
Impact of oxygen transport on char conversion in dual fluidized bed 
systems 

Teresa Berdugo Vilches *1, Henrik Thunman2  

1, 2Department of Energy and Environment, Chalmers University of Technology, 41296 Gothenburg, 

Sweden 

*Corresponding author: berdugo@chalmers.se 

Abstract-  

In the context of thermochemical conversion of solid fuels in dual fluidized bed (DFB) reactors, oxygen carrier 

bed materials have been found to enhance the rate of char gasification [1, 2].Char gasification is typically the rate 

limiting step in the conversion process [2, 3], which plays a role on the performance of the overall process and 

constrains the design of the reactor. The quantity of oxygen carried by the bed material in relation to the fuel 

feeding rate is likely to influence char conversion. This parameter is commonly characterized in literature by the 

oxygen-carrier-to-fuel ratio (ϕ), and it can be adjusted by either varying the fuel feed and/or the circulation rate of 

bed material in the DFB. The residence time of the fuel is typically altered by these changes, which results in an 

unclear role of the oxygen-carrier-to fuel ratio on the final char conversion. Mendiara et al reported that char 

conversion was not significantly affected by changes to fuel flow for ϕ= 1.1-2.4, and the bed circulation rate 

showed some influence only at ϕ<1 [3, 4]. 

The present work investigates the impact of oxygen transport on char conversion in the 2-4 MWth DFB gasifier at 

Chalmers University of Technology. An iron ore is used as oxygen carrier and steam as fluidizing agent. A 

parametric study is conducted, in which a wide range of oxygen-carrier-to-fuel ratio (ϕ=3-12) are achieved by 

varying fuel flow and bed material circulation. Char conversion is calculated on the basis of gas analysis and mass 

balance calculations. The results confirm that oxygen transport enhances char conversion, in line with previous 

research in smaller units. Both fuel feed and circulation of bed material had an impact on the final char conversion 

under the conditions tested, which differs from the results by [3, 4]. For a given residence time of the fuel particles 

in the reactor, char conversion was found proportional to the oxygen-carrier-to-fuel ratio. 

  



1. Introduction 

Dual fluidized bed (DFB) systems are a type of reactor applied to a number of thermo-chemical 

processes, such as Chemical Looping Combustion (CLC), Chemical Looping Reforming (CLR) 

and Indirect Gasification (IG). In DFB systems two fluidized beds are interconnected and a bed 

material circulates between them transporting heat and, in some cases, chemical species. The 

bed material is exposed to different conditions in the two vessels. Typically, one reactor is 

fluidized by air resulting in an oxidizing atmosphere, and the second reactor has a more 

reducing environment created by fuel. Depending on the process at hand, the two vessels fulfil 

different functions. When an oxygen carrier (OC) is used as bed material, a phenomena known 

as oxygen transport occurs. Figure 1 summarizes the flows of oxygen carrier in a DFB reactor, 

where the material oxidizes in the combustor or air reactor, and it transports oxygen to the fuel 

reactor in the form of oxidized material. Oxygen transport is the basis of CLC, which aims at 

oxidizing the fuel with the oxygen supplied by the oxygen carrier particles producing a flue gas 

stream free of N2. 

 

Figure 1. Basic scheme of a dual fluidized bed system with an oxygen 

carrying bed material. 

Chemical Looping Combustion was initially demonstrated for gaseous fuels [5], and more 

recently for coal [6] and biomass [4]. The latter fuel becomes an interesting option as it would 

lead to negative net CO2 emission. Chemical Looping Combustion of solids fuels is typically 

referred to as in situ gasification CLC (iG-CLC) owing to the conversion steps taking place in 

the fuel reactor. As the fuel heats up in the fuel reactor it dries and releases the volatile matter 

(Reaction 1), which is then combusted in contact with the oxygen carrier in a heterogeneous 

gas-solid reaction (Reaction 2). The remaining char is gasified with the gasification agent 

according to Reaction 3, and the resulting gasification products are oxidized by a gas-solid 

reaction with the oxygen carrier (Reaction 4) [7]. Char gasification has been identified as the 

rate limiting step of the overall conversion process [2, 3], therefore it becomes a key step that 

determines the performance of the unit.  

𝑆𝑜𝑙𝑖𝑑 𝑓𝑢𝑒𝑙 → 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 + 𝐶ℎ𝑎𝑟 + 𝐻2𝑂 {1} 



𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 + 𝑀𝑒𝑂 → 𝐶𝑂2 + 𝐻2𝑂 + 𝑀𝑒 {2} 

𝐶ℎ𝑎𝑟 + 𝐺𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑔𝑒𝑛𝑡 (𝐻2𝑂, 𝐶𝑂2) → 𝐺𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + 𝑎𝑠ℎ {3} 

𝐺𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + 𝑀𝑒𝑂 → 𝐶𝑂2 + 𝐻2𝑂 + 𝑀𝑒 {4} 

Oxygen carrying materials have shown to enhance the rate of char gasification at laboratory [1] 

and pilot [2] scales. It has been suggested that this is the result of the lower concentration of 

inhibiting species around the char particle in the presence of the oxygen carrier compared to an 

homologous case with inert bed material [7, 8]. Hydrogen [8-10], and more generally volatile 

species [11] have been proven to inhibit the steam gasification reaction of both coal and biomass 

derived char. A recent work concerning woody biomass showed that tar compounds are also 

inhibiting species, which was investigated by using levoglucosan vapour as model tar [12]. The 

concentration of inhibiting species in the fuel reactor depends on a number of factors such as 

the content of oxygen carrier in the bed material [13], type of oxygen carrier [14], and the 

operating conditions [15]. 

A set of operating conditions results in an oxygen-carrier-to-fuel ratio (ϕ), which defines the 

oxygen transported by the bed material as a fraction of the stoichiometric oxygen for full 

combustion of the fuel. When oxygen transport is undesired (e.g. indirect gasifiers and CLR 

units) the oxygen-carrier-to-fuel ratio is kept below unity. Contrarily, CLC reactors operate 

above stoichiometric conditions (ϕ>1) to ensure high degree of fuel combustion. Given the bed 

material and fuel type, the oxygen-carrier-to-fuel ratio can be adjusted by either varying the 

fuel feeding rate or the circulation rate of bed material. The impact of these two variables (i.e. 

fuel and bed material flow) on the performance of the process becomes additionally complex 

when solid fuels are used, since both oxygen-carrier-to-fuel ratio (ϕ) and the residence time of 

the fuel particles (τfuel) are altered. Figure 2 exemplifies the relation between τfuel and ϕ as bed 

material circulation rate increases for a perfect mix case and negligible concentration of fuel 

particles compared to the bed material.  

 

Figure 2. Qualitative relation between bed material circulation rate, 

residence time of the fuel particles and oxygen-carrier-to-fuel ratio, 

assuming perfect mix and negligible concentration of fuel particles 

compared to bed material particles. 



The effect of fuel feeding rate and circulation rate on CLC of solid fuels was investigated by 

Mendiara et al. in a 500Wth unit using coal as fuel and bauxite waste as oxygen carrier material. 

Increasing fuel flow corresponding to ϕ between 1.1 and 2.4 did not have a significant impact 

on char conversion, which was attributed to the small changes in residence time of the char 

within the range of operation tested. Increasing bed material circulation rate, on the other hand, 

resulted in lower char conversion in line with the changes induced in the fuel residence time. 

The trend was attenuated above stoichiometric conditions [3]. The weak correlation between 

bed material flow and char conversion above stoichiometric conditions (ϕ>1) was also observed 

with biomass fuel and an iron ore as bed material in the same unit [4]. 

The purpose of the present work is to investigate experimentally the impact of oxygen transport 

on char conversion under conditions relevant to industrial applications. The experimental work 

is conducted in the 2-4 MWth DFB gasifier at Chalmers University of Technology, using a 

natural titanium iron ore as bed material and steam is the fluidizing agent. The reactor has on-

bed fuel feeding and commercial wood pellets are used as fuel. Different levels of oxygen-

carrier-to-fuel ratio (ϕ=3-12) are induced in the gasification reactor by varying fuel flow and 

bed material circulation rate, alternatively. Char conversion is calculated based on gas analysis 

and mass balance calculations.  

2. Theory 

The oxygen carrying capacity (Ro) of the bed material is defined as the maximum oxygen 

exchange that the oxygen carrier can experience during a redox cycles. It is a property of the 

oxygen carrier and it is defined as: 

𝑅𝑜 =
𝑚𝑜𝑥 − 𝑚𝑟𝑒𝑑

𝑚𝑜𝑥
 

(1) 

where mox and mred refers to the mass of the fully oxidized and reduced material respectively. 

Common titanium iron ores used in CLC research have a theoretical oxygen carrying capacity 

of 5%, which corresponds to the reduction from Fe2TiO5+ TiO2 to FeTiO3  of a material with 

Fe:Ti ratio of 1:1 [16]. In practice, the oxygen carrying capacity depends on the number of 

redox cycles and pre-treatment of the material and, consequently, a range of values have been 

reported in literature typically from 2.1 to 4% [17, 18]. Once Ro and the bed material circulation 

rate is set (𝑚̇𝑏𝑒𝑑), the oxygen carrier-to-fuel ratio (ϕ) can be calculated as: 

𝜑 =
𝑚̇𝑏𝑒𝑑 ∙ 𝑅𝑜

𝑚̇𝐹 ∙ Ω𝐹
 

(2) 

The denominator corresponds to the stoichiometric oxygen for complete combustion of the fuel, 

where 𝑚̇𝐹 is the mass flow of fuel and Ω𝐹 is a stoichiometric coefficient for the combustion 

reaction. 

The residence time of the fuel in the reactor (τfuel) is calculated by means of the dispersion 

coefficient (D) according to Eq. 3, where L is a characteristic length of the reactor. This 

definition is considered suitable for the reactor configuration used. In particular, the relatively 

large size of the reactor together with on-bed fuel feeding system and large fuel particles (i.e. 



commercial wood pellets), makes the assumption of perfect mixing of the fuel and the bed 

material questionable.  

The dispersion coefficient was derived experimentally in a separate work for the pair wood 

pellet/iron ore in a wide range of operating conditions covering the ones used in the present 

investigation [19].Theoretically, the dispersion coefficient is not dependent on the fuel flow 

when the concentration of fuel particles is low, as it is the case in the present work (i.e. <4% 

fuel particles in the inventory). This leads to one single dispersion coefficient for all cases with 

the same bed material circulation rate regardless the fuel feeding rate.  

The degree of char conversion (Xchar) in the fuel side of the DFB can be derived from the carbon 

balance throughout the reactor. Char conversion is defined in Eq. 4, where 𝑌𝑐ℎ𝑎𝑟
𝐹 , 𝑌𝐶

𝐹, and 𝑚̇𝐶,𝑔𝑎𝑠 

refer to the char content of the fuel, carbon content in the fuel and the total carbon measured in 

the gas, respectively. For simplification, char is assumed to contain only carbon.  

𝑋𝑐ℎ𝑎𝑟 =
𝑚̇𝐹 ∙ 𝑌𝑐ℎ𝑎𝑟

𝐹 − (𝑚̇𝐹 ∙ 𝑌𝐶
𝐹 − 𝑚̇𝐶,𝑔𝑎𝑠)

𝑚̇𝐹 ∙ 𝑌𝑐ℎ𝑎𝑟
𝐹  

(4) 

Note that this definition is only applicable if the fuel is fully devolatilized, i.e. it will yield 

negative char conversion if the total carbon measured at the exit of the fuel reactor (𝑚̇𝐶,𝑔𝑎𝑠) is 

not enough to justify full devolatilization of the fuel. 

3. Experimental 

The experiments were conducted in the 2-4MWth dual fluidized bed gasifier at Chalmers 

University of Technology. The unit consists of two interconnected vessels: the gasifier section 

as bubbling bed, and the combustor as circulating fluidized bed. The bed material is oxidized 

in the combustion side in contact with air, thereafter, it flows into the gasification section via a 

loop seal (LS1). The system boundary for the carbon balance calculations are set around the 

gasification unit, which is schematized in Fig. 3. The fuel is fed on the top of the bed and the 

produced gas leaves the reactor via the raw gas line. The bed material together with the 

unconverted fuel returns to the combustor via LS2. The gasifier and the loop seals are fluidized 

with steam. Further details about the gasification and combustion section can be found in [20] 

and [21], respectively. 

𝜏𝑓𝑢𝑒𝑙 =
𝐿2

2 ∙ 𝐷
 

(3) 



 

Figure 3. Schematic of the gasification vessel and main flows in and out of 

the reactor. 

The gasifier is fed continuously with pellets of the composition detailed in Table 1. The 

quantification of total carbon in the gas is accomplished by means of a high temperature reactor 

(HTR), where a slip stream of produced gas is heated up to 1700oC and all carbon containing 

species decompose into CO and CO2. The technique has been described and validated in [22]. 

The gas at the exit of the HTR is cooled down and measured by a micro gas-cromatograph 

(micro-GC, Varian Model CP4900) equipped with a Poraplot Q and MS5A columns, using He 

and Ar as carrier gas respectively.  

Table 1. Fuel composition. 

Ultimate Analysis Proximate Analysis  

C (%mass, daf) 50.30 Moisture (%mass, as received) 8.6 

H (%mass, daf) 6.22 Ash (%mass, dry) 0.4 

O (%mass, daf) 43.17 Volatile content (%mass dry) 80.8 

  Char (%mass dry) 18.8 

The bed material is a natural iron ore from Australia with an Fe:Ti ratio of approximately 1:1, 

and its oxygen carrying capacity was determined experimentally. A bed material sample was 

collected from LS1 (See Figure 3) and tested in a lab scale reactor at similar operating 

temperature to that used during the gasifier experiments, i.e. 820oC. The sample (i.e. 15g) was 

reduced by exposure to a stream of synthetic gas consisting of 50%vol H2 and 50% vol CO. 

The reduced material was then exposed to a controlled flow of synthetic air until full oxidation 

was reached. The composition of the gas stream at the exit of the reactor was measured online, 

which allows for quantification of the oxygen uptake by the material and, thereby, its oxygen 

LS2

LS1

Fuel feeding

Raw gas line

Bed material 

from combustor

Bed material to 

combustor

Steam



carrying capacity (Ro). Detailed description of the experimental setup and procedure is 

provided elsewhere [16]. The experimental Ro obtained by this method was 10%, which is 

significantly higher than the theoretical 5% and it remains to be confirmed. Oxygen carrying 

capacity above 5% was also reported by Bidwe et al. [23] when testing a similar Australian ore 

and it was suggested that some of the iron was probably reduced to metallic iron. In the present 

work, the even higher oxygen carrying capacity than the measured by Bidwe et al. could be 

related to two factors: full reduction to metallic iron, and also to the history of the particles 

investigated, which were exposed to biomass ash and oxidizing and reducing atmosphere during 

several weeks in the DFB unit. 

The bed material circulation rate is measured experimentally according to [20], by monitoring 

the pressure drop in the combustor, while the return of bed material to the boiler (LS2) is 

temporarily interrupted. Table 2 summarizes the tests conducted and main operational 

parameters. Several levels of oxygen-to-fuel ratio (ϕ) were reproduced by changing fuel and bed 

material flow sequentially. The experiments were carried out in two series: high and low solids 

flow respectively. In each series fluidization velocity remains constant and fuel flow is varied 

between 200-400 kg/h stepwise. The temperature of the bed was kept as similar as possible to 

allow comparison between tests.  

Table 2. Experimental matrix. 

4. Results 

The relation between bed material circulation rate, residence time of the fuel (τfuel), and oxygen-

carrier-to-fuel ratio (ϕ) is summarized in Fig. 4 for the operating conditions investigated. As the 

circulation rate of the bed material increases the fuel residence becomes shorter, resulting in a 

difference of 2 min in residence time between the cases at high and low circulation rate 

investigated. Once the circulation rate is fixed, the oxygen-carrier-to-fuel ratio depends on the 

fuel flow. 

Solids circulation 

(ton/h) 

Fuel flow 

(kg/h) 

Average temperature of the 

bed material (oC) 

Steam flow 

(kg/h) 

Case 

H
ig

h
 

20 200  825 200 Low fuel 

20 300 827 200 Middle fuel 

20 400 828 200 High fuel 

L
o

w
 

10 200 816 200 Low fuel 

10 300 818 200 Middle fuel 

10 400 821 200 High fuel 



 

Figure 4. Relation between circulation rate of bed material, oxygen-carrier-to-fuel ratio and residence 

time of the fuel in the range of operating conditions tested. 

The total carbon measured in the gas with the High Temperature Reactor is summarized in Fig. 

5 as a function of the estimated oxygen-carrier-to-fuel ratio. The shaded area indicates the 

carbon conversion that corresponds to devolatilization only. The upper and lower boundary of 

the area corresponds to the carbon content of volatiles according to the standard proximate 

analysis and to a pyrolysis experiment of a similar fuel reported in [20], respectively. As shown 

in Figure 5, all measured points fall above the shaded area indicating that the fuel is fully 

devolatilized.  

 

Figure 5. Carbon conversion as percentage of the carbon in the fuel measured in the gas. 

Experimental data for the two series (i.e. high and low bed material flow) as a function of the 

estimated oxygen-carrier-to-fuel ratio. 



Figure 6 summarizes the results for char conversion as a function of the oxygen-carrier-to-fuel 

ratio. Both fuel and bed material flow show an impact on char conversion within the range of 

operating conditions tested. Higher fuel flow results in a decrease of char conversion, while 

higher bed material flow results in higher char conversion. In both experimental series (i.e. high 

and low bed circulation), char conversion is found proportional to the oxygen-carrier-to-fuel 

ratio (ϕ). In the same line, an increase of ϕ induced by a larger solids circulation rate also results 

in higher degree of char conversion (See dash lines in Fig. 6). 

 

Figure 6. Char conversion as a function of oxygen-carrier-to-fuel ratio. 

5. Discussion 

The consistent respond of char conversion to changes in ϕ (See Fig. 6) suggests that the rate of 

char gasification is enhanced by the oxidized oxygen carrier, which is in line with previous 

findings by [1] and [2]. Accordingly, the higher the oxygen transported by the bed material, the 

larger the fraction of converted char. In fact, the total carbon conversion in Fig. 5 can be 

compared to experimental data reported by Israelsson et al., where a common reference material 

(i.e. quartz sand) was used as bed material in the same unit [24]. The authors closed the carbon 

balance with the same method used in this work, and found carbon conversion below 70% for 

similar fuel and operating conditions. Their measurement indicate that the product gas 

originated from devolatilization products mainly and very limited char was converted, whereas 

significant degree of char conversion (i.e.14-51%) is achieved in the present work with an 

oxygen carrier bed material. 

An increase of bed material circulation rate results in a lower residence time of the fuel as shown 

in Fig. 4, which would be expected to yield a lower degree of char conversion. Yet, the results 

suggest that the shorter residence time is overcompensated by the higher availability of oxygen 

in the reactor (i.e. dash lines in Fig. 6). This trend differs from previous observations by 

Mendiara et al. [3, 4], who found little impact of the solids circulation rate on char conversion 



above stoichiometric conditions (ϕ>1). In general, the authors observed a slight decrease of 

char conversion as the circulation rate increases, which was attributed to the lower residence 

time of the char particles as the solids flow increases [3]. The lack of agreement between this 

work and the reported data could be related to differences in the geometry of the two reactors, 

which in turn determines the possible combinations of residence time and oxygen-carrier-to-

fuel ratio that yield a given degree of char conversion.  

Note that despite char conversion responds consistently to changes in ϕ, the two cases with the 

same oxygen-carrier-to-fuel ratio (ϕ=6) yield significantly different degree of char conversion. 

Such difference is in line with the changes in residence time that follows a variation of the solids 

circulation rate. Accordingly, the lower residence time in the case of larger bed material flow 

(i.e. solid symbol at ϕ=6 in Fig. 6) results in char conversion 13% units lower than its 

counterpart at lower solids flow (i.e. empty symbol at ϕ=6 in Fig. 6).  

Finally, the sensitivity of char conversion to changes in bed material circulation rate varies with 

fuel flow as observed in the slopes of the dash lines in Fig. 6. At lower fuel flows the influence 

of bed material circulation is significant, whereas at higher fuel flows this effect is attenuated. 

It is also visible that variations of fuel flow yield larger changes in char conversion at high bed 

material circulation rate (Compare High and Low bed material flow in Fig. 6). Overall, these 

trends suggest that as ϕ increases, the response of char conversion to changes in both fuel and 

bed material flows becomes stronger. This can be related to the decreasing reactivity of the 

oxygen carrier towards the combustible gases as the oxygen in the material is depleted [23, 25]. 

Higher ϕ can be interpreted as higher net reactivity of the bed inventory owing to the higher 

average oxidation state of the oxygen carrier. At higher average oxidation state (i.e. higher ϕ) 

the reaction rate of the bed material with the gasification products becomes faster [23, 25] 

ensuring that the gasification products are rapidly removed from the vicinity of the char particle. 

The char particle is then left readily available for the steam gasification reaction with lower 

concentration of inhibiting species in the surrounding gas as suggested in previous works 

related to CLC of solid fuels [1, 7, 8]. 

6. Conclusions 

The impact of oxygen transport on char conversion is investigated experimentally in a 2-

4MWth dual fluidized bed gasifier using an oxygen carrier as bed material. Char conversion 

was quantified under different operation conditions corresponding to oxygen-carrier-to-fuel 

ratio ranging from 3 to 12, by varying fuel fed and solids circulation rate. The results confirm 

that the oxygen carrier enhances char gasification rate. In terms of operating conditions, both 

fuel feed and circulation of bed material showed significant impact on the final char conversion 

under the conditions tested. The degree of char conversion is the result of the combined effect 

of residence time and oxygen-carrier-to fuel ratio. For a given residence time, the degree of 

char conversion was found proportional to the oxygen-carrier-to-fuel ratio.  
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Notation 

Ro oxygen carrying capacity [kg O/kg ] 𝜏𝑓𝑢𝑒𝑙 residence time of the fuel [s] 

𝑚𝑜𝑥 mass oxidized material [kg] 𝐿 characteristic length [m] 

𝑚𝑟𝑒𝑑 mass reduced material [kg] 𝐷 dispersion coefficient [m2/s] 

𝜑 oxygen-carrier-to-fuel ratio [kg/kg] 𝑋𝑐ℎ𝑎𝑟 char conversion [kg/kg] 

𝑚̇𝑏𝑒𝑑 bed material circulation rate [kg/s] 𝑌𝑐ℎ𝑎𝑟
𝐹  char content of the fuel [kg/kg fuel] 

𝑚̇𝐹 fuel feeding rate [kg/s] 𝑌𝐶
𝐹 carbon content of the fuel [kg/kg fuel] 

Ω𝐹 stoichiometric oxygen [kg/kg fuel] 𝑚̇𝐶,𝑔𝑎𝑠 flow of carbon with the gas [kg/s] 
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