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We compute the S-factor of the proton–proton (pp) fusion reaction using chiral effective field theory 
(χEFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the 
results. We quantify the uncertainties due to (i) the computational method used to compute the pp
cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants 
of χEFT, (iii) the systematic uncertainty due to the χEFT cutoff, and (iv) systematic variations in the 
database used to calibrate the nucleon–nucleon interaction. We also examine the robustness of the 
polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its 
energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent 
S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from 
the choice of the fit interval in our calculations. In addition, we explore the statistical correlations 
between the S-factor and few-nucleon observables such as the binding energies and point-proton radii 
of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. 
We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty 
in the threshold S-factor cannot be reduced beyond 0.7%.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In main sequence stars such as the Sun, the conversion of hy-
drogen to helium proceeds predominantly through the pp chain, 
which is primarily triggered by the weak pp-fusion process [1,2],

p + p → d + e+ + νe. (1)

The accurate determination of the rate of this reaction is a critical 
ingredient for our understanding of many stellar processes. The re-
action rate is conventionally parametrized in terms of the S-factor, 
which is related to the cross section by

S(E) = σ(E)Ee2πη, (2)

where E is the center of mass energy and η = √
mp/E α/2 is the 

Sommerfeld parameter. This cross section can only be measured in 
experiments performed at rather high energies in order to over-
come the Coulomb barrier between the protons. Extrapolations of 
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SCOAP3.
S(E) to relevant energy domains, E < 10 keV, which is where 
the Gamow peak of the Sun lies, yield extremely large uncertain-
ties. Therefore, we are forced to rely on theoretical calculations to 
provide a precise prediction. This situation turns the accompany-
ing uncertainty analysis into an absolute necessity. However, the 
quantification of theoretical uncertainties, which can have many 
different origins, is a very difficult task and a rigorous uncertainty 
analysis is still lacking. It is the purpose of this Letter to signifi-
cantly advance the state-of-the-art of theoretical uncertainty quan-
tification for the pp-fusion process.

Although calculations of S(E) can be performed at first order in 
the weak coupling constant, they still require a detailed knowledge 
of the nuclear interaction, which has to be treated nonperturba-
tively. Potential models therefore provided the first insights into 
this process [3–6]. Still, obtaining reliable uncertainty estimates 
has always proven to be hard with such models for the nucleon–
nucleon interaction. Effective field theories (EFTs) are systematic 
low-energy expansions in a small parameter and are capable to 
provide an estimate of the inherent systematic error. An effort to 
provide uncertainty estimates was first carried out in [7,8] using 
the so-called hybrid approach in which current operators were 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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obtained from χEFT and wave functions from phenomenological 
potentials. The first complete χEFT calculation of the S-factor was 
carried out by Marcucci et al. [9], who obtained

S = (4.030 ± 0.006) × 10−23 MeV fm2 , (3)

with an uncertainty (see below) seven times smaller than that of 
the previously recommended value [2]

S = (4.01 ± 0.04) × 10−23 MeV fm2 . (4)

Pionless EFT calculations [10–13], which use only the nucleons as 
explicit degrees of freedom, have obtained consistent values, albeit 
with slightly larger theory errors.

Since uncertainty analysis was not the main objective of 
Ref. [9], their error estimates were based on simple assumptions. 
The current operators and the wave functions were calculated to 
high precision — O(Q 3) and O(Q 4), respectively — by employing 
χEFT interactions widely used in the literature. The uncertainty 
was then estimated from the range of S-factor values obtained by 
using two different short-distance regulators in the two-body cur-
rent and the potential. Thus, the error reported in Ref. [9] only 
reflects the resulting spread in the S-factor at a mixed order in 
the EFT expansion.

In this Letter we study the pp-fusion process in χEFT at 
next-to-next-to-leading order (NNLO). In particular, we perform 
an accompanying uncertainty quantification that builds on recent 
progress in mathematical optimization and statistical analysis of 
chiral nuclear forces and ab initio nuclear theory [14–18]. We quan-
tify both statistical uncertainties, associated with the determina-
tion of the relevant low-energy constants (LECs), as well as several 
systematic ones, related to the computational method and to the 
chiral expansion. In this process we aim for consistency, e.g. by 
regulating the weak-current operator of the pp-fusion process in a 
manner that is consistent with the β-decay used in the fit of the 
nuclear potential.

This Letter is organized as follows. In Sec. 2, we discuss the 
weak current operator and the initial and final state wave func-
tions. In Sec. 3, we present an analysis of the uncertainties in the 
S-factor calculation. In Sec. 4, we present our final results along 
with a discussion.

2. Formalism

The cross section for the reaction in Eq. (1) can be written in 
the center of mass frame as

σ(E) =
∫

d3 pe

(2π)3

d3 pν

(2π)3

1

2Ee

1

2Eν

2πδ

(
E + 2mp − md − q2

2md
− Ee − Eν

)
1

vrel
F (Z , Ee)

1

4

∑
|〈 f |ĤW |i〉|2, (5)

where pe,ν are the positron and neutrino momenta, Ee,ν their en-
ergies, md is the deuteron mass, vrel is the pp relative velocity, 
and q is the momentum of the recoiling deuteron. The function 
F (Z , Ee) accounts for the distortion of the positron wave function 
due to the Coulomb field of the deuteron. Its classical expression, 
which can be found in Ref. [19], is increased by 1.62% due to radia-
tive corrections [20]. The summation runs over the spin projections 
of all the initial and the final state particles. The initial state |i〉
and the final state | f 〉 are direct products of leptonic and nuclear 
states. At nuclear energies, the weak interaction Hamiltonian can 
be written in terms of the leptonic and the nuclear weak current 
operators as
ĤW = G V√
2

∫
d3x

[
jμ(x) Jμ†

(x) + h.c.
]
, (6)

where G V is the vector coupling constant. The matrix element of 
the leptonic weak current operator jμ between the leptonic wave 
functions is lμ e−iq·x , where lμ satisfies∑

lσ lτ ∗ = 8
(

pν
σ pe

τ + pν
τ pe

σ

− gστ pν
ρ peρ − iερσδτ pνρ peδ

)
, (7)

with the summation running over the spin projections of the lep-
tons. Note that Eqs. (5) and (7) look different from the ones in 
Ref. [9,21] because we include the 2Ee and 2Eν denominators 
in Eq. (5) to make the phase space volume element manifestly 
Lorentz invariant.

The nuclear wave functions are calculated up to NNLO in χEFT. 
The nuclear weak current operators are consistently derived from 
the same effective Lagrangian up to the same order in Q , i.e. 
O(Q 3). In this approach, the strong interaction dynamics between 
the nucleons involved is based on the same theoretical grounds as 
their coupling to the leptonic current.

2.1. Nuclear weak current operators

The current operators for charge-changing weak interactions 
were derived in χEFT in Refs. [7,8,22,23].

The one-body (1B) operators that give non-vanishing matrix 
elements between an S-wave pp wave function and the S- and 
D-wave configurations of the deuteron include, up to O(Q 3), the 
Gamow–Teller operator,

J−GT = −g A

∑
l

τ−
l σ l, (8)

at leading order and the “weak-magnetism” operator

J−WM =
∑

l

τ−
l i

μV

2mN
q × σ l, (9)

which is O(Q ). Here the index l runs over both nucleons, g A is the 
axial vector coupling constant, τ−

l is the isospin lowering operator 
(τ x

l − iτ y
l )/2. Formally, there are additional operators [8,24] that 

enter according to the χEFT power counting scheme.1 The matrix 
elements of those operators are, however, kinematically suppressed 
for the extremely small proton energies being considered here. The 
χEFT 1B currents operators used here have the same structure as 
the ones obtained phenomenologically in earlier studies (see, e.g. 
Ref. [25]).

The expression for the axial-vector two-body (2B) current, 
which is O(Q 3), reads

J−2B = − g A

2F 2
π

{
1

m2
π + k2

[
− i

2mN
τ−× p(σ 1 − σ 2) · k

+ 4c3 k [k ·
∑

l

τ−
l σ l]

+
(

c4 + 1

4mN

)
τ−× k × [σ× × k]

]

+ 4d1

∑
l

τ−
l σ l + 2d2 τ−× σ×

}
. (10)

1 Note that Refs. [8] and [24] use slightly different power-counting schemes. 
Ref. [24] uses q/mN ∼ O(Q 2), which is more appropriate for the energy regime 
they consider.
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Here k = (p′
2 − p2 − p′

1 + p1)/2 and p = (p1 + p′
1 − p2 − p′

2)/4, 
where pl (p′

l ) is the nucleon momentum in the initial (final) state, 
τ−× = (τ1 × τ2)

x − i(τ1 × τ2)
y , σ× = σ 1 × σ 2 and Fπ is the pion 

decay constant. The constants d1 and d2 that appear in the short-
range 2B current are constrained by the Pauli principle such that 
only one linear combination, d1 + 2d2 = cD/(g A
EFT) enters. The 
constants c3 and c4, which accompany the one-pion exchange cur-
rent, also appear in the N N and π N interactions, as well as along 
with cD in the N N N interaction. For the current, it is customary to 
define the counterterm

d̂R = 1

mN

cD

g A 
EFT
+ 1

3mN
(c3 + 2c4) + 1

6
(11)

to parametrize the strength of the meson-exchange current [8,26,
27].

2.2. Nuclear wave functions

The NNLO momentum-space potentials that we employ are 
non-local. We obtain the S-state (L = 0) and D-state (L = 2) com-
ponents of the deuteron wave function in coordinate space by 
diagonalizing in a harmonic-oscillator basis. We find that it is nec-
essary to correctly reproduce the deuteron wave function beyond 
50 fm in order to achieve infrared convergence of the radial inte-
grals.

This bound-state problem is easily solved equally well in either 
momentum space or coordinate space. Unfortunately, this dual ap-
proach is not as trivial for the relative pp-scattering wave function, 
ψ(r; E) as the presence of the long-ranged Coulomb potential im-
plies that the momentum space representation of the scattering 
potential becomes singular for equal incoming and outgoing rela-
tive momenta. In order to facilitate a numerical solution we follow 
the prescription of Vincent and Phatak [28] and introduce a cutoff 
radius Rc . For radii r < Rc , the Coulomb potential is well-defined 
in momentum space. In this region we can therefore apply or-
dinary methods to find ψ(r < Rc; E). Furthermore, if we choose 
Rc > 35 fm, such that the short-ranged nuclear interaction be-
comes negligible, we can smoothly match the solution at r = Rc

to the asymptotic Coulomb wave function,

lim
r→∞χ0(r; E) = cos δ0 F0(r

√
mp E)

+ sin δ0 G0(r
√

mp E), (12)

where δ0 is the S-wave phase shift with respect to the nuclear 
and Coulomb potential, F0 and G0 are, respectively, the regular 
and the irregular Coulomb wave functions, and χ0(r; E) is the ra-
dial S-wave pp wave function, which, upon ignoring higher partial 
wave contributions, is related to ψ(r; E) by

ψ(r; E) =
√

2

mp E
eiδ0

1

r
χ0(r; E). (13)

The pp wave function obtained is correct to NNLO in χEFT 
and first order in the electromagnetic coupling constant, α. We do 
not include higher-order electromagnetic contributions explicitly in 
this work. These electromagnetic interaction terms mainly lower 
the central value of the pp-fusion cross section [6,7,9], as discussed 
in Sec. 4, and leave the corresponding error due to uncertainties in 
the description of the strong nuclear force unchanged.

2.3. Radial matrix elements

The earliest calculations of the S-factor were performed us-
ing the Gamow–Teller operator only. In this approximation, the 
S-factor is proportional to 
2(E), the square of the overlap be-
tween the pp wave function at energy E and the deuteron wave 
function, given by


(E) =
(

γ 3

2mp E

) 1
2 eiδ0

C0

∞∫
0

dr ud(r)χ0(r; E), (14)

where C2
0 = 2πη/(e2πη − 1). However, the S-factor we calculate 

includes deuteron recoil effects and meson-exchange current con-
tributions. The former modifies not only the phase space but also 
the matrix element in Eq. (5). The meson-exchange current, which 
turns out to be the dominant correction, is conventionally quan-
tified as δ2B, defined as the ratio of the matrix element of J−2B
to that of J−GT [8]. While the dependence of 
(E) on the LECs of 
χEFT is solely through the N N interaction in the initial and the 
final state wave functions, δ2B depends explicitly on many of the 
LECs through the current operator, and therefore deserves a careful 
scrutiny in spite of its relatively small contribution to the overall 
value of the S-factor.

3. Calculations

In this section we compute the quantities that are relevant for 
describing low-energy pp fusion. In addition, we will explore sev-
eral sources of statistical and systematic uncertainties.

3.1. Axial-vector coupling constant

The S-factor depends predominantly on g A explicitly, by the 
relation S ∝ g A

2. The most recent world average value for g A , 
calculated by the Particle Data Group (PDG), is 1.2701(25) [29]. 
The values obtained in some of the recent experiments [30,31] are 
higher than the world average. For our uncertainty analysis, we 
use the PDG recommended value which in turn is very close to 
the 1.2695(29) value used by Marcucci et al. in Ref. [9].

3.2. Chiral interactions and currents

In this work we employ a large set of 42 different NNLOsim in-
teractions [18] to describe the nuclear force. This family of poten-
tials are all derived from χEFT up to NNLO. However, each of them 
was constructed using one of the seven different regulator cutoffs 

 = [450, 475, 500, 525, 550, 575, 600] MeV, and their LECs were 
constrained using one of six different truncations of the maximum 
scattering energy in the world database of N N scattering cross 
sections. It is also particularly useful that the covariance matri-
ces of the LECs have been precisely determined for each NNLOsim
interaction. Therefore, utilizing this large set of systematically opti-
mized interactions, with known statistical properties, allows us to 
better uncover systematic uncertainties and explore the statistical 
uncertainties and correlations in the pp-fusion process. It should 
be pointed out that an equally good description of the fit data is 
attained with all NNLOsim interactions, and the numerical values of 
all constrained LECs are of natural order. Thus, all NNLOsim interac-
tions are expected to perform very well in the few-nucleon sector 
of nuclear physics. In detail, the strengths of all relevant LECs were 
simultaneously optimized to reproduce the selected N N-scattering
cross sections, π N-scattering cross sections, the binding energies 
and charge radii of 2,3H and 3He, the quadrupole moment of 2H, as 
well as the comparative β-decay half-life of 3H. The systematic un-
certainty stemming from the excluded higher-order contributions 
in the chiral expansion was also accounted for in the determina-
tion of the LECs. A detailed expose of the optimization protocol is 
given in Ref. [18].
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Furthermore, and similarly to the work in Ref. [8], we regulate 
the ultraviolet behavior of the matrix elements of all current op-
erators using a Gaussian regulator on the form exp[−k2/2
2

EFT], 
where k is defined in Sec. 2.1. The N N-sector of the NNLOsim po-
tentials is regulated in similar way; exp[−(p/
EFT)

2n], where n = 3
and p is the relative momentum of the two interacting nucleons. 
We use the same value for the cutoff 
EFT in the currents as we 
use in the interactions.

3.3. Central values

The family of 42 optimized χEFT interactions at NNLO is em-
ployed to construct an averaged central value for each one of the 
computed quantities using the arithmetic mean of the separate cal-
culations. The magnitudes of the statistical uncertainties in each 
calculation are nearly identical. Thus it is not necessary to explore 
weighted average schemes.

The energy dependence of the astrophysical S-factor, is usually 
parametrized using a polynomial expansion

S(E) = S(0) + S ′(0)E + S ′′(0)E2/2 + . . . (15)

A second- or third-order polynomial is most common. Higher-
order polynomials turn out to be ill-conditioned extrapolants at-
tributed with large statistical uncertainties. The normalized n-th 
order derivatives Sn(0)/S(0) often serve as input to e.g. neu-
trino flux computations using solar models. We fit theoretical 
S(E)-values to a third-order polynomial across an energy range 
E = 1–30 keV. From this we extract the S-factor at zero energy.

From the results obtained with the different interactions, we 
extract the following averaged central values: S(0) = 4.081 ×
10−23 MeV fm2, 
2(0) = 7.087, δ2B = 0.43%, S ′(0)/S(0) = 10.84
MeV−1, and S ′′(0)/S(0) = 317.8 MeV−2.

3.4. Uncertainty analysis

We start by considering systematic uncertainties associated 
with the methods used to compute the cross section and to ex-
trapolate to zero energy.

A polynomial fit of S(E) is uninformed by the underlying 
physics of the pp fusion process. The polynomial fit and subse-
quent extrapolation to zero energy will depend on the limits of the 
fit-interval I E = [Emin, Emax], for which it is not evident a priori 
what limits to use. The numerical precision of our computational 
code allows us to safely set Emin = 1 keV. To find the optimal Emax, 
we construct a penalty function χ2 that describes how well a poly-
nomial function f fit describes the corresponding χEFT predictions 
f calc in I E ,

χ2 =
∑
i∈I E

(1 − f fit
i / f calc

i )2 , (16)

and minimize this with respect to Emax. Note that we have also 
used the shorthand f i to denote f (Ei), and evaluate energies in I E

at 1 keV intervals. Overall, we find that a cubic polynomial fits the
χEFT predictions better than a quadratic polynomial.

For a cubic polynomial, and by varying Emax between 4–100 
keV, we find that Emax = 30 keV is optimal. For this choice, the 
statistical uncertainties of S(0), S ′(0)/S(0), S ′′(0)/S(0), due to the 
polynomial fit, attain a minimum. The extrapolated S(0)-values, 
as a function of Emax are shown in Fig. 1. The central value for 
S(0) decreases and the corresponding statistical uncertainty of the 
polynomial fit increases when Emax � 30 keV. The same trend is 
observed for all 42 NNLO interactions. The statistical error of the fit 
is ten times larger at Emax = 100 keV than it is at Emax = 30 keV. 
Therefore, we choose to fit all computed S(E)-values to a third 
Fig. 1. Extrapolated S(0)-values using the cubic polynomial fit. The vertical error 
bars indicate the statistical uncertainty due to uncertainties in the polynomial fit 
coefficients. Clearly, they increase rapidly for Emax � 30 keV.

order polynomial across the energy interval I E = [1, 30] keV. The 
resulting statistical uncertainty for S(0) that comes from the cubic 
polynomial fit is 0.0002 × 10−23 MeV fm2, which corresponds to a 
relative uncertainty of ∼ 0.005%. Obviously, the systematic uncer-
tainty due to a possibly ill-determined Emax could be much larger, 
typically ∼ 1%. In order to reliably extract the derivatives of the 
S-factor with respect to the energy, a sufficiently large fit inter-
val has to be chosen. However, if the fit interval is made larger 
than approximately 30 keV the necessity of including P -waves in 
the incoming channel becomes apparent in Fig. 1. The statistical 
uncertainties, due to the polynomial fit, for the first and second 
logarithmic derivatives of S(0) are 0.02% and 1.18%, respectively. 
The polynomial fit uncertainties for remaining quantities are neg-
ligible.

In addition, we varied the Vincent–Phatak (VP) matching radius 
Rcut between 5–50 fm to extract uncertainties related to our nu-
merical approach to pp scattering.

We find that Rcut = 35 fm provides robust solutions, and we 
conclude that the uncertainty in S(0) due to the Vincent–Phatak 
procedure is 0.002 × 10−23 MeV fm2, which corresponds to a rel-
ative uncertainty of ∼ 0.05%.

The three remaining sources of uncertainties that we explore 
are related to the χEFT description of the pp-fusion process. First, 
there exists a statistical uncertainty due to the non-zero variances 
of the LECs in the NNLOsim interactions. Second, the actual choice 
of input N N data is not uniquely defined. Indeed, it is not clear 
what maximum kinetic energy TLab one should consider in the se-
lection of scattering data. This ambiguity gives rise to a systematic 
uncertainty. Third, variations in the regulator cutoffs, 
EFT, of the 
χEFT description of the interaction and the currents will induce 
another systematic uncertainty.

In the process of propagating statistical uncertainties we em-
ploy well-founded methods for error propagation (see Ref. [18] for 
details). We also calculate the corresponding statistical covariance 
matrices of the observables and quantities that we compute. To 
find the covariance Cov(A, B) between two observables, A and B , 
due to the statistical covariances Cov(α̃) of the LECs α̃, we employ 
the linear approximation

Cov(A, B) = JT
ACov(α̃)JB (17)

where J A is the Jacobian vector of partial derivatives J A,i = ∂ A
∂α̃i

, 
and similarly for J B . We compute pp-fusion in the S-wave chan-
nel only, thus the relevant LECs are α̃ = (c1, c3, c4, C̃

pp
1 S0

, C̃3 S1
, C1 S0

,

C3 S1
, C3 S1−3 D1

, cD). Further, we define the uncertainty in any ob-
servable A, due to the uncertainties in the LECs, as



588 B. Acharya et al. / Physics Letters B 760 (2016) 584–589
Fig. 2. (Color online.) The green band indicates the spread of S(0)-values due to 
variations in T max

Lab used in the optimization of the NNLO chiral force, as well as the 
propagated statistical uncertainties of all LECs and g A , as a function of the cutoff 

EFT in the χEFT. 
EFT was varied between 450 MeV and 600 MeV in steps of 
25 MeV. The cutoff in the current and the interaction sectors were always equal 
to each other. This figure demonstrates that the S-factor is relatively insensitive to 
reasonable variations in the cutoff.

σA = √
Cov(A, A). (18)

We use the covariance matrices Cov(α̃) from Ref. [18], and ob-
tain the necessary derivatives ∂ A

∂α̃i
via a straightforward univariate 

spline fit to 10 function evaluations of the observable A; changing 
the LEC α̃i in the neighborhood of its optimal value. We bench-
marked this spline approximation using the known derivative val-
ues of the deuteron binding energy [18], and found that it was 
accurate to at least ∼ 0.001%.

From this procedure we find that the error in S(0) due to the 
statistical uncertainties in the LECs is 0.009 × 10−23 MeV fm2, 
which implies a relative uncertainty of ∼ 0.2%. This result is very 
stable for each of the simultaneously optimized NNLO interactions. 
Propagating also the statistical errors of g A increases this statistical 
uncertainty to 0.019 × 10−23 MeV fm2. The statistical uncertainty 
of G V has a negligible impact on the statistical uncertainty of S(0). 
Also, the statistical uncertainties of all LECs have negligible impact 
on the logarithmic derivatives of the zero-energy S-factor. The rel-
ative uncertainties are: 0.05% in S ′(0)/S(0) and slightly more, 0.2%, 
in S ′′(0)/S(0). Furthermore, the derivatives of S(0) are very insen-
sitive to changes in the cutoffs 
EFT and T max

Lab . The relative uncer-
tainty of the squared overlap of the deuteron and proton–proton 
wavefunctions, 
2, is ∼ 0.05%, and this error is dominated by the 
LEC variations. The 
2 is only somewhat sensitive to variations in 

EFT and T max

Lab . For all 42 NNLO interactions that we employed, 
we only observed 
2 in the range 7.064–7.101. Not surprisingly, 
the corresponding uncertainty and variation in δ2B, which is more 
sensitive to short distance physics, is much larger. The typical rela-
tive uncertainty due to variations in the LECs is ∼ 5%. Furthermore, 
δ2B varies between 0.30% and 0.52% for all NNLO interactions we 
explored.

As previously mentioned, systematic uncertainties in the chiral 
expansion is probed using the family of 42 different simultane-
ously optimized NNLO potentials. The range of NNLO predictions 
for S(0), including the total statistical uncertainty, is shown in 
Fig. 2. For a given cutoff 
EFT, the width of the green band in-
dicates the magnitude of all considered uncertainties. The total 
error budget is dominated by the statistical uncertainties in the 
sub-leading LECs of the chiral expansion and the axial-vector cou-
pling constant g A . We operate with currents and interactions that 
have been optimized simultaneously and at the same chiral order, 
which ensures consistent renormalization.
Fig. 3. (Color online.) Correlation matrix of the zero-energy S-factor (S(0)), the 
squared radial wave function overlap (
2), and the ratio of the 2B and 1B cur-
rent matrix elements (δ2B). We also show the correlations between these quantities 
and the ground state energies (E), point-proton radii (rpt-p) for A = 2, 3, 4 nuclei 
as well as the matrix element of the reduced axial-vector current (E1

A ) of the tri-
ton β-decay and the quadrupole moment (Q (2H)) and D-state probability (D(2H)) 
of the deuteron.

3.5. Correlation analysis

In addition to the diagonal variances, we also compute the sta-
tistical correlations between all relevant pp-fusion quantities and 
observables. This study includes masses, radii, and half-lifes of 
A = 2, 3, 4 nuclei. Correlations can possibly reveal more informa-
tion, but this exercise also serves as a sanity check of the entire 
uncertainty analysis. We should recover correlations expected from 
physical arguments. We employ the Jacobian and covariance ma-
trices of A = 2, 3, 4 observables with respect to the NNLO LECs 
published in Ref. [18] and contract those with the spline Jaco-
bians extracted in this work. A graphical representation of the 
relevant correlations is shown in Fig. 3. This particular correlation 
matrix is based on the NNLO interaction with 
EFT = 500 MeV
and T max

Lab = 290 MeV. The same pattern emerges with any of the 
42 different interactions employed in this work. As expected from 
the Q -value dependence of the phase space volume, the S-factor 
strongly anticorrelates with the deuteron ground state energy. It 
is noteworthy that the squared radial overlap 
2 of the deuteron 
and relative-proton wave functions does not correlate significantly 
with S(0). This indicates that the dependence of the S-factor on 
binding energy indeed occurs predominantly through the phase 
space. We also observe that an increase in the deuteron radius 
would increase the radial overlap with the proton–proton wave 
function. The quadrupole moment of the deuteron and its D-state 
probability anti-correlate with 
2. Here, it is important to point 
out that our squared radial overlap only contains the 1B piece of 
the current operator. Thus it only measures the overlap between 
S-wave components. A smaller D-state probability implies a larger 
S-state probability. Consequently, the anti-correlation between 
2

and Q (2H)/D(2H) mostly traces the same underlying S-wave com-
ponent of the deuteron wave function. Finally, we observe a strong 
correlation between the strength of the 2B current and the reduced 
axial-vector current of the triton β-decay. In fact, the LEC cD plays 
a dominant role for both currents. In conclusion, we quantify all 
expected correlations and confirm that they emerge in our statis-
tical analysis.

4. Results and discussion

We have calculated the pp-fusion S-factor using χEFT and car-
ried out a state-of-the-art uncertainty analysis by employing a 
family of mathematically optimized chiral potentials at NNLO with 
consistently renormalized currents. We focused on the threshold 
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S-factor and have therefore only considered initial S-wave pp scat-
tering. To O(α), we obtain a threshold S-factor

S(0) = (4.081+0.024
−0.032) × 10−23 MeV fm2 , (19)

where we combined, for simplicity, all uncertainties by adding 
them in quadrature, and then taking the min/max values of the 
green band in Fig. 2. This error represents all uncertainties orig-
inating from χEFT, the computational method, and the statistical 
extrapolation to obtain the threshold value. The effects of higher 
order electromagnetic contributions that are proportional to α2 re-
mains to be accounted for. These corrections lower the threshold 
S-factor by about a percent [6,7,9]. From the energy dependence of 
these corrections, calculated in Ref. [6], we estimate a 0.84% reduc-
tion in S(0). The inclusion of these electromagnetic effects leaves 
the uncertainties that are due to the strong interaction unchanged, 
and the final result becomes

Scor(0) = (4.047+0.024
−0.032) × 10−23 MeV fm2 . (20)

For comparison, the uncertainty presented here is four times 
larger than the estimate reported in the pioneering χEFT calcu-
lation in Ref. [9]. The comparison of the central values, however, 
is not so straightforward since their calculation includes additional 
terms in the current operator involving additional LECs, namely 
g4S and g4V , and the relativistic correction to the axial one-body 
current. We estimate the contribution of these missing terms to be 
of the order of 0.1% However, our value given in Eq. (20) seems 
to be slightly higher than the result obtained by Marcucci et al. 
even when these corrections are considered. This issue could be re-
lated to the infrared convergence of the matrix elements between 
a bound state and a scattering state wave function, as mentioned 
briefly in Sec. 2.2. Additional details will be communicated through 
a separate publication [32].

Our values for the derivatives, S ′(0)/S(0) and S ′′(0)/S(0), are, 
respectively, 10.84(2) MeV−1 and 317.8(13) MeV−2, where the er-
rors also account for variations in 
EFT.

Furthermore, our work displays that great care has to be taken 
in order to obtain reliable uncertainty estimates in EFT calcula-
tions. While it had previously been understood that a cutoff vari-
ation is one necessary part in the quantification of uncertainties, 
our analysis shows that potentials that use the same regulator but 
are optimized to a different energy range of scattering data can 
lead to different results for electroweak matrix elements. This is 
even more remarkable as the various potentials give the same low-
energy observables. We also find that the choice of the fit interval 
is an important consideration when using polynomial extrapola-
tion to find the threshold S-factor. The appropriate interval has to 
be chosen by comparing the statistical errors of the fit for several 
different fit intervals.

In this work, we have only considered S-wave initial state inter-
action. In the calculation of Ref. [9], capture in the P -wave channel 
contributed about 1% to S(E) at low E , which is roughly the same 
size as the errors stemming from our χEFT description of the in-
teractions and from higher order electromagnetic processes. More 
generally, the effect of higher partial waves on a low-energy scat-
tering process has the generic suppression given by δl ∝ k2l+1, 
which suggests that the P -wave contribution to the fusion cross 
section formally enters at O(Q 4), which is beyond the order we 
work to in this paper.

It would be interesting to combine our type of analysis with 
the results obtained using pionless EFT. There, the S-factor is ex-
pressed as a low-energy expansion that contains only effective 
range parameters and a few low-energy constants. Such a pa-
rameterization should be particularly useful in extracting reliable
uncertainties for the energy dependence of the S-factor. Future 
work also involves to consider muon-capture by the deuteron. This 
two-nucleon process contains information on the d̂R -term that is 
strongly tied to the three-nucleon force. This study could provide 
additional important information to constrain the nuclear many-
body Hamiltonian.
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