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Abstract

The performance of a vehicle system is to a large extent dependent on the driving
context, such as the road infrastructure, in which the vehicle is operating. In order
to achieve improved performance, different vehicle system applications may need to
take driving context parameters into account. In this thesis, we develop a pattern
recognition framework that classifies driving context based on data recorded by
vehicles (speed, steering wheel angle, etc.) in a naturalistic setting. We train the
framework on a large data set of vehicle data annotated with map attributes from
a map database representing driving context. An inventory is made on the map
attributes, finding two kinds of global-scale driving context classes to classify: (1)
whether a vehicle is driving in a city or not, and (2) the functional class of the road
the vehicle is driving on. We then review four pattern recognition models: Logistic
Regression, SVM, Hidden Markov Model, and a simple Baseline model, comparing
their ability to classify (1) and (2). We find that all models reach similar overall
prediction accuracies, ranging between 76 % - 80 % for classification task (1) and 84
% - 86 % for task (2), but that the models differ slightly with respect to per-class
prediction accuracy.
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Chapter 1

Introduction

The main purpose of a vehicle system is to transport passengers or goods from point
A to point B. In addition, there are subgoals such as fuel efficiency, passenger safety,
and minimizing wear on the vehicle. These goals are to be achieved under some
set of constraints that are dictated by the context in which the vehicle is operating,
influencing the vehicle and its driver. Such context could for instance be the road
infrastructure, traffic density, and weather conditions. In order to achieve improved
performance, different vehicle system applications may need to take driving context
parameters into account.

An example of a vehicle system application that needs to be driving context
aware is driving style evaluation. The individual driving style (e.g. aggressive ver-
sus defensive driving) of a driver has a significant impact on a vehicle’s performance,
affecting parameters such as safety [23], fuel consumption [24], and wear on the ve-
hicle. The ability to evaluate driving style has therefore become a crucial task in
today’s vehicle systems. Driving style evaluation is used in applications such as
Driver Coaching Systems (see [11] for an example on such a system), which provide
education and training programs intending to change the driver’s driving style. In
haulage firms with large vehicle fleets such training can significantly reduce costs re-
lated to for instance fuel consumption and vehicle crashes (vehicle repair, downtime,
etc.). Furthermore, driving style evaluation is also utilized in so called usage based
insurance (UBI), in which automotive insurance companies reward safe drivers by
dynamically setting insurance costs based on the behavior of the driver (Progressive
Insurance [13] and MyDrive Solutions [26] are examples of two companies that pro-
vide such insurance). Drivers with a risky driving behavior pays higher insurance
premiums than drivers with a safe driving behavior.

Driving style evaluation can be performed based on vehicle data (speed, steering
wheel angle, brake pedal usage, etc.). For instance, an aggressive driving style could
be detected by measuring the brake pedal usage. However, the current driving
context also affects vehicle data. For example, driving in a city center yields a
higher brake pedal usage frequency than driving on the highway. Thus, in order
to evaluate driving style properly, we must take the current driving context into
account, filtering out the aspects of the vehicle data that is a result of the current
driving context and not the driver’s driving style. Figure 1.1 visualizes this idea.

Moreover, the purpose of driving style evaluation applications is to change a
driver’s driving style. Therefore, it is vital that the driver subject to the evalu-
ation understands the evaluation calculations, i.e. why he/she received a certain
evaluation score. This way he/she will know what behavior to change to improve
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Figure 1.1: Vehicle data depends on two factors: the drivers individual driving style
and the driving context in which the vehicle is operating. In order to evaluate driving
style properly, we must take the current driving context into account, filtering out
the aspects of the vehicle data that is a result of the current driving context and
not the driver’s driving style.

his/her evaluation score. In other words, the evaluation must be comprehensible
and ”actionable”. This can be achieved by making all parameters (including driv-
ing context) in the driving style evaluation calculation explicit and interpretable to
the driver. Such an approach requires that, when the driver interprets the evalua-
tion score, driving context data used in the evaluation should be accessible to the
him/her. For instance, a driver should be able see that at time t0 when he/she was
driving on the highway, a certain driving pattern resulted in driving evaluation score
X, and at time t1, when driving in the city, it resulted in score Y.

Driving context data can also be an important parameter in distraction-detection
systems. A general method to detect driver distraction and risky driving situation
is by looking at the driver’s eye glancing patterns ([7]). Furthermore, studies ([27])
have shown that eye glancing measurements are also dependent on the current driv-
ing context. For instance, in complex driving context with high degree of curvature
and traffic density, drivers spend more time with their eyes on the road. Accord-
ingly, [27] concludes that functionalities based on glance metrics evaluation, such as
distraction-detection systems, must take driving context parameters into account.

In this thesis, we develop a pattern recognition framework that classifies driving
context based on an input of vehicle data (speed, steering wheel angle, etc.). The
work was conducted at Volvo Group Trucks Technology (GTT) in Gothenburg,
Sweden. Our study builds on a study that was performed at Volvo in 2001 ([4])
with the same objective as ours, which lead to the Volvo patent [6].

1.1 Identifying driving context

The objective of this thesis is to classify driving context. To succeed with this,
we must first define what we mean by “driving context”. As mentioned above, a
vehicle system is always operating under a set of constraints that it must adapt
to. These constraints arise from outer factors; both static factors, such as the
road infrastructure, and dynamic factors, such as presence of other vehicles (traffic
density), road construction work, and weather conditions.
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In this thesis, however, we will only focus on the static constraints that arise
from the road infrastructure. With road infrastructure we mean the layout of the
road, i.e. curvature, number of lanes, etc. We also include road objects, such as
traffic lights, stop signs, and speed restrictions in this concept. In other words, all
static artifacts part of the road network that affects how a vehicle system can be
maneuvered. Henceforth, it is this set of road infrastructure constraints we mean
when referring to the driving context.

Driving context can be defined in fine-grained terms of road objects and obstacles
such as red lights, crossings, and curvature degree. This, we refer to as local driving
context. It can also be described in wider definitions, composed by a characteristic
set of local driving context objects. This, we refer to as global driving context. For
instance, the global driving context class City could be defined as an area where
sharp turns and crossings are frequent, while the class Highway could be defined as
an area where turns and crossings are infrequent.

1.2 Previous work

There are different solutions for inferring driving contexts. One solution is to attach
a GPS to the vehicle system and fetch driving context information for the system’s
location from a driving context database. While this solution has some advantages,
such as the possibility of predicting upcoming driving context, it also has some
significant drawbacks, including the high cost of creating and maintaining the map
database. Such a database can become outdated if it is not continuously updated.

An alternative approach, used for instance in [5] and [2], is to have the vehicle
system collect vehicle data (speed, brake pedal usage, steering wheel angle, etc.),
and infer the driving context from this data. For instance, low speed and frequent
use of steering wheel could indicate driving in a city, while high speed and infrequent
use of the steering wheel could indicate driving on the highway. This approach has
the potential of being cheaper than the GPS approach, since there is no need to
create and maintain a driving context database. Additionally, such a method would
never produce outdated driving context, since evaluation is done on vehicle data
parameters collected in real-time.

The most straightforward way to deduce driving context from vehicle data is
probably to state a set of rules, e.g. “if the speed is higher than x, the current
driving context is highway”, etc. However, a drawback with this approach is that it
is not scalable: the larger set of vehicle data parameters and driving context classes,
the more complicated it becomes to formulate such rules. Another way to infer
driving context from vehicle data is to use a fuzzy set approach, such as the one in
[16].

Furthermore, in previous studies there have been attempts to infer driving con-
text using statistical pattern recognition frameworks ([5, 2]). A statistical pattern
recognition framework is created by training a pattern recognition model on a data
set to find patterns that distinguishes classes from each other [1]. In our case, the
data set consists of vehicle data and the classes are the different driving contexts.
Thus, we would train our framework on a set of vehicle data (x)-driving context (y)
records:

(xi, yi), i ∈ 1, ..., n (1.1)
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By doing this, we could find an approximation of the function f mapping vehicle
data X to driving context Y :

f : X → Y (1.2)

In [5], such a framework is implemented by means of a feedforward neural network
[1]. It has been shown that certain kinds of neural network models approximate
Bayesian posterior probabilities [22]. Thus, such a framework could output that it
is 100 percent certain that the class of a given input is A, or that it is 51 percent
certain that the class is A and 49 percent certain the class is B. Such confidence
information could be very useful when post-processing the output of the framework,
for instance in applications performing critical tasks.

However, it can be argued that the neural network model is a rather difficult to
interpret, ”black-box” model (see discussion of this in Section 4.6). Other pattern
recognition models, such as for instance the Logistic Regression model ([17]), are
more interpretable, and therefore easier to work with.

1.3 This project

The goal of this thesis is to implement a pattern recognition framework that can
classify driving context classes based on vehicle data. We will train the framework
on a large data set of naturalistic vehicle data (ND). ND is data collected in a natural
driving setting, i.e. the driver logging the data is not involved in a specific study,
but is performing some everyday driving task ([28]). This differs from previous
studies ([5, 2]), where vehicle data was collected with the specific studies in mind.
The disadvantage with data which is not naturalistic is that the driver’s awareness
of participating in a study might affect his/her driving behavior, making the data
unrealistic. ND does not suffer from this problem.

The vehicle data has been annotated with map attributes (representing driving
contexts) from a map database. The annotation has been done automatically by
matching the GPS coordinates of the records in the vehicle data set and the map
database. This approach enables creating a large scale data set. In previous studies
([5, 2]) the data sets have been created by manually labeling vehicle data, which is
a time consuming, work intensive task, limiting the size of the data sets. In order to
see if driving context can be represented by map attributes from a map database,
we do an inventory of the map database and evaluate the map attributes and their
suitability in representing driving contexts.

The pattern recognition framework will be evaluated based on its prediction ac-
curacy. Additionally, it should be possible to interpret the framework’s output as
probabilities representing how confident the framework is on its classification. For
instance, the framework should be able to output that it is 100 percent certain that
the driving context is highway, or 51 percent certain that the driving context is high-
way and 49 percent certain that the driving context is city. With these requirements
in mind, we review four pattern recognition models of different complexity and com-
pare them against each other. The models are (1) a simple Baseline model, (2) a
Logistic Regression model, (3) an SVM model, and (4) a Hidden Markov Model.
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1.3.1 Scope

When defining driving context (see Section 1.1), we mentioned a set of factors that
affects measured vehicle data: road infrastructure, traffic density, weather condition,
etc. These factors could be divided into static constraints (road infrastructure) and
dynamic constraints (traffic density, weather conditions). In this thesis we focus
solely on the static constraints. The main reason for this is that we have chosen a
supervised learning approach, and our data set does not contain labels for dynamic
constraints. See further discussion on this choice in the Section 7.3.

Furthermore, as mentioned above, driving contexts can be defined in fine-grained
terms such as red-light, crossing, and curvature (local driving context), as well as
in wider driving context classes such as Highway or City (global driving context).
The framework that will be the product of this thesis, however, will only output
global driving context. We will not attempt to classify fine-grained driving context
entities. Specifically, we will focus on two kinds of global driving context classes: (1)
whether a road segment is located inside the borders of a city, and (2) the functional
class of a road segment. More info these classes is presented in Chapter 2.

We use a selected set of vehicle data signals to classify driving context (see
Chapter 3). However, one signal which is generally logged by vehicles that we have
not included in this set is the GPS signal, specifying the location of the vehicle. This
signal could be used in addition to the vehicle data signals we have selected. For
instance, since vehicles repeatedly drive on the same roads in the same locations,
previous driving context classifications at a certain location could be used in the
classification. Such solutions has been outside the scope of this thesis. However,
we elaborate on the possibilities of such a solution further in Section 7.4, when
discussing possible improvements on the framework produced in this thesis.

Moreover, the work in this thesis will focus on creating a classification framework
with high accuracy. We will not consider other performance measurements, such as
how long time the classification takes and what software and hardware resources are
required to do the computations. While such factors are important to consider in
some settings, they are not significant in the vehicle system context we are working
in. Once a model is trained (which will be done offline, i.e. not on-board the vehicle
system itself), the computational resources required to produce the classification
output are very low. Thus, the resources supported by our vehicle systems are more
than sufficient.

1.3.2 Report outline

This report is outlined as follows. In Chapter 2 we present the data set we are using
as a base for training our classification models, and describe the different driving
context classes which is the output of our framework. Chapter 3 then describe how
we selected the models’ input features, and Chapter 4 describes four different pattern
recognition models, comparing their advantages and disadvantages with respect to
the task of this thesis. After this, in Chapter 5 we describe the process of selecting
the best hyper-parameter values for our models. Then, Chapter 6 presents our
classification results, and finally, Chapter 7 discuss these results and concludes the
study.

Chapter 1 5



Chapter 2

Data

The data set plays key role in any pattern recognition problem. Size and quality
of the data are significant factors in the performance of the classifier. Below, we
describe the data used in this thesis: its content, origin, size, etc. We also describe
how we selected a subset from an original, very large data set, on which we train
our classifiers.

Moreover, this thesis investigates the possibility of representing driving context
with attributes from a map database. Making an inventory of the map database and
evaluating whether the different attributes are suitable to represent driving context
concepts constitutes a significant part of the work in this thesis. In this chapter, we
describe this task.

2.1 Data set

The objective of this thesis is to map vectors of vehicle data, such as speed, steering
wheel angle, and brake pedal usage, to a driving context. We use a supervised learn-
ing approach to build a pattern recognition model that realizes this goal. Supervised
learning requires labeled data, and hence, to achieve our goal, we need a data set
containing vehicle data-to-driving context mappings.

The vehicle data that we use come from the Eurofot (European Field Operational
Test) data set [8]. We use a subset of Eurofot that contains data collected by 30
vehicles operating in real traffic in the UK and the Netherlands with surrounding
countries. Eurofot contains so called Naturalistic data (ND), i.e. data collected in a
natural driving setting, where the driver logging the data is not involved in a specific
study, but is performing some everyday driving task ([28]). Previous studies ([5, 2])
classifying driving context have used data which was logged with the specific studies
in mind, which has the disadvantage that the behavior of the driver logging the data
might be affected by the fact that he/she is aware that he/she is participating in
a study, i.e. the data might exhibit unrealistic patterns. Eurofot, containing ND,
does not suffer from this problem.

The data in Eurofot is organized in trips; each trip contains data collected by
one vehicle while traveling between two locations, sampled at a rate of 10Hz (see
example of data from a trip in Figure 2.1). Our Eurofot subset contains 80768 trips,
which sums up to 59250 hours of vehicle data. The size of the data is larger data
sets used in previous studies. For instance, in [5] a data set consisting of 11.5 hours
of driving data was used.

Vehicle data in the Eurofot data set is recorded from the truck’s Control Area

6
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Figure 2.1: Vehicle data from the Eurofot data set. The Speed (top) and Steering
wheel angle (bottom) measurements collected by a truck traveling between two
European cities

Network (CAN) bus [14]. The CAN bus facilitates communication between micro
controllers and other devices in the vehicle. Consequently, many different kinds of
data can be collected by tapping the bus. Eurofot contains a plethora of vehicle
data parameters, including vehicle speed, steering wheel angle, director indicator
activation, and more.

Each record of vehicle data in the data set is annotated with a set of map
attributes. We let the map attributes represent driving contexts, and use them
as labels when training our classifier. The attributes come from a map database
provided by the company HERE ([10]). The annotation has been done automatically
by matching records from Eurofot with records from the map database using the
records’ GPS coordinates. This approach has enabled the use of a large data set.
Previous studies ([5, 2]) have annotated their data sets manually, which is a time
consuming task, limiting the size of the data set.

To investigate what attributes the map database included and evaluate their
suitability with regards to representing driving context concepts, an inventory was
made. The map attributes that was found were divided into two categories: (1)
local driving context attributes, and (2) global driving context attributes. Local
driving context were the attributes defined in fine-grained terms of road objects
and obstacles such as red lights, crossings, and curvature degree. Global driving
context were attributes with wider definitions composed by a characteristic set of
local driving context objects. These attributes are presented in Table 2.1 and Table
2.2 respectively.

2.2 Target classes

In this thesis we are focusing on classifying global driving context. Local context
recognition has been attempted in previous studies ([2]), but is outside of the scope
of this project. From the inventory of the map database we found two categories of
global driving context classes: InCity and Functional Class (Table 2.2). These are

Chapter 2 7
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Table 2.1: Local driving context attributes in the data set.

Context Comment

Slope
Curve Radius
Number of lanes
One-way restriction
Toll booth
Divided Specifies if the road’s lanes are divided.
Ramp
Roundabout
STF Special traffic figure (such as roundabouts with crossings

inside)
Tunnel
Speed restriction
Crossing
Stop sign
Traffic light
Yield sign
Parking

Table 2.2: Global driving context attributes in the data set.

Context Comment

Functional Class More info in section 2.2
InCity More info in section 2.2

described in detail below.

Table 2.3: Some functional classes and the driving context constraints they are
characterized by ([19]).

Functional
Classification

Access Points Speed Limit Number of travel
lanes

Highway Few Highest More
Collector Medium Medium Medium
Local Many Lowest Fewer

Functional classification is a scheme that divides road segments into classes based
on an access-versus-mobility scale. Houses, workplaces, stores, schools, recreational
areas and other destinations attract trips which involve movement through the road
network. To facilitate such trips in a seamless and safe way, the road network is
built such that some roads provide a high level of access (e.g. the road that leads
up to the driveway of a house), while other roads provide high level of mobility (e.g.
a controlled access highway with multiple, divided lanes). Clearly, roads with high
level of access has lower level of mobility, and vice versa. A schema of the functional
class hierarchy is presented in Figure 2.2. It is clear that different Functional Classes
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Figure 2.2: Functional classification organizes road segments on a access-versus-
mobility scale.

describes different driving contexts. A road segment with low level of mobility will
have frequent occurrences of speed limits, crossings, sharp turns, and other driving
context constraints, while a road with high level of mobility will have few occurrences
of such artifacts. Table 2.3 lists some functional classes and the driving context
constraints the characterize them ([19]).

The exact definition and nomenclature of the Functional Classification scheme
differ slightly between countries (see for instance [19] for the U.S. Department of
Transportation’s definitions). However, the main mobility-versus-access concepts
described above are universal. In our data set, roads are organized on a scale of five
different functional classes. In this thesis, however, we have chosen to merge the first
two of these classes, and the third and fourth of the classes, resulting in a set of three
different functional classes. The names we have chosen for these classes are inspired
by the naming scheme used in the US Department of Transportation’s Functional
Class definitions. The classes are enumerated below. Moreover, Figure 2.8 on page
14 provides some visual examples of roads with different functional classes.

• Highway – High level of mobility, low level of access.

• Collector – Medium level of mobility, medium level of access.

• Local – Low level of mobility, high level of access.

Furthermore, the map attribute InCity specifies if a vehicle is located inside
the borders of a city. Clearly, driving in a city introduces constraints that are not
present when driving outside a city. For instance, red lights, roundabouts, crossings,
and other obstacles will be much more frequent inside a city’s borders than outside.
Figure 2.3 presents an example of roads that are part of the InCity class.

2.3 Reducing the data set

Our data set is huge. Not only does it contain a large number of records; it also con-
tains a large number of trips from various traffic contexts and countries. The large
amount of records enables us to utilize complex pattern recognition models that can
describe elaborate classification hypotheses. Also, the fact that the data is collected
from many different locations and countries means that it captures many different
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Figure 2.3: An example of road segments labeled with the driving context class
InCity. Picture taken from Google Earth.

traffic situations. This enables us to build a very general framework. Compare for
instance with the framework in [5], where all data is collected in the area around
the town of Gothenburg. Such a framework would in theory only work in areas that
are similar to Gothenburg. A framework built on our data set, on the other hand,
has the possibility to be used in a more general context.

Clearly, all data in our data set could not be used when building a model. This
would introduce practical difficulties regarding CPU and memory consumption that
is outside the scope of this thesis. Furthermore, in practice we do not need all the
data in the original data set to build a high performing classification framework.
What is required from the data is that it represents the underlying patterns of
all driving context classes in the framework’s output. Much of the data in the
original data set is, however, simply repetition of the same patterns. Consequently,
to decrease the size of our data set, we used the methods described below.

Figure 2.4: The vehicle speed value during a trip. As we can see, the speed recordings
becomes ”inactive” after a while, and stays that way for hours. Trips exhibiting these
patterns were filtered out.

To start with, some of the data from the original data set contained obviously
faulty information and could therefore be filtered out. Specifically, it contained trips
were the vehicle parameters were ”inactive” over long periods of time. For example,
the vehicle speed value was 0, steering wheel angle 0, etc., for periods ranging in
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the order of hours (see Figure 2.4 for an example of such a trip). We assume such
data could be the result of a truck stopping for a break, not turning of the ignition,
which would leave the vehicle’s data logger on. Additionally, some trips were very
short. For programmatic/practical reasons we wanted to avoid such data. Hence,
all trips from the original data set shorter than an hour were filtered out.

Next, after applying the filtering steps described above, we wanted to create
two data sets: one for training a model predicting the InCity-attribute, and one
for training a model predicting the Functional Class. Thus, from the original data
set, we selected two subsets of 120 trips each. The trips were selected such that
all classes were well represented with a large number of records. Much information
from each class enables the model to learn the patterns of the different classes well.

Figure 2.5: The class membership distribution in the Eurofot data set.

Further, we wanted the distributions of classes in the data sets to mirror the
”real” distributions. For instance, trucks operate a much larger portion of time
on highways than inside a city, and accordingly, our data set should contain more
Highway records than city records. This is important since some pattern recogni-
tion models take such information into account (e.g. when calculating the transition
probabilities in the Hidden Markov Model, see Section 4.4). This requirement - that
the class membership distribution in the data sets should mirror the real distribu-
tions - was also one of the main reasons why we needed to create one data set for
each classification problem (the fact that the class distribution of functional classes
in a data set is correct does not mean that the class distribution of InCity classes
is correct). We estimated the real portion spent in each driving context class by
calculating these portions in the full Eurofot data set. These numbers are presented
in Figure 2.5.

Finally, one reason that we have so much data is that it is sampled at a fairly
high rate (10Hz). For our features (see Chapter 3), we don’t need that level of data
granularity to represent the patterns that we are interested in. For instance, in the
case of the vehicle speed feature, we are not interested in the speed changes over the
last tenth of a second, but rather speed changes over some longer period of time. In
other words, many records are redundant and could be filtered out. Therefore, we
decided to downsample the data to a rate of 1Hz. This was done by aggregating
every group of 10 records to a single record having the mean value of the aggregated
10 records (see source code in Section A.4 in Appendix A). Figure 2.6 shows that
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Figure 2.6: No significant piece of information is lost when reducing sample rate
from 10Hz (top) to 1Hz (bottom).

reducing the sample rate to 1Hz does not remove any significant information from
the speed feature.

Figure 2.7: The distribution of country membership in the two data sets. Some
records where not labeled with a country. These records are included in the ”Not
Available” category.

The resulting data sets contained 2565 hours (InCity) and 3250 hours (Functional
Class) of data respectively. The data sets included records recorded in Belgium, the
Netherlands, Germany, Denmark, Sweden, and the UK. The distribution between
these countries is presented in Figure 2.7). The variety of countries in our data set
ensures our framework will be very general.

2.4 Training and test set

To avoid the problem of overfitting, where the pattern recognition model performs
well predicting the data set it was trained on, but performs poorly predicting new,
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previously unseen situations, we created a training set and a test set. We train our
model on the training set, and then test how well it generalizes on the test set. It
is vital that the data in the training and test set are independent of each other.
Simply moving a random set of records from an original set to a test set would not
be sufficient. This, since our data set is sequential and consecutive records are highly
dependent on each other, and thus such a divide would create a training and a test
set that would be very similar. Consequently, such a training/test set divide would
not help against overfitting. Instead, we divided test and training set by trips: one
third of the trips (randomly chosen) was included in the test set and the remaining
two thirds in the training set. This approach ensures independence between the
data in the two sets.
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(a) Highway

(b) Collector Road

(c) Local road

Figure 2.8: Some examples of road segments of different functional classes. Pictures
taken from Google Earth.
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Chapter 3

Selecting the features

In the previous chapter, we described the data set used in this thesis, and the vehicle
data signals it contains. From all these signals, we selected a subset of signals to
use as input to our pattern recognition framework. We call these selected signals
our features. With the exception of one of the models (the HMM, see Section 4.4
and 4.5), we did not, however, use the raw vehicle data signals as features. Instead,
the features were created by applying functions to the raw vehicle data signals. In
this chapter, we describe the feature creation and selection process conducted in this
thesis. We describe how we chose the initial set of vehicle data signals, and how we
applied functions to these signals to create the final features.

Figure 3.1: Speed of a vehicle during a trip between two European cities. The
records are grouped by functional class, and then sorted chronologically in each
group. We can see that, in general, the speed is lower and the variation of the
speed is higher for the Local functional class, the other way around for the Highway
functional class, and somewhere in between for the Collector class.

For a pattern recognition model to perform well, good features are vital. Good
features distinguish driving context classes from each other, i.e. there is a strong
dependency between the feature and the driving context class. To select a good set
of features for our patter recognition framework, as a first step, we selected an ini-
tial set of seven vehicle data parameters in the data set from which we would create
our features. The set was the same as the one that was used in a previous study
classifying driving context ([5]), and included the vehicle data parameters vehicle
speed, steering wheel angle, acceleration pedal position, gear, direction indicator, en-
gine speed and brake pedal position. All these parameters are intuitively dependent
on the current driving context. For instance, frequency of crossings, stop lights,
etc., affects the vehicle speed, the brake pedal position, and frequency and degree
of curvature affects the steering wheel angle. Figure 3.1 visualizes the dependency
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between one of the features, the vehicle speed, and the driving context classes from
the functional class problem.

3.1 Features for sequential data

Driving context data is sequential, that is, values of consecutive records are highly
dependent on each other. For instance, since (global) driving context classes changes
in the order of minutes or hours, if our data is sampled at 1Hz, the probability that
two consecutive records belong to the same class is very high. Thus, when classifying
a record x0 recorded at time t0, it is good if we use features with info on vehicle data
values from a period surrounding t0. One way to achieve this is to define a time
window w including the records surrounding x0, and extract some aspect of these
records. In this thesis we are using three such aspects: the mean (µ), the variance
(σ2) and maximum (max).

Figure 3.2: The mean function (µ) can be used to remove short term feature vari-
ations. Here the full blue line is the vehicle speed and the dotted line is the rolling
mean of the speed.

The mean (µ) is defined as follows (N denotes the number of records we apply
the function on):

µ =
1

N

N∑
i=1

xi (3.1)

The rationale behind using the mean as a feature aspect can be described with
the following example. Consider two driving context classes: Highway, which is char-
acterized by high speeds, and City, which is characterized by low speeds. Changes
between these contexts occurs rarely; at the least in the order of minutes. Now, a
vehicle is driving at a low speed in class City. During a short period of time, in the
order of seconds, the vehicle accelerates to a high speed, and then returns to a low
speed. Since we are dealing with contexts that do not change frequently, we do not
want the acceleration maneuver of the vehicle to be classified as Highway. We can
filter such short time period changes out by classifying context based on the mean of
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the speed during some time window, rather than the momentous speed (see Figure
3.2).

Figure 3.3: In this case presented in this figure, it will not be sufficient to measure
the mean speed over the time window w to decide whether x0 should belong to
driving context class A or B. However, the variance in speed over time window w
will be different for class A and B.

The variance (σ2) is defined as follows:

σ2 =
1

N

N∑
i=1

(xi − µ)2 (3.2)

The variance is a measurement on how much a parameter varies over some time
period. The following example describes why such a measurement could be useful
in classifying driving context. Consider again two driving context classes: Class A
and Class B. Class A has a high frequency of road infrastructure obstacles such as
red lights, crossings, etc., but no speed limits. Class B, on the other hand, contains
few road infrastructure obstacles, but a speed limit of 50 km/h. Class A generates
a speed pattern with high variance, while Class B generates a speed patterns with
a constant value of 50 km/h. To distinguish if a record x0 should belong to Class A
or Class B, the mean speed feature is not sufficient. Consider for instance the case
presented in Figure 3.3. For record x0 in Figure 3.3, the mean speed feature would
not be able to place x0 in Class A or B. However, the speed variance feature would
be able to do so.

The maximum aspect was designed exclusively for the steering wheel angle fea-
ture, and is defined as the maximum value the feature reached during some time
period. The following example explains the patterns this feature is meant to cap-
ture. Say that we have a class City, where segments of straight road are mixed with
sharp, 90 degree turns. Then say that we have a class Rural road, which contains
segments of road with frequent turns of low curvature degree. It is not certain that
neither the mean nor the variance aspects would be able to separate vehicle data
between these two classes. However, the maximum aspect would succeed in doing
this.
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The mean and variance aspects were applied to all the vehicle data signals in
the initial subset, with one exception: the variance aspect was not applied to the
direction indicator signal since this did not make sense. Furthermore, the maximum
aspect was only applied to the steering wheel angle feature. Additionally, before
this, some processing was done to the steering wheel angle feature and the direction
indicator feature. Firstly, the steering wheel angle feature was originally encoded by
positive values for left turning and negative values for right turning. We were not
interested in the direction of the turning, and for that reason, the absolute value
was applied on the steering wheel angle feature. Secondly, the direction indicator
feature was encoded with the value 1 for left indicator and 2 for right indicator.
Again, we were not interested in the direction, and therefore all active occurrences
of direction indicator were normalized to the value 1.

Figure 3.4: A Logistic Regression model was trained to classify the Functional Class
and the InCity problems using features with window sizes ranging from 1 to 45
minutes. A window size of 6 minutes yielded a high prediction accuracy for all the
classes in both the classification tasks.

To find the optimal value on the size of the time window w used when applying
the aspects, the following experiment was conducted. A set of possibly optimal
window size values was selected as the range of integer values between 1 and 9
minutes, and every fifth minute between 10 and 45 minutes (i.e. 10, 15, ..., 45
minutes). For all of these window sizes, a model was trained to predict the Functional
Class and the InCity problems, and the per-class prediction accuracy was computed
using four-fold cross-validation in the training set. The experiment was done both
using a Logistic Regression model (see Section 4.2) to find the optimal window size
for such a model, and using an SVM (see Section 4.3) to find the optimal window size
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Figure 3.5: An SVM model was trained to classify the Functional Class and the
InCity tasks using features with window sizes ranging from 1 to 45 minutes. The
window sizes 3 minutes (Functional class task) and 7 minutes (City task) yielded
high prediction accuracies for all the classes in the respective problem.

for such a model. The result, presented in Figures 3.4 (Logistic Regression model)
and 3.5 (SVM), shows that for the Logistic Regression model, a window size of 6
minutes yields a high prediction accuracy for all the classes in both the problems.
Therefore, 6 minutes was the window size used when creating the final features for
this model. Furthermore, for the SVM model, a window size of 3 minutes yielded a
relatively high prediction accuracy in all the classes for the Functional Class task,
and a window size of 7 minutes yielded high accuracies in the City task. Therefore,
these were the window sizes chosen for the features for this model.

3.2 Removing redundant features

Clearly, many of the features in our initial feature set exhibits the same behavior,
i.e. they display similar patterns given the different classes. For instance, when
driving on the highway, the speed and gear vehicle data signals will generally have
high values, and the steering wheel angle and direction indicator signals have low
values. When driving in the city, it will be the other way around. This indicates
there is a possibility that some features do not provide any extra information, and
therefore can be removed. To test if this was the case, the following experiment was
conducted. A model was trained to predict the InCity and the Functional Class
tasks, starting with a feature set containing only the mean vehicle speed. Per class
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accuracy was measured using four-fold cross-validation on the training set. Then,
one by one, all of the remaining features were added to the feature set, a new model
was trained, and accuracy was measured. The feature that yielded the highest Local
Road/InCity=True class prediction accuracy together with the mean speed feature
was kept in the set of included features, and the experiment was run again, now
starting with the two selected features. This was repeated until all features had
been added. The experiment was done both using a Logistic Regression model
to find the redundant features for that model, and an SVM to find that model’s
redundant features.

Table 3.1: Final feature set for the InCity problem using the Logistic Regression
model

Feature Aspects Window size (minutes)

Vehicle speed µ 6
Acceleration pedal position µ 6
Gear µ, σ2 6
Engine speed µ 6

Table 3.2: Final feature set for Functional Class problem using the Logistic Regres-
sion model

Feature Aspects Window size (minutes)

Vehicle speed µ 6
Acceleration pedal position µ, σ2 6
Gear µ 6
Engine speed µ 6
Direction indicator µ 6
Steering wheel angle µ 6
Brake pedal position µ 6

Table 3.3: Final feature set for City problem using the SVM model

Feature Aspects Window size (minutes)

Vehicle speed µ, σ2 7
Acceleration pedal position µ, σ2 7
Direction indicator µ 7
Engine speed µ 7
Brake pedal position σ2 7
Steering wheel angle σ2 7

The results from this experiment are presented in Figure 3.6 on page 23. For
the Functional Class problem using the Logistic Regression model, after adding the
steering wheel angle mean feature, Local Road accuracy as well Highway accuracy
falls. Therefore, for this problem, we used the set of features that was included
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Table 3.4: Final feature set for Functional Class problem using the SVM model

Feature Aspects Window size (minutes)

Vehicle speed µ, σ2 3
Acceleration pedal position µ, σ2 3
Gear µ 3
Direction indicator µ 3
Steering wheel angle σ2, max 3

up until then. For the InCity problem using the Logistic Regression model, after
adding the acceleration pedal position mean feature, the InCity=True accuracy
stops increasing. Thus, for this problem, we used the set of features that was
included up until then.

Moreover, for the Functional Class problem using the SVM, after adding the ac-
celeration pedal variance feature, the Collector and Local accuracies goes down, and
the Highway accuracy stops increasing. Consequently, we used the features added
up until then for this task. For the InCity probelm, after adding the steering wheel
angle variance feature, the InCity=True accuracy starts decreasing. Therefore, for
this task, we used the features added up until then.

This left us with the feature sets presented in Tables 3.1 (InCity, Logistic Re-
gression), 3.2 (Functional Class, Logistic Regression), 3.3 (InCity, SVM), and 3.4
(Functional Class, SVM) respectively. Note that for the Baseline model (see Section
4.1), we used that same feature set as for the Logistic Regression model. Fur-
thermore, for the HMM model (see Section 4.4), we did not apply sliding window
functions to the vehicle signals to create features, but used the raw vehicle signals.
This choice is described more thoroughly in Section 4.5.

3.3 Feature scaling

The values of the features we use ranges over different orders of magnitude. For
instance, the mean speed feature ranges over about 0 km/h to 100 km/h, while the
steering wheel angle feature ranges between 0 rad and 10 rad. Some of the pattern
recognition models we use, that is Logistic Regression and SVM (see Chapter 4),
utilize a method called gradient descent to learn the vehicle data patterns of the
different driving context classes. However, having features on different scales has
some negative consequences for the gradient descent method. First, it makes the
learning process of the models very slow, and second, features with large values might
dominate the learning process, ignoring the potentially important information in the
features on smaller scales.

One popular method for overcoming this problem is feature scaling. Feature
scaling is a procedure which ensure that all features are on the same scale. The
feature scaling method we used in this thesis was so called standard scaling, that
is, we transform all the values of a feature such that the mean of the values of all
the samples in the data set is 0, and the variance is 1. This is done by subtract-
ing the feature mean and dividing by the feature standard deviation (formulated
mathematically in Equation 3.3 below).
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x′ =
x− µ
σ

(3.3)

Here, x is the feature value before applying the standard scaling formula and x′

is the feature value after applying the formula. Furthermore, µ denotes the mean
value (see Equation 3.1) of the feature and σ the feature’s standard deviation. The
definition of the standard deviation is presented below.

σ =
√
σ2 =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3.4)

Here, N is the number of records we calculate the standard deviation over, and
xi is one such record.
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Figure 3.6: Features were added to a feature set one by one, and per class prediction
accuracy of a model trained on this feature set was measured. This was done using
both a Logistic Regression model and an SVM, on both the classification tasks.
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Chapter 4

Models

There are a variety of pattern recognition models with different characteristics. Mod-
els differ in complexity (i.e. how elaborately they can describe a classification hy-
pothesis), interpretability (i.e. how straightforward it is to understand the theory
behind the model and what the effect will be when tweaking different model param-
eters), scalability (i.e. how well the model performs as we increase the number of
records in the data set), etc. In this chapter, we evaluate a set of different models
with respect to the goals of this thesis.

4.1 Baseline model

The first model we considered in this thesis was a very simple baseline model. The
purpose of this model was to produce a benchmark measurement that the more
complex models could be compared to. Such a comparison yields an understanding
of how much value the additional complexity in the other models adds.

Figure 4.1: The baseline model defines a set of ”beacon”-points (circles in the figure),
one for each class, and classifies records based on what beacon point they are closest
to. In the figure, crosses are classified as one class and pluses as another class. X1
and X2 denotes two different features.

The idea with the baseline model, visualized in Figure 4.1, was to define a set of
”beacon”-data points bk, one for each driving context class k. A record s would then
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be classified according to which of the beacon-data points it was closest to, using
the Euclidian distance d(bk, s) (see Equation 4.2) as the distance measurement.
Accordingly, the mathematical formulation for the model was:

k = argmink d(bk, s) (4.1)

The Euclidian distance d is defined as:

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (4.2)

Here, n is the dimension on the p and q vectors, which in our case would be the
number of vehicle data features.

The coordinates of the beacon data point for class k were found by calculating
the mean over all records belonging to k for each feature. Furthermore, the method
for calculating confidence probabilities was done as follows. When the beacon data
points were found, we predicted all the records on the training data set. We then
calculated how high ratio of the data points in each class was correctly classified.
For instance, if 70 % of the points belonging to class Highway was actually classified
as Highway, we said the model had a 70 % confidence probability for all future
Highway predictions.

The Baseline model was implemented using the Python programming language.
The source code can be found in Section A.1 of Appendix A

4.2 Logistic Regression

Figure 4.2: The Logistic Regression hypothesis representation P (Y = 1|X,θ) =
1/1 + exp(−(θ0 + θ · X)). In the figure, sigm(z) denotes the sigmoid function
sigm(z) = 1/1 + exp(−z), and z denotes the dot product of the record X and the
weights θ plus the bias term θ0, z = θ0 + θ ·X. We can see that sigm(z) is larger
than 0.5 (resulting in classification of class 1) when z is larger than zero.

One of the most widely used pattern recognition models in both industry and
academia is the Logistic Regression model. The classification hypothesis hθ(X) of
the Logistic Regression model is defined as follows:

hθ(X) =
1

1 + exp(−(θ0 + θ ·X)
(4.3)
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The Logistic Regression model uses the sigmoid function sigm(x) = 1/1 + e−x

to ensure that the output of the model will be a number between 0 and 1. This
enables us to interpret the output of the model as a probability. We say that:

P (Y = 1|X,θ) =
1

1 + exp(−(θ0 + θ ·X)

P (Y = 0|X,θ) = 1− P (Y = 1|X,θ)

(4.4)

In Equation 4.4, Y is the class and X is a record that we want to classify.
Furthermore, θ is a set of weights that describes the influence of each attribute in
X. For instance, if the attribute vehicle speed has a large influence on the probability
that a record belongs to class 1, the weight corresponding to vehicle speed should
have a large (absolute) value. Furthermore, θ0 is the so called intercept or bias term.
If the model P (Y = 1|X,θ) outputs a probability larger than 0.5, the record will
be classified as class 1, and if it outputs a probability less than (or equal to) 0.5
it will be classified as class 0. The Logistic Regression hypothesis representation is
visualized in Figure 4.2.

Figure 4.3: Logistic regression can be interpreted as defining a hyperplane θ0+θ·X =
0 separating records into two classes. Here, records classified as Y=1 are marked by
plus-signs, while records classified as Y=0 are marked by minus-signs. The figure is
originally from [30].

Looking at the visualization in Figure 4.2, it becomes clear that P (X = 1|X,θ)
is greater than 0.5 when θ0 +θ ·X is greater than zero. In other words, the classifier
will predict Y=1 whenever θ0 + θ ·X is greater than zero, and Y=0 if θ0 + θ ·X is
less than (or equal to) zero. From this follows that θ0 +θ ·X = 0 can be interpreted
as a hyperplane in some n-dimensional space (where n is the number of features),
separating records into classes (visualized in Figure 4.3). Records X yielding a value
θ0 +θ ·X > 0 will be on one side of this hyperplane and records X’ yielding a value
θ0 + θ ·X’ ≤ 0 will be on the other side of that hyperplane.

26 Chapter 4



Driving environment classification using pattern recognition

To find the parameters θ describing the hyperplane, we define the conditional
log likelihood function, J(θ):

J(θ) =
1

m

m∑
i=1

cost(hθ(x
(i)), y(i)) +

λ

2
pen(θ) (4.5)

Here, m is the number of records in our data set. Furthermore, cost(hθ(x
(i)), y(i))

is a function that defines a penalty for the output our model makes for record x(i),
given the true class of the record y(i). We define cost(hθ(x

(i)), y(i)) as follows:

cost(hθ(x), y) = −[ y log hθ(x) + (1− y) log(1− hθ(x))] (4.6)

We can see that if the true class of a record is y = 1, the closer the value hθ(x)
produces is to zero, the larger the penalty will be. Also, if the true class of the
record is y = 0 there will be a high penalty if hθ(x) produces a value close to 1.
Accordingly, we want the cost to be as small as possible, and find the optimal values
of θ by minimizing the conditional log likelihood function:

θ′ = argminθ J(θ) (4.7)

Furthermore, the pen(θ)-term in the conditional likelihood function (Equation
4.5) is a function that puts a penalty on having too high values on the coefficients
in θ. In this thesis we use the following penalty function (L2-regularization):

pen(θ) =
n∑
j=1

θ2j (4.8)

Figure 4.4: Larger (absolute) values on coefficients causes hθ(x) ≈ 1 for more of the
records belonging to class 1, and hθ(x) ≈ 0 for more of the records beloning to class
0, resulting in a lower cost of the cost function. In this figure, a symbolizes the sum
of the coefficients. The figure is originally from [30].

In Equation 4.8, n is the dimension on the θ vector. The reason we have the
pen-term is that the cost function favors large (absolute) values on the coefficients
in the θ vector. For instance, according to the cost function, for all the records
belonging to class 1, we want hθ(x) ≈ 1. The higher coefficient values we use, the
closer will hθ(x) be to one for records close to the decision boundary (Figure 4.4
visualizes this). Minimizing the cost function thus leads to large values in θ vector.
However, when using to large values on coefficients in θ, there is a risk of focusing
too much on the training data, leading to overfitting on the training data set and
higher generalization error. The pen term prevents this from happening, putting a
penalty on high θ coefficient values. This method, penalizing to much focus on the
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training set, is called regularization. How much we want the penalty to influence
the likelihood function is controlled by the λ parameter. A high value on λ results
in lower values on the weights, and a model which is less specialized on predicting
the records of the training set.

The conditional log likelihood function is a convex function, which is a very
nice property since we do not risk getting stuck in local minima when optimizing
it. However, it has no closed form solution, so we find the minima using gradient
descent. Specifically, in this thesis we use the Stochastic Averaged Gradient (SAG)
descent approach [25]. This since we train our model on very large data sets, and
the SAG method is fast on large data sets.

Figure 4.5: In the one-against-all method, we train one classifier (θ) per class.
When predicting a record, we calculate the probability for each class using each
classification boundary, and chose the class that had the highest probability. The
figure is originally from [30].

Logistic Regression can be extended to predicting a set of multiple classes using
the one-against-all method. In this method, we train one classification boundary
per class, and then combine all of the boundaries to produce our final classifier
(see Figure 4.5). When predicting a record, we calculate the probability for the
record for each classification boundary, and chose the class that yielded the highest
probability:

y∗ = argmaxy P (Y = y|X) (4.9)

In both our data sets, there is one class which is more common than the others.
In the Functional Class problem, there is a ratio of approximately 11:1:1, with the
Highway class occurring about elven times as often as the other classes. Furthermore,
in the InCity problem, the InCity=False class is the most common with a 7:2 ratio
(see Section 2.3). Such class imbalance can lead to a model that produces high
classification accuracy for the common class, but low accuracy for the less common
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classes. Basically, when training the model, since there are many more samples in
the common class, the gain of predicting these samples correctly is favored over the
penalty of misclassifying the uncommon classes.

In this thesis, we wanted a model that could predict all classes fairly well. To
achieve this, we weighted training records with a weight equal to the inverse of the
training set frequency of the class. This results in a higher penalty in misclassifying
the uncommon classes, and thus, leads to a model that will be better at predicting
these classes. However, prediction accuracy for the common class and overall predic-
tion accuracy might suffer. This is a tradeoff we are willing to make. Furthermore, a
consequence of class weighing is that the output of the model P (Y |X) represents the
a-posteriori probability assuming that classes are equally common. Prior knowledge
of class distributions can be included by correcting the intercept θ0, for instance
using the method suggested by King and Zeng ([15]). However, such measures have
been outside the scope of this thesis.

The Logistic Regression model was implemented using the Python programming
language and the Scikit-learn library [20] (see full source code in Section A.2 of
Appendix A)

4.3 SVM

Figure 4.6: An SVM defines a hyperplane which maximizes the (minimum) margin
γ to records in the two classes in the data set. The figure is originally from [30].

Another widely used pattern recognition model is the Support Vector Machine
(SVM). The SVM has some similarities to the Logistic Regression model: it is a
binary classifier which defines a hyperplane separating data points into two classes.
The hypothesis representation of the SVM hθ(X) is defined as:

hθ(X) = θ0 + θ ·X (4.10)

We classify the record X as class 1 if hθ(X) is greater than zero and as class 0 if
hθ(X) is less than (or equal to) zero.

The SVM and the Logistic Regression model differ in the way that they use
different cost functions to find the optimal hyperplane. The idea with the SVM is
to find the hyperplane that maximizes the minimum distance (margin, γ) to records
of each class (see Figure 4.6). This intuitively minimizes generalization error. It can
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be shown that maximizing the margin is done by minimizing the squared norm of
the θ vector ([17]). This is used in the cost function J(θ) for the SVM, called Hinge
loss, which is defined as follows:

J(θ) = C

m∑
i=1

[ y(i)cost1(hθ(X)) + (1− y(i)) cost0(hθ(X))] +
1

2
‖θ‖2 (4.11)

Here, m is the number of records in the data set. Furthermore, cost0 and cost1
are two functions that specify the cost of misclassifying a record belonging to class
1 and class 0 respectively. Specifically, they are defined as follows:

cost1(z) = [−z + 1]+ (4.12)

cost0(z) = [z + 1]+ (4.13)

Here, [z]+ is defined as:

[z]+ = max(z, 0) (4.14)

As we can see, if a record belongs to class 1, the smaller value we produce for
θ0 +θ ·X, the larger will the cost be, and the other way around if the record belongs
to class 0. The C parameter in the hinge loss function specifies at what level we
should take this cost into account. Hence, a high value on C forces the SVM to fit
the training set very well, while a low value on C implies higher regularization (the
inverse to the λ-parameter in the Logistic Regression model).

Finding the optimal hyperplane is done by minimizing the Hinge loss function:

θ′ = argminθ J(θ) (4.15)

Just as the conditional log likelihood function of the Logistic Regression model,
the Hinge loss function is convex so it has no local minima. It has no closed form
solution, and is thus solved using gradient descent.

Figure 4.7: Using a kernel function Φ(x) we can map a feature vector to a higher
dimensional feature space. This allows a linear hyperplane to perfectly separate data
that was not linearly separable in the original feature space. The figure is originally
from [30].
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One important characteristic of the SVM is that it can be used to create non-
linear hypotheses. That is, we can separate data points with non-linear boundaries.
We accomplish this by using so called kernel functions to map features into a higher
dimensional space. This lets us separate points with our hyperplane that was not
linearly separable in the original feature space (see figure 4.7).

There are a set of different kernel functions that are commonly used. For in-
stance, there is the Radial basis function (RBF) kernel (also known as Gaussian
kernel), the polynomial function kernel, etc. Which kernel that is best suited for a
particular pattern recognition problem depends on the nature of the data, and is
usually found by comparing the prediction accuracy for different kernels using cross
validation.

SVM is a binary classifier, but can be extended to the multi-class case by using
the one-against-all method (same as for Logistic Regression, see Section 4.2).

Given a record, the SVM model outputs the dot-product between that record and
the vector orthogonal to the decision boundary hyperplane. This means that points
far from the decision boundary will generate a high-valued output, while records
close to the hyperplane will generate a low-valued output. Hence, the output can be
interpreted as a score on how confident the model is that the record belongs to that
class. However, this output score is not a probability. To transform the output to a
probability, we can use a method called Platt scaling (binary case [21], multi-class
case [29]). The idea with Platt scaling is that we fit a Logistic Regression model to
the output of the SVM:

P (Y = 1|X) =
1

1 + exp(A+B ∗ hθ(X))
(4.16)

Here, hθ(X) is the output of the SVM. The Logistic Regression model is fit using
class labels from the training set the SVM model was trained on. Platt scaling can
be used for many pattern recognition models, but as it turns out, it is particularly
well suited for SVMs [18].

Just as in the case of the Logistic Regression model, the SVM model is affected
by that we have an unbalanced data set. We solved this using the same record
weight method that was used in the Logistic Regression model.

The SVM model was implemented using the Python programming language and
the Scikit-learn library [20]. Source code can be found in Section A.2 of Appendix
A.

4.4 Hidden Markov Model

When dealing with sequential data, one of the most popular models is the Hidden
Markov Model (HMM). The HMM is simple enough that it can estimate parameters
and classes efficiently in a reasonable time frame, but rich enough that it can actually
be used for many real world applications. The HMM is defined by the Markov graph
presented in Figure 4.8, with the form of what is called a Trellis diagram. Here,
z1, ..., zn are a set of random variables called Hidden Variables, and x1, ..., xn are
a set of random variable called Observed variables. The hidden variables represent
a state, or in a classification problem, a class. The output of the model is the
probabilities for the different classes for each zt. The model is often interpreted such
that z1 denotes the class at time 1, z2 the class at time 2, etc. The observed variables
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represent some value dependent on the hidden variables. By assigning values to the
observed variables we can calculate the probabilities of the hidden variables. When
applying the HMM to the task of this thesis, xt represents the feature vector for
record t that we want to classify, and zt represents the class the model outputs for
record t.

Figure 4.8: An HMM is defined by the Markov graph with the form of the graph
in this figure, also known as a Trellis diagram. Here, z1, ..., zn represents hidden
variables and x1, ..., xn observed variables. In the context of this thesis, xt represents
the feature vector for record t that we want to classify, and zt represents the class
the model outputs for record t.

From the graph in Figure 4.8 follows that the joint probability distribution of all
the random variables, p(z1, ..., zn, x1, ..., xn) can be factorized as follows:

p(z1, ..., zn, x1, ..., xn) = p(z1)p(x1|z1)
n∏
k=2

p(zk|zk−1)p(xk|zk) (4.17)

Here, n denotes the number of states. Furthermore, Equation 4.17 is often
divided in to three terms that parametrizes the HMM:

• The Transition matrix T (i, j) = P (zk+1 = j|zk = i), i, j ∈ 1, ...,m. This
describes the probability of changing from class j to class i.

• The Emission probabilities εi(x) = p(x|zk = i), i ∈ 1, ...,m.This describes the
probability of a certain feature vector x given class i.

• The Initial distribution π(i) = P (z1 = i), i ∈ 1, ...,m. This describes the
probability of the first class in the Markov chain being class i.

Here, m denotes the number of classes. Writing Equation 4.17 in terms of these
parameters we get:

p(z1, ..., zn, x1, ..., xn) = π(z1)εz1(x1)
n∏
k=2

T (k − 1, k)εzk(xk) (4.18)

To classify a set of consecutive records (observed variables) x, we want to find
the most probable sequence of hidden variables z for that sequence of records:

z∗ = argmaxz p(z|x) (4.19)
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Here, z denotes all Zs z1:n and x all Xs x1:n. We solve this using the Viterbi
algorithm ([9]).

The HMM-model was implemented using the hmmlearn library [12]. The source
code can be found in Section A.3 of Appendix A.

4.5 Comparing models

As mentioned earlier in this report (see Section 1.3), the criteria we have set for our
models are:

1. It should be possible to interpret the model’s output in terms of probabilities
describing how confident the model is that the predicted class is correct.

2. The classification accuracy, i.e. the number of correctly predicted records on
the test set, should be as high as possible.

3. The model should be as interpretable as possible.

In this chapter we have described four models who all fulfil the first requirement
of producing output probabilities. However, the probability interpretation of the
Baseline model is a bit more primitive than that of the other models. Specifically,
it produces the same probability for all records with the same class membership.
For example, intuitively, if a record has the speed 150 km/h we can be more certain
that it belongs to the highway driving context class than if the record has a speed
of 80 km/h. This idea is reflected in the probability output of all the models except
from the Baseline model.

Furthermore, we want to create a model that can achieve a high prediction
accuracy. Which model will produce the highest accuracy depends on the nature of
our data, and we will see the answer to this in Chapter 6 where results from applying
the classification tasks of this thesis to the models is presented. However, what
can be concluded from the model review in this chapter is that the models differ
in complexity, and therefore have different possibilities of reaching high accuracy
predictions.

The Baseline model and the Logistic Regression model, for instance, can only
predict linear decision boundaries1, and thus, if the data is not linearly separable,
does not have the ability to reach as high accuracy as the SVM and HMM models,
which can describe non-linear decision boundaries. Figure 4.9 visualizes the idea of
linear and non-linear decision boundaries.

Moreover, comparing the Logistic Regression model and the Baseline model, we
can see that the Logistic Regression model, using the conditional log likelihood func-
tion to find a decision boundary, has the ability to find a better decision boundary
than the Baseline model. The following example explains why.

Consider a data set A with records from two different classes, and where all
records belonging to a class are ”equally” distributed around some mean for that
class. Such a data set is presented in Figure 4.10a. The Baseline model will generate

1For the record, it is possible for a Logistic Regression model to define a non-linear decision
boundary by mapping features to a higher dimensional space, for instance using a kernel function.
However, this cannot be done in a computationally efficient way as it can in the case of the SVM,
and therefore, it is ruled out as an option in this thesis.
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(a) Linear classifier (b) Non-linear classifier

Figure 4.9: A linear classifier (a) such as Logistic Regression cannot predict a data
set which is not linearly separable perfectly1. A non-linear classifier (b) such as
kernelized SVM, however, can.

beacons located in the middle of the data for both classes, and the decision boundary
separating records will be placed just between the beacons. In the case of this data
set, the Logistic Regression model finds the same decision boundary as the Baseline
model, producing the same prediction. Then, consider a data set B, where data
is not equally distributed around some mean per class. Instead, the data contain
some outlier records. Such a data set is presented in Figure 4.10b. In this scenario,
the outliers affect the positioning of the Baseline model’s beacons, resulting in a
suboptimal placement of the decision boundary. The Logistic Regression however,
which calculates the decision boundary by maximizing the conditional log likelihood,
finds the optimal decision boundary, achieving a better prediction result than the
Baseline model.

When it comes to interpretability, all the models we have presented are rather
straight forward. It is easy to interpret the vector of weights θ specifying the im-
portance of each feature, and to understand what it means to modify the λ and
C-parameters and how it affects the model and its prediction. Furthermore, the
HMM has a very clean probabilistic definition, and we can see how emission and
transition probabilities affect the model. One thing that might stand out slightly is
the SVM’s kernel function. The SVM’s results can differ depending on what kernel
function we use, and it is not always clear why one kernel function outperforms
another.

One thing that makes the HMM stand out is its ability to directly handle se-
quential data. The data we use is highly sequential and to create a good classifier
this fact has to be taken into account. For the Baseline, Logistic Regression and
SVM models, this is handle by creating features that include information from some
time window surrounding a record x0 that we want to predict (see Section 3.1). For
instance, we apply a rolling mean on raw vehicle data to stabilize the predictions of
the model, filtering out short term changes in vehicle signal values. However, the
drawback with this approach is that to achieve an optimal prediction, we want to be
able to detect short term variations. Consider for instance the situations presented
in Figure 4.11 and 4.12. In Figure 4.11, a vehicle is driving at a slow speed in Class
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(a) Data set A. Since records for a class are
”equally” distributed around some mean, the
Baseline model and the Logistic Regression
model produces the same decision boundary.

(b) Data set B. Data is not equally dis-
tributed around some mean per class. The
Logistic Regression model can find the op-
timal decision boundary but the baseline
model cannot.

Figure 4.10: Two data sets resulting in different predictions for the Baseline model
and the Logistic Regression model. Records from one class is denoted with pluses,
and records from the other class is denoted with minuses. The blue and red records
are the Baseline model beacons for each class. The decision boundary is denoted
with a dashed/dotted line.

A, and then rapidly increases its speed changing to Class B. With the mean applied,
the rapid change in speed will not be visible to the model, but the speed change
will be ”spread out”, making it harder for the model to correctly predict when the
class change takes place. Furthermore, in Figure 4.12, a vehicle is driving at a high
speed in Class B, slowing down for a short while changing class to Class A, and
then going back up to a high speed and Class B again. When applying the rolling
mean on this, the speed change almost disappears, making it difficult for the model
to predict the situation correctly.

The HMM, on the other hand, does not use features with information from some
time window. It achieves stability in its predictions by the use of the transition
probabilities. Since it makes predictions on raw vehicle data values, it has the
potential to succeed better than the other models, for instance when predicting the
scenarios depicted in Figure 4.11 and 4.12.

4.6 Additional models

In addition to the four aforementioned models, two models were considered but ruled
out. Firstly, the Naive Bayes model is a popular pattern recognition model which
builds on Bayes Theorem. An assumption of conditional independence between
features makes computing a probability distribution over a set of classes conditional
to a vector of features very fast and scalable. Additionally, the direct connection
to Bayes Theorem makes the Naive Bayes model very interpretable. However, an
implication of the conditional independence assumption, which in the problem of
this thesis is unrealistic (for example, given driving context class City, the vehicle
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Figure 4.11: A vehicle is driving at a slow speed (full blue line) in Class A (dotted
red line), and then rapidly increases its speed changing to Class B. With the mean
applied (dashed blue line), the rapid change in speed will not be visible to the
model, but the speed change will be ”spread out”, making it harder for the model
to correctly predict when the class change takes place.

Figure 4.12: A vehicle is driving at a high speed (full blue line) in Class B (dotted
red line), slowing down for a short while changing class to Class A, and then going
back up to a high speed and Class B again. When applying the rolling mean (dashed
blue line), the speed change almost disappears, making it difficult for the model to
predict the situation correctly.

speed is not independent of the steering wheel angle), is that the Naive Bayes models
is not a good estimator, i.e. it is not good at producing prediction probabilities ([18]
describes this in more detail). According to the requirement of this thesis saying
that the model should be able to produce output probabilities, the Naive Bayes
model was ruled out. Furthermore, one of the models we do use, the HMM model,
is a generalization of the Naive Bayes model. Since a HMM model can describe any
Naive Bayes model, the Naive Bayes model would have been redundant.

Secondly, a Neural Network is a model which is widely used for different pattern
recognition problems. Specifically, it has been used in previous studies ([5]) to clas-
sify driving context. However, it can be argued that neural networks are difficult to
interpret. For instance, in contrary to the Logistic Regression and the SVM models,
which is defined by a one-dimensional vector of weights (θ), a Neural Network is
defined by a network of nodes, each with its associated weights. The interpretation
of the weight vector in the Logistic Regression and SVM cases is straightforward;
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there is one weight per feature specifying the importance of that feature. However,
in the Neural Network case, weights describe the combinations between the nodes in
the network and cannot be associated to a specific feature. It is also not straightfor-
ward how the design of the structure of the network (number of hidden layers and
hidden nodes) should be interpreted and how a specific structure affects the result.
Furthermore, the method used to calculate the weights in the Logistic Regression
and the SVM models, that is gradient descent on a convex function, is simpler to
conceptually grasp than the back propagation algorithm used in the neural network
model.

Because of these considerations, we chose to not include a neural network in
this thesis. Furthermore, the SVM model we use has the ability to define non-
linear classification hypotheses. Therefore, in terms of ability to represent complex
classification hypotheses the gains of including a Neural Network as well would not
be significant.
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Hyper-parameter selection

Figure 5.1: λ parameter selection for the Logistic Regression model. For both
the classification problems, λ-values of 1000 and below yielded a high prediction
accuracy for all the classes.

Two of the models, the Logistic Regression model and the SVM model, are
defined by hyper-parameters which affects the results the model produces. For
instance, the Logistic Regression model has the λ parameter defining the degree of
regularization in the model (see Section 4.2). Optimal hyper-parameters values for
each model were found by doing four-fold cross-validation on the training set, and
selecting the hyper-parameter value that yielded the highest prediction accuracy.
However, selecting hyper-parameter value based on overall prediction accuracy was
not sufficient. This, since in both the Functional class and the InCity classification
problems there is one class which is more common than the others (the Highway class
and the InCity=False class respectively). In such cases, a model can reach a high
overall accuracy by focusing on predicting the common class very well, neglecting
the less common classes. For instance, if a model predicted all records as Highway,
it would reach an overall accuracy of about 85 % in the Functional class problem,
but 0 % accuracy for the Collector Road and Local Road classes. Clearly, such a
classifier is not very practical. To avoid training such a classifier, and instead create
a classifier with the ability to predict all classes relatively well, we found the optimal
hyper-parameter values by evaluating the model’s class specific accuracies.
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5.1 Logistic Regression

The Logistic Regression model has one hyper-parameter, λ, specifying the degree of
regularization in the model (see Section 4.2). The optimal value for the λ parameter
was found by running cross-validation with λ-values on a logarithmic scale between
0.01 and 106 (i.e. 0.01, 0.1, ..., 106). This test is presented in Figure 5.1. For both
the classification problems, λ-values of 1000 and below yielded a high prediction
accuracy for all the classes. Thus, λ = 1000 was chosen for the final models.

5.2 SVM

Figure 5.2: Kernel and C-value selection for the SVM model. For both the classifi-
cation tasks, the RBF-kernel and a C-value of 0.1 yielded a high prediction accuracy
for all the classes.

The SVM model has two hyper-parameters: (1) the C parameter specifying the
penalty for misclassifying a record, and (2) what kernel function to use (see section
4.3). The optimal values for these parameters was found by testing C values on
a logarithmic scale between 10−5 and 10, and two different kernel functions: the
RBF-function and the polynomial function with degree three. This test is presented
in Figure 5.2. For both the classification tasks, the RBF-kernel and a C-value of 0.1
yielded a high prediction accuracy for all the classes. This parameter combination
was hence chosen for the final models.
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Chapter 6

Results

In this Chapter, we present the results from applying two classification problems
on four different models: a simple Baseline model, a Logistic Regression model,
an SVM, and a Hidden Markov Model. The two classification problems were (1)
classifying the InCity-attribute, and (2) classifying the functional class of the road
(see Chapter 2 for more info on these driving context classes). The measurement
used was the prediction accuracy, i.e. the number of correctly predicted records
on the test set. We look at both the overall prediction accuracy, i.e. the ratio of
correctly classified records in total, and the per-class prediction accuracy, i.e. the
ratio of correctly predicted records belonging to a given class. Furthermore, for each
prediction we produced a confusion matrix presenting, for all records belonging to
a given class (rows), what class they were predicted as (column).

Figure 6.1: Overall and per-class prediction accuracy for all the different models.

The results from evaluating prediction accuracy of each model for both the Func-
tional class and InCity classification problems is presented in Figure 6.1. Confusion
matrices can be found in Figure 6.9 on page 46 (Functional Class problem) and
Figure 6.10 on page 47 (InCity problem). Below, we comment on these results.

6.1 Functional class

In the results from the Functional class problem, we can see that there are no big
differences between the models in overall accuracy. All models predict about 85 %
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of the records correctly (Baseline - 85.7 %, Logistic Regression - 85.0 %, SVM - 84.4
%, HMM - 84.5 %). However, looking at the class specific accuracies, we see that
the models differ somewhat.

In the case of the Baseline model, looking at the accuracies for the less common
classes, that is the Collector and Local classes, the model performs relatively bad
(69.2% and 52.5% respectively). The Baseline model places a large portion of the
records in the Highway class. Since a very large portion of the records in the data
set (about 85 %, see Section 2.3) belong to the Highway class, such a scheme yields
a high overall prediction accuracy, while the Collector and Local class accuracies
suffer.

The Logistic Regression model achieved a higher accuracy than the Baseline
model for the Local class (64.3% vs 52.5% respectively). The Logistic Regression
model probably performs slightly better since it has the ability to find a better
decision boundary than Baseline model (see Section 4.5).

Furthermore, the SVM model performs slightly better than the Logistic Regres-
sion model when it comes to classifying the Local and Collector classes (80.8% vs
68.8% and 68.5% vs 64.3% respectively). This is probably since there is some non-
linear relationship in the data which the SVM has the ability to learn, but which
the Logistic Regression model cannot (Figure 4.9 on page 34 describes the difference
between linear and non-linear classifiers).

Figure 6.2: The HMM model fails in predicting Collector class, mistaking it for
the Highway class when speed is high, and for the Local class when speed is low.
This can be seen in the top diagram, which shows the actual driving context class
(green line), and the class predicted by the HMM model (dashed blue line). The
diagram furthest down shows the vehicle speed. This problem can be mitigated by
modifying the model’s transition probabilities. In the middle diagram probabilities
for staying in a state has been increased, making the HMM model less sensitive to
feature variations, predicting the Collector class correctly.

Finally, the HMM model exhibits significant difficulties classifying the Collector
class. The Collector class is characterized by high variation of feature values, inter-
fering with the other two classes’ values. For example, the Collector class exhibits
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Figure 6.3: Just as Figure 6.2, this figure shows how the prediction by the HMM
is to sensitive to changes in speed (top diagram). This figure displays how the
problem can be mitigated by applying a rolling mean on the vehicle speed feature.
The bottom diagram shows the original speed value (dotted green), and the speed
values after applying a rolling mean. The middle diagram shows how the HMM
model predicted the Collector class correctly based on the features where the rolling
mean was applied.

speed values that varies between low speeds (such as in the Local class) and high
speeds (such as in the Highway class). The HMM model should ideally be able to
distinguish the Collector class from the other classes using the fact that the emission
probability distribution for the Collector class has a high variance, while the other
two classes has a lower variance.

As can be seen in Figure 6.2, though, the model misclassifies the Collector class
as the Highway class when speed is high, and as the Local class when speed is low.
To make the model less sensitive to feature value variations, the transition matrix
probabilities were changed. The probabilities for staying in a state were increased,
and the probabilities for changing state decreased. This improved the model some,
raising its prediction accuracy for the Collector class from 35.1 % to 48.6 %. The
result of this modification of the transition matrix probabilities is presented in Figure
6.2. Moreover, one way to deal with difficulties in predicting a class that varies much
in its features is to remove the variation. This can be accomplished by applying a
rolling mean on the data. Figure 6.3 shows an example of how this helped the HMM
model to predict the Collector class better. Applying a mean of six minutes (as is
done when creating features for other models) brings Collector class accuracy up to
66.0 % for the HMM, but on the flip side, decreases Local class accuracy to 45.6 %.

Furthermore, one hypothesis for why the HMM performed badly was that feature
values (observed variables) are highly dependent on each other. We use records
sampled at a rate of 1Hz, so the speed, for instance, for record at time t seconds is
highly dependent on the speed at time t − 1 seconds. The HMM model, however,
does not describe this relationship, but assumes that features are only dependent
on the current state. An attempt to alleviate this problem was made by removing
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records such that there was only one record per 60 seconds left in the data set.
With such a long time between records, record features should not be dependent on
each other. However, this test did not result in any significant changes in prediction
accuracy (on the order of a couple of percent per class accuracy).

In summary, the models succeed in finding patterns in the vehicle data and
classifying the functional classes to a degree of 85 % - 68 % per class accuracy (in
the best case). Below, we give examples of some of the situations the models fail
to predict correctly, and explain why these situations are difficult for the models to
handle.

Figure 6.4: During about five minutes a vehicle is experiencing low speeds (bottom
diagram) while driving on the highway (top diagram, dashed blue line), possibly due
to traffic congestion or road construction work. This causes the model to misclassify
these records as Collector (top diagram, red dotted line).

Firstly, there are several occurrences in the data where the vehicle is driving on
the highway, but exhibits the patterns of driving on one of the functional classes
lower in the hierarchy. An example of such a situation is depicted in Figure 6.4.
Here, a vehicle is experiencing low speeds, possibly due to traffic congestion or road
construction work. This causes the model to misclassify these records as Collector.

Secondly, the Baseline, Logistic Regression and SVM models use features includ-
ing the mean of vehicle data aggregated over six minutes (see Section 3.1). When
changing between two classes, vehicle data from both of those two classes will be
included in the features, making it difficult for the model to predict such situations
correctly (this issue is discussed in Section 4.5). Such a situation is presented in
Figure 6.5, where a vehicle is changing from Collector class to Highway, increasing
speed rapidly. However, since we are aggregating the mean speed over six minutes,
the speed change is ”spread out” in our feature. This makes it difficult for the model
to decide when to change from Collector to Highway, resulting in misclassification
during approximately one minute.

Thirdly, the difference in characteristics between the Collector class and the
Local class seems to be rather vague. We can see in the confusion matrices (Table
6.10) that many of the Local records are misclassified as Collector records (27.5 %
for the SVM model), and vice versa (9.8 % for the SVM model). Figure 6.6 shows a
set of records belonging to the Local and Collector classes, exhibiting similar speed
patterns, resulting in misclassification of the Local class.
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Figure 6.5: A vehicle moves from the Collector class to the Highway class (top graph,
dashed blue line) increasing its speed (bottom graph, dotted line). However, since
we use features with aggregated data (bottom graph, full line) the speed change is
not directly detected by the model, misclassifying it as Collector (top graph, dotted
red line)

.

6.2 InCity

In the problem of predicting the InCity-attribute, the SVM performs best, achieving
an overall accuracy of 80.2 %. The other models reach 78.9 % (Baseline), 75.9 %
(Logistic Regression), and 79.7 % (HMM). Also, the SVM performs well predicting
both classes (81.5 % and 75.4 %), while the other models exhibit a more uneven
result. The Baseline model and Logistic Regression model are relatively good at
predicting InCity=True but bad at predicting InCity=False, and the other way
around for the HMM-model.

The reason for this result is probably similar to why the SVM performed best in
the Functional Class problem: it has the ability to describe non-linear relationships
which the Baseline and Logistic Regression models cannot.

Furthermore, just as in the case of the Functional Class problem, there are some
situations which all of the models fail to classify correctly. Two of the problems
we saw when classifying functional class can be seen when classifying the InCity-
attribute as well. Firstly, there is a problem of classifying records exhibiting low
speeds outside the city (possibly due to traffic congestion or road construction work).
We recognize this from the functional class case, where we experienced the same
problem when classifying the Highway class. An example of this is presented in
Figure 6.7. We can also see the problem of misclassification of records while changing
between two classes, due to the fact that we are using features including vehicle data
from a time window of six minutes.

In addition, we can see a new situation in the InCity problem which is difficult for
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Figure 6.6: A set of records belonging to the Local and Collector classes (top graph,
dashed blue line), exhibiting similar speed patterns (bottom graph), resulting in
misclassification of the Local (top graph, red dotted line)

.

Figure 6.7: The models fail in classifying records outside the city exhibiting low
speeds (possibly due to traffic congestion or road construction work).

.

the models to handle. The InCity attribute specifies if a vehicle is driving inside the
borders of a city (see Section 2.2). Driving inside a city’s borders often implies high
frequency of obstacles such as red lights, crossings, etc., which results in relatively
slow driving and high variation in speed. However, there could also be highways
inside a city’s borders, resembling the constraints of roads outside city borders.
Driving on a highway inside a city’s border often leads to misclassification, which is
depicted in Figure 6.8. 86 % of the records classified as InCity=False, but actually
belonging to InCity=True where marked with the functional class Highway label.
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Figure 6.8: Driving on a highway inside a city’s borders, which this diagram depicts,
leads to misclassification.

.

Predicted InCity=0 InCity=1

True
InCity=0 79.4 20.6
InCity=1 22.9 77.1

(a) Baseline model

Predicted InCity=0 InCity=1

True
InCity=0 75.6 24.4
InCity=1 23.2 76.8

(b) Logistic Regression

Predicted InCity=0 InCity=1

True
InCity=0 82.8 17.2
InCity=1 24.1 75.9

(c) SVM

Predicted InCity=0 InCity=1

True
InCity=0 81.6 18.4
InCity=1 27.2 72.8

(d) HMM

Figure 6.9: Confusion matrices for the different models classifying the InCity prob-
lem
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Predicted HigwayCollector Local

True
Highway 88.7 10.3 1.0
Collector 26.2 69.2 4.6
Local 4.6 42.8 52.6

(a) Baseline model

Predicted HigwayCollector Local

True
Highway 87.5 11.3 1.2
Collector 20.3 68.8 10.9
Local 4.9 30.8 64.3

(b) Logistic Regression

Predicted HigwayCollector Local

True
Highway 85.4 13.6 1.0
Collector 9.4 80.8 9.8
Local 4.0 27.5 68.5

(c) SVM

Predicted HigwayCollector Local

True
Highway 91.6 5.8 2.6
Collector 47.2 36.1 16.7
Local 11.8 22.1 66.1

(d) HMM

Figure 6.10: Confusion matrices for the different models classifying the Functional
Class problem
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Chapter 7

Conclusion and discussion

In this thesis, we have applied two driving context classification tasks to four different
pattern recognition models. The problems were to classify (1) whether a vehicle is
driving in a city or not, and (2) the functional class of the road the vehicle is
driving on. The results presented in Chapter 6 show that the models reach the same
level of performance when it comes to overall prediction accuracy (76 % - 80 % for
classification task (1) and 84 % - 86 % for task (2)). In this chapter, we elaborate
on these results and discuss how the performance of the framework can be improved
further.

7.1 Model comparison

In this thesis, we have applied our classification tasks to several models with dif-
ferent characteristics and complexity. The results show that there is no significant
difference in overall prediction performance between the models (76 % - 80 % for
the city task and 84 % - 86 % for the functional class task). In general, the models
seem to reach similar conclusions, dividing the data set in roughly the same way.
Our conclusion from this result is that the relationship between classes and vehicle
data is rather simple. It can be described almost as well with a simple model such
as the Baseline model in this thesis, as with a more complex, non-linear model such
as the SVM. Applying the problem to another complex model, such as a Neural
Network, will thus probably not result in a significant improvement of classification
accuracy.

The data we have worked with is sequential, i.e. consecutive records in the data
are highly dependent on each other, and we have used two different approaches to
handle this. In the case of the Baseline, Logistic Regression, and SVM models,
which make their class predictions based solely on vehicle data features, we have
aggregated vehicle data from a time window surrounding a given record, creating
features by applying mean and variance on that data (described in Chapter 3). The
HMM model on the other hand captures the sequential nature of the data ”natively”.
Specifically, using a Markov chain approach, it classifies the driving context at time
t0 based not only on the vehicle data parameters at that point in time, but also the
previous predicted class and the probability for changing class. This means that
we can use ”clean” vehicle data parameters, skipping the pre-processing phase of
creating aggregated data features.

In section 4.5 we discussed the potential advantages with the HMM model. For
instance, the HMM model has the ability to detect short-term feature changes,
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performing better in situations when a vehicle shifts driving context class. However,
as the results show, the aggregation approach was more successful than the HMM
approach. Specifically, in the functional class task, the HMM failed in predicting
the Collector class (see Section 6.1). This could be a result of the fact that we are
working with classes with some ambiguity in their definitions (see more discussion
on this in Section 7.5 below). The classes share characteristics, confusing the HMM
model. The following example clarifies this reasoning. Consider if we had only
one feature: the vehicle speed, and two driving context classes: Main Road, which
is defined as roads where we reach speeds over 50 km/h, and Highway, which is
defined as roads where we reach speeds higher than 80 km/h. The Highway class
is included in the Main Road class, and therefore it would be hard for the HMM
model to classify Highway correctly. If the Collector class share characteristics with
the Highway class and the Local class in this way, that could explain why the HMM
performs badly in this case. Another explanation to why the HMM performs badly
in predicting the Collector class could be that the emission probabilities are faulty.
For instance, we assume features follow a Gaussian distribution, which might not
actually be the case.

As the results show, the sliding window feature aggregation approach is relatively
successful. Applying the sliding window functions on the vehicle data seems to
extract the essence of the vehicle data values for the given driving context class,
enabling the models to make correct predictions. However, the results also show that
predicting situations where a vehicle shifts between driving context classes, which
was discussed in Section 4.5, is in fact a problem leading to faulty predictions.

7.2 Features

We have selected vehicle data parameters for our features based on what has been
used in a previous study classifying driving context ([5]), and based on what parame-
ters intuitively are dependent on the driving context. Then, we have created features
using rather simple pre-processing functions (mean, variance and max). We used
a uniform sliding window size when applying these functions on the features. This
approach can be made more elaborate. For instance, our data set contains a large
number of vehicle data parameters, and it is possible that there is some parameter
we have not tested that better distinguishes driving contexts from each other that
the ones we have used. Furthermore, it is not certain the same window size is the
best for all features. A given window size might be too small/large to capture the
information a feature needs to describe a certain pattern, and this size might differ
between features. Further investigation of vehicle data parameters, sliding window
functions, and unique window sizes per feature might lead to a better prediction
result.

7.3 Dynamic driving context

As presented in Section 1.1, driving context can be divided into static context (road
infrastructure) and dynamic context (traffic density, weather conditions, etc.). In
this thesis we focus solely on classifying static driving context classes. The main
reason for this is that we use a supervised learning approach, requiring a data set
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labeled with the classes we want to learn. The data set we use does not contain
labels for dynamic driving context, and therefore, we cannot learn such classes.

However, the data set we use is recorded in a real traffic setting, where traffic
congestion and bad weather occur. Records labeled with class Highway could have
been recorded both in situations when traffic flowed seamlessly and when there
was traffic congestion (Figure 6.4 on page 43 shows an example of this). These
differences in dynamic driving context conditions confuses our model. For instance,
driving in a traffic jam on the Highway is more similar to driving on a road with
Local functional class characteristics, than to regular driving on a Highway, which
leads to misclassification of such situations.

One solution for this could be to try to find labels for the dynamic constraints in
our data set. For instance, we could assume there is a higher probability of a traffic
jam inside the borders of a city than outside, and say that the InCity label represents
high frequency of traffic jams as well as high frequency of crossings, red lights, etc.
Another solution would be to add a time aspect to our driving context classes.
Assuming that traffic congestion is most probable during rush hours (a couple of
hours during the morning and the afternoon), we could create labels such as City
- Rush hour and City - Non-Rush hour based on the time of day the record was
recorded. Such labels would then include both static road infrastructure constraints
as well as dynamic traffic density constraints.

Furthermore, this problem could also be solved by collecting dynamic context
constraints from other sources than the data set used in this thesis. For instance,
there is the UDRIVE (eUropean naturalistic Driving and Riding for Infrastructure
and Vehicle safety and Environment) project ([3]), where a data set containing
naturalistic vehicle data as well as external video data is created. From video data,
we could identify high-traffic density situations as well as bad weather conditions,
and label vehicle data accordingly.

7.4 Using the GPS signal

The framework we created in this thesis bases its driving context classification solely
on vehicle data signals. However, there is another signal, the current GPS coordi-
nates, which is continuously logged by the vehicle, and which could be used when
classifying driving context. The driving context of a given road segment is a property
that rarely changes. Moreover, vehicles frequently access the same road segments.
We can utilize this information by, when classifying a certain road segment, look at
what this road segment has been classified as previously. This could for example
mitigate the problem of misclassification of Highway segments due to high traffic
density or road construction.

For instance, a vehicle data record being recorded during a road construction
work situation at a Highway could lead to the framework misclassifying that segment
as a Collector or a Local class road. However, previous predictions for that segment,
when there was no road construction work going on should have been more accurate,
producing a correct prediction of the Highway class. This information could be
included in the classification by weighing in previous predicted driving context at
the given GPS coordinate. A database of previously predicted driving contexts could
be stored in the vehicle locally (containing only that specific vehicles predictions),
or at a data center (containing the accumulated predictions of a fleet of vehicles).
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7.5 Well-defined classes

One significant factor in succeeding with a classification problem is that the classes
we are predicting are well defined. Well defined classes lead to an unambiguous
data set, which enables the pattern recognition framework to find the underlying
patterns that are unique for a given class. For instance, consider the famous pattern
recognition problem of classifying images of hand-written digits. Any literate person
can differentiate between a 2 and a 3, which enables creating a clear data set without
ambiguities between classes. Noisy data, such as mislabeled images, or images that
do not represent digits can easily be sorted out. Ideally, our driving context classes
should be as well defined (in terms of driving context constraints) as classes of digits.
However, this does not seem to be the case.

For instance, it is clear that driving in the center of a city, where traffic lights,
stop signs, and crossings are frequent, puts constraints on the vehicle that are not
present when driving on the highway. These are two well-defined situations that
should be possible to distinguish between looking at vehicle data. We chose the
InCity map attribute from our data set to represent this relationship. However, the
InCity map attribute specifies if a road is located inside the borders of a city. As
discussed in Section 6.2, this means both roads in a city center as well as highways
can be labeled with the InCity attribute, as long as the roads are located inside
the borders of a city. In terms of vehicle data and driving context constraints, this
introduces ambiguities in the class definitions: the constraints on a highway inside
and outside a city’s borders does not differ. Such noise in the data is impossible for
a model to predict correctly, irrespective of how elaborate classification hypotheses
the model can represent. Figure 6.8 on page 46 shows how the model misclassifies
such situations.

The functional classification scheme also seems to experience some ambiguities.
Functional classification definitions can differ some between countries. A road clas-
sified as Collector Road in Germany might differ some from a road classified with
the same class in the UK. If a Collector Road in Germany have more similarities
with a Highway in the UK than with a Collector Road in the UK, the framework
might confuse Collector Road with Highways, and vice versa. Furthermore, even
inside the borders of a country, the functional classification scheme can be rather
arbitrary. [19] states that ”The process of determining the correct functional classi-
fication of a particular roadway is as much an art as it is a science”. Figure 6.6 on
page 45 shows us that the Local Road and Collector Road class exhibit the same
vehicle data patterns, resulting in misclassification.

The first solution that comes to mind for these ambiguities in driving context
classes is to choose another set of classes that better represent and distinguishes
different driving contexts. However, in the data set we use, no other global driving
context classes are available. Therefore, further investigation is needed on whether
there exist more well-defined global driving context classes than the ones used in
this thesis. Moreover, the data set we use contain a fairly large number of local
driving context classes that was not tested in this thesis. It might be that the local
driving context classes have more distinct characteristics, and therefore are more
well suited for recognition.
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7.6 Application

The framework produced in this thesis is not perfect, and in this chapter we have
discussed some possible ways to improve it. However, we would like to finish this
chapter by reconnecting to one of the applications that was mentioned in the in-
troduction of this thesis, namely driving style evaluation, and discuss whether the
framework has reached a level of performance such that it can be used in such an
application.

Driving context is an important parameter in driving style evaluation calcu-
lations. Specifically, when interpreting a driving style evaluation score, in order to
understand the evaluation, a driver should have access to driving context considered
in his/her evaluation calculations. However, driving style evaluation is not a critical
task, i.e. if the framework commits an error, the outcome will not be catastrophic.
The worst outcome of this is that a high error ratio from the framework leads to
users not trusting it. Our framework predicts driving context with an accuracy of
around 70 to 85 %, depending on the driving context class. We believe this level of
performance is good enough that the framework has the potential of being used in a
driving style evaluation context. Furthermore, our framework produces probabilities
of how certain it is of its classification. Such probability measurements can be used
to decide when to trust the framework, e.g. we can define a threshold of how certain
the framework must be on its output in order for us to trust it.
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Appendix A

Code

A.1 Baseline model

A.1.1 baseline.py

1 import numpy as np

2 import sklearn.metrics

3

4 class BaselineModel:

5

6 beacons_ = []

7

8 def __init__(self):

9 pass

10

11 def fit(self, df, features, nr_labels):

12 """ Train model, i.e. find values for beacons. """

13

14 beacons = []

15 for cls in range(nr_labels):

16 class_data = df.loc[df.label == cls]

17 beacon = class_data[features].mean().as_matrix()

18 beacons.append(beacon)

19

20 self.beacons_ = beacons

21

22

23 def predict(self, dataframe, features, nr_labels):

24 """ Predict a set of samples and return prediction accuracy

25 and confision matrix. """

26

27 df = dataframe.copy()

28 # for each sample in the test set, compute the distance to

29 # all the beacons and put in a column named by the class

30 # label

31 for cls in range(nr_labels):

32 df[str(cls)] = (df[features] - self.beacons_[cls]).apply(

33 np.square).apply(np.sum, axis=1).apply(np.sqrt)

34
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35 labels = [str(lab) for lab in range(nr_labels)]

36 df[’pred’] = df[labels].idxmin(axis=1)

37 df.pred = df.pred.astype(float)

38

39 return df.pred.as_matrix()

40

41

42 def score(self, df, features, nr_labels):

43 """ Predict a set of samples and return prediction accuracy

44 and confision matrix. """

45

46 # for each sample in the test set, compute the distance to

47 # all the beacons and put in a column named by the class

48 # label

49 for cls in range(nr_labels):

50 df[str(cls)] = (df[features] - self.beacons_[cls]).apply(

51 np.square).apply(np.sum, axis=1).apply(np.sqrt)

52

53 labels = [str(lab) for lab in range(nr_labels)]

54 df[’pred’] = df[labels].idxmin(axis=1)

55 df.pred = df.pred.astype(float)

56

57 accuracy = (df.label == df.pred).sum() / len(df)

58 confusion_matrix = sklearn.metrics.confusion_matrix(

59 df.label, df.pred)

60 confusion_matrix = confusion_matrix / np.sum(

61 confusion_matrix, axis=1)[:,None]

62 return accuracy, confusion_matrix

63

64 def get_confidences(self, df, nr_labels):

65 """ Calculate the confidence probabilities of all the

66 classes. The confidence is represented by the ratio of

67 correctly predicted samples belonging to a class versus the

68 total number of samples belonging to that class.

69

70 :param df: A dataframe with all the samples and the

71 predictions for these samples specified in a "pred"-column.

72 :return: A confidence for the given class.

73 """

74

75 confidences = []

76 for cls in range(nr_labels):

77 total_class_records = (df.label == cls).sum()

78 correctly_predicted_records = (

79 (df.label == cls) & (df.label == df.pred)).sum()

80 confidences.append(

81 correctly_predicted_records / total_class_records)

82

83 return confidences
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A.1.2 baseline-runner.py

1 import pandas as pd

2 import logging

3 import mmlutils

4 import sklearn.preprocessing

5 import baseline

6 import constants

7

8 LOG_FILE = ’log.log’

9

10 ORIGINAL_SAMPLE_RATE = 10

11 RESAMPLE_RATE = 10

12 FILTER_RATE = 1

13

14 VEHICLE_DATA_PARAMS = [’mVehicleSpeed’, ’SteeringWheelAngle’,

15 ’mEngineSpeed’, ’mBrakePedalPos’,

16 ’mGearSelected’, ’mAccelPedalPos’]

17

18 WINDOW_SIZE = 6

19

20 FC = False

21

22 if FC:

23 NR_LABELS = 3

24 TRAIN_DATA_DIR = constants.FC_TRAIN_DATA_DIR

25 TEST_DATA_DIR = constants.FC_TEST_DATA_DIR

26 FEATURES = constants.FC_FEATURES

27 else:

28 NR_LABELS = 2

29 TRAIN_DATA_DIR = constants.CITY_TRAIN_DATA_DIR

30 TEST_DATA_DIR = constants.CITY_TEST_DATA_DIR

31 FEATURES = constants.CITY_FEATURES

32

33 global logger

34 logger = mmlutils.setup_logging(LOG_FILE)

35

36 # read files

37 train_dict = mmlutils.read_files(TRAIN_DATA_DIR)

38 test_dict = mmlutils.read_files(TEST_DATA_DIR)

39

40 # prepare data

41 train_dict = mmlutils.prepare_dict(train_dict, ORIGINAL_SAMPLE_RATE,

42 RESAMPLE_RATE, FILTER_RATE, VEHICLE_DATA_PARAMS,

43 FEATURES, WINDOW_SIZE, FC)

44 training_set = pd.concat(train_dict.values(), ignore_index=True)

45 test_dict = mmlutils.prepare_dict(test_dict, ORIGINAL_SAMPLE_RATE,

46 RESAMPLE_RATE, FILTER_RATE, VEHICLE_DATA_PARAMS,

47 FEATURES, WINDOW_SIZE, FC)

48 test_set = pd.concat(test_dict.values(), ignore_index=True)

49

50 logger.debug(’(1) Training and (2) Test set records’)
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51 logger.info(mmlutils.get_nr_records_str(training_set, ’label’))

52 logger.info(mmlutils.get_nr_records_str(test_set, ’label’))

53

54 # do standard scaling on data

55 scaler = sklearn.preprocessing.StandardScaler()

56 training_set[FEATURES] = scaler.fit_transform(training_set[FEATURES])

57 test_set[FEATURES] = scaler.transform(test_set[FEATURES])

58

59 # train model, i.e find values for beacons

60 clf = baseline.BaselineModel()

61 clf.fit(training_set, FEATURES, NR_LABELS)

62 logger.info(’Beacons: {}’.format(clf.beacons_))

63

64 # get result

65 accuracy, confusion_matrix = clf.score(test_set, FEATURES, NR_LABELS)

66 logger.info(’Test set results: \nAccuracy: {} ’

67 ’\nConfusion Matrix: \n{}\n’.format(

68 accuracy, confusion_matrix))

69

70 print(’Done!’)

A.2 Logistic Regression/SVM

1 import pandas as pd

2 import sklearn.svm

3 import sklearn.grid_search

4 import sklearn.linear_model

5 import logging

6 import mmlutils

7 import numpy as np

8 import sklearn.externals

9 import constants

10

11 # specifies if we are classifying the functional class or the InCity

12 # problem

13 FC = False

14 # specifies if we are using a SVM or a Logistic Regression model

15 SVM = False

16

17 WINDOW_SIZE = 6

18 CROSSVAL_FOLDS = 4

19

20 LOG_FILE = ’log.log’

21

22 ORIGINAL_SAMPLE_RATE = 10

23 RESAMPLE_RATE = 10

24

25 VEHICLE_DATA_PARAMS = [’mVehicleSpeed’, ’SteeringWheelAngle’,

26 ’mEngineSpeed’, ’mBrakePedalPos’,

27 ’mGearSelected’, ’mAccelPedalPos’]
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28

29 CLASSIFIER_FILE_NAME = ’’

30

31 if FC:

32 CLASSIFIER_FILE_NAME = CLASSIFIER_FILE_NAME + ’fc_’

33 FEATURES = constants.FC_FEATURES

34

35 TRAIN_DATA_DIR = constants.FC_TRAIN_DATA_DIR

36 TEST_DATA_DIR = constants.FC_TEST_DATA_DIR

37

38 NR_LABELS = 3

39

40 else:

41 CLASSIFIER_FILE_NAME = CLASSIFIER_FILE_NAME + ’city_’

42 FEATURES = constants.CITY_FEATURES

43

44 TRAIN_DATA_DIR = constants.CITY_TRAIN_DATA_DIR

45 TEST_DATA_DIR = constants.CITY_TEST_DATA_DIR

46

47 NR_LABELS = 2

48

49 if SVM:

50 CLASSIFIER_FILE_NAME = CLASSIFIER_FILE_NAME + ’svm’

51 FILTER_RATE = 10

52 C_VALS = [1e-5, 1e-4, 0.001, 0.01, 0.1, 1, 10]

53 KERNELS = [’rbf’, ’poly’]

54

55 else:

56 CLASSIFIER_FILE_NAME = CLASSIFIER_FILE_NAME + ’lr’

57 FILTER_RATE = 1

58 C_VALS = [1e-6, 1e-5, 1e-4, 0.001, 0.01, 0.1, 1, 10, 100]

59

60 global logger

61 logger = mmlutils.setup_logging(LOG_FILE)

62

63 # read files

64 train_dict = mmlutils.read_files(TRAIN_DATA_DIR)

65 test_dict = mmlutils.read_files(TEST_DATA_DIR)

66

67 # prepare data

68 train_dict = mmlutils.prepare_dict(train_dict, ORIGINAL_SAMPLE_RATE,

69 RESAMPLE_RATE, FILTER_RATE, VEHICLE_DATA_PARAMS,

70 FEATURES, WINDOW_SIZE, FC)

71 test_dict = mmlutils.prepare_dict(test_dict, ORIGINAL_SAMPLE_RATE,

72 RESAMPLE_RATE, FILTER_RATE, VEHICLE_DATA_PARAMS,

73 FEATURES, WINDOW_SIZE, FC)

74

75 crossval_folds = mmlutils.create_cross_validation_folds(

76 train_dict, CROSSVAL_FOLDS)

77 logger.info(’Crossvalidation folds: \n{}’.format(

78 [list(d.keys()) for d in crossval_folds]))
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79

80 # do crossvalidaion on set of hyper paramters to find optimal hyper

81 # paramter value

82 total_accuracies = []

83 local_accuracies = []

84 conf_matrices = []

85

86 if SVM:

87 for kernel in KERNELS:

88 for c in C_VALS:

89 logger.info(’\n\nKernel: {}, C: {}’.format(kernel, c))

90

91 # train and test model

92 classifier = sklearn.svm.SVC(

93 verbose=True, cache_size=1000,

94 class_weight=’balanced’, kernel=kernel, C=c)

95 accuracy, conf_matrix = mmlutils.get_accuracy_cv(

96 crossval_folds, FEATURES, classifier, logger=logger)

97

98 # record results

99 local_accuracy = conf_matrix[NR_LABELS-1][NR_LABELS-1]

100 total_accuracies.append(accuracy)

101 conf_matrices.append(conf_matrix)

102 local_accuracies.append((local_accuracy, c, kernel))

103

104 else:

105 for c in C_VALS:

106 logger.info(’\n\nC: {}’.format(c))

107

108 # train and test model

109 classifier = sklearn.linear_model.LogisticRegression(

110 solver=’sag’, class_weight=’balanced’, C=c)

111 accuracy, conf_matrix = mmlutils.get_accuracy_cv(

112 crossval_folds, FEATURES, classifier, logger=logger)

113

114 # record results

115 local_accuracy = conf_matrix[NR_LABELS-1][NR_LABELS-1]

116 total_accuracies.append(accuracy)

117 conf_matrices.append(conf_matrix)

118 local_accuracies.append((local_accuracy, c))

119

120 # find parameters for the max value

121 max_param_tuple = max(local_accuracies, key=lambda x: x[0])

122 logger.info(’Measured local accuracies: {}’.format(local_accuracies))

123 logger.info(’Parameters that yeilded maximum accuracy: {}’.format(

124 max_param_tuple))

125 logger.info(’Measured accuracies: {}’.format(total_accuracies))

126 logger.info(’Measured confidence matrices: {}’.format(conf_matrices))

127

128 # get result on test set

129 if SVM:
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130 classifier = sklearn.svm.SVC(verbose=True, cache_size=1000,

131 class_weight=’balanced’, kernel=max_param_tuple[2],

132 C=max_param_tuple[1])

133 else:

134 classifier = sklearn.linear_model.LogisticRegression(

135 solver=’sag’, class_weight=’balanced’, C=max_param_tuple[1])

136

137 training_set = pd.concat(train_dict.values(), ignore_index=True)

138 test_set = pd.concat(test_dict.values(), ignore_index=True)

139 accuracy, conf_matrix = mmlutils.get_accuracy(

140 training_set, test_set, FEATURES, classifier)

141 # sklearn.externals.joblib.dump(classifier, CLASSIFIER_FILE_NAME + ’.pkl

’)

142 logger.info(’Test set results: \nAcc: {} ’

143 ’\nConfusion Matrix: \n{}’.format(accuracy, conf_matrix))

144

145 print(’Done!’)

A.3 HMM

1 import numpy as np

2 import hmmlearn

3 import hmmlearn.hmm

4 import pandas as pd

5 import mmlutils

6 import matplotlib.pyplot as plt

7 import sklearn.metrics

8 import shelve

9 import constants

10

11

12 def _modify_transmat_distribution(transmat, move_ratio):

13 """ Modifies a transition matrix such that the probability of

14 staying in a state is increased (and moving to another state is

15 decreased). """

16 for i in range(len(transmat)):

17 steal_sum = 0

18 for j in range(len(transmat)):

19 if j != i:

20 steal = move_ratio * transmat[i][j]

21 transmat[i][j] = transmat[i][j] - steal

22 steal_sum = steal_sum + steal

23 transmat[i][i] = transmat[i][i] + steal_sum

24

25

26 def _low_pass(df, sample_rate, features):

27 """ Applies a sliding window mean on a feature in a

28 data frame. """

29

30 WINDOW_SIZE = 6
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31

32 for feat in features:

33 df[feat] = pd.rolling_mean(df[feat],

34 mmlutils.nr_window_records(WINDOW_SIZE, sample_rate),

35 center=True)

36

37 return df

38

39 def _get_transition_counts(ser, i, j):

40 """ Computes the number of transitions from value i to value j in

41 a pandas series."""

42

43 func = lambda x: x[0] == i and x[1] == j

44 return pd.rolling_apply(ser, 2, func).sum()

45

46

47 def _create_covariance_matrix(varaiances):

48 """ Creates a diagonal covariance matrix. """

49

50 covariance_matrix = np.zeros((len(varaiances), len(varaiances)))

51 for i in range(len(varaiances)):

52 for j in range(len(varaiances)):

53 if i == j:

54 covariance_matrix[i, j] = varaiances[i]

55

56 return covariance_matrix

57

58

59 def _fix_sum_to_one(matrix):

60 """ Ensures that all the values in a row of a transition matrix

61 sums up to one. """

62

63 for row_index in range(len(matrix)):

64 row = matrix[row_index]

65 missing = 1 - sum(row)

66 row[row_index] = row[row_index] + missing

67

68 return matrix

69

70

71 def _get_init_probabilities(trips, nr_labels):

72 """ Compute the probabilities of the initial class. """

73

74 initial_class_probs = np.zeros(nr_labels)

75 for trip in trips:

76 this_inital_class = trip.iloc[0].label

77 initial_class_probs[this_inital_class] = \

78 initial_class_probs[this_inital_class] + 1

79

80 return initial_class_probs / len(trips)

81
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82

83 def _get_nr_transitions(trans_mat):

84 """ Calculate the total number of transitions from a matrix of

85 inter class transitions. """

86

87 sum = 0

88 for i in range(len(trans_mat)):

89 for j in range(len(trans_mat)):

90 if i != j:

91 sum = sum + trans_mat[i][j]

92

93 return sum

94

95

96 def _get_transition_matrix_list(class_sequence, nr_labels):

97 """ Creates a matrix with the number of inter class transitions

98 from a sequence of classes. """

99

100 trans_mat = np.zeros((nr_labels, nr_labels))

101 for i in range(len(class_sequence)-1):

102 src = class_sequence[i]

103 dest = class_sequence[i+1]

104 trans_mat[src][dest] = trans_mat[src][dest] + 1

105

106 return trans_mat

107

108

109 def _get_transition_matrix_df(trips, nr_labels):

110 """ Compute transistion matrix"""

111

112 transition_matrix = np.zeros((nr_labels, nr_labels))

113 total_nr_records_per_class = np.zeros(nr_labels)

114

115 for trip in trips:

116

117 # count nr records per class

118 for cls in range(nr_labels):

119 total_nr_records_per_class[cls] = \

120 total_nr_records_per_class[cls] + \

121 (trip.label == cls).sum()

122

123 # count nr transitions

124 for i in range(nr_labels):

125 for j in range(nr_labels):

126 # get count of the transitions between

127 # classes i and j

128 transition_matrix[i, j] = transition_matrix[i, j] + \

129 _get_transition_counts(trip.label, i, j)

130

131 # normalize each row of transitions counts

132 for row in range(len(transition_matrix)):
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133 transition_matrix[row] = \

134 transition_matrix[row] / total_nr_records_per_class[row]

135

136 transition_matrix = _fix_sum_to_one(transition_matrix)

137

138 return transition_matrix

139

140

141 def _get_gaussian_parameters(df, nr_labels, features):

142 """ Computes the mean and the variance of the feature variables

143 conditional to each class. """

144

145 means_per_class = []

146 covariances_per_class = []

147 for cls in range(nr_labels):

148 class_samples = df.loc[df.label == cls]

149 means = class_samples[features].mean()

150 means_per_class.append(means.as_matrix())

151 covariances = class_samples[features].cov().as_matrix()

152 covariances_per_class.append(covariances)

153

154 return means_per_class, np.array(covariances_per_class)

155

156

157 def _train_model(training_set_dict, features, nr_labels):

158 """ Train the model, i.e find start probabilities, transition

159 probabilities, and emission probability parameters. """

160

161 # compute probability distribution paramters ...

162 initial_class_probs = _get_init_probabilities(

163 training_set_dict.values(), nr_labels)

164 print(’Initial class probabilities: \n’, initial_class_probs)

165

166 transition_matrix = _get_transition_matrix_df(

167 training_set_dict.values(), nr_labels)

168 print(’Transition matrix: \n’, transition_matrix)

169

170 # compute probability distributions

171 means, variances = _get_gaussian_parameters(pd.concat(

172 training_set_dict.values()), nr_labels, features)

173 print(’Means: \n’, means)

174 print(’Variances: \n’, variances)

175

176 # initialize model

177 np.random.seed(42)

178 model = hmmlearn.hmm.GaussianHMM(n_components=nr_labels,

179 covariance_type=’full’, verbose=True)

180 model.startprob_ = initial_class_probs

181 model.transmat_ = transition_matrix

182 model.means_ = means

183 model.covars_ = variances
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184

185 return model

186

187 def _predict(test_set_dict, features):

188 """ Get prediction and measure accuracy on test set. """

189

190 # get prediction of a set of trips and accumulate to two lists

191 prediction = np.array([])

192 y_test = np.array([])

193 for trip in test_set_dict.values():

194 trip_id = str(trip.iloc[0].trip_id)

195 X_test = trip[features]

196 this_y_test = trip.label.as_matrix()

197 logprob, this_prediction = model.decode(X_test)

198 print(’Logprob: \n’, logprob)

199 db[trip_id] = this_prediction

200 prediction = np.append(prediction, this_prediction)

201 y_test = np.append(y_test, this_y_test)

202

203 return prediction, y_test

204

205 def _prepare_data(df_dict, features, filter_rate):

206 """ Preapare the data. """

207

208 ORIGINAL_SAMPLE_RATE = 10

209 RESAMPLE_RATE = 10

210 FILTER_RATE = 1

211

212 prepared_dict = dict()

213 for file, df in df_dict.items():

214 df = mmlutils.downsample(df, RESAMPLE_RATE, columns=FEATURES)

215 sample_rate = ORIGINAL_SAMPLE_RATE / RESAMPLE_RATE

216 df.SteeringWheelAngle = df.SteeringWheelAngle.abs()

217 df = mmlutils.filter_nth(df, FILTER_RATE)

218

219 mmlutils.create_labels(df, FC)

220 df = df.dropna(subset=FEATURES + [’label’])

221 df = df.reset_index(drop=True)

222 prepared_dict[file] = df

223

224 return prepared_dict

225

226

227 FC = True

228 if FC:

229 TRAIN_DATA_DIR = constants.FC_TRAIN_DATA_DIR

230 TEST_DATA_DIR = constants.FC_TEST_DATA_DIR

231 NR_LABELS = 3

232 else:

233 TRAIN_DATA_DIR = constants.CITY_TRAIN_DATA_DIR

234 TEST_DATA_DIR = constants.CITY_TEST_DATA_DIR
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235 NR_LABELS = 2

236

237 FEATURES = [’mVehicleSpeed’, ’SteeringWheelAngle’,

238 ’mEngineSpeed’,’mGearSelected’, ’mAccelPedalPos’]

239

240 LOG_FILE = ’log.log’

241

242 global logger

243 logger = mmlutils.setup_logging(LOG_FILE)

244 np.set_printoptions(suppress=True)

245

246 # read data

247 train_dict_raw = mmlutils.read_files(TRAIN_DATA_DIR)

248 test_dict_raw = mmlutils.read_files(TEST_DATA_DIR)

249

250 # prepare data

251 train_dict = _prepare_data(train_dict_raw, FEATURES, filter_rate)

252 test_dict = _prepare_data(test_dict_raw, FEATURES, filter_rate)

253

254 model = _train_model(train_dict, FEATURES, NR_LABELS)

255

256 prediction, y_test = _predict(test_dict, FEATURES)

257

258 accuracy = (prediction == y_test).sum()/len(y_test)

259 print(’Accuracy: {}’.format(accuracy))

260

261 confusion_matrix = sklearn.metrics.confusion_matrix(

262 y_test, prediction)

263 confusion_matrix = confusion_matrix / np.sum(

264 confusion_matrix, axis=1)[:,None]

265 logger.info(’Confusion matrix: \n{}’.format(confusion_matrix))

266

267 predicted_transmat = _get_transition_matrix_list(

268 prediction, NR_LABELS)

269 predicted_nr_transitions = _get_nr_transitions(predicted_transmat)

270 predicted_transmat_ratio = predicted_transmat / np.sum(

271 predicted_transmat, axis=1)[:,None]

272 logger.info(’Predicted nr transitions: {} \n’

273 ’Transition matrix: \n{}’.format(

274 predicted_nr_transitions, predicted_transmat_ratio))

275

276 real_transmat = _get_transition_matrix_list(y_test, NR_LABELS)

277 real_nr_transitions = _get_nr_transitions(real_transmat)

278 real_transmat_ratio = real_transmat / np.sum(

279 real_transmat, axis=1)[:,None]

280 logger.info(’Actual nr transitions: {} \n’

281 ’Transition matrix: \n{}’.format(

282 real_nr_transitions, real_transmat_ratio))

283

284 print(’Done!’)
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A.4 Utility functions

1 import pandas as pd

2 import numpy as np

3 import logging

4 import os

5 import random

6 import matplotlib.pyplot as plt

7 import sklearn.preprocessing

8

9 def downsample(df, n, columns=None):

10 """ Reduces the number of samples in a pandas dataframe. Keeps

11 every nth sample and removes the rest. The value of a sample p

12 which we’re keeping is calculated by taking the mean of p’s n

13 surrounding samples.

14

15 :param df: The dataframe that should be downsampled

16 :param n: Keep every nth sample. E.g. setting n to 3 would result

17 in that every 3rd sample would be kept and every

18 3+1th and 3+2th sample would be removed.

19 :param columns: The columns to apply mean calculation on.

20 :return: A downsampled data frame.

21 """

22

23 window_size = n

24 if columns:

25 # apply mean on given columns

26 df[columns] = pd.rolling_mean(

27 df[columns], window_size, center=True)

28

29 # filter out every nth row

30 df = df.iloc[::n, :]

31

32 return df.reset_index(drop=True)

33

34

35 def filter_nth(df, n):

36 """ Filters out all but every nth record from a dataset.

37

38 :param df: The dataframe

39 :param n: Keep every nth record.

40 :return: The filtered dataframe

41 """

42

43 df = df.iloc[::n, :]

44 return df.reset_index(drop=True)

45

46

47 def nr_window_records(window_minutes, sample_rate):

48 """ Calculates the number of samples that should be included in a

49 window of samples given the window size in terms
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50 of minutes.

51 the window’s time should be.

52

53 :param window_minutes: Window size in terms of minutes

54 :param sample_rate: Sample rate in dataset in terms of samples

55 per second (Hz).

56 :return: The number of samples corresponding to the given number

57 of minutes.

58 """

59

60 return int(window_minutes * 60 * sample_rate)

61

62

63 def get_nr_records_str(df, label_column):

64 """ Creates a string with the number of records for each unique

65 label in a pandas dataframe

66

67 :param df: The dataframe

68 :param label_column: The column in the dataframe that contains

69 the labels

70 :return: A string

71 """

72

73 labels = df[label_column].dropna().unique()

74 label_counts = \

75 {label:(df[label_column] == label).sum() for label in labels}

76 string = []

77 for label, count in label_counts.items():

78 string.append(

79 ’Number of label {} records: {}’.format(label, count))

80

81 return ’\n’.join(string)

82

83

84 def create_labels(df, column_value_mappings):

85 """ Adds a label column to a pandas dataframe, and assigns each

86 row a label given the column-value mappings in

87 column_value_mappings.

88

89 :param df: The dataframe

90 :param column_value_mappings: A list of tuples describing the

91 column-value mappings that will be used to create the labels.

92 First entry should be a column name. Second entry shoul be a list

93 of values. E.g. if [(’column_1’:[1, 2]), (’column_1’:[0])] is

94 given, all rows with value 1 or 2 in column_1 will be given label

95 value 0, and all rows with value 0 in column_1 label 1.

96 """

97

98 LABEL_COLUMN_NAME = ’label’

99 df[LABEL_COLUMN_NAME] = pd.Series(len(df) * np.nan)

100
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101 for label, mapping in enumerate(column_value_mappings):

102 column_name = mapping[0]

103 column_value_list = mapping[1]

104 df.ix[df[column_name].isin(

105 column_value_list), LABEL_COLUMN_NAME] = label

106

107

108 def exceed_thresh(ser, window, threshold):

109 """ Calculates how many times an attribute in a pandas Series

110 object exceeded a given threshold during a given time window.

111

112 :param ser: The panads Series

113 :param window: The time window.

114 :param threshold: The threshold

115 """

116

117 ret = ser > threshold

118 return pd.rolling_sum(ret, int(window), center=True)

119

120

121 def read_files(data_dir, columns=None, subset=None):

122 """ Reads a set of .csv files from a given directory. Retruns

123 all the files in a dictionary where the key is the file name and

124 the value is the pandas dataframe with the file contents.

125 """

126

127 if not subset:

128 input_files = [f for f in os.listdir(data_dir) if f.endswith(’.

csv’)]

129 else:

130 input_files = [f for f in os.listdir(data_dir) if f.endswith(’.

csv’) and f in subset]

131 input_dataframes = dict()

132 for file in input_files:

133 df = pd.read_csv(data_dir + file, usecols=columns)

134 input_dataframes[file] = df

135

136 return input_dataframes

137

138

139 def create_training_and_test_sets(dfs_dict, test_set_size):

140 """ Splits a dictionary of <filename:dataframe> entries into a

141 "test set dictionary" with one portion of the

142 <filename:dataframes>s and a "training set dictionary" with the

143 rest of the <filename:dataframes>s.

144

145 :param dfs_dict: The original dictionary of dataframes

146 :param test_set_size: Size of test set in terms of ratio (e.g. 0.2)

147 :return: (1) the dictionary of training dataframes and (2) the

dictionary of test dataframes

148 """
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149

150 input_files = list(dfs_dict.keys())

151 nr_files_in_test_set = int(test_set_size * len(input_files))

152 random.shuffle(input_files)

153 training_set_dict = {file:dfs_dict[file] for file in input_files[

nr_files_in_test_set:]}

154 test_set_dict = {file:dfs_dict[file] for file in input_files[:

nr_files_in_test_set]}

155

156 return training_set_dict, test_set_dict

157

158

159 def create_cross_validation_folds(dfs_dict, nr_folds):

160 """ Divides a set of dataframe into nr_folds equaly large

161 subsets. """

162

163 input_files = list(dfs_dict.keys())

164 random.shuffle(input_files)

165 folds_names = [input_files[i::nr_folds] for i in range(nr_folds)]

166 folds = []

167 for fold in folds_names:

168 folds.append({file:dfs_dict[file] for file in fold})

169

170 return folds

171

172

173 def setup_logging(log_file):

174 """ Sets up logging such that messages of at least level DEBUG

175 gets logged to a log file.

176

177 :param log_file: The log file.

178 :return: A logger.

179 """

180

181 # create logger

182 logger = logging.getLogger(’root’)

183 logger.setLevel(logging.DEBUG)

184

185 # file handler has level debug

186 fh = logging.FileHandler(log_file, mode=’w’)

187 fh.setLevel(logging.DEBUG)

188

189 # create formatter

190 formatter = logging.Formatter(’%(asctime)s %(levelname)s:%(message)s’

)

191 fh.setFormatter(formatter)

192 logger.addHandler(fh)

193

194 return logger

195

196
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197 def drop_rows(df, cls, fraction):

198 """ Remove a protion of the rows belonging to the given class.

199

200 :param df: The dataframe we want to delete rows from.

201 :param fraction: The fraction of samples we want to keep.

202 :param cls: The class we want to remove samples from.

203 :return: A dataframe were a fraction of the given class’ samples

204 have been removed.

205 """

206

207 # extract samples beloning to remove-class

208 remove_class_samples = df[df.label == cls]

209 if len(remove_class_samples) > 0:

210 df = df[df.label != cls]

211

212 # remove fraction of samples

213 remove_class_samples = \

214 remove_class_samples.sample(frac=fraction)

215

216 # re-include samples from remove-class to keep

217 df = df.append(remove_class_samples)

218

219 return df.reset_index(drop=True)

220

221

222 def _get_coefficient(dataset_share, me_vs_hw_db_ratio,

223 hw_dataset_share):

224 """ Private method used by distribute data. Returns a the ration

225 of samples for a set of classes to keep in order to reach a

226 certain distribution. """

227

228 return (me_vs_hw_db_ratio * hw_dataset_share) / dataset_share

229

230

231 def count_records(df, nr_labels):

232 """ Returns the number of samples of each class in the given data

233 frame. Class must be encoded in the ’label’-column of the data

234 frame.

235

236 :param df: The dataframe to count records in.

237 :return: A list of numbers, where the count for class i can be

238 found at index i.

239 """

240

241 return [(df.label == cls).sum() for cls in range(nr_labels)]

242

243

244 def distribute_data(df, distribution):

245 """ Removes samples from a dataset such that the distribution

246 over classes mirrors the given distribution.

247
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248 :param df: The dataframe

249 :param distribution: An array of floats encoding the distribution

250 we want to acheive. The float at index i represents the ratio of

251 class i samples.

252 """

253

254 distribution = np.array(distribution)

255

256 # calculate parameters

257 me_vs_hw_db_ratio = distribution / distribution[0]

258 dataset_nr_samples = count_records(df, len(distribution))

259 data_set_distribution = \

260 dataset_nr_samples / np.sum(dataset_nr_samples)

261

262 # get coefficients

263 coefficients = [_get_coefficient(data_set_distribution[cls],

264 me_vs_hw_db_ratio[cls], data_set_distribution[0])

265 for cls in range(1, len(distribution))]

266

267 # we cannot add new samples, so all coefficient must be below 1

268 coefficients = \

269 [coef if coef < 1.0 else 1.0 for coef in coefficients]

270

271 # modify dataframe

272 for cls, coef in enumerate(coefficients, 1):

273 df = drop_rows(df, cls, coef)

274

275 return df

276

277

278 def plot_feature_vs_classes(df, nr_rows=1, nr_columns=1,

279 subplot_index=1, feature=’mVehicleSpeed’):

280 """ Plots a diagram of a subplot with a given feature and the

281 class.

282

283 :param df: The dataframe containing the data.

284 :param nr_rows: The number of rows in this set of subplots.

285 :param nr_columns: The number of columns in this set of subplots.

286 :param subplot_index: The index of this subplot.

287 :param feature: The feature to plot.

288 :return: The ax object of the subplot

289 """

290

291 FEATURE_LINE_STYLE = ’k-’

292 LABEL_LINE_STYLES = [’b--’, ’g:’, ’r-.’, ’y--’, ’m:’, ’c-.’]

293

294 nr_labels = len(df.label.unique())

295

296 # create subplot

297 ax = plt.subplot(nr_rows, nr_columns, subplot_index)

298 trip_id = str(df.trip_id.iloc[0])
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299 ax.set_title(trip_id + ’ - ’ + feature)

300

301 # plot feature

302 class_line_height = df[feature].max()

303 ax.plot(df[feature], FEATURE_LINE_STYLE, label=feature)

304

305 # plot classes

306 for cls in range(nr_labels):

307 ax.plot((df.label == cls)*class_line_height,

308 LABEL_LINE_STYLES[cls], label=str(cls))

309

310 ax.legend()

311

312 return ax

313

314

315 def plot_feature_vs_class_set(dfs, limit=None, figsize=None):

316 """ Plots a subplot diagram with a given feature and the class

317 for a set of data frames. """

318

319 if not limit:

320 limit = len(dfs)

321

322 # set defualt figure size

323 if not figsize:

324 figsize = (20, limit*4)

325

326 figure = plt.figure(figsize=figsize)

327

328 # plot subplots

329 for i, df in enumerate(dfs, 1):

330 if i > limit:

331 break

332 plot_feature_vs_classes(df, nr_rows=limit, subplot_index=i)

333

334 plt.show()

335

336

337 def get_nr_labels(df, label_column=’label’):

338 """ Counts the number of different labels in a data frame. """

339

340 return len(df.label.unique())

341

342

343 def get_accuracy(training_set, test_set, feature_names,

344 classifier, logger=None):

345 """ Trains a Logistic Regression model and returns the overall

346 prediction accuracy and the accuracy per class. """

347

348 # scale data

349 scaler = sklearn.preprocessing.StandardScaler()
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350 X_train = scaler.fit_transform(training_set[feature_names])

351 y_train = training_set.label

352 X_test = scaler.transform(test_set[feature_names])

353 y_test = test_set.label

354

355 # train model

356 print(’Model - Fitting...’)

357 classifier.fit(X_train, y_train)

358 print(’Model - Scoring...’)

359 accuracy = classifier.score(X_test, y_test)

360 print(’Model - Done!’)

361 confusion_matrix = sklearn.metrics.confusion_matrix(

362 y_test, classifier.predict(X_test))

363 accuracies_per_class = confusion_matrix / np.sum(

364 confusion_matrix, axis=1)[:,None]

365

366 if logger:

367 logger.debug(’Accuracy: {:.4f}’.format(accuracy))

368 logger.debug(’Confusion matrix: \n{}’.format(

369 accuracies_per_class))

370 return accuracy, accuracies_per_class

371

372

373 def get_accuracy_cv(folds, feature_names, classifier, logger=None):

374 """ Runs crossvalidation on a dataset.

375

376 :param folds: A dataset divided in a set of folds. Each fold is a

377 dict of {filename:dataframe} items.

378 """

379

380 accuracies = []

381 accuracies_per_class = []

382

383 if logger:

384 logger.debug(’\nStarting {}-fold crossvalidation’

385 ’for features:\n{}’.format(

386 len(folds), ’\n’.join(feature_names)))

387

388 for i in range(len(folds)):

389 if logger:

390 logger.debug(’Iteration {}...’.format(i))

391

392 test_set_dict = folds[i]

393 test_set = pd.concat(

394 test_set_dict.values(), ignore_index=True)

395 test_set = test_set.dropna(subset=feature_names + [’label’])

396

397 training_set_dicts = \

398 [folds[j] for j in range(len(folds)) if j != i]

399 training_set_dict = {file_name: data_frame \

400 for d in training_set_dicts \
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401 for file_name, data_frame in d.items()}

402 training_set = pd.concat(

403 training_set_dict.values(), ignore_index=True)

404 training_set = \

405 training_set.dropna(subset=feature_names + [’label’])

406 if logger:

407 logger.debug(’Training (1) and Test set (2) records’)

408 logger.info(get_nr_records_str(training_set, ’label’))

409 logger.info(get_nr_records_str(test_set, ’label’))

410

411 accuracy, accuracy_per_class = get_accuracy(training_set,

412 test_set, feature_names, classifier, logger)

413 accuracies.append(accuracy)

414 accuracies_per_class.append(accuracy_per_class)

415

416 mean_accuracy = np.mean(accuracies)

417 mean_accuracy_per_class = np.sum(

418 accuracies_per_class, axis=0) / len(accuracies_per_class)

419

420 if logger:

421 logger.info(’CV accuracy: {}’.format(mean_accuracy))

422 logger.info(’CV accuracy per class: \n{}’.format(

423 mean_accuracy_per_class))

424

425 return mean_accuracy, mean_accuracy_per_class

426

427

428 def get_class_accuracies(conf_matrices):

429 """ Returns a list of the elements in the diagonal in the given

430 matrix. """

431

432 return [[m[i][i] for m in conf_matrices] for i in range(3)]

433

434

435 def prepare_dict(df_dict, original_sample_rate, downsample_rate,

436 filter_rate, vehicle_data_params, features, window_size, fc):

437 """ Does some pre-processing on a set of trips.

438

439 :param df_dict: A dictionary of <filename:dataframe> items. Each

440 dataframe in the dictionary will be processed.

441 :param original_sample_rate: The rate at which the data is

442 sampled in the database.

443 :param downsample_rate: We will keep every nth sample (keeping

444 the averge of the dropped samples), where n is given by the

445 downsample_rate parameter.

446 :param filter_rate: We will keep every nth sample (dropping the

447 rest of the samples), where n is given by the filter_rate

448 parameter.

449 :param vehicle_data_params: The original vehicle data signals

450 that are used to create the features.

451 :param features: The features we are using.
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452 :param window_size: The size of the sliding window we are

453 aggregating features over

454 :param fc: A boolean specifying if we are solving the city or the

455 functional class problem.

456 :return: The processed dataframe

457 """

458

459 prepared_dict = dict()

460 for file, df in df_dict.items():

461 df = downsample(

462 df, downsample_rate, columns=vehicle_data_params)

463 sample_rate = original_sample_rate / downsample_rate

464 df = create_features(df, sample_rate, window_size)

465 create_labels(df, fc)

466 df = filter_nth(df, filter_rate)

467 df = df.dropna(subset=features + [’label’])

468 prepared_dict[file] = df

469

470 return prepared_dict

471

472

473 def create_labels(df, fc):

474 """ Adds a label column to a data frame.

475 :param df: The dataframe

476 :param fc: A boolean specifying if we are labeling the fc or the

477 functional class problem.

478 """

479

480 if fc:

481 df.ix[df.mIsMotorway_MAP == 1, ’label’] = 0

482 df.ix[df.mGetFC_MAP == 1, ’label’] = 0

483 df.ix[df.mGetFC_MAP == 2, ’label’] = 1

484 df.ix[df.mGetFC_MAP == 3, ’label’] = 1

485 df.ix[df.mGetFC_MAP == 4, ’label’] = 2

486 else:

487 df.ix[df.mIsInCity_MAP == 0, ’label’] = 0

488 df.ix[df.mIsInCity_MAP == 1, ’label’] = 1

489

490

491 def create_features(df, sample_rate, window_size):

492 """ Adds features to a data frame. Applies the functions of the

493 features.

494

495 :param df: The dataframe

496 :param sample_rate: The rate the data is sampled at

497 :param window_size: The size of the sliding window we are

498 aggregating features over

499 :return: The processed dataframe

500 """

501

502 # Steering wheel is negative when turning one direction and
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503 # positive when turning the other direction. We are not

504 # interested in the direction, but only the absolute value

505 df.SteeringWheelAngle = df.SteeringWheelAngle.abs()

506

507 # Direction indicator is encoded with 1 for one direction and 2

508 # for the other direction. We are only interested in whether the

509 # direction indicator is active or not.

510 df.mDirInd = df.mDirInd > 0

511

512 # create features

513 df[’acc_var’] = pd.rolling_var(df.mAccelPedalPos,

514 nr_window_records(window_size, sample_rate), center=True)

515 df[’acc_mean’] = pd.rolling_mean(df.mAccelPedalPos,

516 nr_window_records(window_size, sample_rate), center=True)

517 df[’dir_mean’] = pd.rolling_mean(df.mDirInd,

518 nr_window_records(window_size, sample_rate), center=True)

519 df[’dir_var’] = pd.rolling_var(df.mDirInd,

520 nr_window_records(window_size, sample_rate), center=True)

521 df[’gear_var’] = pd.rolling_var(df.mGearSelected,

522 nr_window_records(window_size, sample_rate), center=True)

523 df[’gear_mean’] = pd.rolling_mean(df.mGearSelected,

524 nr_window_records(window_size, sample_rate), center=True)

525 df[’speed_var’] = pd.rolling_var(df.mVehicleSpeed,

526 nr_window_records(window_size, sample_rate), center=True)

527 df[’speed_mean’] = pd.rolling_mean(df.mVehicleSpeed,

528 nr_window_records(window_size, sample_rate), center=True)

529 df[’steer_mean’] = pd.rolling_mean(df.SteeringWheelAngle,

530 nr_window_records(window_size, sample_rate), center=True)

531 df[’steer_var’] = pd.rolling_var(df.SteeringWheelAngle,

532 nr_window_records(window_size, sample_rate), center=True)

533 df[’engine_var’] = pd.rolling_var(df.mEngineSpeed,

534 nr_window_records(window_size, sample_rate), center=True)

535 df[’engine_mean’] = pd.rolling_mean(df.mEngineSpeed,

536 nr_window_records(window_size, sample_rate), center=True)

537

538 return df
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