

In Paper C the radiative capture formalism is exemplified by calculuating the astrophysical
S-factor of 16O(p, γ)17F∗. The S-factor is calculated at both N3LO, where the ANC is
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the only non-trivial free parameter, and N5LO, where the short-range operator (3.64)
is included also. The resulting S-factor is shown in Fig. 3.8. The procedure in Paper C
was to fit these free parameters to the experimentally measured S-factor, and thereby be
able to both extract the ANC and the threshold S-factor. The fitted ANC could then
be compared with previously extracted ones and it was also used as input for the charge
radius calculation of the halo state 17F∗.

The obtained ANC is

A =

{
(77.4± 0.2 (stat)± 3.8 (norm)) fm−1/2 , N3LO

(79.3± 0.2 (stat)± 3.9 (norm)) fm−1/2 , N5LO
, (3.69)

which can be compared to those of Huang et al. A = 77.21 fm−1/2 [29] and Gagliardi et

al. (80.6± 4.2) fm−1/2 [30]. The resulting threshhold S-factor is

S =

{
(9.9± 0.1 (stat)± 1.0 (norm)) keV b , N3LO
(10.4± 0.1 (stat)± 1.0 (norm)) keV b , N5LO

. (3.70)

The 1% error due to the EFT fit is mainly a statistical error, but it also includes the
EFT error. The EFT error is given by (p/khi)

n+1, where p is the incoming momentum
and n is the order at which the calculation was performed. The 10% error is due to the
uncertainty in the absolute normalization of the experimental data.

Using the extracted N5LO ANC, the NLO charge radius result for 17F∗ is

rch = (2.20± 0.11 (ANC)) fm . (3.71)

Note that this charge radius result does not include the finite-size contributions from the
core and proton charge radii, since these appear at the same order as the undetermined
short-range operator. In Paper C an EFT error of 0.04 fm is given, as the charge radius
has been calculated to NLO in the power counting and the expansion parameter is γ/khi.
However, a more cautious error estimate could place the estimated EFT error much larger,
due to the fine-tuning coming from the strong Coulomb repulsion kC � γ. As is shown
in Paper C, the charge radius actually scales with the Coulomb momentum in this regime
and as such a pessimistic EFT expansion parameter (for the charge radius alone) might
be kC/khi = 0.7. This finding would actually result in an EFT error of 0.5 fm at this
order.

It would be interesting to use low-energy elastic scattering data, in addition to the
ANC fitting, to constrain the S-factor. However, since the effective range is very close to
the pole position r0 ≈ 1.2 fm, it would have to be measured to the third (fourth) digit
for the resulting S-factor error to be about 10% (1%). For such accuracies the shape
parameter is needed, and possibly also higher-order terms in the ERE.

3.3 P-wave one-proton halo nuclei – The 8B nucleus

In this section we present formalism and results for a one-proton halo nucleus bound by a
P-wave interaction. The interaction being of P-wave nature implies that two parameters
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are needed at LO to renormalize the theory. We show results for the charge radius of 8B
and the radiative proton capture cross section for 7Be(p, γ)8B. A particularly interesting
result is the demonstration of a correlation between the charge radius and the threshold
S-factor. This section is based on work presented in Paper B.

3.3.1 Interactions

One of the main reasons, in this thesis, for studying P-wave interactions in Cluster EFT is
the one-proton halo nucleus 8B. It consists of a 7Be core and a proton being dominantly
in a relative P-wave and the one-proton separation energy of 8B is B = 0.1375 MeV. The
ground-state core of 7Be has spin and parity 3/2− and this state together with the proton,
of spin 1/2+, then define two spin channels S = 1, 2. Both of these channels contribute to
the 8B(2+) ground state via a P-wave interaction. In addition, there is an excited 1/2−

state of 7Be, at E∗ = 0.4291 MeV, which can combine in a P-wave with a proton to form
the 8B(2+) state if the spin channel is S = 1. Comparing this system with the simpler
case of the S-wave one-proton halo nucleus 17F∗, where only one channel was present, we
note that the 8B halo is a more involved system both counting the number of spin-coupled
channels and the increased complexity due to the P-wave nature of the interaction.

The reason why the P-wave interaction introduces difficulties is the need for two
independent renormalizations already at LO. This difficulty comes from the fact that
the LO Dirac delta contact interaction enters with one power of the relative momentum
of the proton-core pair. This momentum dependence of the interaction vertex makes
the irreducible self-energy have an additional divergence compared to the S-wave case,
Eq. (3.43). See Sec. 2 in Paper B, or Ref. [10], for a full derivation of these renormalization
issues.

For a P-wave interaction, the Coulomb-modified ERE is given by Eq. (3.12) with l = 1.
However, the elastic scattering process of a proton and a 7Be core has a contribution from
the core excitation 7Be∗ and therefore, for the case at hand, we have the ERE

k3C(1, η)2(cot δ1 − i) + 2kCh1(η) +
g2
∗
g2

2kCh1(η∗) = − 1

a1
+

1

2
r1k

2 + . . . . (3.72)

In Eq. (3.72) we have introduced two new parameters: the ratio between the interaction
vertices of proton-7Be∗ and proton-7Be, g∗/g, and the Coulomb parameter η∗ = kC/k∗,
with k∗ =

√
k2 − 2mRE∗. The effective range r1 and the ratio g∗/g will be fitted to

calculated and measured ANCs in Section 3.3.2. Details on how the ERE (3.72) is obtained
from the interactions of the field theory can be found in Sec. 2 in Paper B.

The Lagrangian for a system consisting of a proton interacting with a spin-3/2 core
state and a spin-1/2 excited-core state, in a relative P-wave with total spin J = 2, is
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given by

L =p†σ

(
iDt +

D2

2m

)
pσ + c†a

(
iDt +

D2

2M

)
ca + c̃†σ

(
iDt +

D2

2M
− E∗

)
c̃σ

+ d†α

[
∆ + ν

(
iDt +

D2

2Mtot

)]
dα

− g1

[
d†αCαjiCjaσca

(
(1− f)i

−→
D i − fi

←−
D i

)
pσ + h.c.

]
− g2

[
d†αCαβiCβaσca

(
(1− f)i

−→
D i − fi

←−
D i

)
pσ + h.c.

]
− g∗

[
d†αCαjiCjχσ c̃χ

(
(1− f)i

−→
D i − fi

←−
D i

)
pσ + h.c.

]
+ . . . . (3.73)

In this Lagrangian, the proton field is denoted by pσ, the ground state core field by ca,
the excited state core field by c̃σ and the spin-2+ dicluster field by dα. The core fields
have mass M and charge eZc, the proton field has mass m and charge e, and the dicluster
field has mass Mtot = M + m and charge e(Zc + 1). Note also that the excited-state
core field has excitation energy E∗. The factors of (1 − f) and f in the interaction
part of the Lagrangian (3.73) make sure that it is Galilean invariant. The interaction
vertices for the ground-state core field and the proton have coupling strengths g1 and
g2 for the two spin channels S = 1, 2. To the order that we consider, these couplings
always appear in the combination g2 = g2

1 + g2
2 . The interaction vertex for the excited-

state core field and the proton have coupling strength g∗. With the Clebsch-Gordan
coefficients C the different interaction channels are defined, with indices according to
α, β = −2,−1, 0, 1, 2, a = −3/2,−1/2, 1/2, 3/2, i, j, k = −1, 0, 1, and σ, χ = −1/2, 1/2.
The covariant derivatives are given by Dµ = ∂µ + ieQ̂Aµ. The dots refer to higher-order
terms that we do not include.

The P-wave interaction vertices for the ground state core-proton-dicluster interactions
are

ig1CαjiCjaσki , (3.74)

for the S = 1 channel, and

ig2CαβiCβaσki , (3.75)

for the S = 2 channel, and for the excited state core field

ig∗CαjiCjχσki , (3.76)

where k is the relative momentum of the proton-core pair. Therefore, in all loop-diagrams
that we consider for the P-wave bound state there will be additional powers of the
loop-momentum k. We consider the most basic P-wave loop-integrals in Appendix B of
Paper B. The Feynman rules for the A0 and the Ai photon interaction with the proton,
ground- and excited-state core and dicluster fields are analogous to the rules given in
Section 3.2.1. However, for the P-wave interaction at hand, there is also an interaction
vertex where an Ai photon is attached to a proton-core-dicluster vertex. This vertex exists
for both the ground- and excited-state core, but for the purpose of obtaining the results
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presented here we only need the one with the ground-state core field. The Feynman rules
for this vertex is, for S = 1,

ig1CαjiCjaσe[1− f(Zc + 1)] (3.77)

and for S = 2
ig2CαβiCβaσe[1− f(Zc + 1)] . (3.78)

The bare dicluster propagator for P-wave interactions in the c.m. frame is given by

iD(0)(E) =
i

∆ + ν (E + iε)
, (3.79)

taking the inverse of the kinetic term in the Lagrangian Eq. (3.73). The full dicluster
propagator is obtained by dressing the bare propagator Eq. (3.79) by proton-core and
proton-excited core loops, that is by including the irreducible self-energies of the proton-
core and proton-excited core systems, analogous to the procedure in Chapter 3.2.1. The
construction of these irreducible self-energies is given in Paper B. The resulting full
dicluster propagator is

iD(E) =
i

∆ + ν (E + iε) + Σ(E) + Σ∗(E)
. (3.80)

One can understand the sum of the irreducible self-energies Σ(E) + Σ∗(E) in the de-
nominator by the fact that the propagation of the dicluster will have contributions from
both the ground- and the excited-state core fields. Even higher-energy states would also
contribute, had we not excluded these from the EFT. That is, these higher modes are
considered short-range physics and are implicitly included in the parameters of the EFT.
Note that the total irreducible self-energy Σ(E)+Σ∗(E) for the P-wave interaction has two
independent divergences, compared to only one for the S-wave interaction, and therefore
two parameters are needed at LO to renormalize the interaction. This is independent of
the fact that we have one irreducible self-energy per core field.

The wavefunction renormalization of the P-wave bound state 8B system is given by

Z =
6π

g2m2
R

[
r1 −

2kC

mR

d

dE

(
h1(η) +

g2
∗
g2
h1(η∗)

)]−1
∣∣∣∣∣
E=−B

. (3.81)

It is evident that both the ground and excited state of the 7Be core contribute to the

bound-state properties of 8B, through the h1(η) and
g2∗
g2h1(η∗) pieces. When we match to

ANCs in Section 3.3.2, we will fix both the effective range r1 and the excited-to-bound
state interaction strength ratio g∗/g by matching to the ANCs relevant for the 8B system.
In terms of these ANCs the wavefunction renormalization can be written as

Z =− 3π

g2m2
Rγ

2Γ(2 + kC/γ)
2

(
A2

1 +A2
2

)
(3.82)

=− 3π

g2
∗m

2
Rγ

2
∗Γ(2 + kC/γ∗)

2A
2
∗ , (3.83)
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Table 3.1: Relevant parameters and scales for the 8B system.

kC γ γ∗ r1

26.79 MeV 14.97 MeV 30.39 ∼ 60–70 MeV

kα 1/R7Be f = m/Mtot Zc

50.86 74.55 MeV 1/8 4

combining Eq. (3.81) and the ANC formula in Eq. (85) of Ref. [32]. In Eqs. (3.82)
and (3.83), A1 (A2) is the ANC for the proton and the ground-state core in the S = 1
(S = 2) channel and A∗ is the ANC for the proton and excited-state core in the S = 1
channel. The binding momenta for the bound- and ground-state channels are defined as
γ =
√

2mRB and γ∗ =
√

2mR(B + E∗).

3.3.2 Fixing parameters

In this section we will discuss how to extract parameters from ANCs. We will use two
different field theories for the P-wave system under consideration: (i) A field theory with
only the ground-state core included and (ii) a field theory where the excited-state core is
also included. Therefore, in the ground-state only theory the breakdown scale is given by
the excited-state energy.

For the P-wave system at hand, we need to fix at least two parameters at LO to be able
to make predictions, for example the binding momentum and the effective range. Thus, if
we only include the ground state of the core in the field theory we would need to fit the
effective range to, for example, low-energy elastic scattering data or to an extracted ANC
for the bound system, consisting of a proton and a ground-state core. If the excited-core
field is also included in the field theory, then an additional parameter needs to be fixed.
This parameter is related to the relative importance of the ground- and excited-state core
fields, that is in what proportions these fields appear in the halo state. We choose to work
with the binding momentum γ of the halo nucleus, the J = 2+ effective range r1, and the
ratio of the interaction strengths g∗/g as our parameters. Note that neither g1 or g∗1 are
observable, but the ratio g∗/g is, which can be seen by taking the ratio of Eqs. (3.82) and
(3.83).

The binding momentum is trivially extracted from the one-proton separation energy
B, as γ =

√
2mRB. The two remaining parameters can be fitted to the ground-state

core field ANCs, A1 and A2. Note that ANCs are observable quantities that can be
both measured experimentally and calculated in, for example, ab initio theories. We us
the ANCs that have been calculated by (i) Nollett and Wiringa [33], (ii) Navrátil et al.
[34] and measured by (iii) Tabacaru et al. [35] and the excited state core field ANC A∗
calculated by Zhang et al. [28]. The A∗ ANC is also a crucial input if the excited core is
to be included in the field theory. The ground-state ANCs, A1 and A2, are for the S = 1
and S = 2 spin channels, respectively, and the excited-state ANC, A∗, is for the S = 1
spin channel. These ANCs are given in Table 3.2.

For the field theory with both the ground- and excited-state core fields included the
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Table 3.2: Asymptotic Normalization Coefficients (ANCs) calculated by Nollett and
Wiringa [33] and Zhang et al. [28] (denoted “Nollett”), by Navrátil et al. [34], and
extracted from a proton-transfer reaction by Tabacaru et al. [35]. The ANCs are given
in fm−1/2 for the two spin-channels S = 1, 2 (A1, A2) and for the S = 1 channel with an
excited core (A∗).

Ref. A1 A2 A∗
“Nollett” [33], [28] −0.315(19) −0.662(19) 0.3485(51)
“Navrátil” [34] −0.294 −0.650 –
“Tabacaru” [35] 0.294(45) 0.615(45) –

breakdown scale khi is defined by the α-threshold at kα = 50.86 MeV. There is also a
low-lying 1+ resonance in 8B at Eres = 0.77 MeV, but this state does not contribute
to the charge form factor of the 8B ground state and only contributes to the radiative
capture process 7Be(p, γ)8B for a narrow energy region around Eres. The estimate for the
EFT expansion parameter that determines the error is therefore klo/khi ∼ γ/kα = 0.29.
For the field theory with only the ground-state core field included the high-momentum
scale is defined by the energy of the core excited state k̃hi ∼

√
2mRE∗ = 26.4 MeV, giving

the expansion parameter klo/k̃hi ∼ 0.57.
Using the ANC-formula in [32]3, and generalizing it to our case with two core fields,

we have for P-waves

A2
1 +A2

2 =
2γ2Γ(2 + kC/γ)

2

−r1 + 2kC
mR

d
dE

(
h1(η) +

g2∗
g2h1(η∗)

)
∣∣∣∣∣∣
E=−B

(3.84)

and

A2
∗ =

2γ2
∗Γ(2 + kC/γ∗)

2

− g2g2∗ r1 + 2kC
mR

d
dE

(
g2

g2∗
h1(η) + h1(η∗)

)
∣∣∣∣∣∣
E=−B

. (3.85)

Note that these ANC formulas are for a field theory with both the ground- and excited-
state core fields included. For a field theory with only the ground-state core field we
would only have a single ANC formula

A2
1 +A2

2 =
2γ2Γ(2 + kC/γ)

2

−r̃1 + 2kC
mR

d
dEh1(η)

∣∣∣∣∣
E=−B

, (3.86)

where the effective range r1 for the full field theory, and r̃1 for the ground-state only field
theory are different. Of course, Nature has an exact value for the effective range and r1

and r̃1 are approximations of the exact value, with EFT errors of the order klo/khi and
klo/k̃hi, respectively. Note that the break-down scale is larger for the field theory that
does include the excited core and therefore r1 is likely to be a better approximation to
the true effective range than the ground-state-only result r̃1.

3There is a minor error in the formula Eq. (85) of [32]: the C̃η,l should be in the numerator.
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Using the full field theory with both the ground- and excited-state core fields, the
resulting effective range is,

r1 =

 (60± 4) MeV (Nollett ANCs)
63 MeV (Navrátil ANCs)
(69± 13) MeV (Tabararu ANCs)

. (3.87)

Note that no error is presented for the ANCs computed by Navrátil et al. [34]. If the
simpler field theory is used instead, with only the ground-state core field, and with the
central value of the “Nollett” ANCs, the resulting effective range is r̃1 = 56 MeV, that
is about 7% smaller. In this way, by including more physics successively, one can see
convergence towards the physical value of the observable. Note that the effective range
result presented in Eq. (3.87) is a prediction, with an estimated error klo/khi ∼ 29%.

The effective range scales naturally with the high momentum scale r1 ∼ khi. Comparing
to the 17F∗ S-wave one-proton halo case, where the system is fine-tuned such that both
the scattering length and effective range was needed to fix the LSZ residue of the bound
state pole, we instead have that the pole is approximately determined by 1/r1. This
is because r1 is very large compared to the rest of the terms in the denominators of
Eqs. (3.84), (3.85) and (3.86). The observation that the 8B one-proton halo system is
more natural than the 17F∗ system is connected to the fact that for 8B we have kC ∼ γ,
while for 17F∗ we have kC � γ.

3.3.3 The charge form factor

As was discussed in the beginning of Chapter 3.2.2 the charge form factor is given by the
interaction of the system with an off-shell A0 photon in the Breit frame, that is Eq. (2.28).
The charge form factor diagrams are derived in Sec. 3 of Paper B. The goal of this section
is to calculate the charge radius rch, defined in Eq. (2.29).

In Sec. 3.B of Paper B the charge form factor loop-diagram Γloop is given and simplified.
The diagrams are shown in Fig. 3.4, that is they can be visualized to be the same as for
the S-wave proton halo charge form factor, but with P-wave interaction vertices of course.
The resulting integral from the loop-diagrams is

Γloop(Q) =− i3g2eZc

∫
d3r exp (ifQ · r)

∣∣∣∣∣ lim
r′→0

(
G

(1)
C (−B; r′, r)

r′

)∣∣∣∣∣
2

− i3g2
∗eZc

∫
d3r exp (ifQ · r)

∣∣∣∣∣ lim
r′→0

(
G

(1)
C (−B − E∗; r′, r)

r′

)∣∣∣∣∣
2

+
[
(f → 1− f), (Zc → 1)

]
. (3.88)

In Eq. (3.88) both the ground- and excited-state core field contributions are explicitly
visible, as the first row is only from the ground-state core and the second row from the
excited-state core field. The integrals (3.88) are solved numerically using the partial-wave
projected Coulomb Green’s function Eq. (3.27). The charge radius is now given by
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numerical integration of the order Q2 part of Eq. (3.88), according to Eq. (3.89)

r2
ch = − 3

e(Zc + 1)
ZΓ′′loop(0) , (3.89)

Apart from the resulting charge radius it is also important that the Cluster EFT formalism
gives the correct normalization of the charge form factor at Q = 0, that is FC(0) = 1.
This is indeed the case, as shown in Sec. 3.C of Paper B.

We apply the resulting Eqs. (3.88) and (3.89), together with the partial-wave projected
Coulomb Green’s function (3.27), on the one-proton halo nucleus 8B. As was discussed
above, the 7Be core has an excited state only 0.429 MeV above the ground state and
therefore we use a field theory where both the ground- and excited-state core fields are
included. This is the reason why the loop-integral (3.88) was derived using both of these
fields. However, we may remove the excited-state core field at any time, by setting the
coupling strength g∗ to zero. The reason why we want to do this is because we wish to
see the convergence of the observable charge radius of 8B, with respect to the included
physics.

The resulting charge radius of 8B is

rch =

 (2.56± 0.08) fm (Nollett ANCs)
2.50 fm (Navrátil ANCs)
(2.41± 0.18) fm (Tabacaru ANCs)

, (3.90)

where the ANCs of Nollett and Wiringa [33] (Nollett ANCs), Navrátil et al. [34] (Navrátil
ANCs) and measured by Tabacaru et al. [35] (Tabacaru ANCs) have been used as input.
The excited-state core field ANC A∗ calculated by Zhang et al. [28] has been used for all
three results in Eq. (3.90). The binding momentum γ = 14.97 MeV and the excited state
energy E∗ = 0.429 MeV has also been used as input. The errors given in Eq. (3.90) are
due to the errors of the input ANCs.

If the simpler field theory is used, with only the ground-state core field and a proton,
then the LO Cluster EFT result for the 8B charge radius is smaller than for the full
field theory result. The expected EFT error of the charge radius squared is of order
klo/k̃hi ∼ 57%, which propagates to an error of 25% on the charge radius. Using the
Nollett ANCs for the ground-state only and the full field theory, the resulting charge
radius of 8B is

rch =

{
(2.32± 0.58(EFT)± 0.08(ANC)) fm , only ground state
(2.56± 0.35(EFT)± 0.08(ANC)) fm , ground and excited state

. (3.91)

These results clearly demonstrate the convergence of the charge radius with respect to
the inclusion of more physics. This convergence is not due to higher-order calculations.
However, it is quite similar since a higher-order calculation would imply the implicit
inclusion of more short-range physics.

At NLO in the EFT expansion there is a short-range operator d†∇2A0d, corresponding
to a two-body current, and as of now we have no means to fit the coefficient of this
operator to anything but the charge radius. Therefore we are currently limited to a
LO calculation only. This restriction is due to the choice of degrees-of-freedom in our

44



(a) (b)

Figure 3.9: Radiative capture diagram that is present for states bound due to a P-wave
interaction. The direction of time is from right to left.

model and it implies that any cluster model should have a minimum error given by this
short-range operator.

One would like to add the corrections due to the finite size of the constituents. However,
as is derived in Paper D, these appear at N2LO. Therefore, in the presence of the short-
range operator at NLO, it would be incorrect to add the finite-size correction to the
point-particle results (3.90) and (3.91).

3.3.4 Radiative capture

In this section we will give results for the radiative capture cross section of a one-proton
halo nucleus, where the constituent particles are bound due to a P-wave interaction. We
exemplify the formalism by showing results for capture to the 8B halo. This process is of
particular interest since it determines the high-energy tail of the solar neutrino spectrum.
The radiative capture process and the astrophysical S-factor was discussed and defined in
Chapter 3.2.3.

Radiative capture diagrams

The LO radiative capture diagrams for a P-wave proton-core interaction are shown in
Figs. 3.9 and 3.10. All these diagrams consist of an incoming Coulomb wavefunction and
a final bound state. While the diagrams in Fig. 3.9 are effectively at tree level, the ones
in Fig. 3.10 are more involved due to the photon-leg being attached on the momentum
loop. Below we will consider these diagrams, with spin quantum numbers appropriate for
the reaction 7Be(p, γ)8B.

Let us start with the diagram in Fig. 3.9(a). The photon-dicluster interaction vertex
is proportional to the momentum flowing into the vertex, in Coulomb gauge, and as such
this diagram is identically zero in the zero-momentum frame:

iAi(α)
1(σa) = 0 (3.92)

Note that we have defined the amplitude with a few indices. There is one spin-2 halo-state
index α, which will be summed over, and two incoming-particle indices σ, for the spin-1/2
proton field, and a, for the spin-3/2 ground state core field, which will be averaged over.
These matter-field indices are in parentheses. The superscript i will be contracted by the
photon polarization vectors. The next two amplitudes below also have these indices.
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+

Figure 3.10: Radiative capture diagram, where the incoming proton and core interact with
the real vector photon. Since the formed halo bound state is due to a P-wave interaction,
the incoming proton-core pair is in a relative S- or D-wave, if only E1 capture is considered.
The direction of time is from right to left.

The next diagram, Fig. 3.9(b), is effectively at tree level, which is shown in Paper B.
The amplitude is given by

iAi(α)
2(σa) = ie(1− f(Zc + 1))

(
g1CαkiCkσa + g2CαβiCβσa

)
ψp(0) (3.93)

Note that this contribution is completely from an incoming S-wave, since the incoming
Coulomb wavefunction is evaluated at zero separation ψp(0).

The third contribution to the capture amplitude is from the loop-diagrams in Fig. 3.10,
where the photon leg is attached to either the core or the proton field. The proton and the
core propagates down to zero separation after the interaction with the photon, thereby
forming a loop. The integral in momentum space is derived in Paper B and it is given by

iAi(α)
3(σa) =i

(
g1CαkjCkσa + g2CαβjCβσa

)
×
∫

d3k1d3k2

(2π)6
kj2〈k2|GC(−B)|k1 + fQ〉

(
−ifeZc(−ki1)

mR

)
ψp(k1)

− [(f → 1− f) , (Zc → 1)] , (3.94)

where the first and second (third) row comes from when the photon is attached to the
core (proton) field. By using the P-wave projected Coulomb Green’s function we may
write the integral in a much simpler form, in terms of the Whittaker-W function and an
incoming Coulomb wavefunction F0:

iAi(α)
3(σa) =−

(
g1CαkiCkσa + g2CαβiCβσa

) 2γp

3
Γ(2 + kC/γ) exp (iσ0)

×
∫

dr rW−kC/γ,3/2(2γr)j0(fωr)∂ρ

(
F0(η, ρ)

ρ

)
− [(f → 1− f) , (Zc → 1)] , (3.95)

where η = kC/p and ρ = pr for incoming relative momentum p. This integral is easily
evaluated by numerical integration.

The S-factor for 7Be(p, γ)8B

As an example of the P-wave radiative capture formalism above, we present S-factor
results for the 7Be(p, γ)8B reaction. As input parameters we use the binding momentum
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Figure 3.11: The S-factor for the radiative capture reaction 7Be(p, γ)8B as a function of
c.m. energy. The data are from Refs. [36, 37, 38, 39, 40, 41, 42, 43] and the solid line is
the LO Cluster EFT result using the “Nollett” ANCs as input.

γ of the 8B one-proton halo and the ANCs for the S = 1, 2 channels A1 and A2. The
ANCs were discussed in Chapter 3.3.2 and we use the same list of three different sets of
ANCs (see Table 3.2). In the subsequent section, we shall instead correlate the threshold
S-factor with the charge radius of 8B.

The resulting S-factor, using ANCs as input, is shown in black in Fig. 3.11, together
with experimental data from Refs. [36, 37, 38, 39, 40, 41, 42, 43]. The Cluster EFT
result presented here follows the experimental data well for low energies, but at higher
energies there will be an increasing discrepancy due to the non-inclusion of initial-wave
scattering, the M1-resonance, plus higher-order operators. In addition, the neglected
D-wave component of the incoming Coulomb wavefunction becomes important for higher
energies. The obtained threshold value, using the different available ANCs, is

S(0) =

 (20.0± 1.4) eV b (Nollett ANCs)
18.9 eV b (Navrátil ANCs)
(17.3± 3.0) eV b (Tabacaru ANCs)

. (3.96)

The errors presented for the Cluster EFT result (3.96) are due to the error on the input
ANCs. These Cluster EFT results are in accordance with the currently accepted value
[44], obtained through extrapolation of compiled experimental data, S(0) = (20.8 ±
0.7(expt.)± 1.4(theor.)) eV b. For Cluster EFT results with initial-wave scattering and
the D-wave component included, see Zhang et al. [28].

Apart from the ANC errors, there is also an EFT error due to the calculation being
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at LO. We can separate the EFT error into two distinct parts: (i) The error due to
the contact interactions being at LO, that is the exclusion of low-energy scattering
parameters in the ERE above the effective range term and (ii) the exclusion of short-range
photon-interaction vertices. Since ANCs are used as input, there will be an error on the
low-energy scattering parameters extracted, of the order of the EFT expansion parameter.
However, due to the fact that the threshold S-factor is directly proportional to the LSZ
factor, which in turn is proportional to the ANCs squared, there is no need to extract the
effective range parameters to predict the S-factor. This means that there is no EFT error
due to the ERE since the ANCs are used as input. The higher-order photon couplings
must enter with additional powers of the photon energy ω and the energy of the photon
is approximately given by ω ≈ B at threshold, for one-proton separation energies much
smaller than the total mass of the system. Therefore, at threshold, the estimated EFT
error due to short-range photon operators is of the order k2

lo/k
2
hi, which is small. Note that

this means that the calculation is actually to NLO. For the 8B system under consideration,
the EFT error is ∼ 9%, using klo = 14.97 MeV and khi ∼ kα = 50.86 MeV. We therefore
have a rather small LO EFT error at threshold for the S-factor. Note however that the
error due to the short-range photon couplings should grow with energy; for example at
a c.m. energy E = 0.5 MeV this error should be of order ∼ 40%. In addition, at these
energies there are also errors due to the neglected D-wave component and initial-wave
scattering, see [28] for an EFT treatment of this same system, but with the initial wave
scattering and the D-wave component included, and [45] for a higher-order calculation.

While the result of this section is interesting on its own, the main result of our work
on the 7Be(p, γ)8B reaction is when this reaction is put in relation to the charge radius
of the halo nucleus 8B. We will now turn our attention to the correlation of these two
observables.

3.3.5 Correlating the threshold S-factor and charge radius of 8B

In this section we use the fact that both the threshold S-factor for the radiative capture
reaction 7Be(p, γ)8B and the charge radius of 8B are free of short-range operators at
LO. This will allow us to show a LO correlation between these two observables. Such a
correlation is very useful since it is experimentally very difficult to measure the low-energy
capture cross section, while a very precise charge radius measurement of 8B is planned to
take place in the near future. The charge radius will be measured through the atomic
isotope shift, which should be very accurate. However, the resulting charge radius is
then given relative to that of another boron isotope. The main source of error in such a
measurement is therefore expected to be due to the uncertainty in the charge radius of
the reference nucleus.

This correlation can be seen as using the effective range, or the sum of squared ground-
state ANCs A2

1 + A2
2, as a free parameter. The parameters kC, γ, γ∗ in Table 3.1 and

the excited state ANC, A∗, given in Table 3.2 are used as fixed input for the calculation.
Since the correlation is at LO, the expected EFT error for the charge radius is 29%, as
discussed above in Chapter 3.3.2. This uncertainty is too large to be able to compete with
more sophisticated methods. However, if the EFT for this system can be extended to
include more physics or if an actual higher-order calculation can be made, the error can
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Figure 3.12: The LO Cluster EFT correlation plot, between the threshold S-factor and the
charge radius of 8B. The three data points with error bars correspond to results obtained
with input ANCs from Nollett and Wiringa [33], Navrátil et al. [34] and Tabacaru et al.
[35]. The error bars are due to the errors on the extracted ANCs.

be brought down. At that point this procedure would provide a model independent way
of determining the threshold S-factor without having to rely on extrapolations. However,
since there is an undetermined short-range operator already at NLO for the charge radius
of the P-wave system, this correlation is most likely restricted to LO.

The LO correlation plot is shown in Fig. 3.12. The solid line shows the Cluster EFT
correlation result, while the triangle, square and circle show the Cluster EFT results
using the ANCs from Nollett, Navrátil and Tabacaru, respectively. For this LO Cluster
EFT prediction, only points on the solid line are allowed, and these points correspond to
different values of the effective range, or the sum of squared ground-state ANCs A2

1 +A2
2.

The error bars shown in the correlation plot are due to the errors on the extracted
ANCs. The expected EFT error of 29% on the charge radius squared is understood to be
present. Note that due to this large EFT error a measurement of the 8B charge radius of
around 2.8 fm would be consistent with a threshold S-factor of 20 eV b, as can be seen
by comparing the charge radius result with EFT errors (3.91) and the correlation plot
Fig. 3.12.
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4 Three-body bound and resonant states

In this chapter we present the formalism for treating bound and resonant states of three-
body systems in Cluster EFT, with focus on the 6He nucleus. We view this system
as consisting of an α-particle and two neutrons and we include the S-wave dineutron
channel and both the 3/2− and 1/2− α+n P-wave channels. In order to achieve proper
renormalization we consider the three-body interactions of lowest scaling dimension.
The contents of this chapter builds upon the work in Paper E, but also includes some
preliminary results on resonant states in the three-body system.

4.1 Lagrangian

The fields that are included in this field theory are the 1/2+ neutron, nσ, the 0+ α core,
c, the 0+ dineutron field, b, the 5He(3/2−) field, da, and the 5He(1/2−) field, d̃σ. The
spin indices are defined as σ = −1/2, 1/2 and a = −3/2,−1/2, 1/2, 3/2. We will also use
χ as a spin-1/2 index and b as a spin-3/2 index.

We write the Lagrangian as a sum of a one-body, a two-body and a three-body part:

L = L(1) + L(2) + L(3) (4.1)

The one body part is

L(1) = c†
[
i∂t +

∇2

8m

]
c+ n†σ

[
i∂t +

∇2

2m

]
nσ + . . . , (4.2)

where the neutron (core) mass is m (4m) and minimal substitution has not been performed
since we will not consider electromagnetic observables. The dots refer to relativistic
corrections.

The two-body Lagrangian is given by

L(2) =d†a

[
∆1 + ν1

(
i∂t +

∇2

10m

)]
da + g1Caiχ

[
d†ac

(
4

5
i
−→
∇i −

1

5
i
←−
∇i

)
nχ + h.c.

]
+ d̃†σ

[
∆̃1 + ν̃1

(
i∂t +

∇2

10m

)]
d̃σ + g̃1Cσiχ

[
d̃†σc

(
4

5
i
−→
∇i −

1

5
i
←−
∇i

)
nχ + h.c.

]
+ b†∆0b+

1

2
g0C0

σχ

(
b†nσnχ + h.c.

)
+ . . . . (4.3)

The parameters ∆1, ν1 and g1 define the neutron-core P-wave interaction in the 3/2−

channel, ∆̃1, ν̃1 and g̃1 define the neutron-core P-wave interaction in the 1/2− channel,
and ∆0 and g0 define the neutron-neutron S-wave interaction in the 0+ channel. All
other channels and interactions are not included explicitly in this field theory. The
Clebsch-Gordan coefficients, Caiχ =

〈
1i 1

2χ
∣∣ (1 1

2

)
3
2a
〉
, Cσiχ =

〈
1i 1

2χ
∣∣ (1 1

2

)
1
2σ
〉

and C0
σχ =〈

1
2σ

1
2χ
∣∣ ( 1

2
1
2

)
00
〉
, and the Galilean invariant P-wave operators

(
4
5 i
−→
∇i − 1

5 i
←−
∇i

)
make sure

that the interactions are in the proper channel. The dots denote higher-order two-body
interactions that we will not consider.
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The 0+ three-body Lagrangian is

L(3,0+) =h
(0+)
1 C0

aχiC0
a′χ′i′

(
d†ai
←→
∇ in

†
χ

)(
da′i
←→
∇ i′nχ′

)
+ h

(0+)
2 C0

σχiC0
a′χ′i′

[(
d̃†σi
←→
∇ in

†
χ

)(
da′i
←→
∇ i′nχ′

)
+ h.c.

]
+ h

(0+)
3 C0

σχiC0
σ′χ′i′

(
d̃†σi
←→
∇ in

†
χ

)(
d̃σ′i
←→
∇ i′nχ′

)
+ h

(0+)
4 b†c†bc

+ h
(0+)
5 C0

aχi

[(
d†ai
←→
∇ in

†
χ

)
bc+ h.c.

]
+ h

(0+)
6 C0

σχi

[(
d̃†σi
←→
∇ in

†
χ

)
bc+ h.c.

]
+ . . . . (4.4)

The Galilean invariant P-wave interaction operators are defined as
←→
∇ = 5

6

−→
∇ − 1

6

←−
∇ . The

Clebsch-Gordan-like coefficents are defined as C0
aχi = CjaχC0

ij and C0
σχi = CjσχC0

ij . All the
explicit terms in this Lagrangian part are of dimension 7 and, as such, they should enter
at N2LO since LO is at dimension 5. We can see this by the fact that the matter fields, n
and c, have dimension 3/2, the P-wave dicluster fields, d and d̃, are of scaling dimension
1, the S-wave dineutron field, b, has scaling dimension 2 and the derivative operators
have dimension 1. The dots refer to three-body terms of even higher scaling dimension.
However, due to renormalization issues there is a need for a three-body interaction to be

promoted to LO. In previous papers only the h
(0+)
1 -term has been considered [12, 13]. The

main two arguments for such a treatment are that (i) the S-wave three-body interactions is
viewed as suppressed since the actual α-dineutron interaction is Pauli blocked and (ii) the
3/2− channel should be dominant since it is related to a lower momentum scale than the
1/2− channel. According to this, the 5He(3/2−)+neutron to 5He(3/2−)+neutron diagonal

three-body interaction, that is the h0+

1 term, should be of most importance. However,
this does not mean that only one three-body interaction is needed for numerically sane
results to be obtainable or to achieve proper renormalization. The other two diagonal

three-body interactions of the Lagrangian part (4.4) is the h
(0+)
3 , where we start and

end with 5He(1/2−)+neutron, and the h
(0+)
4 interaction, where we start and end with

dineutron+α legs. The other three interaction terms are mixed terms, or off-diagonal, as
the incoming legs differ from the outgoing.

As an example we also present the 2+ part of the three-body Lagrangian:

L(3,2+) =h
(2+)
1 CµaχiC

µ
a′χ′i′

(
d†ai
←→
∇ in

†
χ

)(
da′i
←→
∇ i′nχ′

)
+ h

(2+)
2 CµσχiC

µ
a′χ′i′

[(
d̃†σi
←→
∇ in

†
χ

)(
da′i
←→
∇ i′nχ′

)
+ h.c.

]
+ h

(2+)
3 CµσχiC

µ
σ′χ′i′

(
d̃†σi
←→
∇ in

†
χ

)(
d̃σ′i
←→
∇ i′nχ′

)
+ . . . (4.5)

The terms that are shown explicitly here are of dimension 7. The Clebsch-Gordan-
like coefficents are defined as Cµaχi = CjaχC

µ
ij + CνaχC

µ
iν and Cµσχi = CjσχC

µ
ij , where µ, ν =

−2,−1, 0, 1, 2. There are also terms involving the dineutron field b, but these are of higher
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(b) (c)(a)

Figure 4.1: Elastic scattering in the two-body subsystems of 6He. (a) The neutron-neutron
scattering diagram. The full dineutron propagator is denoted by the double line. (b)
The α-n elastic scattering diagram in the 3/2− channel. The full 5He(3/2−) dicluster
propagator is denoted by the double line with internal bottom-to-top right tilted lines.
(c) The α-n elastic scattering diagram in the 1/2− channel. The full 5He(1/2−) dicluster
propagator is denoted by the double line with internal bottom-to-top left tilted lines.

scaling dimension. For example, at dimension 9 there is a term

CµijC
µ
aχ′i′

[(
b†
←→
O ijc

†
)(

da′i
←→
∇ i′nχ′

)
+ h.c.

]
, (4.6)

where

←→
O ij =

1

9

(
−→
∇i
−→
∇j −

1

3
δij
−→
∇2

)
+

4

9

(
←−
∇i
←−
∇j −

1

3
δij
←−
∇2

)
− 2

9

(
←−
∇i
−→
∇j +

←−
∇j
−→
∇i −

2

3
δij
←−
∇ ·
−→
∇
)

(4.7)

is the Galilean invariant D-wave interaction operator. Such higher-order terms are denoted
by the dots. As such the three-body sector in the 2+ channel seems to be less complicated
than that of the 0+ channel, since less three-body interactions are present at the lowest
scaling dimension.

4.2 Two-body physics

In this section we define the relevant dicluster propagators for the 6He system. We also
discuss three different prescriptions regarding how to handle the unphysical pole of the
P-wave dicluster propagators.

4.2.1 The dineutron subsystem

The neutron-neutron S-wave interaction has an unnaturally large scattering length,
a0 = −18.9 fm, and as such the interaction needs to be summed to all orders. From the
two-body Lagrangian (4.3) we can write down the bare LO dineutron propagator

iB(0)(E,p) =
i

∆0
. (4.8)

We have written the propagator for a four-momentum (E,p), but note that the propagator
is static at LO. Summing the interaction to all orders in the parameter g0, we arrive at
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the full dineutron propagator

iB(E,p) =
i

∆0 + Σ0(E,p)
, (4.9)

where the irreducible self-energy is given by

Σ0(E,p) =
g2

0m

2π2

[
L1 −

iπ

2

√
mE − p2

4

]
. (4.10)

The divergence L1, defined in Eq. (2.13), is absorbed by the parameter ∆0. The neutron-
neutron scattering diagram is shown in Fig. 4.1(a), where also the graphics of the full
dineutron propagator is defined. Matching to the t-matrix and the ERE parameters, we
may write the full propagator as

B(E,p) =
4π

g2
0m

1

1
a0

+ i

√
m
(
E − p2

4m

) . (4.11)

The expression (4.11) then defines the S-wave neutron-neutron scattering at LO. For more
details on S-wave elastic scattering and renormalization, see Sec. 2.1.2.

4.2.2 The 5He subsystem

In the 5He subsystem there are two low-lying resonances, the 3/2− state with energy

position and width E(3/2−) = 0.798 MeV and Γ(3/2−) = 0.648 MeV and the 1/2− state

with E(1/2−) = 2.07 MeV and Γ(1/2−) = 5.57 MeV. We expect the 3/2− to be the most
important of these two channels, since it is lower in energy. However, a field theory in
which the 1/2− is also included can be expected to give higher accuracy. For the scalings
of the P-wave ERE parameters we will assume that the effective ranges scale as khi and
the scattering lengths scale as 1/(k2

lokhi).
From the Lagrangian part (4.3) we have that the P-wave 3/2− field has a bare dicluster

propagator at LO

iD(0)(E,p) =
i

∆1 + ν1

(
E − p2

10m

) . (4.12)

Resumming the interaction we arrive at the full dicluster propagator, that is with the
irreducible self energy included:

iD(E,p) =
i

∆1 + ν1

(
E − p2

10m

)
+ Σ1(E,p)

(4.13)

For the P-wave 3/2− the irreducible self energy is given by

Σ(E,p) =
4g2

1m

15π2

[
L3 +

(
8mE

5
− p2

)
L1 −

iπ

2

(
8mE

5
− p2

)3/2
]
. (4.14)

54



Note in particular that there are two independent divergences, L1 and L3, which are
absorbed by the parameter ∆1 and the ν1 term. The α-neutron scattering diagram in
the 3/2− channel is shown in Fig. 4.1(b), where also the graphics of the full 5He(3/2−)
dicluster propagator is defined. If we match to the 3/2− t-matrix we can write the full
dicluster propagator at LO as

D(E,p) =
15π

2mg2
1

1

1
a1
− 1

2r1

(
8mE

5 − p2
)

+ i
(

8mE
5 − p2

)3/2 , (4.15)

in terms of the 3/2− ERE parameters a1 and r1.
The 1/2− dicluster propagator is given in the same way as above. The difference is

simply that we replace g1,∆1, ν1,Σ1, a1, r1 7→ g̃1, ∆̃1, ν̃1, Σ̃1, ã1, r̃1 in Eqs. (4.12)–(4.15).
The resulting 1/2− full dicluster propagator at LO is therefore written as

D̃(E,p) =
15π

2mg̃2
1

1

1
ã1
− 1

2 r̃1

(
8mE

5 − p2
)

+ i
(

8mE
5 − p2

)3/2 . (4.16)

The α-neutron scattering diagram in the 1/2− channel is shown in Fig. 4.1(c), where also
the graphics of the full 5He(1/2−) dicluster propagator is defined.

From the pole structure of the propagators (4.15) and (4.16) we can extract the
values of the scattering lengths a1, ã1 and effective ranges r1, r̃1, since we know the pole
positions and widths of the 3/2− and 1/2− resonances. We obtain a1 = −76.12 fm3,
r1 = −141.84 MeV, ã1 = −60.37 fm3 and r̃1 = 66.87 MeV. However, analyzing the pole
structure of the P-wave dicluster propagators we also find poles at negative energy, that
is we also have unphysical bound states present in the field theory. The reason for these
unphysical states to be present is the finite number of terms included in the ERE. If we
do not remove these unphysical states in some way, there will be issues when we later
evaluate the three-body integral equations. As such we will now turn to three different
prescriptions, that were discussed in Paper E, of how to modify the two-body sector such
that the unphysical states are removed.

In Ref. [13] the issue with the unphysical state in the 3/2− channel was solved by
removing the unitarity piece, ik3, in the dicluster propagator (4.15). One can argue that
this can be done since at low momentum the ik3 term is negligible compared to the
remaining 1/a1 and r1k

2/2 terms, if it is assumed that r1 ∼ khi and 1/a1 ∼ k2
lokhi. Such

a prescription is thus only only valid at LO. The resulting propagator in this unitarity
piece removal prescription (UP) is

D(UP)(E,p) =
15π

2mg2
1

1
1
a1
− 1

2r1k2
, (4.17)

where k =
√

8mE
5 − p2. Note that this expression only have real momentum poles.

As such, the UP moves the resonance to the real momentum axis. If we consider the
low-momentum physics of the propagator (4.17) we note that the UP does not change
the values of the scattering length and the effective range, that is low-momentum physics
is unchanged.
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Another way to handle the unphysical pole would be to simply remove it by subtracting
R0

k−k0 from the dicluster propagator. We call this the subtraction prescription (SP). Here,
we have defined the quantities k0 and R0 to denote the unphysical pole position in
momentum and the corresponding residue. The resulting propagator in the SP is then
given by

D(SP)(E,p) =
15π

2mg2
1

1
1
a1
− 1

2r1k2 + ik3
− R0

k − k0
, (4.18)

On the bright side, the SP removes the unphysical pole without moving the physical
resonance. However, by analyzing the low-momentum physics of the SP we see that it
does change the values of the ERE parameters.

A third prescription is what we call the expansion prescription (EP), for which the
unphysical pole is expanded to the second order in momentum. We can write this as

D(EP)(E,p) =
15π

2mg2
1

1
1
a1
− 1

2r1k2 + ik3

−R0

(
1

k − k0
+

1

k0
+

k

k2
0

+
k2

k3
0

)
. (4.19)

The EP does not move the physical pole and it leaves the low-momentum physics
unchanged, up to second order. Therefore the EP is preferable from a physics perspective.
However, the large-momentum asymptotics does become severely modified. The reason
is that the propagator now behaves as k2, compared to 1/k2 asymptotics for the UP
and SP. From an EFT perspective this should not introduce any problems, if we only
renormalize the theory properly. Said in another way, the large-momentum asymptotics
can be absorbed in the three-body interaction parameters. Note, however, that for very
large momenta there can be numerical issues due to the momentum-squared dependence,
and as such we expect that the EP will be limited to lower cutoffs than the UP or SP.

4.3 Three-body scattering diagrams

We now turn to the derivation of the three-body scattering diagrams. These diagrams
are shown in Fig. 4.2. In total, we need three scattering amplitudes to close the integral
equations: (i) The A-amplitude, with an incoming 5He(3/2−) dicluster field and a neutron
field, (ii) the B-amplitude, with an incoming 5He(1/2−) dicluster field and a neutron field,
and (iii) the C-amplitude with an incoming dinuetron dicluster field and an α-particle
field. For all three ampitudes the outgoing fields are choosen to be a 5He(3/2−) dicluster
field and a neutron field. The 5He(3/2−) dicluster field is shown as a double line with
internal bottom-to-top right tilted lines, the 5He(1/2−) dicluster field is shown as a double
line with internal bottom-to-top left tilted lines, and the dineutron dicluster field is shown
as just a double line.

On the first line for each of the amplitudes in Fig. 4.2 the two inhomogeneous terms
are shown. The first inhomogeneous term for each amplitude is simply the exchange of
a neutron, shown as a solid line, or an α-particle, shown as a dashed line. The second
inhomogeneous term of each amplitude is due to the relevant three-body interaction. For
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Figure 4.2: The three-body scattering diagrams. Since there are three two-body channels
the scattering equation is given by a coupled integral equation of three parts.

the A-amplitude it is the h
(Jπ)
1 that is responsible, while for the B- and C- amplitudes

it is the h
(Jπ)
2 and h

(Jπ)
5 , respectively, that give those terms (see Eq. (4.4)). For the 0+
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channel these inhomogeneous amplitudes are given by the following expressions:

iA
(inhom.)
(0+) (k, p) =− ig2

1

16πm

3
K

(AA)
(0+) (k, p) (4.20)

iB
(inhom.)
(0+) (k, p) =− ig1g̃1

16πm

3
K

(BA)
(0+) (k, p) (4.21)

iC
(inhom.)
(0+) (k, p) =2ig0g1

8πm√
6
K

(CA)
(0+) (k, p) (4.22)

We have defined the incoming (outgoing) momentum of the dicluster lines as k (p) and
since we work in the c.m. frame the single-particle lines are at momentum −k (−p). We

denote the total energy flowing through the diagram by E. The 0+ kernels K
(XY )
(0+) , for

X,Y = A,B,C, are defined as

K
(AA)
(0+) (k, p) =

27

25
Q0(ρ1(k, p)) +

2

5

k2 + p2

kp
Q1(ρ1(k, p)) +Q2(ρ1(k, p))

−H(0+)
1

kp

Λ2
, (4.23)

K
(AB)
(0+) (k, p) =K

(BA)
(0+) (k, p)

=

√
2

25
Q0(ρ1(k, p)) +

√
2

5

k2 + p2

kp
Q1(ρ1(k, p)) +

√
2Q2(ρ1(k, p))

−H(0+)
2

kp

Λ2
, (4.24)

K
(AC)
(0+) (k, p) =K

(CA)
(0+) (p, k)

=
4

5p
Q0(ρ2(k, p)) +

1

k
Q1(ρ2(k, p))−H(0+)

5

k

Λ2
, (4.25)

K
(BB)
(0+) (k, p) =

26

25
Q0(ρ1(k, p)) +

1

5

k2 + q2

kq
Q1(ρ1(k, q))−H(0+)

3

kp

Λ2
, (4.26)

K
(BC)
(0+) (k, p) =K

(CB)
(0+) (p, k)

=
4

5
√

2p
Q0(ρ2(k, p)) +

1√
2k
Q1(ρ2(k, p))−H(0+)

6

k

Λ2
, (4.27)

K
(CC)
(0+) (k, p) =−H(0+)

4

1

Λ2
. (4.28)

The arguments to the Legendre-Q functions QL are given by

ρ1(k, p) =
4mE

kp
− 5k

2p
− 5p

2k
, (4.29)

ρ2(k, p) =
mE

kp
− k

p
− 5p

8k
. (4.30)

In Eqs. (4.23)–(4.28) we have introduced new three-body parameters, in terms of the
cutoff Λ, the two-body interaction g-paramters and the old three-body h-parameters.
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These new parameters are defined according to

H
(0+)
1 =

h
(0+)
1

4mg2
1

Λ2 (4.31)

H
(0+)
2 =

h
(0+)
2

4mg1g̃1
Λ2 (4.32)

H
(0+)
3 =

h
(0+)
3

4mg̃2
1

Λ2 (4.33)

H
(0+)
4 =

h
(0+)
4

mg2
0

Λ2 (4.34)

H
(0+)
5 =

h
(0+)
5√

2mg0g1

Λ2 (4.35)

H
(0+)
6 =

h
(0+)
6

mg0g̃1
Λ2 . (4.36)

For the purposes of this chapter we will not need the inhomogeneous terms, since we only
search for states that are defined by the scattering amplitude having a pole for the energy
E of the state in question. Therefore, at the energy of the state the inhomogeneous terms
are negligible.

The homogeneous terms are the ones that consist of a loop-integral over either an A-,
B- or C-amplitude in Fig. 4.2. They are called homogeneous since we treat the scattering
equation as a matrix equation V = M +KV , where then V is the vector of amplitudes,
M is the inhomogeneous part and K is the kernel matrix. The homogeneous parts of
the scattering amplitude can be derived to be as in Eqs. (4.37)–(4.45), where we define
A = A(A) +A(B) +A(C), B = B(A) +B(B) +B(C) and C = C(A) + C(B) + C(C). First,
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the A-amplitudes are written as

iA(A) σa
χb (k,p) =− ig2

1Caiσ′Ca
′

jσ

∫
d3q

(2π)3

(
qi +

ki
5

)(
kj +

qj
5

)
× Sc

(
E − k2

2m
− q2

2m
,k + q

)
D

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p)

− ih(Jπ)
1 CαaσiCαa′σ′j

∫
d3q

(2π)3
kiqjD

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p) (4.37)

iA(B) σa
χb (k,p) =− ig1g̃1Caiσ′Cτjσ

∫
d3q

(2π)3

(
qi +

ki
5

)(
kj +

qj
5

)
× Sc

(
E − k2

2m
− q2

2m
,k + q

)
D̃

(
E − q2

2m
,q

)
Bσ
′τ

χb (q,p)

− ih(Jπ)
2 CαaσiCατσ′j

∫
d3q

(2π)3
kiqjD̃

(
E − q2

2m
,q

)
Bσ
′τ

χb (q,p) (4.38)

iA(C) σa
χb (k,p) =− ig0g1Caiσ′C0

σσ′

∫
d3q

(2π)3

(
qi +

4ki
5

)
× Sn

(
E − k2

2m
− q2

8m
,k + q

)
B

(
E − q2

8m
,q

)
Cχb(q,p)

− ih(Jπ)
5 Cαaσi

∫
d3q

(2π)3
kiB

(
E − q2

8m
,q

)
Cχb(q,p) . (4.39)

For completeness we have written the equations for general total spin and parity Jπ,
where the Clebsch-Gordan index α can take values according to α = −J, ..., J . For the
0+ channel we have that α = 0 and for the 2+ channel α = 2. Note also that we set
h4, h5, h6 = 0 in the 2+ channel, since these three-body interaction terms does not exist1.

1The relevant three-body interactions that would appear in these diagram parts include the D-wave
operator given in Eq. (4.7) and are of higher scaling dimension than 7
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Continuing, the B-diagrams are derived as

iB(A) στ
χb (k,p) =− ig1g̃1Cτiσ′Ca

′

jσ

∫
d3q

(2π)3

(
qi +

ki
5

)(
kj +

qj
5

)
× Sc

(
E − k2

2m
− q2

2m
,k + q

)
D

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p)

− ih(Jπ)
2 CατσiCαa′σ′j

∫
d3q

(2π)3
kiqjD

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p) (4.40)

iB(B) στ
χb (k,p) =− ig̃2

1Cτiσ′Cτ
′

jσ

∫
d3q

(2π)3

(
qi +

ki
5

)(
kj +

qj
5

)
× Sc

(
E − k2

2m
− q2

2m
,k + q

)
D̃

(
E − q2

2m
,q

)
Bσ
′τ ′

χb (q,p)

− ih(Jπ)
3 CατσiCατ ′σ′j

∫
d3q

(2π)3
kiqjD̃

(
E − q2

2m
,q

)
Bσ
′τ ′

χb (q,p) (4.41)

iB(C) στ
χb (k,p) =− ig0g̃1Cτiσ′C0

σσ′

∫
d3q

(2π)3

(
qi +

4ki
5

)
× Sn

(
E − k2

2m
− q2

8m
,k + q

)
B

(
E − q2

8m
,q

)
Cχb(q,p)

− ih(Jπ)
6 Cατσi

∫
d3q

(2π)3
kiB

(
E − q2

8m
,q

)
Cχb(q,p) . (4.42)

Note that if we consider a field theory without the 1/2− channel all of the B-diagrams are

identically zero. Further, note that we set h
(2+)
6 = 0. Finally, the C-diagrams are given by

iC(A)
χb(k,p) =− 2ig0g1Caiσ′C0

σσ′

∫
d3q

(2π)3

(
ki +

4qi
5

)
× Sn

(
E − k2

2m
− q2

8m
,k + q

)
D

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p)

− ih(Jπ)
5 Cαaσi

∫
d3q

(2π)3
qiD

(
E − q2

2m
,q

)
Aσ
′a′

χb (q,p) (4.43)

iC(B)
χb(k,p) =− 2ig0g̃1Cτiσ′C0

σσ′

∫
d3q

(2π)3

(
ki +

4qi
5

)
× Sn

(
E − k2

2m
− q2

8m
,k + q

)
D̃

(
E − q2

2m
,q

)
Bσ
′τ

χb (q,p)

− ih(Jπ)
6 Cατσi

∫
d3q

(2π)3
qiD̃

(
E − q2

2m
,q

)
Bσ
′τ

χb (q,p) (4.44)

iC(C)
χb(k,p) =− 2ih

(Jπ)
4

∫
d3q

(2π)3
B

(
E − q2

8m
,q

)
Cχb(q,p) . (4.45)

Of particular interest here is that the C(C) part is identically zero in the 2+ channel, since

we set h
(2+)
4 = 0.
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The diagrams Eqs. (4.37)–(4.45) are written for general total spin and parity. If these
diagrams are to be used for the calculation of an actual physical state we must first
project the equations onto the Jπ of the state under consideration. For example, if we
are interested in the 0+ channel, then we note that the 5He+neutron legs must be in a
relative P-wave. We can check this as

3/2−︸ ︷︷ ︸
5He(3/2−)

⊗ 1/2+︸ ︷︷ ︸
neutron

⊗ 1−︸︷︷︸
P−wave

=
(
1− ⊕ 2−

)︸ ︷︷ ︸
Spin S

⊗1−

=0+ ⊕ 1+ ⊕ 2+ ⊕ 1+ ⊕ 2+ ⊕ 3+ (4.46)

and

1/2−︸ ︷︷ ︸
5He(1/2−)

⊗ 1/2+︸ ︷︷ ︸
neutron

⊗ 1−︸︷︷︸
P−wave

=
(
0− ⊕ 1−

)︸ ︷︷ ︸
Spin S

⊗1−

=1+ ⊕ 0+ ⊕ 1+ ⊕ 2+ . (4.47)

Note also that a 0+ can only be achieved through a spin S = 1−. The same exercise but
with another angular momentum can not give a 0+. Similarly, the neutron-neutron legs
must be in a relative S-wave to be able to result in a 0+.

Projecting onto total spin and parity 0+ we arrive at the integral equations (4.48)–
(4.56), that were presented in Paper E.

iA
(A)
(0+)(k, p) =ig2

1

2m

3π2

∫
dqq2K

(AA)
(0+) (k, q)D

(
E − 3q2

5m
, 0

)
A(0+)(q, p) (4.48)

iA
(B)
(0+)(k, p) =ig1g̃1

2m

3π2

∫
dqq2K

(AB)
(0+) (k, q)D̃

(
E − 3q2

5m
, 0

)
B(0+)(q, p) (4.49)

iA
(C)
(0+)(k, p) =ig1g0

m√
6π2

∫
dqq2K

(AC)
(0+) (k, q)B

(
E − 3q2

8m
, 0

)
C(0+)(q, p) (4.50)

iB
(A)
(0+)(k, p) =ig1g̃1

2m

3π2

∫
dqq2K

(BA)
(0+) (k, q)D

(
E − 3q2

5m
, 0

)
A(0+)(q, p) (4.51)

iB
(B)
(0+)(k, p) =ig̃2

1

2m

3π2

∫
dqq2K

(BB)
(0+) (k, q)D̃

(
E − 3q2

5m
, 0

)
B(0+)(q, p) (4.52)

iB
(C)
(0+)(k, p) =ig̃1g0

m√
6π2

∫
dqq2K

(BC)
(0+) (k, q)B

(
E − 3q2

8m
, 0

)
C(0+)(q, p) (4.53)

iC
(A)
(0+)(k, p) =2ig0g1

m√
6π2

∫
dqq2K

(CA)
(0+) (k, q)D

(
E − 3q2

5m
, 0

)
A(0+)(q, p) (4.54)

iC
(B)
(0+)(k, p) =2ig0g̃1

m√
6π2

∫
dqq2K

(CB)
(0+) (k, q)D̃

(
E − 3q2

5m
, 0

)
B(0+)(q, p) (4.55)

iC
(C)
(0+)(k, p) =2ig2

0

m

2π2

∫
dqq2K

(CC)
(0+) (k, q)B

(
E − 3q2

8m

)
C(0+)(q, p) (4.56)

To solve this coupled integral equation, which is defined by the scattering diagrams, we
may search for zeros to the eigenvalue equation

det (1−K) = 0 . (4.57)
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Figure 4.3: The 6He binding energy as a function of the cutoff Λ. Only the dineutron and
the 3/2− channels are included. All the three-body interactions have been set to zero.

In doing this numerically we have replaced the momentum spans, [0,Λ], with a Legendre
mesh and absorbed the g-parameters into the definitions of the A-, B- and C-amplitudes.

4.4 Renormalization of bound states

In this section we will discuss the evaluation and renormalization of the 0+ integral
equations for negative energy, E = −B.

In Paper E we presented three different types of results. First, how the bound-state
energy depends on the cutoff Λ when the three-body interactions are all set to zero. We
do this by searching for energy solutions to the eigenvalue equation (4.57) for different
cutoffs. The resulting B − Λ dependence can then be presented graphically. Note that
if the bound state energy is independent of the cutoff, then the field theory is already
renormalized and no three-body interactions need to be included. Second, we present
results for the running of the three-body parameters. These are obtained by fixing the
bound-state energy and searching for H-solutions to the eigenvalue equation, for different
cutoffs. With H-solutions we mean that we let one (or a set) of the three-body interactions
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Figure 4.4: Limit cycles for the three different prescriptions, using either the H
(0+)
1 or

H
(0+)
4 three-body interaction. Only the dineutron and the 3/2− channels are included.

The three-body parameter was fixed to the bound state energy B = 1 MeV.

be non-zero and we find the value of the related three-body interaction parameter when
the determinant is zero for a fixed binding energy. The resulting H − Λ plot is typically
log-periodic. Third, we fix a three-body interaction such that the integral equations
have a bound state solution. Then we use this three-body interaction to search for
deep bound states. This procedure is then repeated for many different cutoffs, but with
the same first bound state, to produce a convergence plot of the deep bound states. If
the deep bound states do not converge with increasing cutoffs, then the system is not
properly renormalized by the three-body interaction under consideration. It should be
mentioned that these deep-bound states are of course not physical, or true, states of
6He. However, they are well-defined observables within the field theory and as such a
renormalization analysis of these states provide indications of whether the field theory is
properly renormalized or not.

We begin by analyzing a field theory with only the dineutron and 5He(3/2−) channels
included, as was done in [12] and [13]. The B−Λ result is shown in Fig. 4.3. The resulting
cutoff dependence is clearly different for the three two-body prescriptions that have been
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Figure 4.5: Convergence of deep bound states for the three different prescriptions, using

either the H
(0+)
1 or H

(0+)
4 three-body interaction. Only the dineutron and the 3/2−

channels are included. The three-body parameter was fixed to the bound state energy
B = 1 MeV.

used. However, the only conclusion that can be drawn from this figure is the fact that a
three-body interaction is needed at LO to renormalize the system.

Continuing with the H − Λ plot, which is shown in Fig. 4.4, we can clearly see
the log-periodic limit cycles for the different prescriptions and the diagonal three-body
interaction. In particular, note that the period differs for the three prescriptions. The
period is shortest for the EP, indicating that additional bound states appear with high
frequency in Λ. This is also connected to the rather steep rise of the bound-state energy
in the B − Λ plot for the EP. This should make it harder to numerically use the EP,
since the spectrum might be messier than for the other prescriptions. We also tried to

renormalize the field theory using the off-diagonal three-body interaction, H
(0+)
5 , but this

was not possible since no bound-state solutions to the integral equations were found.

Finally, searching for deep bound states we generate the convergence plots in Fig. 4.5.
The first thing to note is that for sufficiently large cutoff the deep bound states have
converged, which is a good indicator that the field theory is properly renormalized. This
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3 three-body interaction is used.

The three-body parameter was fixed to the bound state energy B = 1 MeV.

finding is true for both of the diagonal three-body interactions, except for the H
(0+)
4 in the

EP where the deep-states have yet to converge. The second important point is that both
three-body interactions renormalize the deep-bound states to the same energy position.
This result indicates that physical observables are independent on the choice between the
two diagonal three-body interactions. As can be seen, however, the deep bound states

converge much faster when the H
(0+)
1 three-body interaction is used. These facts then

motivate us to primarily use the simplest interaction, H
(0+)
1 , and they validate the choice

of three-body interaction in Refs. [12] and [13]. The third important observation to note
is that the three different prescriptions give differing spectra for the deep bound states.
This means that the differences in the low-momentum physics of the three prescriptions
can have large effects on observables.

We now turn to the treatment of a field theory where not only the 5He(3/2−) and
dineutron channels are included, but also the 5He(1/2−) channel. We refer to this as
the full field theory. In Fig. 4.6 we show a plot of how the deep-bound states depend
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on the cutoff parameter Λ in the SP, where we have fixed one three-body interaction at
a time to the bound-state energy B = 1 MeV. It is clear that none of the three-body

interactions H
(0+)
1 , H

(0+)
4 or H

(0+)
3 can renormalize the deep bound states properly, since

the energy positions of the deep-bound states do not converge. If we instead use one of

the off-diagonal interactions H
(0+)
2 , H

(0+)
5 or H

(0+)
6 no bound-state solutions are found.

As such, none of the dimension-7 three-body operators can by itself renormalize the full
field theory. Note that we do not suggest that higher-dimension operators are needed.
However, the conclusion of Paper E is that one most likely need to fix two different
three-body interactions simultaneously to renormalize the deep bound states of the full
field theory properly. Another explanation to the non-renormalization of the deep bound
states could be that larger cutoffs are needed. Unfortunately we have been limited to
Λ . 2 × 106 MeV due to numerics. The theory might still be renormalizable at even
higher cutoffs.

One can also perform a renormalization analysis using the EP. However, since the EP
is much harder to renormalize properly than the SP we do not expect any improvements
regarding the renormalization of the deep bound states. The numerical calculations that
we did perform on the full field theory using the EP agrees with this conclusion. We have
not used the UP for the full field theory.

4.5 Non-renormalization of resonant states

In this section we will analyze the renormalization of resonant states in the 0+ channel
of 6He. Since there are renormalization issues in the bound-state sector for the full field
theory, that is the field theory where the 5He(1/2−) channel is also included, we will here
focus on a field theory where only the dineutron and the 5He(3/2−) channels are included.

We fixed the three-body interaction H
(0+)
1 to the bound-state energy B = 1 MeV and

performed searches for resonant states by solving the integral equations (4.48)–(4.56) for
complex energy E = ER + iEI. In solving the integral equations we scanned the complex
plane for a minimum of the absolute value of the determinant, |det (1−K)|, until a zero
was found. We tried all three prescriptions (UP, SP and EP) to handle the non-physical
two-body pole. For the SP and UP no resonances were found. The results for the EP
are shown in Fig. 4.7, where the resonance position is given for cutoffs up to 105 MeV.
For larger cutoffs the numerics began to break down. Note that there are no signs of
convergence for the resonance position in Fig. 4.7. This result either indicates that one
three-body interaction is not enough to renormalize the resonance, or that the calculation
needs to be performed at a higher cutoff.

Alternatively, one can in principle have a situation where the resonance can be
renormalized, but not simultaneously with the bound state. This scenario can, for
example, be probed by searching for the resonance for different values of the three-body

interaction H
(0+)
1 and then compare the span of obtained complex energies for different

cutoffs. If then the resonance is properly renormalized one would expect the Λ-dependent
spans to converge as Λ increases, that is the set of resulting complex energies should
converge to a limiting set. Note however that we do not demand that individual complex
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Figure 4.7: The cutoff dependence of the 0+ resonant state. The H
(0+)
1 three body

parameter has been fixed to the bound state at B = 1 MeV. Note that the result does
not seem to converge for cutoffs Λ < 105 MeV.

energies in these spans converge for fixed H
(0+)
1 . The result of this analysis is shown in the

left panel of Fig. 4.8. As can be seen, the spans do not converge for Λ ≤ 105 MeV. The
conclusion is then that only one three-body interaction can not renormalize the system,
at least not for the cutoffs Λ . 105 MeV that we are restricted to.

As a final attempt, we present an analysis where we fix two three-body interactions,

the H
(0+)
1 and H

(0+)
4 , to the bound state energy B = 1 MeV. This approach also results

in Λ-dependent spans of complex energies when we search for the resonant state. We
show these results in the right panel of Fig. 4.8. It is hard to tell with certainty whether
these spans are converging or not and this suggests that we need to go to higher cutoffs
to be able to draw any final conclusions. However, this result indeed looks much better
compared to the field theory with only one three-body interaction included, shown in
the left panel. As such we might have a situation where two three-body interactions are
needed to renormalize the resonant 0+ state and that cutoffs Λ� 105 MeV are needed
to achieve convergence.
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5 Summary of papers

In Paper A we derived a formalism for the treatment of S-wave one-proton halo nuclei
in EFT. We renormalized the interaction by matching to the ERE and continued by
calculating the charge radius and radiative capture S-factor for the one-proton halo state
17F∗. Note that in the derivation of the radiative capture cross section we have a relative
sign error between the core-photon and proton-photon diagrams. This error translates
into a substantial error in the presented S-factor result, see Fig. 5 of Paper A. In Paper C
we extended the formalism to include the effective-range correction and we found that
the effective range is fine-tuned and that the system has a very large ANC. We also
included an N4LO electromagnetic operator that was used to produce an accurate fit
to the measured radiative capture data. From this fit we could extract the threshold
value of the S-factor and the ANC, which compares well with previous extractions. We
also presented a result for the charge radius of 17F∗, using the extracted ANC as input.
However, the uncertainties due to the EFT error was very large since a short-range
operator is promoted due to the fine-tuning of the effective range.

In Paper B, the formalism was extended to include one-proton halo nuclei bound due to
a P-wave proton-core interaction. For P-wave systems the effective range is needed already
at LO to renormalize the interaction. This feature makes it harder to make predictions,
since two parameters need to be fixed at LO. We circumvented this by matching to
previously extracted ANCs, such that there was no need to extract the individual ERE
parameters. The formalism was applied to study the 8B proton halo, where we included
both the ground and excited state of the 7Be core. We focused on the calculation of
the correlation between the threshold S-factor and the charge radius. The potency of
such a correlation would be that it could constrain the S-factor through a planned future
measurement of the charge radius.

In Paper D we present the heavy-core power counting. In this new power-counting
scheme the mass number of the core nucleus is taken into account, which alters the
order at which certain operators appear if the core is sufficiently heavy. We also derive
how the finite-size contributions of the constituent particles enter the charge radius
result. In a sense, the results of Paper D have been implicit in our previous conclusions
regarding the charge radius in both Paper B and C. In Paper A we suggested that the
calculated point-particle charge radius could be added to the finite-size contributions
in quadrature, which seemed logical at the time since we had yet to discover that the
system was very fine-tuned. The results in Paper D that concern one-nucleon halo charge
radii are two-fold: First, we find that the point-particle contribution is demoted to higher
order for one-neutron halos while it is unchanged for one-proton halos. Second, that the
finite-size contributions enter at a higher order than the short-range operator for P-wave
one-nucleon halos. This second point implies that the charge radius result of Paper B, for
8B, can not be seen as being relative to the charge radius of the 7Be core. There might
also be other implications due to the heavy-core power counting presented in Paper D, for
example there might be changes to how one treats heavy-core propagators in many-body
calculations.

Paper E is somewhat separate from the other four papers since it concerns a three-body
system, namely the two-neutron halo 6He. As such there are no Coulomb interactions that
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could complicate matters and since we only consider the renormalization of bound states
there are actually no electromagnetic operators at all present. Instead, the complications
arise due to the presence of many three-body interactions at the lowest scaling dimension.
There is also an issue with the two-body sector of the field theory, where there are
non-physical poles that need to be removed in some way. We discuss and analyze three
such removal precriptions. Our finding is that only one three-body interaction is needed to
renormalize the bound system when the dineutron and 5He(3/2−) channels are included.
However, in the presence of the additional 5He(1/2−) field we found that the field theory
was not renormalizable by only one three-body interaction.
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6 Conclusion and outlook

In this thesis we have introduced Cluster EFT formalism for (i) one-proton halo states,
(ii) three-body systems without Coulomb, and (iii) halo states with a heavy core. The
proton-halo formalism was used to calculate the charge form factors and radiative capture
S-factors for the one-proton halo states 17F∗ and 8B. The three-body formalism was
developed and used to analyze the renormalization of bound and resonant states of the
two-neutron halo 6He. Finally, we have discussed a new power counting for systems with a
heavy core nucleus and derived the finite-size contributions to charge radii of one-nucleon
halos.

The one-proton halo formalism was applied to the halo state 17F∗(1/2+), seen as an
16O(0+) core and a proton, bound due to an S-wave interaction, with an unnaturally large
scattering length. In this system we noted that the Coulomb momentum is much larger
than the binding momentum, kC � γ0, and that this large kC/γ0 ratio is at the core
of many of the problems that we encountered. First, the ANC of the 1/2+ 16O-proton
channel is very large and this must be reflected by the wavefunction renormalization
Z ∼ 1/(1 − 3kCr0). As a consequence, the effective range is fine-tuned to be close to
1/(3kC). This implies that at LO, without the effective range included, there is no way
to achieve a large ANC and as such the LO results will be severly off. Second, since
3kCr0 ∼ 1 we have a promotion of the undetermined short-range operator for the charge
radius to N2LO. This restricts us to NLO predictions for the charge radius calculation.
Finite-size contributions can not be included since these enter at N2LO together with the
short-range operator. We also considered the radiative capture reaction 16O(p, γ)17F∗

up to N5LO and fitted the Cluster EFT model to measured data. Compared to the
rather disappointing findings for the charge radius, the radiative capture result was clearly
encouraging. First, since the S-factor was free of short-range contributions up to N3LO,
second, since the N5LO result compares very well to the experimental data and, third,
since we see a good order-by-order convergence.

We considered the one-proton halo 8B(2+), for which the 7Be-proton interaction is of
P-wave nature. This P-wave nature complicates the renormalization of the interaction
by demanding that the effective range is included already at LO. In treating this system
we included both the 3/2− ground state and the 1/2− excited state of 7Be. The excited
state only affects the radiative capture cross section if initial-wave scattering is included,
which was not done in this thesis. However, it does affect the charge radius result for 8B
by making it about 10% larger. The inclusion of the excited state into the field theory
also reduces the EFT error, since it increases the break-down scale of the theory and
therefore makes the expansion parameter smaller. In considering both the charge radius
and the astrophysical S-factor for 8B we proposed to use a future measurement of the
charge radius to constrain the S-factor. This proposal was shown as a LO correlation
between these two observables. However, the error related to the charge radius calculation
at LO is probably too large for the LO correlation to be of practical use. Moreover, due
to the appearance of a short-range operator at NLO for the P-wave charge radius the
correlation presently only exists at LO. A possible way around the large LO theoretical
uncertainties is to include more physics into the field theory, thereby reducing the EFT

73



expansion parameter and the corresponding error. Note, however, that the uncertainty
on the threshold S-factor is already very small. This is since the higher-order photon
operators enter with additional powers of the photon momentum that scales as ω ∼ k2

lo at
threshold. At higher c.m. energies the uncertainty on the S-factor increases rapidly.

For the 6He nucleus we derived the integral equations for a field theory where the
0+ dineutron and both the 3/2− and 1/2− 5He channels are included. We analyzed the
six three-body interactions that are of lowest scaling dimension and we discussed three
different prescriptions of how to handle the unphysical poles of the P-wave dicluster
propagators. When we solved the 0+ integral equations we found that the theory could
not be properly renormalized by only one three-body interaction if all three channels
were included. Instead, using the simpler field theory with only the dineutron and the
5He(3/2−) channels included we showed proper renormalization for deep bound states in
the 0+ using only one three-body interaction. But even for this simpler field theory we
found that the 0+ resonant states could not be renormalized with only one three-body
interaction. This finding would imply a restriction on the predictability of the Cluster
EFT treatment of three-body systems as many three-body interactions would need to be
fixed for predictions to be made. However, one should mention the possibiliy that the
theory is actually renormalized, but that we were unable to use large enough cutoffs. As
it was, we were restricted to cutoffs Λ < 107 MeV.

Cluster EFT offers a systematic approach to make model-independent predictions of
low-energy observables. However, it is restricted by appearances of short-range operators
at rather low orders. With the heavy-core power counting that we have developed these
restrictions are even enhanced for some systems and observables. For example, for one-
neutron halos where the core is much heavier than the neutron the point-particle result
for the charge radius is demoted from leading to sub-leading order, since the core recoil
due to the photon interaction is very small. Instead, in the case of an S-wave system, the
LO charge radius is given by the finite-size contributions of the constituents. For a P-wave
one-neutron halo the heavy-core version of Cluster EFT is non-predictive at LO, since the
LO charge radius is given by the undetermined short-range operator. Note however that
not all systems are made less predictive in the heavy-core power counting. For proton
halos there are no issues for the charge radius results due to the core being heavy. This
is due to the fact that the photon also couples to the proton field, which has a larger
recoil than that of the core field. One should mention that there are other important
aspects of the heavy-core power counting. These regard the fact that the propagator of
the heavy-core field is static at LO and the hope is that this might lead to simplifications
in many-body systems.

There are several natural extensions to the work that has been presented in this thesis.
A relatively straightforward outlook is to simply consider more states or systems in the
one-proton halo formalism. For example, one can include the 5/2+ ground state of 17F
into the 16O+proton field theory. This state is bound due to a D-wave interaction, which
of course increases the complexity, but the hope is that the ground state is less fine-tuned
than the excited state. One can see indications of this since the binding momentum of
the ground state is ∼ 30 MeV, which is still less than the Coulomb momentum but at
least about the same order. When including this state, a more complete picture of the
radiative capture cross section can be given. Other interesting systems to consider would
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be 7Be and 7Li, seen as an α-particle plus a 3He or triton, respectively. Such systems can
be seen as halo-like and should be ideal testing grounds for the Cluster EFT formalism.

In the discussion on the 8B charge radius we mentioned that one could include more
physics into the field theory to be able to reduce the EFT uncertainty. One such piece of
additional physics could be to include three-body dynamics, that is α+3He+proton. In
such a field theory the uncertainty for the LO charge radius would be reduced significantly.
However, a field theory consisting of three interacting charged particles is a non-trivial
construction since one would need to derive three-body Coulomb propagators. On the
other hand, if we had this formalism there would be some additional interesting systems
to consider, for example the Hoyle state in 12C or the 17Ne two-proton halo. A simpler
extension of the proton-halo formalism would be to treat three-body systems with one
uncharged particle, for example 8Li seen as α+3H+neutron. In such a field theory one only
needs two-body Coulomb Green’s functions. The 8Li halo nucleus can also be considered
to be of some interest, since it is the mirror state of 8B and one should be able to calculate
the charge radius to a rather high accuracy using such a three-body model.

Our effort towards the calculations of resonant states of 6He has yet to produce
renormalized and accurate results in the 0+ channel. However, the situation might be
better in other channels. For example in the 2+ channel we showed that there are fewer
three-body interactions at the lowest scaling dimension. However, while there is a bound
0+ state, one should note that there is no such bound state in the 2+ channel to fix any
three-body interaction to. Instead one would, for example, have to fix one three-body
interaction to the energy position and then predict the width of the resonance, assuming
then that the field theory is renormalized by only one three-body interaction. This is
a restriction, but a necessary one. In fact, the most desired outlook of our work on
three-body resonances is towards a prediction of the width of the halo-like resonant state
26O(0+) and there we would need to fix the three-body interaction in the same fashion as
for the 2+ state. Note however that a field theory for 26O will need to contain resonant
D-wave 24O+neutron channels, which may be a complication.

For the heavy-core power counting the main outlooks are to consider the heavy-core
effect on additional observables, such as radiative capture, and to apply it to a three-body
system with a heavy core. Further, a speculative idea is to consider the Born-Oppenheimer
approximation from a field theory perspective and to derive higher-order corrections that
can be applied systematically. If this is possible, it could be of great interest for both
nuclear physics and computational chemistry.

In a broader perspective, Cluster EFT is a framework to make model-independent
calculations of nuclear physics systems. However, it is dependent on the availability of
cluster-nucleon and cluster-cluster data. Presently there are huge amounts of data for
the nucleon-nucleon sector, which is the standard input for the Chiral EFT, while cluster
data is less common. The hope and expectation for the future is that more cluster data
will become available and that this data can then be used to fix the parameters of a
particular Cluster EFT. Compared to the Chiral EFT, which has 16 parameters to be
fitted at N2LO, Cluster EFT is relatively mild with just a few undetermined short-range
parameters. Therefore, Cluster EFT has potentially a very bright future.
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