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ABSTRACT

In this thesis, we study iterative detection, decoding and channel parameter esti-
mation algorithms for asynchronous direct-sequence code division multiple access
(DS-CDMA) systems employing orthogonal signalling formats and long scram-
bling codes.

Multiuser detection techniques are widely used to combat the detrimental
effects of multipath fading and multiple access interference (MAI), which are the
major impairments in CDMA communication systems. Although the emphasis is
placed on nonlinear interference cancellation schemes, several linear interference
filtering techniques are also discussed in the first part of the thesis. The multi-
stage parallel interference canceler (PIC) is evaluated analytically and compared
with simulation results. To prevent performance degradation of PIC due to er-
ror propagation, some soft cancellation schemes using soft decision feedback are
presented.

Most multiuser detectors rely on accurate channel information, which needs
to be estimated in practice. For the purpose of channel estimation, both classic
and Bayesian methods are considered in this thesis, depending on whether prior
knowledge about the parameters to be estimated is available or not. We focus on
the decision directed approach when estimating the fading channel gains. That
is, the receiver estimates the channel parameters based on the detected data, no
training sequences are needed. The estimated channel coefficients are also used
to regenerate the signal of each user for the purpose of interference cancellation.

Another essential channel parameter to be estimated is the propagation delay.
Many studies show that multiuser detectors need very accurate delay estimates
to perform well. We propose some suboptimal synchronization algorithms that
achieve good acquisition performance in presence of MAI and have reduced com-
plexity compared to the optimum maximum likelihood estimator.

In the second part of the thesis, we employ the turbo processing princi-
ple and study iterative demodulation and decoding of a convolutionally coded
and orthogonally modulated asynchronous DS-CDMA system. Several iterative
schemes based on soft demodulation and decoding algorithms are presented. The
performance of different strategies are evaluated and proved to achieve substan-
tial performance gains compared to the conventional hard decision based scheme,
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especially when the soft demodulator is assisted by decision directed channel es-
timation and interference cancellation techniques, and also when demodulation
and decoding are performed jointly in an iterative manner.

It is also shown that iterative decoding with properly corrected extrinsic infor-
mation or with non-extrinsic/extrinsic adaptation enables the system to operate
reliably in the presence of severe multiuser interference. Additional gain is no-
ticed when soft information rather than hard decision feedback is used for channel
estimation and interference cancellation.

Keywords: direct sequence code division multiple access (DS-CDMA), data
detection, multiuser detection, channel estimation, synchronization, acquisition,
delay estimation, long scrambling codes, orthogonal modulation, convolutional
codes, soft demodulation, iterative decoding, maximum likelihood (ML), maxi-
mum a posteriori (MAP), soft-input soft-output (SISO), extrinsic information,
additive white Gaussian noise (AWGN), multiple access interference (MAI), in-
tersymbol interference (ISI), multipath Rayleigh-fading channels, performance
analysis.
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Chapter 1

INTRODUCTION

Some background information related to this thesis is provided in this chap-
ter. The emphasis is placed on the introduction of the communication
system model shown in Fig. 1.1 and some fundamental issues inside each
functional block of the system model. At the end of this introductory chap-
ter, the outline of the thesis and the included papers are briefly introduced.

Please note that this introduction is tailored to the system considered
in this thesis and is by no mean generic nor all inclusive. For a more
detailed and broader overview of digital communication systems in general
and CDMA spread spectrum communication systems in particular, the
readers are recommended to consult [1, 2, 3, 4, 5, 6, 7, 8].

1.1 A CDMA Spread Spectrum Communica-
tion System

The system depicted in Fig. 1.1 consists of three major components: trans-
mitter, channel, and receiver. First, we introduce the basic elements of the
transmitter which converts the electrical signal into a form that is suitable
for transmission through the physical channel. The functional blocks in
the transmitter include channel coding, modulation, spreading and carrier
modulation.

1.1.1 Channel coding

The purpose of the channel coding is to introduce in a controlled manner
some redundancy in the binary information sequence which can be used at
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Figure 1.1: A CDMA spread spectrum communication system model.

the receiver to overcome the effects of noise and interference encountered
in the transmission of the signal through the channel.

In this thesis, we consider the use of convolutional codes. Convolutional
codes are commonly specified by 3 parameters: the number of output bits
n, the number of input bits k and the constraint length L. A convolutional
encoder with parameters (n, k, L) = (2, 1, 3), and code rate Rc = k

n = 1
2 , is

illustrated in Fig. 1.2. It consists of a L = 3-stage shift register that holds
the information bits. The shift register stages are connected to modulo-
2 adders. The connections are determined by the generator polynomial,
which is (111, 101) in this case. The encoder operates on the incoming
message sequence, one bit at a time. For each input bit b1, the encoder
outputs two coded bits u1 = b1 ⊕ b0 ⊕ b−1, u2 = b1 ⊕ b−1. It is obvious that
the outputs not only depend on the incoming information bit b1, but also
on the previous two information bits stored in the shift register (the bits
in the shaded stages of the shift register).

The encoder may be regarded as a finite state machine. The final two
stages of the shift register hold past inputs and function as the memory
of the machine. In this example, there are L − 1 = 2 memory stages and
hence 2L−1 possible states.

1.1.2 Modulation

1.1.2.1 M-ary orthogonal modulation

In this thesis, we are mainly concerned with M -ary orthogonal modulation,
which is accomplished by a family of block codes, called Walsh (Hadamard)
code, which is used by CDMA users as orthogonal spreading sequences and
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Figure 1.2: A rate 1/2 convolutional encoder with generator polynomial
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by the coding community as an error correcting code. The Walsh code is
a set of M = 2l mutually orthogonal vectors. The convolutionally encoded
sequences (or information sequences in uncoded case) in binary form are
partitioned into groups of length l. There are exactly M = 2l different
patterns of l-bit sequence, and each block of l-bit is mapped into one of the
M patterns.

The Walsh codewords are produced in a simple iterative scheme illus-
trated in Fig. 1.3. The rule is to produce the next matrix of Walsh codes
by repeating the entire present matrix to the right and to the bottom and
to repeat with all signs reversed to the diagonal. The resulting matrices
contain one row of all +1s, and the remaining rows each has equal numbers
of +1s and −1s.

The use of Walsh code is widespread in practical CDMA systems. For
example, it is used in IS-95 system for orthogonal modulation in the uplink
and user separation in the downlink; in 3G systems, it is used for spreading
and channelization.
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Figure 1.3: Structure of the Walsh codes (overline denotes the binary com-
plement of the bits in the matrix).
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Figure 1.4: Comparison of different pulses and their spectra. The x-axis for
pulses is normalized to the symbol interval T , the frequency axis
for spectra is normalized to the symbol rate 1/T , the magnitude
of the spectra is plotted in dB scale. All pulses are normalized
to a peak value of unity, and truncated between −4T ∼ 4T .

1.1.2.2 Baseband modulation

The baseband modulation is performed to map the binary information se-
quence into signal waveforms. The digital data 1s and 0s (or equivalently
+1s and −1s) cannot be transmitted through any channel without first
transforming the digits to waveforms that are compatible with the chan-
nel, e.g., satisfy the bandwidth limitation imposed by the channel. This
can be accomplished by representing these information bits or symbols us-
ing pulses, and a number of such pulses form a pulse train, which carries
the information across the channel. Next, we will examine different pulse
shapes that can be used to represent the bits and symbols.

Nyquist pulses that result in no intersymbol interference (ISI) are usu-
ally used to represent the information sequence. Examples of Nyquist
pulses, e.g., the triangular, sinc, Raised Cosine1 (RC) pulses are shown
in the upper plots of Fig. 1.4. The pulse at transmitter (called transmit-

1so called because the transition band (the zone between passband and stopband) is
shaped like part of a cosine waveform.
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ting filter) is employed mainly to constraint the modulation to the regu-
lated bandwidth, while in the receiver, the pulse (called receiving filter) is
necessary to remove the interference and minimize the noise entering the
demodulator. Usually, a Nyquist pulse is evenly split between the trans-
mitting filter and the receiving filter so that the convolution denoted by ’∗’
of these two is a Nyquist pulse. Therefore, the rectangular, sinc and Root
Raised Cosine (RRC) pulses shown by the middle plots of Fig. 1.4 should
be ones that are used at the transmitter and receiver2. Their corresponding
frequency spectra are given in the lower plots of Fig. 1.4.

The rectangular pulse has no intrusion into the next symbol slot, it is an
ideal shape for eliminating ISI. Although having the deficiency of infinite
bandwidth occupancy, the rectangular pulse is, however, employed in our
work to simplify the computer simulations.

Among the sinc and RRC pulses, the latter one is commonly used be-
cause of the ease of implementation and better performance for ISI elimi-
nation at the cost of some extra bandwidth determined by the rolloff factor
α. One of the research topics in this thesis is to study the behavior of data
detectors when RRC pulses are employed.

The sinc and RRC pulses are noncausal and have infinite length, they
are thereby not physically realizable. To make them realizable, we have to
use delayed and truncated versions of these pulses.

To form M -ary orthogonal signaling formats, the Walsh codewords are
baseband modulated by Nyquist pulses to construct M orthogonal wave-
forms si(t), i = 0, 1, · · · ,M − 1. The decimal equivalent of each l-bit se-
quence denoted by i is then determined and one of theM distinct waveforms
corresponding to that decimal number i is transmitted to convey the l-bit
pattern to the receiver in each symbol interval. This is in contrast to the
binary modulation, in which the binary digit 0 is mapped into a waveform
s0(t) and the the binary digit 1 into a waveform s1(t).

Fig. 1.5 is an example of 4-ary orthogonal modulation (l = 2). In
this case, 22 = 4 different binary-bit patterns (00), (01), (10), (11) with
representations i = 0, 1, 2, 3, are mapped respectively to the orthogonal
waveforms corresponding to the Walsh codewords:
(+1,+1,+1,+1), (+1,−1,+1,−1), (+1,+1,−1,−1), (+1,−1,−1,+1).

1.1.3 Spreading

Spreading and despreading are the main features that distinguish the
spread spectrum systems from general digital communication systems. The
traditional approach to digital communications is based on the idea of
transmitting as much information as possible in as narrow a signal band-
width as possible. Spread spectrum is a technology used to combat the

2Strictly speaking, sinc = sinc ∗ sinc, RC = RRC ∗ RRC only hold when the wave-
forms are not truncated.
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MAI and intentional jamming by spreading the transmitted signal over a
wide frequency band, much wider than the minimum bandwidth required
by the message signal.

In the system discussed in this thesis, all the users use the same or-
thogonal functions, the signal of one user cannot be distinguished from
the others. Therefore, each user’s signal needs to be spread by a distinct
pseudonoise (PN) sequence after the orthogonal modulation.

Spreading can be used for the purpose of data scrambling. The Walsh
codes do not generally have low cross-correlation at arbitrary time shifts,
some of them are even shifted versions of the others. Therefore, the PN
codes are used to provide low correlation between shifted versions of the
transmitted signals in order to facilitate synchronization and reduce inter-
symbol interference.

Fig. 1.6 shows the functional diagram and the basic elements of a spread
spectrum system. The code generator output c(t) in the transmitter is a
chip sequence of rate Rc which is typically much higher than the data rate
Rb (the ratio Rc/Rb is called spreading ratio or spreading factor). In short-
code CDMA systems, c(t) is periodic with the period equal to the symbol
duration. While in long-code CDMA systems, c(t) is different from symbol
to symbol, its period is much longer than the symbol duration.

The code synchronizer must precisely synchronize the receiver code gen-
erator to the code of the received signal (the required timing accuracy is
well below half a chip). The code synchronization is a challenging and one
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of the most critical tasks in mobile communications and is also one of the
main themes in this thesis.

The spreading process is demonstrated in Fig. 1.7, it consists of multi-
plying rectangular pulses modulated data x(t) and a PN spreading sequence
c(t). The product signal s(t) = x(t)c(t) is the signal after spreading. In
our example, we assume information bits (10) are transmitted. After 4-ary
orthogonal modulation, the information bearing signal x(t) is therefore the
third waveform in Fig. 1.5.

1.1.4 Carrier modulation

Carrier modulation is the process of shifting the frequency components of
baseband pulse shapes to a suitable frequency band in order to efficiently
pass the signals through the channel. This process usually involves modu-
lating the amplitude, frequency, and/or phase of a carrier.

The nature of the radio transmission necessitates the use of carrier mod-
ulation. For example, a 2400 symbols/sec pulse train is an audio-bandwidth
signal and is ideal for transmission over a telephone line. But sending the
same signal by radio would require an antenna hundreds of kilometers long.
On the other hand, if the baseband pulses are first modulated on a higher
frequency carrier, e.g., a 900 MHz carrier, the antenna length would be
about a few centimeters. For this reason, carrier or bandpass modulation
is an essential step for most systems involving radio transmission.

As shown in Fig. 1.7, the carrier modulation is accomplished by multi-
plying the spread baseband signal s(t) with a sinusoidal carrier of the form
cos(ωct), i.e., sm(t) = s(t) cos(ωct) = x(t)c(t) cos(ωct).

1.1.5 Channel model

The channel is the physical medium used to convey the signal from the
transmitter to the receiver. In radio transmission, channel is usually the
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Figure 1.7: Spreading and carrier modulation (T is the symbol interval).

free space. In this thesis, we emphasize on four types of channel effects on
the transmitted signal: additive noise, channel propagation delay, fading,
and multipath propagation.

Thermal noise is the predominant noise and unavoidable source for all
communication systems. Its characteristics (additive, white and Gaussian,
giving rise to the name AWGN) are most often used to model the noise in
the detection process and in the design of receivers. An AWGN channel is
assumed in our work, which means the noise is a Gaussian random process
with power spectral density Gn(f) = N0/2 which is flat (constant) over the
channel bandwidth.

Signals will experience propagation delays when arriving at the receiver
end as long as the transmitter and receiver are not placed at the same
location. The delay is directly proportional to the distance between the
transmitter and receiver, thus vary with time in wireless communication
systems due to the mobility of the mobile users.

The presence of reflecting objects and scatterers in the channel will
introduce multipath propagation. When a signal leaves the transmitting
antenna, it can take a number of different paths with different delays to
reach the receiver, as shown in Fig. 1.8.
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The difference in delay will result in different phases between received
signals. If the phase difference approaches 180 degree, the signals will add
destructively, resulting in a phenomenon called signal fading; while if the
phase difference approaches 0, they will add constructively. If the duration
of a modulated symbol is much greater than the time spread of the prop-
agation path delays, e.g., in narrow-band transmission systems, the phase
variations between different frequency components in the transmitted sig-
nal will be small and they will all undergo very similar amount of fading.
This is so called flat fading. On the other hand, if the symbol duration is
of the same order or even smaller than the multipath delay spread, e.g., in
wide-band transmission systems, the frequency components in the trans-
mitted signal will experience different phase shifts along different paths.
The channel does not have a constant frequency response over the band-
width of the transmitted signal, it creates frequency-selective fading on the
received signal. When this occurs, the received signal includes multiple
version of the transmitted waveform which are attenuated (faded) in time.
The channel can thus be modeled with several filter taps which represent
attenuation along each of the delay path [9]. Time dispersion of the trans-
mitted symbols results in intersymbol interference (ISI). Let us consider a
L-path model illustrated in Fig. 1.8. The received signal y(t) is given by a
sum of delayed components

y(t) =

L∑

i=1

hid(t− τi)

where hi, i = 1, 2, · · · , L is the fading coefficient of the ith path, d(t) is the
transmitted waveform, and τi is the propagation delay of the ith path.

When either the transmitter or receiver is moving within a multipath en-
vironment, the path lengths will vary with time, so will the relative phases
between signals. The channel gain changes over time and is denoted as
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hi(t). Without line-of-sight path, the channel gains are usually assumed to
be Rayleigh distributed with the classical “bath tub” power spectrum [10],
i.e., hi(t) is complex circular Gaussian process with autocorrelation func-
tion E[h∗i (t)hi(t+τ)] = PiJ0(2πfdτ) where Pi is the average received power
from the ith path, fd is the maximum Doppler frequency, and J0(x) is the
zeroth order Bessel function of the first kind. A typical fading envelope
and histogram are shown in Fig. 1.9.

Next, we shall take a look at the basic elements of the receiver which
recovers the message signal contained in the received signal. The functional
blocks in the receiver include downmixing, despreading, demodulation, and
decoding as depicted in Fig. 1.1. They are more or less logically the inverse
operations of the transmitter in reverse order.

1.1.6 Downmixing and despreading

Downmixing is the inverse process of carrier modulation, also called carrier
demodulation. It performs frequency translation to transform bandpass
signals to baseband signals. This process is illustrated in Fig. 1.10. The
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received signal3 r(t) = sm(t) is demodulated by a carrier cos(ωct)

sd(t) = sm(t) cos(ωct) = x(t)c(t) cos2(ωct) =
1

2
x(t)c(t)[1 + cos(2ωct)]

The double frequency component in the above equation is filtered out
by the LPF as shown in Fig. 1.6. In this way, the baseband signal s(t) =
x(t)c(t) is extracted from the sinusoidal carrier.

Despreading or descrambling is the process to retrieve the information
bearing signal x(t) from the scrambled signal s(t) = x(t)c(t) at the receiver.
It is performed as illustrated in Fig. 1.10. The baseband signal s(t) is
multiplied with a replica of the spreading signal c(t) generated by the PN
code generator at the receiver, which is synchronized to the PN code in the
received signal, such that s(t)c(t) = x(t)c2(t) = x(t), since c2(t) = 1 for all
t.

3Strictly speaking, the received signal should have the form:
r(t) =

∑

i sm(t − τi)hi(t) + n(t), where τi is the propagation delay of the ith path,
hi(t) is its corresponding fading process, and n(t) is the AWGN. In order to get a basic
understanding of the principles of the spread spectrum communications, we only consider
the ideal situation here and ignore the propagation delays, noise, fading and all other
kinds of channel impairments.
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1.1.7 Demodulation

The demodulator performs the waveform-to-sample transformation, and
makes symbol decision. Here, the waveform refers to the despread signal,
in our example is x(t). The demodulator consists of one or a bank of
correlators or matched filters (MF) followed by samplers which sample the
output of the correlators or MFs at the end of each symbol duration T .
The samples are used by the decision device to make decisions on which of
the M possible symbols was transmitted.

We use Fig. 1.11 to demonstrate the demodulation process. Suppose
we have at the input of the demodulator the signal x(t). It is filtered by
a set of M MFs, each matched to the waveform of one of the M symbols
(M = 4 in this example). The outputs of the MFs are compared and the
symbol with the largest output is taken as the transmitted symbol.

In this case, r2 has larger value than other samples due to the complete
match between x(t) and h2(t). Thus we make the decision that the third
symbol (̂i = 2) corresponding to the bit pattern (10) was transmitted by
the transmitter.

1.1.8 Channel decoding

Viterbi algorithm is the best known implementation of the maximum like-
lihood decoding for convolutional codes. It can be illustrated with trellis
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diagram, which is a way to show the transition between various states as the
time evolves. The Viterbi decoder finds a path through the trellis that is at
minimum distance from a given sequence. Decoding can be hard-decision
decoding or soft-decision decoding, depending on whether Hamming dis-
tance or Euclidean distance is used as the metric to be minimized. In
hard-decision decoding of convolutional codes, we choose a path through
the trellis whose codeword is at minimum Hamming distance from the re-
ceived sequence; while in soft-decision decoding, we choose a path whose
codeword is at minimum Euclidean distance from the received sequence.

Fig. 1.12 shows an example of decoding process. Assume information
bits 101000 were convolutionally coded into sequence 11, 10, 00, 10, 11, 00,
which was transmitted over the channel. For simplicity, we demonstrate
the hard-decision decoding, in which the Hamming distance is used for
branch metric. After making hard decision on the received signal, the
quantized received sequence becomes 11, 11, 00, 10, 10, 10. The errors occur
for the underlined bits due to the channel impairments (noise, fading, etc.).
Starting from all-zero state s0, the decoder computes metrics (the Hamming
distance) between all possible paths and the received sequence. The metrics
are cumulative along the nodes of each path. When two branches enter the
same node, the one with lower accumulated metric remains as a survivor
and the other branch is eliminated. At the end, the path with minimum
distance to the received sequence is selected to be the optimum trellis path.
The information sequence will then be determined.

In our example, the path drawn with bold lines through the trellis
is selected. The codeword for this path is 11, 10, 00, 10, 11, 00, which is
at Hamming distance 3 from the received sequence. The corresponding
information sequence is 101000. Three bits errors in the codeword are
corrected and the original information sequence is recovered.

When the channel propagation delay, MAI, noise, multipath, and fad-
ing are considered as in the real systems, the demodulation and decoding
processes become much more sophisticated. These issues will be treated in
the following chapters.

1.2 Thesis Outline

This thesis includes two parts: the uncoded system and coded system. Sys-
tem model is introduced at the beginning of each part. Part one consists of
Chapter 2 – 7, where we consider the orthogonal modulated system without
convolutional encoding. Part two consists of Chapter 8 – 10, where we con-
sider the orthogonal modulated system with convolutional encoding. Dif-
ferent linear and nonlinear iterative data detection schemes are presented
in Chapter 3. Compared to the conventional receiver and other nonco-
herent multiuser detectors, coherent multiuser detection schemes achieve
much better performance provided that the channels are accurately esti-
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mated. It is proved that PIC is an approximate ML approach to data
detection. The performance of multistage PIC is evaluated theoretically
in Chapter 4 and shown to be in fairly close agreement with the simula-
tion results. The conventional interference cancellation receiver is subject
to performance degradation due to incorrect decisions on interference sub-
tracted from the received signal. To prevent error propagation from the
decision feedback, two soft cancellation schemes, one based on maximum
a posterior (MAP) criterion, the other based on nonlinear minimum mean
square error (MMSE) estimation are presented and proved to be superior
to the conventional PIC using hard decision feedback. It is also shown that
the soft information should be used for both interference cancellation and
channel estimation in order to achieve the utmost performance.

In Chapter 5, we present a joint approach to channel estimation and
data detection (interference cancellation in particular). We investigate
channel estimation algorithms under different conditions. The maximum
likelihood (ML) algorithm is shown to be efficient for estimating multipath
Rayleigh fading channels when the underlying channels are completely un-
known and when the fading processes are slow. With the knowledge of
the noise and channel statistics, we can employ linear MMSE estimator to
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yield more noise-resistant estimates. Other alternatives, like the first and
second order Kalman filters which take into account the correlative nature
of the Rayleigh fading channel are also introduced. The estimated channel
information is used to enable coherent data detection to combat the detri-
mental effect of multipath propagation of the transmitted signal as well as
multiuser interference.

The problem of estimating propagation delays is treated in Chapter 6.
The Maximum Likelihood (ML) estimator and its unaffordable complexity
for implementation are discussed. Several pilot-assisted acquisition algo-
rithms, namely the whitened sliding correlator, MMSE estimator, subspace-
based estimator, and approximate ML estimators are introduced. They re-
duce the computational complexity of the ML estimation from exponential
to polynomial, and achieve good acquisition performance in presence of the
MAI. This is in contrast to the conventional sliding correlator which does
not work well in high-interference situations.

The effect of different pulse shaping filters on the system performance
is analyzed in Chapter 7. We numerically evaluated and compared the
performance of rectangular pulse and square root raised cosine pulses with
different rolloff factors for conventional receiver and multiuser detectors.
Based on the simulation results, some recommendations are made on how
to choose RRC pulses in practical systems, e.g., the selection of rolloff
factor, truncation length, etc..

Channel coding, iterative decoding and multiuser detection are gen-
eral tools to design a reliable communication system. The principle of
turbo processing seems to be a good way of combining these three power-
ful elements to achieve the maximum capacity of a system. In the second
part of the thesis, we employ the turbo processing principle and study it-
erative decoding of a convolutionally coded and orthogonally modulated
asynchronous CDMA system. In Chapter 9, we analyze and compare the
performance and complexity of several strategies for demodulating and de-
coding without extrinsic information. It is shown that the replacement of
the hard demodulator with a soft demodulator is most crucial in the im-
provement of system performance. Significant gains can also be obtained
by integrating demodulation and decoding rather than performing them
separately. The replacement of hard output channel decoder and hard de-
cision directed interference cancellation and channel estimation with their
soft counterparts further enhance the reliability of the system, however, the
gain is less significant.

Orthogonal modulation is essentially a process of block coding with
Walsh code. Chapter 10 aims at tackling the problem of iterative decod-
ing of serially concatenated inner block code and outer convolutional code
with extrinsic information. The (logarithm) maximum a posteriori proba-
bility criterion is used to derive the iterative decoding schemes. The soft
output from inner block decoder is used as a priori information for the
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outer decoder. The soft output from outer convolutional decoder is used
for two purposes. In addition to be fed back to the inner decoder as extrin-
sic information, tentative hard/soft decisions can be made for interference
cancellation and channel estimation. It is shown that the inner decoding
with corrected extrinsic feedback or with non-extrinsic/extrinsic adaptation
enables the system to operate reliably in the presence of severe multiuser
interference.
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Chapter 2

SYSTEM MODEL FOR UNCODED SYSTEM

Throughout the first part of this thesis, we study the orthogonally modu-
lated DS-CDMA system without convolutional encoding. The orthogonal
modulation is accomplished by Walsh code which combines the advantages
of spreading and coding to achieve improved performance for spread spec-
trum (CDMA) systems. It was shown in [11, 12] that M -ary signaling
improves bandwidth efficiency significantly compared to binary signaling
in fading and nonfading channels, and the efficiency further improves as
the order of multipath diversity increases.

Fig. 2.1 shows the signal path for the kth user. The kth user’s jth

symbol is denoted by ik(j) ∈ {0, 1, . . . ,M − 1}, and mapped into wik(j) ∈
{w0, · · · ,wM−1}, which is one of the by M orthogonal signal alternatives.
The Walsh codeword wik(j) ∈ {+1,−1}M is repetition encoded into

sk(j) = rep{wik(j), N/ log2(M)} ∈ {+1,−1}N (2.1)

where rep{·, ·} denotes the repetition encoding operation where its first
argument is the input bits and the second one is the repetition factor.
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Table 2.1: Mapping between input bits and Walsh codewords. The Walsh
chip sequence sm is derived by repeating (spreading) each bit of
wm by N/8 times.

info bits index Walsh codeword

m wm

+1 + 1 + 1 0 w0 : +1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

+1 + 1 − 1 1 w1 : +1 + 1 + 1 + 1 − 1 − 1 − 1 − 1

+1 − 1 + 1 2 w2 : +1 + 1 − 1 − 1 + 1 + 1 − 1 − 1

+1 − 1 − 1 3 w3 : +1 + 1 − 1 − 1 − 1 − 1 + 1 + 1

−1 + 1 + 1 4 w4 : +1 − 1 + 1 − 1 + 1 − 1 + 1 − 1

−1 + 1 − 1 5 w5 : +1 − 1 + 1 − 1 − 1 + 1 − 1 + 1

−1 − 1 + 1 6 w6 : +1 − 1 − 1 + 1 + 1 − 1 − 1 + 1

−1 − 1 − 1 7 w7 : +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1

Therefore, each bit of the Walsh codeword is spread (repetition coded) into
Nc = N/M chips, and each Walsh symbol is represented by N chips and
denoted as sk(j) ∈ {s0, · · · , sM−1}. Table 2.1 shows the mapping between
input bits and Walsh codewords wm and Walsh sequences sm for M = 8.

The Walsh sequence sk(j) is then scrambled (randomized) by a scram-
bling code unique to each user to form the transmitted chip sequence

ak(j) = Ck(j)sk(j) ∈ {+1,−1}N

where Ck(j) ∈ {−1, 0,+1}N×N is a diagonal matrix whose diagonal ele-
ments correspond to the scrambling code for the kth user’s jth symbol. The
purpose of scrambling is to separate users. In this thesis, we focus on the
use of long codes, e.g., the scrambling code differs from symbol to symbol.

Long spreading (scrambling) codes have been included in several lead-
ing standard proposals for 3G cellular networks [13, 14]. The use of long
codes ensures that all the users achieve on the average the same perfor-
mance. They makes MAI more white noise like, thus better combats the
interference and other manner of channel impairments [15]. On the other
hand, they inevitably destroy the cyclostationarity of CDMA signals and
make the system time-varying, which disables applicability of many of the
existing channel estimation, synchronization, and detection approaches de-
veloped for short code CDMA systems.

The scrambled sequence ak(j) is pulse amplitude modulated using a
unit-energy chip waveform ψ(t) to form the baseband signal, i.e., sk(t) =
∑

n ak(n)ψ(t − nTc), where Tc is the chip duration and T = NTc is the
symbol duration. For simplicity, we assume that ψ(t) is a rectangular pulse
with support t ∈ [0, Tc) in most parts of this thesis; However, in Chapter 7,
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we consider the use of square-root raised cosine pulses and compare their
performance with the rectangular pulse.

The baseband signal is multiplied with a carrier and transmitted
over a Rayleigh fading channel with Lk resolvable paths with time-
varying complex channel gains hk,1(t), hk,2(t), . . . , hk,Lk

(t) and delays
τk,1, τk,2, . . . , τk,Lk

. We assume, without loss of generality, that τk,1 <
τk,2 < · · · < τk,Lk

. The received signal is the sum of all users’ contributions
plus additive white Gaussian noise with power spectral density N0/2. The
passband signal, rRF(t) is formed according to Fig. 2.1, and the complex
envelope1 of the received signal can be written as

r(t) = n(t) +

K∑

k=1

Lk∑

l=1

hk,l(t− τk,l)sk(t− τk,l)

where n(t) has the second moments E[n(t)n(s)] = 0 and E[n(t)n∗(s)] =
N0δ(t − s), and δ(·) is the Dirac delta function. The power of hk,l(t) is
denoted by Pk,l = E[|hk,l(t)|2].

The output from the chip-matched filter is denoted by y(t) = r(t)∗ψ(−t)
and is sampled every Tc seconds to yield

y(iTc) = r(t) ∗ ψ(−t)|t=iTc

= ν(iTc) +
∑

n

K∑

k=1

Lk∑

l=1

hk,l(t− τk,l)ak(n)ψ(t− nTc − τk,l) ∗ ψ(−t)|t=iTc

where ν(t) = n(t) ∗ ψ(−t), the noise sample ν(iTc) is a zero-mean com-
plex Gaussian random variable with second moments E[ν(iTc)ν

∗(jTc)] =
N0δ[i− j] and E[ν(iTc)ν(jTc)] = 0, where δ[·] is the Kronecker delta func-
tion.

Let pk,l and δk,l ∈ [0, 1) be the integer and fractional parts of the delay
τk,l, i.e., τk,l = (pk,l + δk,l)Tc. The vector r(k, j) ∈ C

Nk corresponding to
the kth user’s jth symbol contains Nk = N + pk,Lk

− pk,1 samples of y(iTc)
and can be written in the following forms2

r(k, j) = A(k, j)h(j) + n(k, j) (2.2)

= Xk(j)hk(j) + ISI(k, j) + MAI(k, j) + n(k, j)

As seen from Fig. 2.2, y(iTc) consists of contributions from all users’
path signals and the additive noise. The n(k, j) vector is a vector of the

1The passband signal, rRF(t), can be written in terms of the complex envelope as
rRF(t) =

√
2Re{r(t)ejωct}, where ωc is the carrier frequency.

2Assume channel gains remain constant during one symbol interval.
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Figure 2.2: Sketch of contributions from the users’ paths to the received sig-
nal. The signal during the indicated time interval is represented
by r(1, j).

noise samples ν(iTc)

n(k, j) =
[

ν([jN + pk,1 + 1]Tc) · · · ν([jN + pk,Lk
+N + 1]Tc)

]T

Each column of the matrix A(k, j) represents the contribution from each
path and is a shifted version of the appropriate user’s chip sequence (the
shift is due to the path delay). The columns of A(k, j) are weighted together
by h(j), whose elements are the path gains of all users’ paths. From Fig. 2.2,
we see that r(k, j) can be written as the sum of four terms: the signal of
interest, the intersymbol interference (ISI), the multiple access interference
(MAI), and the noise. The signal of interest is the part of y(iTc) that is due
to the kth user’s jth symbol. In Fig. 2.2, the signal of interest for user 1 is
marked with bold lines. The columns of the matrix Xk(j) are essentially
the shifted versions of the chips due to the kth user’s jth symbol, one column
per path. The columns of Xk(j) are weighted together by the vector hk(j),
whose elements are the path gains of the kth user’s paths. The contribution
only from the kth user’s jth symbol can be written as Xk(j)hk(j).

The notations used in this thesis are introduced as follows: Ir is the
r × r identity matrix, and 0r is the r × 1 all-zero vector. The vector 1r
denotes all-ones vector [1 1 · · · 1]T of length r. The transpose, conjugate
transpose, and 2-norm of a vector x are denoted by xT , x∗, and ‖x‖ =√

x∗x, respectively. The superscript operator ( )∗ is the conjugate transpose
operation when applied to matrices, and simply the conjugate when applied
to scalars. The (m,n)th element of a matrix A is denoted by [A]m,n. The
nth element of a vector a is denoted as [a]n. The symbols R and C denote
the real field and complex field, respectively.

The matrix A(k, j) ∈ R
Nk×Ltot , (Ltot is the total number of paths of
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all users, i.e., Ltot =
∑K
k=1 Lk) is defined as

A(k, j) =
[

A1(k, j) · · · AK(k, j)
]

Ai(k, j) =
[

ai,1(k, j) · · · ai,Lk
(k, j)

]

[ai,l(k, j)]n = (1 − δi,l)ai(jN + pk,1 + n− pi,l)

+ δi,lai(jN + pk,1 + n− pi,l − 1)

(2.3)

The channel vector h(j) ∈ C
Ltot is defined as

h(j) =
[

hT1 (j) hT2 (j) · · · hTK(j)
]T

hi(j) =
[

hi,1(jT ) hi,2(jT ) · · · hi,Li
(jT )

]T

(2.4)

From (2.2) and (2.3), we can derive

r(k, j) = [A1(k, j) · · ·AK(k, j)][hT1 (j) · · ·hTK(j)]T + n(k, j)

= A1(k, j)h
T
1 (j) + · · · + AK(k, j)hTK(j) + n(k, j)

=

K∑

i=1

si(k, j) + n(k, j) = S(k, j)1Ltot
+ n(k, j)

S(k, j) = [A1h
T
1 . . .AKhTK ] = [S1(k, j) · · ·SK(k, j)] ∈ C

Nk×Ltot

Si(k, j) = [ai,1hi,1 · · · ai,Li
hi,Li

] = [si,1(k, j) · · · si,Li
(k, j)] ∈ C

Nk×Li

where si,l(k, j) represents the contribution from the ith user’s lth path. It
is the product of the channel gain and shifted version of chip sequence
transmitted by the ith user. The vector si(k, j) = Si(k, j)1Li

represents
the contribution from the ith user’s Li paths to r(k, j). For the kth user,
however, some of the elements in Sk(k, j) are due to other symbols than
the jth symbol, e.g., Sk(k, j) contains intersymbol interference.

To summarize, the vector r(k, j) captures the total transmitted energy
due to the transmission of the kth user’s jth symbol. The contribution to
r(k, j) due to the kth user, including ISI, is Sk(k, j)1Lk

, and the contribu-
tion excluding ISI is Xk(j)hk(j).

For simplicity of notation we will sometimes suppress the index k and/or
j from r(k, j), A(k, j), n(j), Xk(j) and hk(j), etc., whenever no ambiguity
arises.
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Chapter 3

MULTIUSER DETECTION

The task of the demodulator is to detect the information symbols from all
users, i.e., detect ik(j) or equivalently, the transmitted Walsh codewords
wik(j) for k = 1, 2, . . . ,K, j = 1, 2, . . . , Lb (Lb is the block length) given

the observation r(k, j). The decision on the kth user’s jth symbol, is found
as

m̂ = arg max
m∈{0,...,M−1}

zk(m)

where zk(m) is the decision statistic from the symbol matched filter or
multiuser detector, based on the condition that the mth Walsh symbol is
transmitted from user k.

The conventional detection technique is to form the soft decision by
correlating the received signal with the M possible transmitted waveforms.
Without the knowledge of the fading processes, the receiver has to use
an equal gain combining scheme instead of an optimum maximum ratio
combining (MRC) scheme, and the soft decision is formed in a path-by-
path noncoherent manner as

zk(m) =

Lk∑

l=1

|x∗
k,l,m(j)r(k, j)|2 (3.1)

where xk,l,m(j) is the transmitted chip sequence due to the kth user’s jth

symbol from the lth path based on the hypothesis that the mth Walsh
symbol is transmitted, and is formed by sm scrambled with Ck(j) and
compensated with the path delay τk,l. It is the lth column corresponding

27
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to the kth user’s lth path in the matrix Xk,m(j), which is defined as

Xk,m(j) =
[

xk,1,m(j) · · · xk,l,m(j) · · · xk,Lk,m(j)
]

This simple scheme is particularly useful in the beginning of the detec-
tion process when the estimates of the fading channel are lacking, we must
therefore carry out the detection in a noncoherent manner. However, it
has poor performance in multiuser environments since it considers multi-
ple access interference (MAI) as additive noise and the knowledge about
MAI is not exploited in any way. A CDMA cellular communication system
is inherently interference limited. This is due to the difficulty of main-
taining orthogonality on the reverse link between code channels used by
independent mobile stations, which transmit asynchronously. This form of
interference limits the uplink capacity severely. An effective tool to increase
the capacity of interference-limited CDMA systems is multiuser detection
(MUD), a method of jointly detecting all the users in the system. In the
following, we will describe how the soft decisions are formed for different
multiuser detectors starting from a nonlinear cancellation scheme.

3.1 Parallel Interference Cancellation (PIC)

Multistage interference cancellation schemes are known to be simple
and effective techniques for mitigation of MAI in DS-CDMA systems.
They offer key advantages over linear multiuser detectors1 for practical
CDMA systems in their ability to operate with long spreading codes,
asynchronous reception, multipath channels, high dimensional modulation
schemes etc. [16].

Interference cancellation has been the subject of study in several pa-
pers. For instance, parallel and successive interference cancellation were
presented in [17, 18]. The interference is estimated and subtracted from
the received signal before detection is done. Iterative schemes for demod-
ulating M -ary orthogonal signaling formats in DS-CDMA systems were
proposed in [16, 19], using nonlinear MMSE and PIC, respectively.

Here, we mainly consider the PIC scheme used in [19]. The basic prin-
ciple is that once the transmitted signals are estimated for all the users
at the previous iteration, interference can be removed by subtracting the
estimated signals of the interfering users from the received signal r(k, j) to
form a new signal vector r′(k, j) for demodulating the signal transmitted
from user k, i.e.,

r′(k, j) = r(k, j) − Â(p−1)(k, j)ĥ(p−1)(j) + X̂
(p−1)
k (j)ĥ

(p−1)
k (j)

1A receiver is considered linear if the decision function is a linear function of the
received signal.
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where r′(k, j) ∈ C
Nk denotes the interference canceled version of r(k, j)

after subtracting the contributions from all the other users using decision
feedback at the (p−1)th stage. The vector Â(p−1)(k, j)ĥ(p−1)(j) represents
the estimated contribution from all the users calculated by using the esti-
mated data matrix Â(p−1)(k, j) and channel vector ĥ(p−1)(j) estimated at

the (p− 1)th stage. The vector X̂
(p−1)
k (j)ĥ

(p−1)
k (j) is the estimated contri-

bution from all paths of user k. The data matrix Â(p−1)(k, j) is obtained

by substituting data estimates î
(p−1)
k , k = 1, 2, . . . ,K into equation (2.3),

and assuming the propagation delays are known. The channel estimate
ĥ(p−1)(j) can be obtained with channel estimation algorithms presented in
Chapter 5.

In the beginning of the detection process, e.g., at the first iteration stage,
the estimates of the fading channel are lacking, we can use noncoherent MF

[as defined by (3.1)] to get an initial data estimates î
(1)
k , which can be used

for channel estimation and interference cancellation in the following stages.

We then iterate for p = 2, 3, . . . , Niter to estimate data î
(p)
k which denote

the data estimates at the pth iteration. The soft decision at the pth PIC
stage is formed as

z
(p)
k (m) = Re{ĥ∗(p−1)

k (j)X∗
k,mr′(k, j)}

= Re{ĥ∗(p−1)
k (j)X∗

k,m[r(k, j) − Â(p−1)(k, j)ĥ(p−1)(j)

+ X̂
(p−1)
k (j)ĥ

(p−1)
k (j)]} (3.2)

With the channel estimate ĥ
(p−1)
k , we can combine the hypothesized

contributions from all the paths of the same user. The soft metric need not
to be computed in a path-by-path fashion like we did for the noncoherent
MF demodulator.

Compared to nonlinear cancellation techniques, relatively little work
has been done in exploring linear receivers for the system in question. In
the remainder of this chapter, we present some linear schemes suitable
for demodulating DS-CDMA signals with orthogonal modulation and com-
pare their performance with nonlinear receiver, e.g., PIC. We start with an
approximate maximum likelihood receiver, then derive some other interfer-
ence filtering algorithms.

3.2 Approximate Maximum Likelihood
(AML) Detection

In the studied system, the noise is complex Gaussian. Given the received
observation r(k, j), the log-likelihood function of the received vector con-
ditioned on a realization of the fading channels and transmitted data can
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be expressed as

constant − 1

N0
‖r(k, j) − A(k, j)h(j)‖2

From the above equation, one can see that maximization of this log-
likelihood function is equivalent to minimization of the function

‖r(j) − A(k, j)h(j)‖2 (3.3)

For simplicity of notation, we will suppress explicit dependence on k, j,
and p of the various quantities, whenever no ambiguity arises. In particular,
we will use r, n, A, Xk,m,hk, and zk to denote r(k, j), n(k, j), A(p−1)(k, j),

Xk,m(k, j),h
(p−1)
k (j), and z

(p)
k (m), respectively.

It is shown in [19] that the ML estimate of the fading channel vector h

is ĥ = A†r, where A† = (A∗A)−1A∗ denotes the left pseudoinverse of A

(assuming A has full column rank). Substituting ĥ into (3.3), we derive
the ML estimation of the data matrix A as the minimizer of

‖r − Ah‖2
∣
∣
∣
ĥ=A†r

= ‖r − AA†r‖2 = ‖(I − AA†)r‖2 = ‖P⊥
Ar‖2

= trace{‖P⊥
Ar‖2} = trace{

[
P⊥

Ar
]∗

P⊥
Ar}

= trace{r∗P⊥
AP⊥

Ar} = trace{r∗P⊥
Ar}

= trace{P⊥
Arr∗} = trace{P⊥

AR̆}

where P⊥
A = IN − AA† is the null space of A, R̆ is the sample auto-

correlation matrix defined as R̆ = rr∗. The ML detector can then be
expressed as

îAML
k = arg min

A
trace{P⊥

AR̆} (3.4)

This algorithm needs the estimate of the whole matrix A at a time.
Under the assumption Nk < 2N for all k, the matrix A is a function of
ik(j); il(m), l = 1, . . . , k − 1, k + 1, . . . ,K; m = j − 1, j, j + 1. Therefore,
the computational complexity of the ML detector define by (3.4) grows
exponentially with the number of users K. A sub-optimum solution that
reduces the complexity from exponential to polynomial is the multistage
ML detector. We use the conventional detector for the first stage to get
initial estimates of the transmitted data. Then the ML algorithm switches
to the decision directed mode. To detect the data transmitted by the kth

user at the pth stage, we replace A in equation (3.3) with Â defined as

Â = [Â1 . . . Xk,m . . . ÂK ] (3.5)

where the matrices Â1(j), Â2(j), . . . , ÂK(j) are estimated MAI at the kth
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user’s jth symbol interval.

Let us denote Ã as the MAI matrix formed as Ã =[

Â1 · · · Âk−1 Âk+1 · · · ÂK

]

. The matrix Ã is similar in form

to Â except that the columns due to the kth user are deleted. Sim-
ilarly, we delete the estimate of the kth user’s channel vector ĥk from
ĥ and form the channel vector h̃ corresponding to the MAI: h̃ =
[

ĥT1 ĥT2 · · · ĥTk−1 ĥTk+1 · · · ĥTK

]T

. The expression of the approxi-

mate ML algorithm – equations (3.3) and (3.5) can now be expanded as

‖r − Âĥ‖2 = [r − Ãh̃ − Xk,mĥk]
∗[r − Ãh̃ − Xk,mĥk]

= ‖r − Ãh̃‖2 − 2Re{ĥ∗
kX

∗
k,m[r − Ãh̃]}

+ ‖ĥkXk,m‖2

The first term of the above expression is irrelevant to the choice of Xk,m,
and the third term is equal for all m,m = 1, . . . ,M . Minimization of the
above decision function is therefore equivalent to maximization of

zk(m) = Re{ĥ∗
kX

∗
k,m[r − Ãh̃]}

which is exactly the same form as the PIC algorithm derived in [19]. We can
conclude that the PIC is an approximate ML approach to data detection.
Compared to the original ML detector, we will lose some performance by
performing a suboptimum search for the minimizer of the criterion function
in (3.4), since the search may end up in a local minima.

3.3 Iterative Interference Suppression (IIS)

An interference cancellation receiver estimates and subtracts interference
from the received vector before detection. Interference suppression, on the
other hand, removes the estimated interference from r by filtering. The
justification for using suppression instead of cancellation is that an erro-
neously estimated symbol would increase interference when using cancella-
tion. However, when using suppression, an erroneously estimated symbol
will cause the suppression of a non-existing signal. This will lead to some
suppression of the desired signal, but the overall penalty may be less than
in the cancellation case.

To construct the suppression filter we need to know (or estimate) the
structure of the interference. In the following, we will define two filters, one
for the case when the fading is unknown (or it is desirable to avoid channel
estimation for complexity or other reasons) and one for the case when the
fading is known (or estimated). Consider the matrix U ∈ R

Nk×(Ltot−Lk)
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defined as
U =

[

A1 · · · Ak−1 Ak+1 · · · AK

]

(3.6)

which is formed from A by deleting the columns that are due to the kth

user. We can suppress the interference by projecting r on the null space
of U which can be computed as P⊥

U = I−UU†, where U† = (U∗U)−1U∗

denotes the left pseudoinverse of U (assuming U has full column rank).
This implies that P⊥

UAi = 0 for all i 6= k, and thus

P⊥
Ur = P⊥

U[Ah + n] =

k∑

i=1

P⊥
UAihi + P⊥

Un = P⊥
UAkhk + P⊥

Un

We can do interference suppression without knowing or estimating the
fading. That leads to the noncoherent version of the IIS receiver

zk(m) =

Lk∑

l=1

(
∣
∣x∗
k,l,mP⊥

Û
r
∣
∣− 1

2

∥
∥P⊥

Û
xk,l,m

∥
∥

2
)

(3.7)

where Û is estimated interference matrix at the previous iteration stage.
If an estimate of the fading vector h is available, the MAI matrix U

can be formed in different ways as follows

U = [s1 · · · sk−1 sk+1 · · · sK ] ∈ C
Nk×(K−1) (3.8)

U = [S1 · · ·Sk−1 Sk+1 · · ·SK ] ∈ C
Nk×(Ltot−Lk) (3.9)

U = [s1 · · · sk−1 (sk − Xk,ikhk) sk+1 · · · sK ] ∈ C
Nk×K (3.10)

where si = Si1Li
is the contribution from the ith user. A coherent version

of the IIS receiver can now be formulated as

zk(m) = Re
{

ĥ∗
kX

∗
k,mP⊥

Û
r
}

− 1

2

∥
∥
∥P

⊥
Û
Xk,mĥk

∥
∥
∥

2
(3.11)

Among the different ways of constructing suppression filter, we found out
from experiments that the one constructed from the null space of (3.9)
gives the best performance, and is therefore employed in our simulations.

3.4 Whitened Matched Filter (WMF)

As we know, the conventional matched filter achieves the best performance
in the AWGN single user channel or in strict orthogonal synchronous chan-
nel. It is not a good choice for multiuser detection in which interference
must be taken into account in addition to the white Gaussian noise. In-
terference combined with Gaussian noise does not have a Gaussian dis-
tribution. A way to work around this problem is to whiten the combined
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interference and noise, which can be achieved by preprocessing the received
vector r with the matrix R−1/2, where R is the auto-correlation matrix of
r defined as R = E[rr∗], and can be estimated as

R̂ = Âhh∗Â∗ +N0IN

The whitened vector 2 R−1/2r has a “white” correlation matrix

E[(R−1/2r)(R−1/2r)∗] = R−1/2RR−∗/2 = I

The matrix R−1/2 is obtained from R by Cholesky factorization [20].
This idea leads to another kind of linear interference suppression tech-

nique, namely, the whitened matched filter (WMF). A coherent WMF can
be formed by correlating the whitened received vector with each candidates
vector {R̂−1/2Xk,mĥk}

zk(m) = Re
{

(R̂−1/2Xk,mĥk)
∗R̂−1/2r

}

− 1

2
‖R̂−1/2Xk,mĥk‖2

= Re
{

ĥ∗
kX

∗
k,mR̂−1r

}

− 1

2
ĥ∗
kX

∗
k,mR̂−1Xk,mĥk (3.12)

From above we know that all coherent data detectors require estimates
of the fading processes, i.e., an estimate of h. Several channel estimation
algorithms are presented in Chapter 5. All of them are decision-directed
and can be inserted into the coherent iteration loops presented in this chap-
ter. The estimation procedure at the pth iteration uses the data estimates

from the previous stage, i.e., î
(p−1)
k .

3.5 Soft Interference Cancellation

The conventional interference cancellation receiver is subject to perfor-
mance degradation due to incorrect decisions on interference that are sub-
tracted from the received signal. To prevent error propagation from the de-
cision feedback, soft interference cancellation was proposed, e.g., in [21, 22]
for convolutionally coded systems. In this case, the soft information is
readily available from the soft-output channel decoder. For uncoded sys-
tems, the soft information has to be derived by some other means. Some
soft interference cancellation algorithms for the uncoded asynchronous DS-
CDMA system with orthogonal signaling formats are presented in this chap-
ter. We then further extend the use of derived soft information for channel
estimation in Chapter 5. The rationale is that the hard cancellation and
channel estimation tends to increase the interference and propagate errors

2The matrix R is symmetric positive definite as long as N0 > 0. Hence, there exist a
symmetric positive definite matrix Q such that QQ = R, and we will use the notation
Q = R1/2, Q−1 = R−1/2, Q∗ = R∗/2, and (Q−1)∗ = R−∗/2.
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with incorrect decision feedback; while with soft cancellation and channel
estimation, the soft estimate of an erroneously estimated symbol usually
has small value, and does not make much contribution to the feedback,
therefore error propagation is avoided.

3.5.1 MAP based soft PIC

The soft reliability value for the nth bit of the Walsh codeword, wn
k (j), n =

0, 1, . . . , log2(M)−1 can be directly derived from the received vector r(k, j).
In the following discussion, we use M = 8 as an example. From Table 2.1,
we know that bits +1 and −1, are equally probable, i.e., P (wn

k (j) = +1) =
P (wn

k (j) = −1), for n = 1, . . . , 7. A posteriori log-likelihood ratio (LLR)
for a transmitted +1 and a transmitted −1 in the bit sequence {wn

k (j)} is
defined as [23]

λ(wn
k (j)) = ln

f(wn
k (j) = +1|r)

f(wn
k (j) = −1|r) = ln

f(r|wn
k (j) = +1)P (wn

k (j) = +1)

f(r|wn
k (j) = −1)P (wn

k (j) = −1)

= ln
f(r|wn

k (j) = +1)

f(r|wn
k (j) = −1)

= ln

∑

m:wn
k
(j)=+1 f(r|wm)

∑

m:wn
k
(j)=−1 f(r|wm)

In the above equation, we denote m : wn
k (j) = ±1 as the set of Walsh

codewords {wm} that correspond to the code bit wn
k (j) = ±1. Typically,

one term will dominate each sum, which suggests

λ(wn
k (j)) ≈ ln

max
m:wn

k
(j)=+1

f(r|wm)

max
m:wn

k
(j)=−1

f(r|wm)

In the above equation, r can be replaced by its interference canceled
version r′ for better performance. In case of perfect cancellation, r′ only
contains the contribution from the kth user plus original additive Gaussian
noise n ∈ C

Nk with PDF n ∼ CN (0, N0INk
), i.e., r′ = Xkhk+n. Therefore,

f(r′|wm) =
1

(πN0)Nk
exp

(

−‖r′ − Xk,mhk‖2

N0

)

λ(wn
k ) ≈ ln

max
m:wn

k
=+1

f(r′|wm)

max
m:wn

k
=−1

f(r′|wm)
= ln

exp(−‖r′ − X+hk‖2/N0)

exp(−‖r′ − X−hk‖2/N0)

=
1

N0

{
‖r′ − X−hk‖2 − ‖r′ − X+hk‖2

}

=
2

N0
Re
{
h∗
kX

+∗r′ − h∗
kX

−∗r′
}

(3.13)

where X+ denotes the Xk,m that corresponds to maxm:wn
k
(j)=+1 f(r|sm),
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and X− is defined similarly. Comparing (3.13) with (3.2), one can see
that the added complexity by deriving soft values rather than making hard
decisions is minor, also that the soft value for wn

k (j) can be expressed as

λ(wn
k (j)) ≈ 2

N0

[

max
m:wn

k
(j)=+1

{zk(m)} − max
m:wn

k
(j)=−1

{zk(m)}
]

where zk(m) = Re{ĥ∗
kX

∗
k,mr′} is the sof decision derived by the PIC algo-

rithm (see (3.2) in Section 3.1) based on the hypothesis that the mth Walsh
symbol is transmitted from user k.

The original hk is unknown, and it has to be estimated. In (3.13),

we should replace it with its estimate ĥk instead. An estimate of the
channel vector ĥk can be obtained using the channel estimation algorithms
described in Chapter 5. The constant 2/N0 can be omitted since it is just
a scaling factor for all LLR values, therefore, does not have any effect on
the decision.

The Walsh codewords are listed in Table 2.1. The first bit is always
+1, therefore, its LLR value λ(w0

k(j)) = ∞. For other bits, we know from
Table 2.1 that w1

k(j) = +1 holds for m = 0, 1, 2, 3 and w1
k(j) = −1 holds

for m = 4, 5, 6, 7. Therefore, the soft metric for the second bit of the Walsh
codeword can be computed as

λ(w1
k(j)) ≈ max{zk(0), zk(1), zk(2), zk(3)} − max{zk(4), zk(5), zk(6), zk(7)}

Similarly,

λ(w2
k(j)) ≈ max{zk(0), zk(1), zk(4), zk(5)} − max{zk(2), zk(3), zk(6), zk(7)}

λ(w3
k(j)) ≈ max{zk(0), zk(1), zk(6), zk(7)} − max{zk(2), zk(3), zk(4), zk(5)}

λ(w4
k(j)) ≈ max{zk(0), zk(2), zk(4), zk(6)} − max{zk(1), zk(3), zk(5), zk(7)}

λ(w5
k(j)) ≈ max{zk(0), zk(2), zk(5), zk(7)} − max{zk(1), zk(3), zk(4), zk(6)}

λ(w6
k(j)) ≈ max{zk(0), zk(3), zk(4), zk(7)} − max{zk(1), zk(2), zk(5), zk(6)}

λ(w7
k(j)) ≈ max{zk(0), zk(3), zk(5), zk(6)} − max{zk(1), zk(2), zk(4), zk(7)}

Once the LLR value is derived, the soft estimate (expected value given
the received observation) for each bit of the Walsh codeword can be com-
puted by

E[wn
k (j)|r] = (+1) × P{wn

k (j) = +1|r} + (−1) × P{wn
k (j) = −1|r}

= (+1)
eλ(wn

k (j))

1 + eλ(wn
k
(j))

+ (−1)
e−λ(wn

k (j))

1 + e−λ(wn
k
(j))

= tanh{λ(wn
k (j))/2} (3.14)

Using equation (2.1), the soft estimate E [sqk| r] for each Walsh chip
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s
q
k, q = 1, · · · , N is derived by spreading (repetition encoding) the soft bit

of Walsh codeword E[wn
k (j)|r], n = 1, · · · ,M . The repetition factor is

N/M .
When E(sk|r), the soft estimate of the transmitted sequence is available,

we can carry out soft IC. The new vector after soft cancellation and decision
statistic with MAP-PIC can be expressed as

r′ = r − E[y|r] + E[Xk|r]ĥk
zMAP
k (m) = Re{ĥ∗

kX
∗
k,mr′} (3.15)

where E[y|r] = E[A|r]ĥ, and the columns of E[A|r], E[Xk|r] are derived
by scrambling E[sk|r] with Ck and compensating with path delays.

3.5.2 Nonlinear MMSE based soft PIC

Nonlinear MMSE interference cancellation (NMIC) in DS-CDMA systems
with BPSK and M -ary orthogonal modulation was proposed in [16], a
multistage MMSE linear interference canceler that minimizes the power
of residual cancellation error for each user was proposed to mitigate the
effect of incorrect cancellation. The algorithm was originally derived for
a single path asynchronous channel. Here, we extend its application to
the multipath environments, and derive a logarithmic version of the NMIC
algorithm which is suitable for practical implementation.

The composite received signal vector can be modeled as the sum of
signals from different users, i.e.,

r = r1 + r2 + · · · + rK + n

Minimizing the residual error for the kth user is equivalent to minimizing
E{‖rk − r̂k(yk)‖2}, where yk is the matched filter (coherent version in our
case) output in vector form for the kth user. The solution to this nonlinear
MMSE estimation problem is the conditional mean estimate

r̂k = E{rk|yk} =

M∑

m=1

bk,mXk,mhk

bk,m = P [ik(j) = m|yk]

From the above equation, one can see that the MMSE estimate of rk is
a weighted sum of all the M orthogonal signals. The interference canceled
vector is obtained as

r′k = r −
∑

i6=k
r̂i = Xkhk + rc + n = Xkhk + w

where rc stands for cancellation residual, and the vector w is defined as
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w = rc + n. The mth element of yk, denoted by yk,m is formed by

yk,m = (Xk,mĥk)
∗r′k (3.16)

≈







Lk∑

l=1

‖xk,l,mhk,l‖2 +

Lk∑

l=1

(xk,l,mhk,l)
∗w, if ik(j) = m

Lk∑

l=1

(xk,l,mhk,l)
∗w, if ik(j) 6= m

=

{

NP̆k + w, if ik(j) = m

w, if ik(j) 6= m
(3.17)

where P̆k =
∑Lk

l=1 |hk,l|2 stands for the instantaneous (and time-varying)

received power for the kth user and w =
∑L
l=1(xk,l,mhk,l)

∗w stands for
the noise plus residual interference component in the decision statistic.
Provided that the processing gain and the number of users are large, we
can model w as complex Gaussian random variable w ∼ CN (0, σ2

w). The
approximation in (3.16) is due to the facts that perfect channel estimation

is assumed so that ĥk = hk and that the autocorrelation of the same user’s
scrambling codes is assumed to approximate delta function so that the
cross-correlation terms (xk,i,mhk,i)

∗xk,j,mhk,j , i 6= j approximate zero and
can be omitted.

The conditional pdf is thus

f(yk|ik(j) = m)

=
1

(πσ2
w)M

exp






− |yk,m −NP̆k|2

σ2
w

−
M∑

j=1
j 6=m

|yk,j |2
σ2
w







=
1

(πσ2
w)M

exp




−N2P̆ 2

k + 2NP̆kRe{yk,m}
σ2
w

−
M∑

j=1

|yk,j |2
σ2
w



 (3.18)

Note that

P [ik(j) = m|yk] =
f [yk|ik(j) = m] · P [ik(j) = m]

f [yk]

f [yk] =

M∑

q=1

P [ik(j) = q] · f [yk|ik(j) = q]

P [ik(j) = 1] = · · · = P [ik(j) = M ] =
1

M
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and combining the above equations with (3.18) yields

bk,m = P [ik(j) = m|yk] =
f [yk|ik(j) = m]
M∑

q=1

f [yk|ik(j) = q]

=

exp

[

−N
2P̆ 2

k

σ2
w

]

· exp

[

2NP̆kRe{yk,m}
σ2
w

]

exp

[

−N
2P̆ 2

k

σ2
w

]

·
M∑

q=1

exp

[

2NP̆kRe{yk,q}
σ2
w

]

=
exp

[

2NP̆kRe{yk,m}/σ2
w

]

M∑

q=1

exp
[

2NP̆kRe{yk,q}/σ2
w

]
(3.19)

If rc = 0, i.e., the cancellation residual is neglected by assuming perfect
cancellation, the noise plus interference variance can be approximated as
σ2
w ≈ σ2

n = N
∑Lk

l=1 |hk,l|2N0 = P̆kNN0, leading to the solution

bk,m =

exp

[

2NP̆kRe{yk,m}
σ2
n

]

M∑

q=1

exp

[

2NP̆kRe{yk,q}
σ2
n

] =

exp

[

2NP̆kRe{yk,m}
P̆kNN0

]

M∑

q=1

exp

[

2NP̆kRe{yk,q}
P̆kNN0

]

=
exp[2Re{yk,m}/N0]
M∑

q=1

exp[2Re{yk,q}/N0]

(3.20)

Unfortunately, we found out that direct implementation of (3.20) leads
to a numerically unstable algorithm, which was not pointed out in [16].
The problem can be tackled by performing the MMSE estimation in the
log domain, similar to the idea presented in [24] for iterative decoding. With
Log-NMIC algorithm, the coefficient bk,m associated with each orthogonal
component is calculated as

bk,m = exp

[
2Re{yk,m}

N0
− max∗

(
2Re{yk,1}

N0
, · · · , 2Re{yk,M}

N0

)]

(3.21)

where the function max∗() is defined as

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|)
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which is max operation compensated with a correction term ln(1+e−|x−y|).
Also

max∗(x, y, z) = max∗[max∗(x, y), z]

The NMIC algorithm can be expressed as

r̂i = E{ri|yi} =

M∑

m=1

bi,mXi,mhi

r′k = r −
∑

i6=k
r̂i

zNMIC
k (m) = Re{yk} = Re{ĥ∗

kX
∗
k,mr′k} (3.22)

The above scheme assumes perfect cancellation and zero cross-
correlation which is not the case in practice and leads to suboptimal solu-
tion. Now, we derive an adaptive algorithm [16] that takes the imperfect
cancellation and non-zero cross-correlation into account and adaptively es-
timates the noise plus interference variance σ2

w. We know that

E[‖yk‖2] =
M∑

q=1

E[|yk,q|2] = N2P 2
k +Mσ2

w

Therefore

σ2
w =

E[‖yk‖2] −N2P 2
k

M

The performance of NMIC algorithm can be improved if σ2
n in (3.20) is re-

placed by σ̂2
w, which is adaptively estimated by averaging

‖yk‖2−N2P̆ 2
k

M over
the whole block of symbols. This leads to adaptive Log-NMIC algorithm

bk,m = exp

[

2Re{yk,m}
σ̂2
w/NP̆k

− max∗
(

2Re{yk,1}
σ̂2
w/NP̆k

, · · · , 2Re{yk,M}
σ̂2
w/NP̆k

)]

(3.23)

3.6 Numerical results

In our simulations, each user transmits one of M = 8 Walsh codes spread
to a total length of N = 64 chips. The effective spreading of the system
is N/ log2M = 64/3 chips per bit. Different users are separated by differ-
ent scrambling codes Ck(j) which are random, and differ from symbol to
symbol (long-code system).

For simplicity, the simulated system is assumed to be chip-synchronous,
i.e., all path delays are assumed to be multiples of Tc. This represents the
worst-case interference scenario [25]. However, the system is asynchronous
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on the symbol level. The channel gain hk,l(t) is a complex circular Gaussian
process with autocorrelation function E[h∗k,l(t)hk,l(t+ τ)] = Pk,lJ0(2πfdτ)
and J0(x) is the zeroth order Bessel function of the first kind. The normal-
ized Doppler frequency is assumed to be fdT = 0.01. Perfect slow power
control is assumed in the sense that Pk =

∑Lk

l=1 Pk,l, the average received
power, is equal for all users. The channel coefficients are normalized so
that each user has unity gain, i.e., Pk =

∑Lk

l=1 Pk,l = 1. The simulation
results are averaged over random distributions of fading, noise, delay, and
scrambling code through numerous Monte-Carlo runs.

The above parameter setting also applies to the subsequent experiments
in the following chapters unless otherwise stated.

The conventional MF is used for the first stage of the multiuser detec-
tion to account for the fact that channel estimates are not yet available
at the initial iteration. In the following stages, both interference cancella-
tion/suppression and channel estimation are carried out in decision directed
mode using the detected data from the previous iteration. Channel esti-
mation is conducted with the maximum likelihood algorithm introduced in
Section 5.2. A FIR filter of length 19 is used for channel smoothing.

The performance of different multiuser detectors is compared in Fig. 3.1.
The system is simulated for a K = 12-user system with 3-path channels,
Lk = L = 3 for all k. The spacing between the three paths of each user is
set to 2Tc. The results are obtained after three iteration stages, initialized
with conventional noncoherent first stage. The noncoherent IIS does not
show much improvement compared to the conventional receiver, while other
coherent schemes achieve considerable performance gain. We can also see
that PIC performs better than IIS and WMF. Considering the fact that
when long spreading (scrambling) codes are used, which is the case in most
of the practical systems, the linear filters (e.g., IIS, WMF) update at a
symbol rate, the inverse of U in (3.11), R in (3.12) has to be re-calculated
every time, which significantly increases the computational complexity. On
the contrary, PIC does not deal with any matrix inversion, thus consider-
ably reduces the complexity compared to linear detectors. That makes PIC
a more attractive detection algorithm in long-code CDMA systems.

The multistage approximate ML detector presented in Section 3.2 is not
simulated. It, however, should have the same performance as PIC, since
we have proved in Section 3.2 that these two schemes finally converge,
although they detect data in different approaches (AML detection is linear
scheme, while PIC is nonlinear). The advantage of using ML detection is
the avoidance of estimating fading process, which is needed by PIC. While
the performance of PIC can be improved considerably when combined with
channel smoothing, which is not possible for the AML detector.

Fig. 3.2 shows the performance of multistage PIC for single-path and
3-path channels respectively. The iterations are initialized with a conven-
tional noncoherent stage. One can observe that the gap between PIC and
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Figure 3.1: Performance comparison of different multiuser detectors.
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the conventional receiver becomes larger as SNR increases, which means
we need to maintain a reasonable level of signal to noise ratio in order to
achieve considerable capacity gain by applying multiuser detectors. The
multistage PIC in 3-path case achieves lower error probabilities compared
to the single-path case due to the diversity gain. However, in both cases,
their performance gets saturated after 3 or 4 iterations.

The conventional PIC and the proposed soft PIC algorithms are com-
pared numerically in Fig. 3.3 and 3.4. The number of path per user is set
to L = 3. The number of users is set to K = 21, which means a fully loaded
system. As indicated by the Fig. 3.3, the soft cancellation alone yields lim-
ited performance improvement, while the gain is much more obvious when
the soft channel estimation is performed in conjunction with soft cancella-
tion. Refer to Section 5.6 for soft channel estimation algorithms. Among
the two soft PIC algorithms, the adaptive Log-NMIC performs slightly
better than the MAP-PIC at low SNR; however, their performance is es-
sentially the same in high SNR region, both achieve up to a 2 dB gain
compared to the conventional PIC in a 21-user system. The gain achieved
by soft channel estimation is less prominent for non-adaptive NMIC. How-
ever, the performance of adaptive NMIC is much superior to non-adaptive
NMIC, as shown in Fig. 3.4.

Fig. 3.5 shows the convergence property of the conventional and soft PIC
scheme (the MAP version). They both take 6 or 7 iterations to converge.
The gain at each iteration becomes bigger as the SNR increases; the gap
between them increases as the iteration goes on. The conclusion is that we
need to perform enough stages and maintain a sufficiently high SNR to be
able to fully benefit from the soft cancellation and soft channel estimation
processes.

3.7 Summary

In this chapter, we compared the performance of different linear, nonlin-
ear multiuser detectors. The conclusion is that nonlinear multistage PIC
is better choice in practical systems with long spreading codes, in consid-
eration of both performance and computational complexity. We showed
that PIC is an approximate ML approach to data detection. In case of
perfect cancellation, it is optimum multiuser detector in the sense of max-
imum likelihood data detection. The knowledge of the channel is essential
to increase the system capacity. We need knowledge of the complex chan-
nel gains to do interference mitigation and coherent combining. Coherent
detection gives better performance than noncoherent detection when the
channel gains are accurately estimated.

The conventional interference cancellation receiver is subject to perfor-
mance degradation due to incorrect decisions on interference subtracted
from the received signal. To improve the performance of interference can-
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Figure 3.3: Performance of different IC schemes. The curves are plotted for
the 7th stage IC.
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Figure 3.5: Convergence property of IC schemes. Topmost curve represents
the noncoherent first stage and the second curve from top rep-
resents the first stage IC, the bottommost curve represents the
7th stage IC.

cellation in the uncoded system, we derived two soft cancellation schemes,
one based on MAP criterion, the other based on nonlinear MMSE estima-
tion. They are shown to be superior to the conventional PIC scheme with
minor increase in complexity. Furthermore, the best system performance (2
dB gain in a 21-user system) is observed when the derived soft information
is also used for channel estimation.



Chapter 4

THEORETICAL EVALUATION OF PIC
PERFORMANCE

In this part of the thesis, we tackle the problem of theoretical evaluation
for the multistage parallel interference cancellation (PIC) scheme in a DS-
CDMA system with orthogonal modulation and long scrambling codes,
which has not been addressed in the previous literature. The studied sys-
tem operates on the reverse link in a time-varying multipath Rayleigh fad-
ing channel. By applying the Central Limit Theorem to multiple access
interference (MAI) and intersymbol interference (ISI), as well as identi-
cally distributed chips from a single interferer, the bit error rate (BER)
performance of the PIC scheme at any stage can be recursively computed
from the signal-to-noise ratio, number of users, the number of paths per
user, processing gain of the CDMA system, as well as the average received
power of each path. For completeness, the BER expression is derived for
chip synchronous and chip asynchronous systems over both equal and un-
equal power multipath channels. The proposed analysis is validated by the
Monte-Carlo simulations and proved to be accurate, and it gives insight
into the performance and capacity one can expect from the PIC based re-
ceivers under different situations. For instance, the analytical results can
be used to examine the convergence property, multipath diversity gains as
well as near-far resistance of the PIC scheme.

4.1 Introduction

The performance of orthogonal modulated DS-CDMA system with non-
coherent and coherent combining was evaluated analytically in [26, 27]
and in [28], respectively. The performance of interference canceler for

45
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short-code CDMA systems with BPSK signaling was investigated, e.g.,
in [29, 30, 31, 32]. An adaptive multistage PIC scheme was analyzed in [29],
and a closed form expression for BER performance is presented for the sys-
tem operating over AWGN channels. The BER expressions are extended
to derive asymptotic limits on the performance of interference cancellation
as the number of cancellation stages approaches infinity, demonstrating a
fundamental limit on the performance that can be expected from the mul-
tistage PIC scheme. In [31], an analytical BER expression for an adaptive
multistage interference canceler was presented using an improved Gaussian
approximation. The inclusion of second order statistics of MAI allows bet-
ter performance prediction in cases where interference power has a random
distribution, and it can be used to evaluate the performance of multistage
PIC in arbitrary fading environments.

However, to our best knowledge, no results on the performance analysis
of PIC for long-code CDMA systems in general, and PIC for orthogonal
modulated CDMA systems in particular are available in the existing lit-
erature. The previous performance evaluation only relied on the use of
simulation techniques. In this chapter, we provide an analytical approach
to assess the performance of PIC for the system in question.

4.2 Theoretical Analysis For Equal Power
Diversity Branches

In this section of performance analysis, we assume equal power among
different paths of each user. The analysis in case of unequal gain among
different diversity branches is discussed in Section 4.3.

Noncoherent equal gain combining expressed by (3.1) in Chapter 3 is
used for the first stage of the PIC scheme to account for the fact that chan-
nel estimates are not yet available at the initial iteration. In the following
stages, both interference cancellation and channel estimation are carried
out in decision directed mode using the detected data from the previous
iteration. The PIC algorithm is specified by (3.2) in Section 3.1. Chan-
nel estimation is conducted with the maximum likelihood algorithm (see
equation (5.1) in Chapter 5).

4.2.1 Analysis for non-coherent first stage

To evaluate the probability of error, without loss of generality, let us assume
that the jth symbol transmitted from the kth user is the first Walsh symbol
and the channel gain remains constant during one symbol interval. The
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decision statistic expressed in (3.1) can be reformed as

zk(m) =







Lk∑

l=1

|dk,l +mk,l + ik,l + nk,l|2, if m = 1

Lk∑

l=1

|mk,l + ik,l + nk,l|2, if m 6= 1

(4.1)

where dk,l = Nhk,l,mk,l, ik,l, and nk,l stand for the desired signal, contri-
bution from MAI, ISI, and noise, respectively.

In [33], the long pseudonoise sequences were modeled as a random bi-
nary sequence which led to the strong justification of an accurate Gaussian
approximation based on the central limit theorem. In this way, an equiv-
alent noise-power spectral density for interference can be defined, which
gives immediate insight into the degree of interference present in the re-
ceivers. This is the approach we take here to compute the variance of mk,l

and ik,l. If the processing gain is large enough, both MAI and ISI terms
can be modeled as independent zero mean complex Gaussian random vec-
tors and they are uncorrelated with the noise vector. Therefore, for the kth

user’s lth receiver branch, the interference plus noise variance is

σ2 = σ2
m + σ2

i + σ2
n

σ2
m = var[mk,l] = E[|mk,l|2]
σ2
i = var[ik,l] = E[|ik,l|2]
σ2
n = var[nk,l] = E[|nk,l|2]

Note that σ2, σ2
m, σ

2
i depend on k and l, which is not explicitly indicated

in order to simplify notations. The noise variance can be easily computed
as

σ2
n =

N∑

n=1

N0 = NN0

According to [33], for direct-sequence systems with long spreading se-
quences, the elements (chips) of each ISI or MAI sequence corresponding to
the mth user’s ith path, can be approximated as statistically independent
and each element can be treated as a zero mean Gaussian random variable
with variance

2

3
E[|hm,i|2] =

2

3
Pm,i

for chip asynchronous systems, and

E[|hm,i|2] = Pm,i

for chip synchronous systems given ψ(t) is a rectangular pulse. For chip



48 Theoretical Evaluation of PIC Performance

asynchronous system, time delays are assumed to be uniformed distributed
over [0, Tc], where Tc is the chip interval. Consequently, we can derive the
variance of the MAI and ISI as

σ2
i =







2

3

Lk∑

i=1
i6=l

N∑

n=1

E[‖hk,i‖2] =
2N

3

Lk∑

i=1
i6=l

Pk,i,

for chip asynchronous systems

Lk∑

i=1
i6=l

N∑

n=1

E[‖hk,i‖2] = N

Lk∑

i=1
i6=l

Pk,i,

for chip synchronous systems

σ2
m =







2

3

K∑

m=1
m6=k

Lm∑

i=1

N∑

n=1

E[‖hm,i‖2] =
2N

3

K∑

m=1
m6=k

Lm∑

i=1

Pm,i,

for chip asynchronous systems

K∑

m=1
m6=k

Lm∑

i=1

N∑

n=1

E[‖hm,i‖2] = N

K∑

m=1
m6=k

Lm∑

i=1

Pm,i,

for chip synchronous systems

It is worth noticing that a chip asynchronous system is more resistant
to MAI and ISI a chip synchronous system. In case of equal gain among
different diversity branches, i.e., Pk,1 = Pk,2 = · · · = Pk,Lk

= P , the
interference variance does not differ from path to path. For the first stage
noncoherent reception expressed in (4.1), the probability density function
(pdf) of the decision statistics zk is given by

f(zk) =







1

σ
2Lk
1 (Lk−1)!

zLk−1
k e

−zk

σ2
1 , if m = 1

1

σ
2Lk
2 (Lk−1)!

zLk−1
k e

−zk

σ2
2 , if m 6= 1

which is central chi-square distribution with 2Lk degrees of freedom. The
variances σ2

1 and σ2
2 are computed as

σ2
1 = E(|Nhk,l +mk,l + ik,l + nk,l|2) = N2P + σ2

m + σ2
i + σ2

n

σ2
2 = σ2

m + σ2
i + σ2

n

The probability of making correct symbol decision for user k is calcu-
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lated according to [1, p. 789] as

Pc,k =

∫ ∞

0

[

1 − e−zk

Lk−1∑

l=0

zlk
l!

]M−1

zL−1
k

(1 + γ)L(Lk − 1)!
exp

(

− zk
1 + γ

)

dzk

(4.2)

and the bit error probability is

Pb,k =
M

2(M − 1)
(1 − Pc,k) (4.3)

where γ = N2P/σ2
2 is the average signal to interference plus noise ratio

(SINR) per diversity branch.

4.2.2 Analysis for multistage PIC

The performance of coherent combining for single-user M-ary orthogonal
systems with space diversity was analyzed in [28]. Here we extend its
application to the analysis of PIC schemes in multiuser environments.

Let us assume that the first Walsh symbol was transmitted from the
kth user. The decision statistic expressed in (3.2) can be reformed after p
stages of cancellations

z
(p)
k (m) =

Lk∑

l=1

Re{ĥ∗k,lxk,l,mr′} (4.4)

=







Lk∑

l=1

dk,l +m
(p)
k,l + i

(p)
k,l + nk,l = d+ n

(p)
1 , if m = 1

Lk∑

l=1

m
(p)
k,l + i

(p)
k,l + nk,l = n(p)

m , if m 6= 1

where d =
∑Lk

l=1 dk,l = N
∑Lk

l=1 hk,lĥ
∗
k,l is the desired signal. The noise

component for the lth diversity branch is denoted by nk,l. The contribu-
tions from MAI and ISI for the lth diversity branch at the pth stage are

denoted by m
(p)
k,l and i

(p)
k,l respectively. Using the Gaussian approximation,

n1, n2, . . . , nM are zero-mean statistically independent Gaussian random
variables with equal variance (σ2)(p)/2. The factor of 1/2 is due to the fact
that the Re(·) operation in equation (4.4) removes the noise and interfer-
ence present in the imaginary part of the decision statistics.

Let us denote P(p)
c,k (x) as the probability that the receiver makes correct

symbol decision for user k at the pth stage conditioned on x, which is defined

as x = d
σ(p) . It is the probability that z

(p)
k (1) = d+ n

(p)
1 is larger than each

of the other M − 1 outputs z
(p)
k (2) = n

(p)
2 , z

(p)
k (3) = n

(p)
3 , . . . , z

(p)
k (M) =
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n
(p)
M [1]:

P(p)
c,k (x) = Pr

(

z
(p)
k (2) < z

(p)
k (1), z

(p)
k (3) < z

(p)
k (1), · · · , z(p)

k (M) < z
(p)
k (1)|x

)

=
1√
2π

∫ ∞

−∞
[1 −Q(y)]M−1 exp



−1

2

(

y −
√

2d

σ(p)

)2


 dy

=
1√
2π

∫ ∞

−∞
[1 −Q(y)]M−1 exp

[

−1

2
(y −

√
2x)2

]

dy (4.5)

where the function Q(x) is defined as Q(x) = 1
2 erfc( x√

2
). The in-

terference plus noise variance at the pth stage is defined as (σ2)(p) =
(σ2
m)(p) + (σ2

i )
(p) + σ2

n. The noise term does not change between itera-

tions and can be computed as σ2
n = NN0

∑Lk

l=1 |hk,l|2.

In the derivation of the variance of MAI, which changes at each iter-
ation due to interference cancellation, we utilize some distinct feature of
the Walsh code as depicted by Table 2.1 and 4.1. The new vector r′ is
obtained by canceling other user’s distribution path-by-path using the de-
cision feedback from the (p− 1)th stage. At the pth stage, the probability

of correct cancellation is P(p−1)
c,m = 1 − P(p−1)

e,m , where the interfering user
m = 1, . . . ,K, and m 6= k. The variance of the remaining MAI after correct
cancellation (or cancellation residual) is of course zero. On the other hand,

in case of erroneous cancellation, which occurs with probability P (p−1)
e,m , the

cancellation residual is determined by the difference of two distinct Walsh
symbols. Table 4.1 indicates that if a Walsh codeword is subtracted by
another Walsh codeword, the resulting word 4w contains M

2 number of

zeros and M
2 number of ±2s. Although Table 4.1 is not exhaustive, the rest

of the words can be easily computed from Table 2.1 and shown to comply
with the same rule. We use M = 8 as an example in these tables; how-
ever, the conclusion applies to any value of M . The cancellation residual
for each path is formed by spreading 4w to a number of N chips (which
consequently contains N

2 number of zeros and N
2 number of ±2s), scram-

bling with a random code, then multiplying the scrambled sequence with
channel coefficient hm,i, where i = 1, 2, . . . , Lm. The variance of MAI in
the lth diversity branch after cancellation is therefore

(σ2
m)

(p)
l = (1 − P(p−1)

e,m ) · 0 + |hk,l|2 (±2)2
N

2
· 2

3

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m E[|hm,i|2]

= |hk,l|2
4N

3

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i
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Table 4.1: Difference between different Walsh codewords

w0 − w1 0 0 0 0 2 2 2 2

w0 − w2 0 0 2 2 0 0 2 2 w1 − w2 0 0 2 2 -2 -2 0 0

w0 − w3 0 0 2 2 2 2 0 0 w1 − w3 0 0 2 2 0 0 -2 -2 w2 − w3 0 0 0 0 2 2 -2 -2

w0 − w4 0 2 0 2 0 2 0 2 w1 − w4 0 2 0 2 -2 0 -2 0 w2 − w4 0 2 -2 0 0 2 -2 0

w0 − w5 0 2 0 2 2 0 2 0 w1 − w5 0 2 0 2 0 -2 0 -2 w2 − w5 0 2 -2 0 2 0 0 -2

w0 − w6 0 2 2 0 0 2 2 0 w1 − w6 0 2 2 0 -2 0 0 -2 w2 − w6 0 2 0 -2 0 2 0 -2

w0 − w7 0 2 2 0 2 0 0 2 w1 − w7 0 2 2 0 0 -2 -2 0 w2 − w7 0 2 0 -2 2 0 -2 0

for chip asynchronous systems, and

(σ2
m)

(p)
l = (1 − P(p−1)

e,m ) · 0 + |hk,l|2(±2)2
N

2

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m E[|hm,i|2]

= |hk,l|22N
K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i

for chip synchronous systems. The variance of MAI from all the diversity
branches of user k can therefore be computed as

(σ2
m)(p) =

Lk∑

l=1

(σ2
m)

(p)
l =







Lk∑

l=1

|hk,l|2
4N

3

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i,

for chip asynchronous systems

Lk∑

l=1

|hk,l|2 2N
K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i,

for chip synchronous systems

Next, we derive the variance of the self interference for user k. For the
lth diversity branch, the ith ISI vector (i = 1, . . . , Lk, i 6= l) due to the
kth user’s jth symbol (the desired symbol) spans N − |pk,i − pk,l| chips.
For chip asynchronous system, its variance is computed as |hk,l|2 · 2

3 (N −
|pk,i − pk,l|)Pk,i, for the same reasoning as stated in Section 4.2.1, and it
does not change at each iteration. The ISI component due to some other
symbol spans |pk,i − pk,l| chips, it is canceled with decision feedback at
each iteration. It can be treated in the same way as MAI, its variance is

therefore |hk,l|2 · 43 |pk,i−pk,l|P
(p−1)
e,k Pk,i. The variances for chip synchronous

system can be derived similarly. To ease understanding, an example of the
ISI analysis is given in Figure 4.1. The variance the total ISI term can
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PSfrag replacements

Nk

pk,2 − pk,1N − (pk,2 − pk,1)

pk,3 − pk,2
N − (pk,3 − pk,2)

Figure 4.1: Sketch of ISI for the kth user’s 2nd path. The desired symbol
spans N chips and is depicted with the bold line on each path.
The processing window is Nk = N + pk,Lk

− pk,1 chips. For
the 2nd diversity branch, the ISI from the 1st path due to the
desired symbol contains N − (pk,2 − pk,1) chips; the ISI from
the 1st path due to the other symbol contains pk,2 − pk,1 chips.
The ISI from the 3rd path due to the desired symbol contains
N − (pk,3 − pk,2) chips; the ISI from the 3rd path due to the
other symbol contains pk,3 − pk,2 chips.

therefore be computed as

(σ2
i )
p =







Lk∑

l=1

|hk,l|2
Lk∑

i=1
i6=l

[
2

3
(N − |pk,i − pk,l|)Pk,i +

4

3
|pk,i − pk,l|P(p−1)

e,k Pk,i

]

,

for chip asynchronous systems
Lk∑

l=1

|hk,l|2
Lk∑

i=1
i6=l

[

(N − |pk,i − pk,l|)Pk,i + 2|pk,i − pk,l|P(p−1)
e,k Pk,i

]

,

for chip synchronous systems

=







Lk∑

l=1

|hk,l|2
Lk∑

i=1
i6=l

2

3

[

N + (2P(p−1)
e,k − 1)|pk,i − pk,l|

]

Pk,i,

for chip asynchronous systems
Lk∑

l=1

|hk,l|2
Lk∑

i=1
i6=l

[

N + (2P(p−1)
e,k − 1)|pk,i − pk,l|

]

Pk,i,

for chip synchronous systems

Based on the above analysis, we derive the total noise plus interference
variance as

(σ2)(p) = σ2
n + (σ2

i )
(p) + (σ2

m)(p) =

Lk∑

l=1

|hk,l|2(α2
l )

(p)
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and (α2
l )

(p) is defined as

(α2
l )

(p) =







NN0 +
2

3

Lk∑

i=1
i6=l

[

N + (2P(p−1)
e,k − 1)|pk,i − pk,l|

]

Pk,i

+
4N

3

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i,

for chip asynchronous systems

NN0 +

Lk∑

i=1
i6=l

[

N + (2P(p−1)
e,k − 1)|pk,i − pk,l|

]

Pk,i

+ 2N

K∑

m=1
m6=k

Lm∑

i=1

P(p−1)
e,m Pm,i,

for chip synchronous systems

Assume accurate channel estimation, i.e., ĥk,l ≈ hk,l, then the de-

sired signal d =
∑l=Lk

l=1 dk,l ≈ N
∑l=Lk

l=1 |hk,l|2. In case of equal power
among different paths, i.e., Pk,1 = Pk,2 = · · · = Pk,Lk

= P , then
(α2

1)
(p) = (α2

2)
(p) = · · · = (α2

Lk
)(p) = (α2)(p). Denote

x =
d

σ(p)
=

N
∑Lk

l=1 |hk,l|2

α(p)

√
∑Lk

l=1 |hk,l|2
=

N

α(p)

√
√
√
√

Lk∑

l=1

|hk,l|2

z = x2 =
N2

(α2)(p)

Lk∑

l=1

|hk,l|2

The random variable z is central chi-square distributed with 2Lk degrees
of freedom and probability density function

p(z) =
zLk−1 exp(−z/γ(p))

γ(p)Lk(Lk − 1)!
; 0 ≤ z ≤ ∞

where γ(p) = N2

(α2)(p) E[|hk,l|2] = N2P
(α2)(p) stands for the average SINR of each

diversity branch. Consequently,

p(x) =
2x2Lk−1 exp(−x2/γ(p))

γ(p)Lk(Lk − 1)!
; 0 ≤ x ≤ ∞

To obtain the error probability when x is random, we must average
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P(p)
c,k (x) given in (4.5) over the distribution of x, i.e.,

P(p)
c,k =

∫ ∞

0

P(p)
c,k (x)p(x)dx

=
1√
2π

∫ ∞

0

∫ ∞

−∞
[1 −Q(y)]M−1 exp

[

−y
2

2
+
√

2xy − x2

]

· 2x2Lk−1 exp(−x2/γ(p))

γ(p)Lk(Lk − 1)!
dy dx

Following the procedure in [28], the BER at the pth (p > 1) stage can
be formulated as

P(p)
c,k =

(2Lk − 1)!√
2(Lk − 1)!(1 + γ(p))Lk

∫ ∞

−∞
[1 −Q(y)]

M−1
e
− y2

2(1+γ(p))

· erfc
(

2Lk − 1,
−y
√

γ(p)

√

2(1 + γ(p))

)

dy

P(p)
b,k =

M

2(M − 1)
P(p)

e,k =
M

2(M − 1)
(1 − P(p)

c,k ) (4.6)

where the symbol error probability Pe,k is initialized as

P(1)
e,k = 1 − P(1)

c,k =
2P(1)

b,k(M − 1)

M

and P(1)
b,k is computed according to (4.2) and (4.3). The function erfc(m,x)

is the mth iterated integral of the erfc(x) function defined as [28]

erfc(m,x) =

∫ ∞

x

erfc(m− 1, t)dt, m = 0, 1, 2, . . .

It is initialized and iterated with the functions:

erfc(−1, x) =
2√
π

exp(−x2)

erfc(0, x) = erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt

erfc(m,x) =
1

2m
erfc(m− 2, x) − x

m
erfc(m− 1, x)

Next, we derive an alternative way to simplify the computation of the

error probability. Note that P(p)
c,k is derived by taking the expectation of

the function P(p)
c,k (x) of the random variable x, i.e., P (p)

c,k = E[P(p)
c,k (x)] =

∫∞
0

P(p)
c,k (x)p(x)dx. In [34], Holtzman introduced a simple and accurate
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method to evaluate the expectation without carrying out the integration.

First, we expand P(p)
c,k (x) using a Taylor series in terms of central differences

P(p)
c,k (x) = P(p)

c,k (µx) + (x− µx)

(

P(p)
c,k (µx + h) − P(p)

c,k (µx − h)

2h

)

+
1

2
(x− µx)

2

(

P(p)
c,k (µx + h) − 2P(p)

c,k (µx) + P(p)
c,k (µx − h)

h2

)

+ · · ·

Let µx and σ2
x be the mean and variance of x, i.e., µx = E[x] and

σ2
x = E[(x− µx)

2], then

P(p)
c,k = E[P(p)

c,k (x)]

≈ P(p)
c,k (µx) +

σ2
x

2

(

P(p)
c,k (µx + h) − 2P(p)

c,k (µx) + P(p)
c,k (µx − h)

h2

)

It is shown in [34] that choosing h =
√

3σx gives good accuracy, leading
to the solution to our problem

P(p)
c,k (x) =

1√
2π

∫ ∞

−∞
[1 −Q(y)]M−1 exp

[

−1

2
(y −

√
2x)2

]

dy

P(p)
c,k ≈ 2

3
P(p)

c,k (µx) +
1

6
P(p)

c,k (µx +
√

3σx) +
1

6
P(p)

c,k (µx −
√

3σx)

=
1√
2π

∫ ∞

−∞
[1 −Q(y)]M−1

{
2

3
exp

[

−1

2
(y −

√
2µx)

2

]

+
1

6
exp

[

−1

2

(

y −
√

2(µx +
√

3σx)
)2
]

+
1

6
exp

[

−1

2

(

y −
√

2(µx −
√

3σx)
)2
]}

dy

P(p)
b,k =

M

2(M − 1)
P(p)

e,k =
M

2(M − 1)
(1 − P(p)

c,k ) (4.7)

and µx and σx can be derived as

µx = E[x] =

∫ ∞

0

xp(x)dx =
2

γ(p)Lk(Lk − 1)!

∫ ∞

0

x2Lk exp(−x2/γ(p))dx

(4.8)

E[x2] = E

[

N2

(α2)(p)

Lk∑

l=1

|hk,l|2
]

=
N2

(α2)(p)

Lk∑

l=1

E[|hk,l|2] =
N2LkP

(α2)(p)

σx =
√

E[x2] − µ2
x
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To obtain a closed form for µx expressed by (4.8), we use the for-
mula [28],

∫ ∞

0

exp(−bx− ax2)xs−1dx =

√
π

2
Γ(s)a−s/2 exp

[
b2

4a

]

erfc(s− 1,
b

2
√
a
)

(4.9)

where Γ(s) is the gamma function [1]. Assigning a = 1/γ(p), b = 0, s =
2Lk + 1, we yield

∫ ∞

0

x2Lk exp(−x2/γ(p))dx =

√
π

2
(2Lk)!

[
1

γ(p)

]− 2Lk+1

2

erfc(2Lk, 0)

Thus,

µx =

√
π(2Lk)!

γ(p)Lk(Lk − 1)!
γ(p)

2Lk+1

2 erfc(2Lk, 0) =
√

πγ(p)
(2Lk)!

(Lk − 1)!
erfc(2Lk, 0)

(4.10)

Since only the first and second order moment information is needed, the
approach presented here can be easily extended to derive BER performance
for systems operating over other multipath channels, e.g., the ones with
lognormal or Nakagami distributions.

4.3 Theoretical Analysis For Unequal Power
Diversity Branches

4.3.1 Analysis for non-coherent first stage

In case each path has unequal power, i.e., Pk,1 6= Pk,2 6= · · · 6= Pk,Lk
the

decision statistic expressed in (4.1) can be formed as

zk(m) =







U1 =

Lk∑

l=1

ul1 =

Lk∑

l=1

|Nhk,l +mk,l + ik,l + nk,l|2, if m = 1

Um =

Lk∑

l=1

ulm =

Lk∑

l=1

|mk,l + ik,l + nk,l|2, if m 6= 1

(4.11)

In case m = 1, each term ul1 = |Nhk,l + mk,l + ik,l + nk,l|2 is an
independent central chi-square distributed random variable with 2 degrees
of freedom and characteristic function ψul

1
(jv) = (1 − jvγl)

−1, where γl =

E[|Nhk,l + mk,l + ik,l + nk,l|2] = N2Pk,l + σ2
m + σ2

i + σ2
n. The noise and

interference variance is computed in the same way as in Section 4.2.1. As
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a consequence of the statistical independence of ul1, l = 1, 2, . . . , Lk, the
characteristic function of U1 is

ψU1
(jv) =

Lk∏

l=1

(1 − jvγl)
−1

=

Lk∑

l=1





Lk∏

i=1,i6=l

(

1 − γi
γl

)−1


 (1 − jvγl)
−1 =

Lk∑

l=1

Al(1 − jvγl)
−1

(4.12)

where the coefficients of the partial fraction expansion Al =
∏i=Lk

i=1,i6=l(1 −
γi/γl)

−1 in equation (4.12) is based on the derivation in [35]. Taking the
Fourier transform of (4.12), we obtain the pdf of U1 as

p(U1) =

Lk∑

l=1

Al
γl

exp

(

−U1

γl

)

; 0 ≤ U1 ≤ ∞

Similarly,

p(Um) =

Lk∑

l=1

Bl
βl

exp

(

−Um
βl

)

; 0 ≤ Um ≤ ∞, m 6= 1

where

βl = E[|mk,l + ik,l + nk,l|2] = σ2
m + σ2

i + σ2
n

Bl =

i=Lk∏

i=1,i6=l
(1 − βi

βl
)−1

The probability of making correct symbol decision can be computed as

Pc,k = Pr (U2 < U1, U3 < U1, · · · , UM < U1)

=

∫ ∞

0

[Pr(U2 < U1)]
M−1

p(U1)dU1

Pr(U2 < U1) =

∫ U1

0

p(U2)dU2 =

∫ U1

0

Lk∑

l=1

Bl
βl

exp

(

−Um
βl

)

dU2

=

Lk∑

l=1

Bl

[

1 − exp

(

−U1

βl

)]

Therefore, the BER for non-coherent first stage in unequal power mul-
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tipath system is derived as

Pc,k =

∫ ∞

0

(
Lk∑

l=1

Bl

[

1 − exp

(

−U1

βl

)])M−1 Lk∑

l=1

Al
γl

exp

(

−U1

γl

)

dU1

Pb,k =
M

2(M − 1)
Pe,k =

M

2(M − 1)
(1 − Pc,k) (4.13)

4.3.2 Analysis for multistage PIC

In case each path has unequal power, the variable x = d
σ(p) is formed as

x =
d

σ(p)
=

N
∑Lk

l=1 |hk,l|2
√
∑Lk

l=1 |hk,l|2(α2
l )

(p)

The pdf of x is difficult to derive under such a circumstance because
the numerator and denominator are not independent. However, if the self
interference is small compared to noise and MAI, e.g., when the number of
users K is much bigger than the number of paths Lk, which is usually the
case, or when SNR is low, we can approximate (α2

1)
(p) ≈ (α2

2)
(p) ≈ · · · ≈

(α2
Lk

)(p) ≈ (α2)(p), then we can denote

z = x2 =

Lk∑

l=1

zl ≈
N2

(α2)(p)

Lk∑

l=1

|hk,l|2

and each term zl ≈ N2

(α2)(p) |hk,l|2 is an independent central chi-square dis-

tributed random variable with 2 degrees of freedom and characteristic func-
tion

ψzl
(jv) = (1 − jvγ

(p)
l )−1

where

γ
(p)
l =

N2

(α2)(p)
E[|hk,l|2] =

N2Pk,l
(α2)(p)

As a consequence of the statistical independence of zl, l = 1, 2, . . . , Lk,
the characteristic function of z is

ψz(jv) =

Lk∏

l=1

(1 − jvγ
(p)
l )−1 =

Lk∑

l=1





Lk∏

i=1,i6=l

(

1 − γ
(p)
i

γ
(p)
l

)−1


 (1 − jvγ
(p)
l )−1

=

Lk∑

l=1

A
(p)
l (1 − jvγ

(p)
l )−1 (4.14)

where A
(p)
l =

∏l=Lk

i=1,i6=l(1 − γ
(p)
i /γ

(p)
l )−1.
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Taking the Fourier transform of (4.14), we obtain the pdfs of z and x
as

p(z) =

Lk∑

l=1

A
(p)
l

γ
(p)
l

exp

[

− z

γ
(p)
l

]

; 0 ≤ z ≤ ∞

p(x) = 2x
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A
(p)
l

γ
(p)
l

exp

[

− x2

γ
(p)
l

]

; 0 ≤ x ≤ ∞ (4.15)

To obtain the error probability when x is random, we must average

P(p)
c,k (x) given in (4.5) over the distribution of x, i.e.,

P(p)
c,k =

∫ ∞

0
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Recall that
∫ ∞

0

exp(−bx− ax2)xs−1dx =

√
π

2
Γ(s)a−s/2 exp

[
b2

4a

]

erfc

(

s− 1,
b

2
√
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)

Assigning a =
γ
(p)
l

+1

γ
(p)
l

, b = −
√

2y, s = 2, equation (4.16) becomes

P(p)
c,k =

√

2

π

∫ ∞

−∞
[1 −Q(y)]M−1 exp

[

−y
2

2

] √
π

2

Lk∑

l=1

A
(p)
l

γ
(p)
l

γ
(p)
l

γ
(p)
l + 1

· exp

[

γ
(p)
l y2

2(γ
(p)
l + 1)

]

erfc



1,−y

√
√
√
√

γ
(p)
l

2(γ
(p)
l + 1)



 dy



60 Theoretical Evaluation of PIC Performance

=
1√
2
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The BER for multistage PIC in unequal power multipath system is
derived as
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The approximation (4.7) still applies here, with µx and σx changed to

µx = E[x] =

∫ ∞

0
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σx =
√

E[x2] − µ2
x (4.18)

4.4 Analytical Results and Performance
Comparison

Comparison between analysis and simulation is presented in this section.
Figure 4.2 and 4.3 show the comparison between analytical and simulated
results for a 15-user system. For simplicity, the simulated system is assumed
to be chip-synchronous, i.e., all path delays are assumed to be multiples of
Tc. However, the system is asynchronous on the symbol level. Perfect slow
power control is assumed in the sense that Pk =

∑Lk

l=1 Pk,l, the average
received power, is equal for all users. Different paths are assumed to have
equal gain and the channel coefficients are normalized so that each user has
unity gain, i.e., Pk,1 = Pk,2 = · · · = Pk,Lk

and Pk =
∑Lk

l=1 Pk,l = 1. The
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number of multipath channels Lk is set to be 4, (Lk = L = 4) for all k. The
simulated PIC performance in Figure 4.2.b) and 4.3.b) is derived assuming
perfect knowledge of the complex channel gains, e.g., the genie-aided case.
We observe that the analysis obtained by (4.6) is more accurate for the
genie-aided PIC and the analysis obtained by the approximation expressed
by (4.7) is more accurate for the PIC scheme with channel estimation (CE).
Since channel information has to be estimated in reality, the genie-aided
case is not much of practical interest, we therefore focus on the PIC with
CE and use (4.7) for the following analysis and comparisons.

Figures 4.4 – 4.7 show the comparison between analytical and simu-
lated results for different number of users. The simulated curves precisely
match the theoretical ones for the first noncoherent stage, which proves
that Gaussian approximation is accurate to model MAI and ISI sequences
as well as the elements of each interference sequence in long-code systems.
The analysis starts to deviate slightly from simulations, but is still fairly
accurate, after the first noncoherent stage. The theoretical analysis is a
little pessimistic when the system is too lightly loaded, and a little opti-
mistic when the system is too heavily loaded. From both simulation and
analysis, one can observe that it takes PIC more stages to converge as K
increases (the system becomes more heavily loaded). Seven stages (exclud-
ing the first noncoherent stage) ought be enough for the system to reach
convergence in any case.

The convergence property of MAI elimination is studied analytically in
Figure 4.8 for a 18-user system which is almost fully loaded considering the
spreading factor equals 64/3. We find that the variance of MAI approaches
its limit quickly. Only 5 stages are required to achieve the desired perfor-
mance. The interference can be more thoroughly removed at each iteration
at high SNRs. A reasonable level of SNR therefore needs to be maintained
in order to benefit from the PIC iteration process. The plot also indicates
that MAI cannot be totally removed, thus the receiver cannot achieve sin-
gle user performance in a heavily loaded system. Those findings agree with
previous analysis and simulation results.

System capacity is illustrated in Figure 4.9 by plotting BER as a func-
tion of the number of users using both analytical and simulated results. It
is clearly shown that analysis is in close agreement with simulation for BER
above 10−4. However, the analysis tends to over-estimate the MAI when
the number of users is very small. Conversely, the MAI is under-estimated
when there are too many active users. Compared with the topmost curve
which represents the first noncoherent stage, the subsequent PIC stages
significantly increase system capacity and BER performance as indicated
by both analysis and simulation.

In Figure 4.10, we analyze the PIC with different degree of diversity
(different number of paths). It can be seen that the system performance
degrades for the first stage as the degree of diversity increases. The rea-
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(a) Analysis vs. PIC with CE.

4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

Signal to Noise Ratio E
b
/N

0
 [dB]

B
E

R

M = 8, N = 64, K = 15, L = 4, fdT = 0.01

Simulated results (genie−aided)
Analytical results

(b) Analysis vs. genie-aided PIC.

Figure 4.2: Analysis vs. simulation. Analytical BER is derived by (4.6).
The number of users is K = 15. Topmost curve represents
noncoherent first stage and the second curve from top represents
the first stage PIC, the bottommost curve represents the 7th
stage PIC.
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(a) Analysis vs. PIC with CE.
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Figure 4.3: Analysis vs. simulation. Analytical BER is derived by (4.7).
The number of users is K = 15. Topmost curve represents
noncoherent first stage and the second curve from top represents
the first stage PIC, the bottommost curve represents the 7th
stage PIC.
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Figure 4.4: Analysis vs. simulation, K = 6.
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Figure 4.5: Analysis vs. simulation, K = 9.
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Figure 4.6: Analysis vs. simulation, K = 12.

4 6 8 10 12 14 16
10

−5

10
−4

10
−3

10
−2

10
−1

Signal to Noise Ratio E
b
/N

0
 [dB]

B
E

R

M = 8, N = 64, K = 18, L = 4, fdT = 0.01

Simulated results
Analytical results

Figure 4.7: Analysis vs. simulation, K = 18.
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Figure 4.8: Analytical results for MAI variance at each stage of PIC.
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Figure 4.9: Analysis vs. simulation, system capacity with 7-stage PIC.
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Figure 4.10: Diversity gains achieved by PIC.
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son is that with a noncoherent MF receiver, the interference is dominant
and the multipath combining gain is not sufficient to compensate for the
increased interference as the number of paths increases. However, for the
following coherent PIC stages, the conclusion is opposite. The interference
is effectively removed and the multipath gain becomes dominant. Further-
more, the cancellation residual and noise present in the imaginary part of
the decision statistic are eliminated. Another discovery is that the first few
taps exhibit big performance gain compared to single-path case, while the
multipath gain gradually diminishes as the number of paths increases.

Ideal power control is assumed in the above discussion. The near-far
robustness of the PIC algorithm is analytically examined in Figure 4.11 by
plotting the resulting BER as a function of near-far ratio, which refers to
the difference between the power of each of interfering user (it is assumed
that P2 = P3 = · · · = Pm = · · · = PK), and the power of the desired user P1

(the first user is the user of interest). From Figure 4.11.a), we see that the
PIC scheme in general is not sensitive to the variations in the interfering
signal strengths and is near-far resistant. The only exception is for the
single-path system in severe near far situation (when Pm − P1 > 10 dB,
i.e., the desired user is much weaker than the other interfering users), the
system performance degrades. This concurs with the results shown in [36].
Figure 4.11.b) shows that the near-far robustness of the PIC scheme comes
from interference cancellation process. The initial few stages do exhibit
some degree of near-far problem, which will gradually vanish as the iteration
goes on and the system reaches convergence. The rationale is that the error
probability for strong interfering users is very low due to their high signal
power level, we therefore have better chance to make correct cancellation
and cancel their contributions, which greatly alleviates the near-far effect.

The performance of the PIC algorithm in presence of unequal power
among different diversity branches is studied in Figure 4.12 for a 4-path
channel. We use the analytical results (4.17) derived in Section 4.3 as well as
its approximation expressed by (4.7) and (4.18). In this test, power control
is assumed so that the average received power is equal for all users and
each user has unity gain. However, the power difference between different
paths is set to be ∆Pk,l = Pk,4 − Pk,3 = Pk,3 − Pk,2 = Pk,2 − Pk,1 = 0, 3, 6
dB, respectively. Figure 4.12 shows that the PIC works the best when all
the branches have equal power, i.e., when ∆Pk,l = 0. The bigger deviation
in power, the worse performance it gets.

The above analysis and comparisons are based on the assumption of
chip synchronism. The system performance is compared between a chip-
synchronous system and a chip-asynchronous system in Figure 4.13 with
analytical approach. As expected, the latter system poses less interference
and therefore has better performance. Chip synchronism does represent a
worse-case interference scenario as stated in [25].
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Figure 4.11: Near-far effect for PIC.
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Figure 4.12: PIC performance for unequal power diversity branches. MF
curves represent the first noncoherent stage. PIC curves are
plotted for the 7th stage.
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Figure 4.13: Chip-synchronism vs. chip-asynchronism.

4.5 Conclusions

BER performance of the multistage PIC scheme is theoretically analyzed
in this chapter. We use the Central Limit Theorem to model MAI and
ISI as Gaussian random processes. Comparison with the simulated results
shows that the analysis is fairly accurate. A simplified method is also
presented using only the mean and variance of SINR, leading to accurate
approximations.

A close agreement is seen between analysis and simulation in most cases
except for low BER (below 10−4). The analysis tends to over estimate MAI
in very lightly loaded systems, and under estimate MAI in very heavily
loaded system. Considering the fact that the target BER for an uncoded
system is usually above 10−4, our analytical results are quite satisfactory.
The presented analytical method provides an effective measure to predict
BER performance and system capacity for the PIC scheme under investi-
gation.

The PIC convergence property and multipath diversity gains are stud-
ied analytically. It is shown that the multistage PIC receiver effectively
removes interference, the variance of MAI is reduced to asymptotic values
with only a few stages of cancellation. It is also shown that multipath di-
versity gains can be achieved by the subsequent coherent stages rather than
the first noncoherent stage. Interference cancellation and coherent combin-
ing are important techniques to combat MAI and multipath propagation.

Finally, the near-far effect of the PIC scheme and its performance in
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presence of unequal power among different paths are examined using the
analytical approach. The study shows that the PIC is near-far resistant. It
can be used in practical systems even when strict power control is hard to
obtain. We also learned that the PIC scheme achieves the best performance
in presence of equal power among different diversity branches.



Chapter 5

ESTIMATION OF FADING CHANNELS

The performance of a communication system depends largely on its ability
to retrieve an accurate measurement of the underlying channel. In this
chapter, we present joint approach to data detection and channel estima-
tion. The purpose of channel estimation is to enable M -ary orthogonal sig-
nals to be demodulated coherently and a Rake receiver to use a maximum
ratio combining (MRC) scheme. For data detection, we mainly consider the
use of interference cancellation technique which is suitable for CDMA sys-
tems with long codes. Different channel estimation schemes are evaluated
and compared in terms of mean square error (MSE) of the channel esti-
mation and the bit error rate (BER) performance. Based on our analysis
and numerical results, some recommendations are made on how to choose
appropriate channel estimators in practical systems.

5.1 Introduction

In addition to multiple access interference (MAI), CDMA systems also
suffer from multipath fading. Mobile radio communication channels are
time-varying channels. They are characterized by the presence of both
delay and Doppler spread. Depending on the delay spread and the data
rate, the channel may be approximately flat fading or frequency-selective
fading. The latter one produces intersymbol interference (ISI). The received
signal includes multiple versions of the transmitted waveform which are
attenuated and delayed in time.

Accurate knowledge (or good estimate) of the underlying channel is es-
sential for mitigating interference and the effect of multipath and fading. If
the channel estimates are not reliable, the performance of algorithms such

73
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as multiuser detectors and coherent Rake receivers degrade significantly.
Channel estimation consequently is an important issue in mobile commu-
nications and good channel estimates have a very important impact on the
overall performance of the system.

Several channel estimators, e.g., subspace-based estimators, and maxi-
mum likelihood estimators have been proposed, e.g., in [37, 38]. The au-
thors only considered the use of short spreading codes. However, current
and next generation CDMA systems use long spreading codes whose pe-
riod is much larger than the symbol duration. For long code CDMA, sev-
eral attempts have been made in obtaining channel estimates. In [39],
a subspace-based algorithm for blind channel estimation of a synchronous
CDMA downlink was proposed. It was shown that the estimation accuracy
can be increased considerably using a decision feedback approach. However,
a time invariant multipath channel was assumed in [39]. The time-varying
nature of the fading channel prohibits the use of subspace algorithm, since
the received signal is not constrained to any particular subspace if channel
parameters are time-varying.

The estimation of channel parameters in a DS-CDMA system with
M -ary orthogonal modulation, which is the main concern of this thesis,
has been the subject of study in several papers (see, for instance, [16, 18,
19, 40]). The maximum likelihood (ML) channel estimator for long code
CDMA systems over time-varying multipath channels was employed in [19].
In [16], a blind channel estimation strategy based on an adaptive Wiener fil-
tering approach that yields unbiased channel estimates and low estimation
variance for CDMA system using random codes was proposed. In [18, 40],
it was shown that the channel parameters can be estimated with a maxi-
mum correlator output. Furthermore, the estimated parameters are used
for the interference canceler with coherent detection, which results in an
increase in system capacity.

Recall that the received signal vector is formed as r = Ah+n. The task
of a channel estimator is to estimate the fading vector h given the received
observation r and the transmitted data. Depending on the form of the data
that can be retrieved, channel estimation can be either decision directed
or pilot aided. The former uses decision feedback loops and utilizes the
decisions on the transmitted signals Â to extract the channel coefficients.
The second approach makes the use of pilot symbols or channels (A is
known in this case). The use of pilots simplifies channel estimation with
the penalty of wasting channel resources. In this chapter, we focus on the
first approach and make an extensive investigation on different alternatives
for estimating time-varying multipath Rayleigh fading channels in absence
of pilot symbols.

We take an integrated approach such that channel estimation is coupled
with data detection. All the channel estimators are decision-directed and
can work in conjunction with the coherent data detection (interference
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cancellation in particular). We emphasize on how to utilize the measured
channel for detecting the transmitted data and how to use the detected
data to enhance the channel estimation. The principle is that the accuracy
of channel estimation depends on the accuracy of the data detection and
vice versa. The channel is better estimated when the transmitted data are
more accurately detected, the performance is improved by repeating this
process in an iterative manner. To further improve the system performance,
channel estimation using soft information is also proposed.

Depending on whether prior knowledge about the parameters to be esti-
mated is used, statistical estimation can be conducted either with classical
approach or Bayesian approach. Both methods are discussed in this chap-
ter. The maximum likelihood channel estimator is derived based on the
classical approach. In this case, the channel vector h is assumed to be de-
terministic and unknown. While with a Bayesian approach, h is assumed
to be a random vector whose particular realization needs to be estimated.
It improves the estimation accuracy by exploiting some prior knowledge
about h. The Bayesian philosophy leads to the linear MMSE estimator
and the Kalman filter for channel estimation. Those channel estimation
algorithms will be presented below.

5.2 Maximum Likelihood Channel Estimator

Given an estimate of the data matrix Â in (2.2), then h can be computed
as [19]

ĥ = Â†r

Â† = (Â∗Â)−1Â∗

where Â† denotes the left pseudoinverse of Â (assuming A has full column

rank). In case of correct decisions, i.e., Â = A, then

ĥ = A†r = A†(Ah + n) = h + A†n

which is an unbiased estimate of h. In Appendix 5.9.1, it is also proved
that the ML estimator with Â = A is an efficient estimator which attains
the Cramer-Rao lower bound (CRLB).

This procedure will suffer from a so-called dimensionality problem.
When the total number of paths of all the users is greater than the number
of chips in the vector r(k, j), i.e., Ltot ≥ N (Ltot =

∑K
k=1 Lk), the ma-

trix Â will not have full column rank and the above mentioned procedure
will become useless. The problem can be resolved by stacking several r(j)
vectors on top of each other and assume the channel remains static during
several symbol intervals. In particular, suppose h(j) ≈ h(j + 1), we can
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then write



r(j)

r(j + 1)



 =




A(j) 0

0 A(j + 1)








h(j)

h(j + 1)



+




n(j)

n(j + 1)





≈




A(j)

A(j + 1)



h(j) +




n(j)

n(j + 1)





The ML channel estimation algorithm using hard decision of the trans-
mitted data can be reformulated as

ĥML(j) =




Â(j)

Â(j + 1)





† 


r(j)

r(j + 1)



 , (5.1)

which will produce usable estimates as long as 2Nk > Ltot. Obviously, this
scheme can be extended further by stacking several r(k, j) vectors on top
of each other. In the derivation of CRLB in Appendix 5.9.1, we see that
stacking also has the effect of noise averaging and tends to reduce the error
of the channel estimation. However, for relatively fast fading channels, the
stacking may have opposite effect and reduce the quality of the estimates.

5.3 Linear MMSE Channel Estimator

The linear MMSE algorithm for channel estimation computes a matrix W,
which is chosen to minimize the mean square error E[‖h − W∗r‖2]. The
optimum matrix of W under the MMSE criterion can be computed as

WMMSE = arg min
W

E[‖h − W∗r‖2] = R−1Φ

R = E[rr∗] = E[(Ah + n)(Ah + n)∗]

= APA∗ +N0I

Φ = E[rh∗] = E[(Ah + n)h∗] = AP

P = E[hh∗] = diag(P1,1, P1,2, · · · , Pk,l, · · · , PK,LK
)

where Pk,l is the average received power from the kth user’s lth path. Com-
bining the above equations, the linear MMSE estimate of h can be formu-
lated as

hLMMSE = W∗
MMSEr = Φ∗R−1r = P∗A∗(APA∗ +N0I)

−1r (5.2)

From (5.2), we see that the signal and noise power level Pk,l and N0

must be known or estimated to carry out LMMSE channel estimation.
It is worth noticing that A does not need to be full rank to ensure the
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Figure 5.1: Smoothing filter impulse response.

invertibility of (APA∗ +N0I). Since we use a decision directed approach
for channel estimation, the transmitted data A is unknown, and has to be
replaced by its estimate Â in the above equation.

It is shown in Appendix 5.9.2 that the Bayesian Gauss-Markov The-
orem leads to the same LMMSE estimator. Furthermore, the estimation
covariance matrix is also derived there.

The fading processes are lowpass in nature with bandwidths that are de-
termined by the Doppler frequency. We should therefore be able to improve
the estimates by lowpass filtering (smoothing). A simple smoothing proce-

dure is to feed ĥ(j) through an FIR filter with impulse response g(n) [19],
which yields the smoothed channel gain vector h̄(j) as

h̄(j) =

j+Ns∑

k=j−Ns

ĥ(k)g(j − k). (5.3)

Experiments indicate that exact form of the filter is not crucial. In our
simulations, we use a smoothing filter derived from a Hamming window of
length 2Ns+1 = 19 or 9 (for slow or fast fading channel), normalized such

that
∑Ns

k=−Ns
g(k) = 1. The impulse response of the smoothing filters are

plotted in Figure 5.1. As will be evidenced by numerical results, smoothing
operation really improves the results of ML and LMMSE channel estimates,
and subsequently leads to more reliable data detection.
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5.4 First Order Kalman Filter

If h and its statistics are completely unknown, the ML estimator is the
best we can do. However, we know that channel gains are correlated in
time. One way to exploit this knowledge is to use smoothing filter to
improve estimation results as introduced above. An alternative approach
is to consider h to be a realization of a random process to be estimated
in the development of channel estimation algorithm, which leads to the
use of, e.g., a Kalman filter. The Kalman filter is a time-varying linear
filter widely used in statistical estimation when the unknown parameters
evolve in time according to some dynamic model [41]. It has been used,
e.g., in [42, 43, 44, 45] for the purpose of channel estimation. Here, we
extend the use of Kalman filter to estimation of multipath fading channels
for orthogonal modulated CDMA systems.

We assume the channels are independently Rayleigh fading channels
with the Clarke’s power spectral density given by

S(f) =

{
K√

(1−(f/fd)2
, |f | < fd

0, |f | ≥ fd
(5.4)

where fd is the maximum Doppler frequency. The channel gain hk,l(t)
is a complex circular Gaussian process with autocorrelation function
E[h∗k,l(t)hk,l(t + τ)] = Pk,lJ0(2πfdτ) and J0(x) is the zeroth order Bessel
function of the first kind. Based on the relations

∫ fd

−fd

K
√

1 − (f/fd)2
df =

∫ 1

−1

Kfd
√

1 − (f/fd)2
d(f/fd) = Pk,l

∫
dx√

1 − x2
= arcsin

we can readily derive the constant K =
Pk,l

πfd
. The power spectrum of

Clarke’s model is illustrated in Fig. 5.2.

The power spectral density expressed in (5.4) can be approximated by
a finite order autoregressive (AR) process. As illustrated in the left dia-
gram of Fig. 5.3, the correlation between channel coefficients can simply be
approximated by the following first-order vector Gauss-Markov model as

h(j) = Fh(j − 1) + u(j)

where F ∈ R
Ltot×Ltot is the state transition matrix and u(j) ∈ C

Ltot is
the driving noise vector (WGN sequence) with E[u(j)] = 0 and covariance
matrix Q. The current input h(j) depends only on the state of the system
at the previous symbol time h(j−1) and the current input u(j). The state
h(j − 1) accumulates the effect of all past inputs to the system.
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Figure 5.2: Power spectrum density of the Clarke’s model. The normalized
Doppler frequency is fdT = 0.25.

Since different paths are uncorrelated with each other, we can let F

and Q be diagonal matrices, i.e., F = diag(f1,1, f1,2, . . . , fk,l, . . . , fK,LK
)

and Q = diag(σ2
1,1, σ

2
1,2, . . . , σ

2
k,l, . . . , σ

2
K,LK

). Using the notation hk,l[j] =
hk,l(jT ), the vector Gauss-Markov model becomes Ltot independent scalar
models: hk,l[j] = fk,lhk,l[j − 1] + uk,l[j]. By solving the equations

E{hk,l[j]h∗k,l[j − 1]} = fk,lPk,l + E{uk,l[j]h∗k,l[j − 1]}
E{|hk,l[j]|2} = f2

k,lE{|hk,l[j − 1]|2} + E{|uk,l[j]|2}
= f2

k,lPk,l + σ2
k,l

we obtain the coefficients for the first-order model

fk,l = E{h∗k,l[j]hk,l[j − 1]}/Pk,l = J0(2πfdT )

σ2
k,l = Pk,l(1 − f2

k,l)

Note that the maximum Doppler frequency fd can differ from path
to path. As a special case, when all the paths from different users have
the same received power and Doppler frequency, the matrices F,Q are
simplified to F = fI,Q = σ2

QI. Some training method was proposed in [42]
to estimate the state transition matrix F, also the algorithm for tracking
Doppler shift is addressed in [44]. Here we focus on the estimation of
complex channel gains and assume that the Doppler shift is known after a
training phase.

Recall that our observation vector (measurement model) is, from (2.2),
r(j) = A(j)h(j) + n(j) ∈ C

N , where n(j) ∼ CN (0,C) and C = N0IN .
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The channel estimate based on the previous received observations ĥ(j|j) =
E[h(j)|r(0), r(1), · · · , r(j)] can be obtained with the following Kalman re-
cursive estimation procedure [41]

ĥ(j|j − 1) = Fĥ(j − 1|j − 1)

M(j|j − 1) = FM(j − 1|j − 1)FT + Q

K(j) = M(j|j − 1)A(j)T [C + A(j)M(j|j − 1)A(j)T ]−1

ĥ(j|j) = ĥ(j|j − 1) + K(j)[r(j) − A(j)ĥ(j|j − 1)]

M(j|j) = (I − K(j)A(j))M(j|j − 1) (5.5)

From the above equation, we see that the minimum Bayesian MSE,
M(j|j − 1) is computed as an integral part of the estimator. The per-
formance measure of the Kalman filter is therefore different from the esti-
mators discussed earlier. In our experiments, the recursion is initialized by
ĥ(−1| − 1) = 0 and M(−1| − 1) = 100I, reflecting little knowledge of the
initial stage. From (5.5), we see that the inversion of an N ×N matrix is
required to find the Kalman gain K(j).

5.5 Second Order Kalman Filter

The Kalman filter employed above is based on the first order AR model for
the fading process. Further improvement in the Kalman channel estimator
will be possible with increased complexity if a higher order AR model is
used. As shown in Fig. 5.4, the second order AR model yields better
approximation of the Doppler spectrum (shown in Fig. 5.2) than the first
order AR model. The accuracy of the Kalman filter should improve.

As shown in the right diagram of Fig. 5.3, the correlation between chan-
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Figure 5.4: Power spectrum density of the AR models.

nel coefficients can be more closely approximated by

h(j) = F1h(j − 1) + F2h(j − 2) + u(j) (5.6)

In both cases shown in Fig. 5.3, a model is established for a vector signal
h(j) as the output of a linear time invariant system (F,F1,F2 are constant
matrices) excited by a vector input u(j).

The second-order vector Gauss-Markov model and measurement model
become




h(j − 1)

h(j)



 =




0 I

F2 F1








h(j − 2)

h(j − 1)



+




0

u(j)








r(j − 1)

r(j)



 =




A(j − 1) 0

0 A(j)








h(j − 1)

h(j)



+




n(j − 1)

n(j)





For simplicity, we assume all the paths have equal received power and
Doppler frequency in the following derivation. However, the extension to
unequal power and Doppler frequency is straightforward. Now, the covari-

ance matrix Q =




0 0

0 σ2
QI



 and the state of the system at the previous
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symbol time is




h(j − 2)

h(j − 1)



 and the state transition matrix F =




0 I

F2 F1



.

The covariance matrix of noise vector




n(j − 1)

n(j)



 becomes C = N0I2N .

Since different paths are uncorrelated with each other, we can assume
F1 = f1I , F2 = f2I, and f1, f2, σ

2
Q can be derived by the relationship

hk,l[j] = f1hk,l[j − 1] + f2hk,l[j − 2] + uk,l[j]. Let us denote

E{h∗k,l[j]hk,l[j − 1]} = J0(2πfdT )Pk,l = J1Pk,l

E{h∗k,l[j]hk,l[j − 2]} = J0(4πfdT )Pk,l = J2Pk,l (5.7)

Then the model parameters can be calculated from

E{hk,l[j]h∗k,l[j − 1]} = f1E{|hk,l[j − 1]|2} + f2E{hk,l[j − 2]h∗k,l[j − 1]}
+ E{uk,l[j]h∗k,l[j − 1]} =⇒ J1 = f1 + f2J1;

E{hk,l[j]h∗k,l[j − 2]} = f1E{hk,l[j − 1]h∗k,l[j − 2]} + f2E{|hk,l[j − 2]|2}
+ E{uk,l[j]h∗k,l[j − 2]} =⇒ J2 = f1J1 + f2;

E{|hk,l[j]|2} = f2
1 E{|hk,l[j − 1]|2} + f2

2 E{|hk,l[j − 2]|2} + E{|uk,l[j]|2}
+ f1f2E{hk,l[j − 1]h∗k,l[j − 2] + h∗k,l[j − 1]hk,l[j − 2]}

= (f2
1 + f2

2 + 2f1f2J1)Pk,l + σ2
Q

By solving the above equations, we obtain

f2 =
J2

1 − J2

J2
1 − 1

;

f1 =
J2 − f2
J1

σ2
Q = (1 − f2

1 − f2
2 − 2f1f2J1)Pk,l

The procedure stated in (5.5) also applies to the second order Kalman
filter with the following replacements:

A(j) =⇒




A(j − 1) 0

0 A(j)



 ; F =⇒




0 IN

F2 F1





Q =⇒




0 0

0 σ2
QI



 ; h(j) =⇒




h(j − 1)

h(j)





The complexity increase by implementing the second order Kalman fil-
ter instead of the first order is mainly due to the inversion of a 2N × 2N
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(nN ×nN for the nth order Kalman filter) matrix required to compute the
Kalman gain.

In addition to estimation of time varying multipath coefficients, it was
shown in [43] that the extended Kalman filter (EKF) can be used to es-
timate code delay. In this case, the observation (measurement) sequence
is nonlinear in the state variables (the propagation delays), the ordinary
Kalman filter equations cannot be used. Thus the observation sequence
must be linearized to allow for a recursive estimation procedure using the
Kalman filter equations. The EKF is a practical solution to this problem. It
utilizes a Taylor’s series approximation to obtain a linearized measurement
sequence, at which point the ordinary filter equations can be employed.

5.6 Soft Channel Estimator

The ML channel estimation expressed by (5.1) can be reformulated by
replacing A with its soft estimate, which leads to soft version of the ML
channel estimator

ĥML
soft(j) =




E[A(j)|r(j)]

E[A(j + 1)|r(j + 1)]





† 


r(j)

r(j + 1)



 (5.8)

where E[A|r] is soft estimate of A derived based on (3.14) for MAP-PIC
as explained in Section 3.5.1. For the NMIC algorithm, we replace (3.14)

with E[wn
k (j)|r] =

∑M
m=1 bk,mwn

m. The rest of the derivation is the same.
Similarly, the soft version of the LMMSE channel estimator expressed

by (5.2) can be formed as

hLMMSE
soft = P̂∗E[A∗|r](E[A|r]P̂E[A∗|r] +N0I)

−1r (5.9)

We can also replace A(j) with E[A(j)|r(j)] in (5.5) to obtain the soft
versions of the Kalman filters.

Compare (5.1) vs. (5.8) for ML estimator, and (5.2) vs. (5.9) for LMMSE
estimator, one can see the use of soft information in channel estimation
itself does not introduce any additional complexity. It is the derivation of
soft values that is little more complicated than making hard decisions as
discussed earlier.

5.7 Numerical Results

In our simulations, the normalized Doppler frequency is set to fdT = 0.1 in
Fig. 5.12, 5.13 when the performance of ML and Kalman filter is examined
in the presence of fast fading channels; and it is set to fdT = 0.01 for slow
fading channels in the rest of simulations. The system was simulated for



84 Estimation of Fading Channels

2-path channels, Lk = L = 2 or 3-path channels, Lk = L = 3 for all k. The
spacing between the paths of each user is set to 2Tc. The number of users
is either K = 8 or K = 12.

Fig. 5.5 shows the original fading channel and the results of channel es-
timation with different schemes. The original estimates of ML and LMMSE
estimators are noisy. By explicitly taking the correlation of the fading chan-
nel into account, Kalman filters result in more reliable channel estimates,
especially if the fading channel is modeled as second order AR process.
We can see from the plots that, after an initial transient, the Kalman filter
quickly locks on the true channel values and tracks them closely. The impo-
sition of a correlation constraint prevents the estimate of h from fluctuating
too widely in time. The same effect can be achieved by ML and LMMSE
estimator by an additional lowpass filtering stage as shown in the plot at
the lower right corner of Fig. 5.5. The quality of the estimated channel is
greatly improved after applying the smoothing operation. (LMMSE esti-
mates after smoothing are not shown since they are essentially the same as
in the ML case).

Coupled with 5-stage PIC, different channel estimators without the
smoothing are assessed and compared in Fig. 5.6 in terms of estimation
MSE and BER performance. As expected, ML algorithm has the worst
performance. The LMMSE estimator considers the noise effect and slightly
improves the estimation results, especially in the low SNR region (the BER
performance remains the same though). The Kalman filters take advantage
of correlative nature of the fading channel and significantly improve the es-
timation results and BER performance. The PIC is also simulated with
perfect channel estimates, i.e., when ĥk = hk (which is called genie-aided
PIC) to see how close the performance of proposed channel estimators is
to the ideal one. It is also evident from the figures that PIC with the sec-
ond order Kalman filter has the closest performance to genie-aided case. It
outperforms the first order Kalman filter with the penalty of higher com-
putational complexity.

Different channel estimators combined with the smoothing filter are
compared in Fig. 5.7. One can observe that the ML algorithm yields the
smallest MSE and lowest BER after smoothing. The estimation MSE of
LMMSE algorithm is a little higher, but the BER performance is essen-
tially the same. The ML is preferable to LMMSE in that it does not need
the knowledge of noise variance and the average received power of each
signal path. No significant improvement is observed for the two Kalman
filters after smoothing. Since the Kalman algorithm itself already takes the
correlation into account, the additional smoothing does not make much dif-
ference. The ML estimator with channel smoothing appears to be the most
favorable choice for estimating slow fading channels.

Based on the above experimental results, we come to important con-
clusions that the quality of the channel estimation directly translates into



5.7 Numerical Results 85

0 200 400
−30

−25

−20

−15

−10

−5

0

5

0 200 400
−30

−25

−20

−15

−10

−5

0

5

0 200 400
−30

−25

−20

−15

−10

−5

0

5

0 200 400
−30

−25

−20

−15

−10

−5

0

5

time t/T
0 200 400

−30

−25

−20

−15

−10

−5

0

5

0 200 400
−30

−25

−20

−15

−10

−5

0

5

PSfrag replacements

LMMSE estimate

LMMSE+smoothing

original channel ML estimate

1st Kalman estimate ML+smoothing2nd Kalman estimate

Figure 5.5: Different channel estimation algorithms (fdT = 0.01, smoothing
window length=19).

the performance of data detection and that the knowledge of the channel is
crucial to the system performance, the coherent PIC with channel estimates
significantly outperforms the non-coherent MF.

Fig. 5.8 and 5.9 demonstrate the convergence property of the joint ML
channel estimator and PIC scheme. The channel estimation variance is
measured with the ML estimator without smoothing; while, the PIC works
jointly with the ML estimator and a length 19 smoothing filter. The num-
ber of users K is set to 12, the stacking factor of the received vectors D
is set to 3 here. In Fig. 5.8, we examine the estimation variance (which is
equivalent to MSE since ML estimator is unbiased) of the complex chan-
nel gain and magnitude of the channel gain for the ML estimator at each
iteration and compare them to the CRLB. It is shown that the ML esti-
mator converges after 3 iterations. Upon convergence, we can observe very
close performance between ML estimation with decision feedback and the
pilot aided approach assuming exact knowledge of the transmitted data.
Only a small gap is noticed at very low SNR region. Theoretical CRLB is
plotted for complex channel gain and magnitude and shown to be in close
agreement with simulated estimation variance after the ML estimator is
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Figure 5.6: Comparison of different channel estimators with 5-stage PIC
without smoothing.
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Figure 5.7: Comparison of different channel estimators with 5-stage PIC
with smoothing.
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Figure 5.8: Performance and convergence property of ML CE.
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Figure 5.9: Performance and convergence property of PIC with ML CE.

converged. When the approximations expressed in (5.15) and (5.19) are
used, the approximated CRLB exhibits a small discrepancy compared with
the real CRLB in this two figures due to the fact that the approximations
are based on the assumption of transmitted chip sequences from different
users and different paths being orthogonal, which is too optimistic and not
the case in reality. Fig. 5.9 shows that PIC converges after 5 iterations, it
takes more iterations for PIC to reach convergence than channel estimators.

In Fig. 5.10, we examine the effect of the stacking factor D on the
estimation results. As indicated by the CRLB, it seems that the larger D
value, the smaller estimator error we will get. That would be the case if the
channel is static. However, for the time-varying fading channel, the channel
changes beyond the coherence time. Therefore, D value has to be chosen
accordingly. From the plot, one can see that D = 4 appears to be the
optimum value before smoothing, and D = 2 or D = 3 appears to be the
optimum value after smoothing for the specific channel setting in question.
The time-varying nature of the fading channel prohibits the use of a larger
stacking. Also, the dependency between stacking and smoothing as shown
by the simulation results has to be taken into account in the selection of the
stacking factor D to achieve the best channel estimation and data detection
performance.

Convergence property of the LMMSE channel estimator is examined
in Fig. 5.11. Like the ML estimator, it takes 3 iterations to converge, at
which point the estimation variance is close to its analytical value (5.24)
and lower bound (5.26) derived in Appendix 5.9.2.
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Figure 5.10: Performance of ML CE with different observation length.
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Figure 5.12: ML vs. Kalman CE in fast fading channels (fdT = 0.1,
smoothing window length=9).

The ML estimator and Kalman filter are compared in the fast fad-
ing channels when the normalized Doppler frequency fdT = 0.1. The
smoothing filter length is chosen to be 9 in this case. Fig. 5.12 shows
that the second order Kalman filter outperforms the ML estimator under
such circumstances. The latter can not keep track on the fast time-varying
channel, and the additional filtering operation may have opposite effect,
it can destroy the details of the channel information. This is also verified
in Fig. 5.13, which shows that the ML estimator with smoothing yields
higher estimation variance. However, somewhat surprisingly, the BER for
the ML estimator is better with smoothing than without in high SNR re-
gion. The Kalman filter, on the contrary, is capable of tracking the fast
fading channels, and achieves lower estimation error as well as better BER
performance compared to the ML estimator.

Finally, the performance of soft IC and CE is tested in a 18-user system
and illustrated in Fig. 5.14. The improvement by using soft IC alone is
not noticeable until the SNR increases to Eb/N0 = 20 dB, at which point
the gain by applying soft cancellation is 0.4 dB, and it is further increased
to 1 dB by applying soft CE. Apparently, in order to achieve the utmost
performance, the soft information should be used for both interference can-
cellation and channel estimation.
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5.8 Conclusions

Multiuser detection techniques are widely used to combat the detrimen-
tal effects of multipath fading and MAI, which are the major impairments
in CDMA communication systems. Most MUDs rely on accurate channel
information, which needs to be estimated in practice. In this chapter, chan-
nel estimation and interference cancellation are presented jointly. We focus
on the decision directed approach without inclusion of training sequences.
The receiver estimates the channel parameters based on the detected data
from feedback loops. The channel coefficients estimated by the presented
algorithms are also used to regenerate the signal of each user for the mul-
tistage PIC scheme. The effectiveness of the iterative channel estimator is
demonstrated in terms of the mean square error of the channel estimate as
well as the BER performance of a multistage PIC detector based on the
channel estimates. According to the results of our simulations, the perfor-
mance of coherent demodulation using the proposed system is significantly
improved in comparison with conventional noncoherent demodulation.

It is shown that ML estimator is efficient when the channel charac-
teristic is unknown, and that when coupled with PIC, decision directed
ML estimator with an additional smoothing filter performs better than
the Kalman filters in slow fading channels. It closely tracks the optimum
performance attainable by the pilot aided approach when the transmitted
data are exactly known. However, the filtering process causes delay for
channel estimation which is not desirable under some circumstances. Also
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the ML estimator is subject to dimensionality problem when the number
of users and paths increase. This problem can be tackled by stacking the
received vectors provided the channel remains static during several symbol
intervals. When this assumption is not valid, we can resort to the Kalman
filter which is suitable for tracking fast fading channels. It takes both cor-
relation and noise into account, does not have dimensionality problem and
does not require an additional smoothing operation. Furthermore, the ex-
tended Kalman filter is capable of joint detection of propagation delays,
fading channels and Doppler shift.

We also learned from experiments that soft IC and CE achieve supe-
rior performance compared to conventional IC and CE using hard decision
feedback.

5.9 Appendix: Theoretical Analysis for
Channel Estimation

5.9.1 Derivation of CRLB for ML channel estimator

Our main concern in this work is to estimate the complex channel gains.
It is therefore of interest to establish a bound on the accuracy with which
the channels can be estimated. If we restrict our attention to unbiased
estimators, the natural performance measure is the error variance. The
CRLB is a bound on the smallest covariance matrix that can be achieved
by an unbiased estimator, ĥ, of a parameter vector h:

J−1 ≤ C
ĥ

= E
{

(h − ĥ)(h − ĥ)∗
}

J = E

[(
∂ ln p(r;h)

∂h

)(
∂ ln p(r;h)

∂h

)∗]

(5.10)

where J ∈ R
tot×tot is the Fisher information matrix and ln p(r;h) is the log-

likelihood function of the observed vector r. In the derivation of the CRLB,
we assume that the data A as well as propagation delays are deterministic.
We should therefore interpret the derived CRLB as being conditioned on
the actual realization of the transmitted data and propagation delays.

Let us denote r as the stacking of D observation vectors, i.e.,

r = [rT (j) rT (j + 1) · · · rT (j +D − 1)]T ∈ C
DN

and assume the stacking factor D is chosen such that the channel remains
relatively static during the observation period.

The vector r is formed by r = Ah+n, and has PDF r ∼ CN (Ah, N0I)
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where

A = [AT (j) AT (j + 1) · · · AT (j +D − 1)]T

= [a1,1 a1,2 · · · ak,l · · · aK,LK
]

n = [nT (j) nT (j + 1) · · · nT (j +D − 1)]T (5.11)

Its likelihood function and log-likelihood function are

p(r;h) =
1

(πN0)DN
exp

[

− (r − Ah)∗(r − Ah)

N0

]

=
1

(πN0)DN
exp

[

− (r∗ − h∗A∗)(r − Ah)

N0

]

=
1

(πN0)DN
exp

[

−‖r‖2 − h∗A∗r − r∗Ah + h∗A∗Ah

N0

]

ln p(r;h) = −DN lnπ −DN lnN0

− ‖r‖2 − h∗A∗r − r∗Ah + h∗A∗Ah

N0
(5.12)

Taking complex gradient [41] of ln p(r;h) with respect to h yields

∂ ln p(r;h)

∂h
= − 1

N0

∂
[
‖r‖2 − h∗A∗r − r∗Ah + h∗A∗Ah

]

∂h

= − 1

N0
(A∗Ah − A∗r)∗ (5.13)

The above equality holds since

∂‖r‖2

∂h
= 0;

∂h∗A∗r

∂h
= 0;

∂r∗Ah

∂h
= (A∗r)∗;

∂h∗A∗Ah

∂h
= (A∗Ah)∗

Thus we can derive,

∂ ln p(r;h)

∂h∗ =

(
∂ ln p(r;h)

∂h

)∗

=
A∗r − A∗Ah

N0

=
A∗A

N0
[(A∗A)−1A∗r − h]

= J(h)[ĥ − h] (5.14)
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This proves that the minimum variance unbiased (MVU) estimator of
h is

ĥ = (A∗A)−1A∗r

which is equivalent to the ML estimator described in Section 5.2. It is
efficient in that it attains CRLB. The Fisher information matrix J(h) and
covariance matrix C

ĥ
of this unbiased estimator are

J(h) =
A∗A

N0

C
ĥ

= J−1(h) = N0(A
∗A)−1

≥ N0 diag(‖a1,1‖2, ‖a1,2‖2, · · · , ‖aK,LK
‖2)−1 (5.15)

=
N0

DN
Itot

The inequality in (5.15) holds with equality when columns of A are
orthogonal. The CRLB for the complex gain of the kth user’s lth path is
thus the [(k − 1)L + l]th diagonal element of J−1(h) when Lk = L for all
k, i.e.,

var(hk,l) = diag[C
ĥ
](k−1)L+l

= diag[J−1(h)](k−1)L+l

≥ N0

DN
(5.16)

Now, we derive the CRLB for amplitude gk,l and phase ψk,l of the
complex channel gain hk,l. First, partition h as

h = [h1,1 h1,2 · · · hk,l · · · hK,Lk
]T

= [g1,1e
jψ1,1 g1,2e

jψ1,2 · · · gk,lejψk,l · · · gK,LK
ejψK,LK ]T (5.17)

Let us define ek,l as an Ltot × 1 vector of all zeros except it has element
1 at the position where hk,l is located in h. Taking the first derivative of
h with respect to amplitude gk,l and phase ψk,l yields

∂h

∂gk,l
= [0 0 · · · ejψk,l · · · 0]T

= ejψk,lek,l

∂h

∂ψk,l
= [0 0 · · · jgk,l · · · 0]T

= jgk,lek,l (5.18)

Assuming am,n and ai,j are orthogonal, i.e., a∗
m,nai,j = 0 when m 6= i,
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or n 6= j, and taking the expectation of the derivative, we obtain [39]

E

{
∂2 ln p

∂gm,n∂gi,j

}

= − 2

N0
Re

{
∂h∗

∂gm,n
A∗A

∂h

∂gi,j

}

= − 2

N0
Re
{
e−jψm,nejψi,je∗m,nA

∗Aei,j
}

= − 2

N0
Re
{
e−jψm,nejψi,ja∗

m,nai,j
}

= 0

E

{

∂2 ln p

∂g2
k,l

}

= − 2

N0
Re
{
e−jψk,lejψk,le∗k,lA

∗Aek,l
}

= − 2

N0
‖ak,l‖2 = −2DN

N0

E

{
∂2 ln p

∂ψm,n∂ψi,j

}

= − 2

N0
Re

{
∂h∗

∂ψm,n
A∗A

∂h

∂ψi,j

}

= − 2

N0
Re
{
gm,ngi,je

∗
m,nA

∗Aei,j
}

= − 2

N0
Re
{
gm,ngi,ja

∗
m,nai,j

}
= 0

E

{

∂2 ln p

∂ψ2
k,l

}

= − 2

N0
Re
{
g2
k,le

∗
k,lA

∗Aek,l
}

= −2‖ak,l‖2P̆k,l
N0

= −2DNP̆k,l
N0

Therefore, we derive the variance of amplitude and phase estimate as

var(gk,l) ≥
N0

2DN
(5.19)

var(ψk,l) ≥
N0

2DNP̆k,l
(5.20)

We now extend to the case where in addition to h, the noise variance N0

is also unknown and derive CRLB under such condition. The parameter
vector to be estimated is θ = [h N0]. The Fisher information matrix is

J(θ) =







−E

[
∂2 ln p

∂h∗2

]

−E

[
∂2 ln p

∂h∗∂N0

]

−E

[
∂2 ln p

∂N0∂h∗

]

−E

[
∂2 ln p

∂N2
0

]







The derivatives of the log-likelihood function expressed in (5.12) can be
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easily found as

∂ ln p

∂h∗ =
A∗r − A∗Ah

N0

∂ ln p

∂N0
= −DN

N0
+

‖r − Ah‖2

N2
0

∂2 ln p

∂h∗2 = −A∗A

N0

∂2 ln p

∂h∗∂N0
=

A∗Ah − A∗r

N2
0

=
A∗(Ah − r)

N2
0

∂2 ln p

∂N2
0

=
DN

N2
0

− 2‖r − Ah‖2

N3
0

(5.21)

Taking the negative expectation yields

−E

[
∂2 ln p

∂h∗2

]

=
E[A∗A]

N0
=
DN

N0
I

−E

[
∂2 ln p

∂h∗∂N0

]

= −E

[
A∗(Ah − r)

N2
0

]

= −E

[
A∗n

N2
0

]

= 0

−E

[
∂2 ln p

∂N2
0

]

= −DN
N2

0

+
2E[‖r − Ah‖2]

N3
0

= −DN
N2

0

+
2E[‖n‖2]

N3
0

=
DN

N2
0

(5.22)

The Fisher information matrix becomes

J(θ) =





DN
N0

I 0

0 DN
N2

0





So that

var(h) ≥ N0

DN
I

var(N0) ≥
N2

0

DN

Note that the CRLB for h is the same as for the case when N0 is
unknown due to the diagonal nature of the matrix.
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5.9.2 Derivation of error covariance for LMMSE chan-
nel estimator

In the following, we derive the LMMSE channel estimator and its MSE
with Bayesian Gauss-Markov Theorem. The observed data r is modeled as
r = Ah + n where h ∈ C

tot is now assumed to be a random vector whose
realization is to be estimated and has mean E[h] = µh = 0, and covariance
matrix Ch = P. The noise vector n ∈ C

N has PDF n ∼ CN (0, N0I) and
is independent of h. The Bayesian MMSE estimate of h that minimizes
MSE averaged over all realizations of h and r is

ĥ = E(h|r) = µh + ChA
∗(AChA

∗ +N0I)
−1(r − Aµh)

= PA∗(APA∗ +N0I)
−1r (5.23)

The performance of this estimator is measured by the error e = h− ĥ,
whose mean is zero and covariance matrix is [41]

Ce = E(eeT )

= Ch − ChA
∗(AChA

∗ +N0I)
−1ACh

= P − PA∗(APA∗ +N0I)
−1AP (5.24)

To simplify the derivation, we assume all the paths have the same
received power P . In this case, P = P I. Using the matrix inversion
lemma [41]

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1

we have

(APA∗ +N0I)
−1

=
I

N0
− I

N0
A(A∗ I

N0
A + P−1)−1A∗ I

N0

=
I

N0
− I

N0
A

[
A∗A

N0
+

I

P

]−1
A∗

N0

≤ I

N0
− I

N0
A

[
DNI

N0
+

I

P

]−1
A∗

N0

=
I

N0
− A

N0

[
DN

N0
+

1

P

]−1
A∗

N0

=
I

N0
− P

N0(DNP +N0)
AA∗ (5.25)
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The covariance matrix can then be computed as

Ce ≥ P − PA∗
(

I

N0
− P

N0(DNP +N0)
AA∗

)

AP

= P − PA∗AP

N0
+

P

N0(DNP +N0)
PA∗AA∗AP

≥ P I − P 2DN

N0
I +

P 3D2N2

N0(DNP +N0)
I

=

[
PN0 − P 2DN

N0
+

P 3D2N2

N0(DNP +N0)

]

I (5.26)

The error covariance matrix is also the the minimum MSE matrix [41]

MSE(h) = Ce ≥
[
PN0 − P 2DN

N0
+

P 3D2N2

N0(DNP +N0)

]

I (5.27)



Chapter 6

DELAY ESTIMATION

6.1 Introduction

Accurate synchronization of the chip timing is required to achieve the low
bit error rate. The impact of synchronization errors on orthogonally mod-
ulated and BPSK modulated systems was studied in [46, 47, 48]. It was
shown that errors in the delay estimates would drastically degrade the sys-
tem performance.

Synchronization of orthogonally modulated signals with long spreading
sequences was explored in [49]. An adaptive algorithm was proposed to
estimate the synchronization errors in synchronous CDMA systems. Based
on the estimates, remedial actions are taken to alleviate the performance
degradation caused by sampling the received signals at the incorrect timing.
Simulation results show considerable capacity gains when the proposed
algorithms are applied on erroneously sampled signals. The algorithms
proposed in [49] are only applicable in the downlink scenario in which
all the users transmit in a synchronous manner. On the uplink, different
users transmit signals asynchronously, the propagation delays are therefore
randomly distributed among different users.

Synchronization issues in asynchronous systems (on the uplink) were
dealt with, e.g., in [50, 51, 52], etc.. However, the algorithms proposed in
those papers only apply to CDMA systems with short spreading sequences
and the modulation schemes other than orthogonal signalling.

In this chapter, we aim at solving the problem of uplink code acquisi-
tion1 in multiuser environment in asynchronous long-code CDMA systems.

1The term acquisition is used interchangeably with delay estimation when the prop-
agation delay of the received signal is less than one symbol period T , which is assumed
here.

101
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First, the maximum likelihood (ML) estimator and its unaffordable com-
plexity for implementation are discussed. Some suboptimal solutions, e.g.,
whitened sliding correlator, MMSE estimator, subspace-based estimator,
and approximative ML estimators are then proposed to combat the multi-
ple access interference (MAI) in the fading channels. The performance of
these estimators is evaluated with the computer simulations and shown to
have better acquisition performance than the standard sliding correlator.
They also achieve reduced computational complexity compared to the ML
estimator, while maintaining an acceptable performance degradation.

In the last two chapters of the first part of this thesis, we use a simplified
scenario and consider single-path flat Rayleigh fading channels in order to
facilitate algorithm development. However, the proposed algorithms can
be extended to multipath channels. Also, for the purpose of deriving delay
estimation algorithms, we rephrase notations as follows.

We form the received vector, r(j) ∈ C
N , due to transmission of the jth

symbol as

r(j) = [r([(j − 1)N + 1]Tc) · · · r([(j − 1)N +N ]Tc)]
T

= A(j, τ )h(j) + n(j) (6.1)

where the vector h(j) ∈ C
K is defined by the complex channel gains as

h(j) = [h1(jT ) h2(jT ) · · · hK(jT )]T . The data matrix A(j, τ ) ∈ R
N×K

can be expressed as

A(j, τ ) =
[

a1(j, τ1) a2(j, τ2) · · · aK(j, τK)
]

(6.2)

where τk stands for the propagation delay of the kth user. The vector τ

is defined as τ = [τ1, τ2, . . . , τK ]T ∈ R
K . Let us denote τk = (pk + δk)Tc

(Tc is one chip interval) such that pk ∈ {0, 1, . . . , N − 1} and δk ∈ [0, 1)
stand for integer and fractional parts of the delay, respectively, and denote
bk(j) ∈ R

N , the transmitted chip sequence due to the kth user as

bk(j) = Ck(j)sk(j) (6.3)

where Ck(j) ∈ {−1,+1}N×N is a diagonal matrix defined by the kth user’s
scrambling code, and sm ∈ {−1,+1}N×1 is the mth column (m = ik(j)) of
the N × N Hadamard matrix. For the rectangular pulse shape employed
in this work, each column of the matrix A(j, τ ) in (6.2) can be expressed
as

ak(j, τk) = (1 − δk) [ds(bk(j), pk) + us(bk(j − 1), N − pk)]

+ δk [ds(bk(j), pk + 1) + us(bk(j − 1), N − pk − 1)] (6.4)

where us(.), ds(.) stand for the up-shift and down-shift operators respec-
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Figure 6.1: Receiver front-end.

tively

us([a1 · · · aN ]T , q) = [aN+1−q · · · aN 0 · · · 0]T

ds([a1 · · · aN ]T , q) = [0 · · · 0 a1 · · · aN−q]
T

All the acquisition schemes introduced in this chapter require a training
sequence which is periodic for each user and with good cross-correlation
property among the users. This can be fulfilled by assigning a distinct
Walsh sequence to each user and spreading it with a short scrambling code
to achieve low cross-correlation between the shifted versions of Walsh se-
quences, i.e., bk(j) = Ck(j)sk(j) remains unchanged and is transmitted
repeatedly.

The delay estimation is the very first step to be conducted in the re-
ceiver. The task of the delay estimator in the receiver is to detect the
propagation delays τk for k = 1, 2, . . . ,K (see Figure 6.1) given the re-
ceived signal vector r(j), i.e., performing delay estimation jointly for all
the users. For notation simplicity we sometimes suppress the symbol index
j from r(j), h(j), A(j, τ ), etc., whenever no ambiguity arises.

The decision on the kth user’s delay τk is found as the minimizer of the
cost function Jk(τk)

τ̂k = arg min
τk∈[0,T )

Jk(τk)

We define the failure of acquisition (estimation outlier) to be the case
when the estimated delay deviates from the true value by more than half
chip interval, i.e. |τ̂k − τk| > Tc/2.

In the following, we shall introduce how the decision function Jk(τk) is
derived for different acquisition algorithms.
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6.2 ML Approach to Delay Estimation

The log-likelihood function of the received vector can be expressed as

constant − LN lnN0 −
1

N0

L∑

j=1

‖r(j) − A(j, τ )h(j)‖2

Maximization of this log-likelihood function is equivalent to minimiza-
tion of the function

L∑

j=1

‖r(j) − A(j, τ )h(j)‖2 (6.5)

Substituting ĥ(j) = A†r(j) into (6.5), we yield the ML estimate of
τ = [τ1, τ2, . . . , τK ]T as

τ̂
ML = arg min

τ

L∑

j=1

‖r(j) − A(j, τ )h(j)‖2
∣
∣
∣
ĥ(j)=A†r(j)

= arg min
τ

trace{P⊥
AR̂}

where P⊥
A = IN − AA† is the orthogonal projection matrix onto the or-

thogonal complement to the subspace spanned by the columns of A(j, τ )

and R̂ is the sample autocorrelation matrix defined by

R̂ =
1

L

L∑

j=1

r(j)r∗(j) (6.6)

With this ML delay estimator and most of the algorithms introduced
later on, each user has to transmit the same pilot symbol during the training
period so that the data matrix A in R = E[rr∗] = APA∗ +N0IN remains
unchanged. Therefore, the autocorrelation of the fading channel vector,
after averaging, approximates the matrix P, i.e.,

1

L

L∑

j=1

h(j)h∗(j) ≈ P = diag(P1, P2, . . . , PK)

which leads to

1

L

L∑

j=1

r(j)r∗(j) ≈ R

The ML delay estimator finds the delays of all the users simultaneously.
The disadvantage of this algorithm is the unaffordable computational com-
plexity because it has to search over NK points (K is the number of users,
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N is spreading factor, and we assume the delays are within one symbol
interval). While other estimators introduced below estimate the delay for
one user at a time, therefore, the number of points to be searched goes
down to NK. They achieve reduced computational complexity with an
acceptable performance.

6.3 Conventional Sliding Correlator

The sliding correlator (SC) is the standard approach to propagation delay
estimation. It treats the MAI as additive noise: r = hkak + MAI + n

︸ ︷︷ ︸

noise

.

The received signal is correlated with time delayed versions of the training
sequence, and the desired timing is the value of the time delay candidate
that maximizes the correlation. Mathematically, this estimate is given by

τ̂ ck = arg max
τk∈[0,T )

∣
∣
∣
∣
∣
∣

1

L

L∑

j=1

a∗
k(j, τk)r(j)

‖ak(j, τk)‖

∣
∣
∣
∣
∣
∣

2

= arg max
τk∈[0,T )

|ak(j, τk)∗r̄|2
‖ak(j, τk)‖2

or equivalently, it can be expressed as

τ̂ ck = arg min
τk∈[0,T )

Jk,C(τk)

= arg min
τk∈[0,T )

−

∣
∣
∣
∣
∣
∣

1

L

L∑

j=1

a∗
k(j, τk)r(j)

‖ak(j, τk)‖

∣
∣
∣
∣
∣
∣

2

= arg min
τk∈[0,T )

−|ak(j, τk)∗r̄|2
‖ak(j, τk)‖2

(6.7)

where r̄ = 1
L

∑L
j=1 r(j) is the sample mean of the received signal vector.

Recall that

ak(j, τk) = (1 − δk) [ds(bk(j), pk) + us(bk(j − 1), N − pk)]

+ δk [ds(bk(j), pk + 1) + us(bk(j − 1), N − pk − 1)]

We can see ak(j, τk) is piecewise linear in τk. In particular, for τk ∈
[pTc, (p+ 1)Tc)

ak(j, τk) = δak(t1) + (1 − δ)ak(t0) (6.8)

where t0 = pTc, t1 = (p + 1)Tc, p is an integer and δ = (τk − t0)/Tc. By



106 Delay Estimation

0 1 2 3 4 5 6 7 8
−10

4

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

Cost function value for sliding correlator

 J
1,

C
(τ

)

Delay τ/T
c

Figure 6.2: Sliding correlator function value for a single user, the real delay
τ = 5.5Tc, SNR= 20 dB.

substituting (6.8) into (6.7), we obtain

Jk,C(τk) = − (K1 +K2 − 2K3)δ
2 + (2K3 − 2K1)δ +K1

(2N − 2K4)δ2 + (2K4 − 2N)δ +N

(6.9)

where K1 = r̄∗ak(t0)ak(t0)∗r̄, K2 = r̄∗ak(t1)ak(t1)∗r̄, K3 =
Re{r̄∗ak(t0)ak(t1)∗r̄}, K4 = ak(t0)

∗ak(t1).

From (6.9), we see that Jk,C(τk) can be written as a rational function of
two polynomials of degree four. Furthermore, Jk,C(τk) is differentiable for
τk ∈ [0, T ) except at the points of τk = pTc for an integer p. This suggests
an efficient search procedure of the cost function which is illustrated in
Figure 6.2. We form the set of candidate estimates T as the union of the

solution set to
dJk,C(τk)

dτk
= 0 for τk ∈ (pTc, (p + 1)Tc), p = 0, 1, . . . , N − 1,

and the set of end points {pTc}N−1
p=0 . The final estimate, τ̂k, is found as

the member of T corresponding to the smallest value of the cost function
Jk,C(τk). As shown in Figure 6.2, Jk,C(τ) has the minimum value at the
true delay τ = 5.5Tc in this single user case.

The advantages of the SC are the low computational complexity and
good performance in single user situation. However, it is highly unreli-
able in presence of the MAI, even in two-user case, as demonstrated in
Figure 6.3.
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Figure 6.3: Performance of SC and WSC.

The simulated system for the following experiments is a K = 6-user
system. Simulation results are averaged over 500 ∼ 3000 Monte-Carlo
runs with t = 10 ∼ 300 pilot symbols transmitted. Each Monte-Carlo run
represents a particular realization of the noise and fading processes as well
as randomly distributed propagation delays τk ∈ [0, T ).

6.4 ML Single User Delay Estimator

The ML single user delay estimator also treats the MAI as additive noise.
If we look into the received vector

r(j) =
K∑

k=1

ak(τk)hk + n = ak(τk)hk + MAI + n

= ak(τk)hk + w

the contribution from the kth user is ak(τk)hk, the vector w represents the
combined interference and noise. We suppress the symbol index j from
a(j, τk) from now on since it is constant and only a function of the delay
τk during the acquisition stage.

Under the assumption that w is a Gaussian random vector and that
the data is known (training sequence), an ML estimator of τk can be found
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by minimizing

JML(τk) =
L∑

j=1

‖r(j) − ak(τk)hk‖2 (6.10)

The complex channel gain for the user k during the jth symbol interval,
hk can be estimated as hk = a

†
kr(j), where a

†
k = (a∗

kak)
−1a∗

k = a∗
k/‖ak‖2

denotes the left pseudoinverse of ak(τk). The ML single user delay estima-
tor can thus be formulated as

τ̂k
ML = arg min

τk

L∑

j=1

‖r(j) − ak(τk)hk‖2
∣
∣
∣
hk=a†r(j)

= arg min
τk

trace{P⊥
ak

R̂} (6.11)

where P⊥
ak

= IN − aka
†
k is the orthogonal projection matrix onto the or-

thogonal complement to the subspace spanned by the vector ak(τk).

If we denote Pak
= ak(τk)a

†
k(τk), the equation (6.10) can be reformed

as

L∑

j=1

‖r(j) − ak(τk)hk‖2
∣
∣
∣
hk=a†r(j)

=

L∑

j=1

‖r(j) − Pak
r(j)‖2

=

L∑

j=1

[r(j) − Pak
r(j)]

∗
[r(j) − Pak

r(j)]

=

L∑

j=1

[r∗(j) − r∗(j)Pak
] [r(j) − Pak

r(j)]

=

L∑

j=1

{‖r(j)‖2 − r∗(j)Pak
r(j)}

=

L∑

j=1

{‖r(j)‖2 − ‖Pak
r(j)‖2}

Since ‖r‖2 is irrelevant to the choice of τk, so the decision is solely
decided by Pak

r, i.e., the projection of r(j) onto the the subspace spanned
by the vector ak. Therefore, the ML single user delay estimator (6.11) can
be expressed as

τ̂k
ML = arg min

τk

L∑

j=1

−‖Pak
r(j)‖2
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The projection of r(j) onto the the subspace spanned by the vector
ak(τk) is the same as the normalized correlation of the vectors r(j) and
ak(τk). Therefore, the ML delay estimator is identical to the conven-
tional sliding correlator (SC), the standard approach to delay estimation
expressed by (6.7).

6.5 Whitened Sliding Correlator

Like the standard receiver (i.e., the single user matched filter), the SC or
the ML single user delay estimator is only optimal in the AWGN single user
channel or in a strictly orthogonal synchronous channel. It performs poorly
when MAI is present. A way to work around this problem is to whiten the
received vector r by preprocessing it with the matrix R−1/2 [51], where
the matrix R is the autocorrelation matrix of the received vector r, i.e.,
R = E[rr∗] = APA∗ +N0IN .

The received vector can be written as

r = akhk +

K∑

l=1
l 6=k

alhl

︸ ︷︷ ︸

MAI

+n (6.12)

The “whitened” received vector is

R−1/2r = R−1/2(Ah + n) = hkR
−1/2ak

︸ ︷︷ ︸

desired signal

+R−1/2(MAI + n)
︸ ︷︷ ︸

noise

where R−1/2 is obtained from R by Cholesky factorization. The autocor-
relation matrix R is unknown and usually replaced by the sample autocor-
relation matrix R̂ defined in equation (6.6).

The enhanced version of the SC, namely, the whitened sliding correlator
(WSC) can be formulated as

Jk,W (τk) = −|(R̂−1/2ak(τk))
∗R̂−1/2r̄|

‖R̂−1/2ak(τk)‖2
= − |a∗

k(τk)R̂
−1r̄|

a∗
k(τk)R̂

−1ak(τk)

(6.13)

In order to calculate the delay analytically as we did earlier, we use
J2
k,W to replace Jk,W of equation (6.13) in order to make the numerator
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Figure 6.4: Acquisition error probability as function of the number of train-
ing symbols.

differentiable

τ̂wk = arg min
τk∈[0,T )

−J2
k,W (τk)

= arg min
τk∈[0,T )

− ‖K2 −K1‖2δ2 +X0δ + ‖K1‖2

X1δ4 +X2δ3 +X3δ2 +X4δ +K2
3

(6.14)

where K1 = ak(t0)
∗R−1r, K2 = ak(t1)

∗R−1r, K3 = ak(t0)
∗R−1ak(t0),

K4 = ak(t1)
∗R−1ak(t1), K5 = Re{ak(t0)∗R−1ak(t1)}, X0 = [K∗

1 (K2 −
K1) + K1(K2 − K1)

∗], X1 = (K3 + K4 − 2K5)
2, X2 = 4(K3 + K4 −

2K5)(K5 −K3), X3 = 2(K3 +K4 − 2K5)K3, X4 = 4(K5 −K3)K3.

The delay estimate τ̂k is derived using the same procedure as defined
in Section 6.3, i.e., finding the solutions to dJ2

k,W (τk)/dτk = 0 for τk ∈
(pTc, (p + 1)Tc), p = 0, 1, . . . , N − 1, together with the set of end points
{pTc}N−1

p=0 , then searching for a global minimum. Figure 6.3 shows that the
acquisition performance of the WSC is greatly improved in the presence of
MAI compared to the conventional SC.

The number of pilot symbols needs to be sufficiently large in order to
get an accurate estimate of R. Figure 6.4 shows that the acquisition error
probability decreases when more pilot symbols are used. Long training
sequences are needed to combat noise and fading.
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6.6 Linear MMSE Delay Estimator

The linear MMSE delay estimation is similar to the MMSE approach to
channel estimation introduced in Section 5.3. The receiver computes a
receiver matrix W ∈ CN×N , which is chosen to minimize the mean square
error E[‖ak(τk)hk − W∗r‖2]. The receiver matrix can be computed using
adaptive filtering techniques

WMMSE = arg min
W

E[‖ak(τk)hk − W∗r‖2] = R−1U

U = E[r(ak(τk)hk)
∗] = E[ak(τk)hkh

∗
ka

∗
k(τk)] = Pkak(τk)a

∗
k(τk) (6.15)

If we look into the received vector r in (6.12), the contribution from the
kth user is akhk. This implies the rationale behind the equation (6.15) is
that we would like to find a matrix W which can filter out all the interfer-
ence and noise from the received observation so that in the ideal situation,
the received vector after filtering only contains the kth user’s contribution.
Once the receiver matrix is computed, the delay can be estimated by cor-
relating this matrix with the received vector. Thus, the MMSE approach
to delay estimation can be formulated as

τ̂MMSE
k = arg min

τk∈[0,T )
Jk,MMSE(τk)

= arg min
τk∈[0,T )

−‖W∗
MMSEr̄‖2

‖WMMSE‖2

= arg min
τk∈[0,T )

−‖(R̂−1ak(τk)a
∗
k(τk))

∗r̄‖2

‖R̂−1ak(τk)a∗
k(τk)‖2

(6.16)

where r̄ and R̂ are the sample mean of the received vector and autocorrela-
tion matrix, respectively. The analytical expression of Jk,MMSE is omitted
to conserve space.

As depicted in Figure 6.4, the MMSE performs a little worse than the
WSC when the number of pilots is small; However, the performance gap
becomes bigger when the number of pilots increases.

6.7 Subspace-Based Delay Estimator

The subspace-based approach to delay estimation was initially proposed
in [50, 53]. Recall that

R = E[rr∗] = AE[hh∗]A∗ +N0IN = APA∗ +N0IN
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where A(τ ) = [a1(τ1) · · · aK(τK)], P = diag(P1, P2, . . . , PK). We assume
that A and P in the above equation have full rank2 and define the signal
subspace as the column space of A, i.e., range(A), and the noise subspace
as the orthogonal complement to range(A). Since A has rank K (the num-
ber of users), the signal subspace will have dimensionality K. It can be
shown that range(APA∗) = range(A). Therefore, the matrix APA∗ has
K nonzero positive eigenvalues: {λ1, λ2, . . . , λK}, and N−K zero eigenval-
ues. Let Es denote the matrix formed by the eigenvectors corresponding to
the K nonzero eigenvalues and En denote the matrix formed by the eigen-
vectors corresponding to the N −K zero eigenvalues. The hermitian and
positive definite matrices APA∗ and R = APA∗ + N0IN can be decom-
posited into signal subspace, i.e., range(Es) ∈ C

N×K and noise subspace,
i.e., range(En) ∈ C

N×(N−K) as

APA∗ =
[

Es En

]




Λ̃s 0

0 0





[

Es E∗
n

]

= EsΛ̃sE
∗
s + 0EnE

∗
n

R =
[

Es En

]




Λs 0

0 Λn





[

Es E∗
n

]

= EsΛsE
∗
s + ΛnEnE

∗
n

where Λ̃s = diag(λ1, λ2, . . . , λK), Λs = Λ̃s + N0IK = diag(λ1 + N0, λ2 +
N0, . . . , λK +N0), Λn = N0IN−K = diag(N0, . . . , N0).

Since signal subspace and noise subspace are orthogonal to each other,
the columns of A(τ ), i.e., a1(τ1), · · · ak(τk) · · · ,aK(τK), lie in the signal
subspace, and are therefore orthogonal to the columns of En. Given the
knowledge of R, we can get the noise subspace En out of it. The delay τk
can then be found as the solution to

‖E∗
nak(τk)‖ = 0

In practice, the autocorrelation matrix is unknown and is therefore es-
timated by the sample autocorrelation matrix, R̂, and an estimate of En

is found in the eigenvalue decomposition of R̂

R̂ =
1

L

L∑

j=1

r(j)r∗(j) = ÊsΛ̂sÊ
∗
s + ÊnΛ̂nÊ

∗
n

where the columns of Ên are the eigenvectors corresponding to the N −K

2The matrix A(τ ) will have full rank if and only if its columns
a1(τ1), a2(τ2), . . . ,aK(τK) are linearly independent for all possible realizations
of τ . This is desirable and most likely the case for a DS-CDMA system in which
the orthogonality of different users’ signature waveforms is maintained to a maximum
extend to keep their mutual interference sufficiently low. The matrix P has full rank if
Pk > 0 for all k, which is obviously the case, since we assume all the users are active.
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Figure 6.5: The cost function value for subspace-based algorithm, the real
delay τk = 5.5Tc, SNR= 20 dB.

smallest eigenvalues of R̂. Note that the columns of A will now only be
approximately orthogonal to the columns of Ên. However, the algorithm
still works if we pick up the candidate delay value corresponding to min-
imum correlation between Ên and ak(τk) as shown in Figure 6.5. In the
simulation, the real delay of the signal transmitted by the kth user is 5.5Tc,
the cost function has minimum value exactly at this point.

The above idea leads to the subspace-based delay estimator formulated
as follows

τ̂ sk = arg min
τk∈[0,T )

Jk,S(τk) = arg min
τk∈[0,T )

‖Ê∗
nak(τk)‖2

‖ak(τk)‖2
(6.17)

Jk,S can be written analogously to (6.9) and (6.14) in order to estimate

the delay analytically

Jk,S(τk) =
(K1 +K2 − 2K3)δ

2 + (2K3 − 2K1)δ +K1

(2N − 2K4)δ2 + (4K4 − 2N)δ +N
(6.18)

where K1 = ‖Ê∗
nak(t0)‖2, K2 = ‖Ê∗

nak(t1)‖2, K3 =

Re{a∗
k(t0)ÊnÊ

∗
nak(t1)}, K4 = a∗

k(t0)ak(t1).

Figure 6.4 shows this subspace-based algorithm outperforms the WSC
and MMSE estimator. The performance of all the algorithms is improved
with longer training sequence. Figure 6.6 shows the SNR performance of
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Figure 6.6: Acquisition error probability as function of SNR.

these acquisition algorithms. As expected, strong noise deteriorates the
performance of all the delay estimators. A reasonable level of signal to
noise ratio has to be maintained for the algorithms to work.

Equal average power among different users is assumed in the above
discussion. However, fast and accurate power control is hard to obtain,
and it is therefore likely that the users have different power levels. We
did some simulations in the case that the users have different power levels.
Figure 6.7 presents results of delay estimators as function of the near-far
ratio (NFR) in case t = 300 pilot symbols. The NFR refers to the difference
in power between each interfering user (assuming P2 = P3 = · · · = PK),
and the power P1 of the desired user. As illustrated in Figure 6.7, the
subspace-based estimator exhibits better near-far resistance compared to
the WSC and MMSE delay estimator when NFR is less than 10 dB.

The problem with the estimators presented above is the slow conver-
gence (large overhead), they all need a long training sequence to combat
noise and fading and get an accurate estimate of the autocorrelation ma-
trix. On the other hand, the overwhelming complexity of the ML delay
estimator makes it unfeasible for implementation. It requires a search in
K-dimensional space, thus the complexity grows exponentially with the
number of users K.

In the following, some approximation methods to reduce the complexity
of the ML algorithm are introduced. The general principle is to use the
single user ML algorithm as the first stage to get an initial estimates of the
delays. In this case, the MAI is treated as additive noise. After obtaining
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Figure 6.7: Acquisition error probability as function of NFR (t =
300, Eb/N0 = 20 dB).

the initial estimates, we switch to decision directed mode and improve
the results at each iteration stage, using the ideas similar to successive
interference cancellation (SIC) or parallel interference cancellation (PIC).
The suggested approximative ML (AML) algorithms requires much less
pilot symbols, thus achieve faster convergence compared to the previously
introduced schemes.

6.8 AML(1): Successive ML Delay Estima-
tor

In [54], a hierarchic way to construct an ML approximation for delay esti-
mation was proposed. A revised version of this algorithm adopted to the
system in question is as follows:

1. Evaluate J(τk) = trace{P⊥
ak

R̂} for k = 1, 2, . . . ,K. Choose an1
(τ̂n1

)
corresponding to the minimum trace value, which means we fix the delay
estimate τ̂n1

for the user n1.
2. Form the matrices Ak = [ak(τk) an1

(τ̂n1
)] for k = 1, 2, . . . ,K and

k 6= n1. Compute P⊥
Ak

= IN − AkA
†
k, evaluate J(τk) = trace{P⊥

Ak
R̂}

for k = 1, 2, . . . ,K and k 6= n1. Choose an2
(τ̂n2

) corresponding to the
minimum trace value.

3. Form the matrices Ak = [ak(τk) an1
(τ̂n1

) an2
(τ̂n2

)] for k =

1, 2, . . . ,K and k 6= n1, n2. Compute P⊥
Ak

= IN − AkA
†
k, evaluate
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J(τk) = trace{P⊥
Ak

R̂}, and choose an3
(τ̂n3

) corresponding to the minimum
trace value.

4. Repeat step 3 until all the users’ delays are estimated and fixed.

The idea of this scheme is similar to that of the SIC. We fix the delay
of one user at each step, that user’s signal is reconstructed and used for
detecting the next user’s delay.

6.9 AML(2): Parallel ML Delay Estimator

The complexity of the ML algorithm can also be reduced in an iterative
multistage manner like PIC. We use the conventional delay estimator (SC)
to get initial estimates of delays for all the users and enter the iteration
loop. The subsequent stages differ from the successive estimator introduced
earlier. Instead of fixing one user’s delay at a time, we fix the delays of
all the interfering users simultaneously (in parallel), using the estimates
derived from last iteration in order to estimate the delay for the user of
interest, e.g., the kth user. At the pth iteration stage, the parallel ML delay
estimator can be expressed as

τ̂
(p)
k = arg min

τk

L∑

j=1

‖r(j) − Â(p−1)(τk)h(j)‖2
∣
∣
∣
h(j)=Â†r(j)

= arg min
τk

trace{P⊥
Â
R̂} (6.19)

where P⊥
Â

= IN−ÂÂ† is the orthogonal projection matrix onto the orthog-

onal complement to the subspace spanned by the columns of Â(p−1)(τk),
which is the estimated data matrix at the (p− 1)th stage, and is defined as

Â(p−1)(τk) = [a1(τ̂
(p−1)
1 ) · · · ak(τk) · · · âK(τ̂

(p−1)
K )]

where τ̂
(p−1)
1 , · · · , τ̂ (p−1)

K are the estimated delays for the interfering user
1, · · · ,K at the (p− 1)th stage.

In contrast to the original ML algorithm which jointly detects all the
users, these two approximate ML algorithms detect the delay of one user
at a time, thus greatly reduce the computational complexity compared to
a full search of the ML criterion function. Like the SC, they have the
property of fast convergence, require much shorter training sequence than
the WSC, MMSE and subspace-based algorithms, thus significantly reduce
the overhead induced by the training.

The results of the 7-stage parallel ML delay estimation are demon-
strated in Figure 6.8. Clearly, the performance is improved at each itera-
tion. However, it tends to get saturated at the 7th stage.

The comparison among different estimators is illustrated in Figure 6.9.
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Figure 6.8: Acquisition performance of the multistage parallel ML delay es-
timator.

The parallel ML estimator performs slightly better than the successive one.
They both achieve good acquisition performance with a relatively short
training sequence. As expected, the subspace-based estimator does not
work with short training sequences. Its performance improves considerably
as the number of the pilots increases and eventually becomes better than
the AML estimators when more than 250 pilots are used.

6.10 AML(3): Combined SML and PML

Since the successive ML (SML) and parallel ML (PML) estimator have
different mechanisms for searching the optimum values of the propagation
delays, we tend to think that when these two are coupled together, the
combined algorithm has better chance to get out of the local minimum and
approach the global optimum attainable by the original ML algorithm.
That is indeed the case as shown in Figure 6.10. In the experiment, the
successive scheme is used as the first stage followed by 3-stage parallel
scheme. The combined algorithm performs better than each individual
one. For instance, with 50 pilot symbols, the acquisition error probability
goes down to 0.003 when these two methods are coupled together; while
the acquisition error probability of each individual scheme is around 0.01.

To shorten the length of the training sequence, we can use the AML
estimator instead of the others, e.g., the subspace-based estimator. It would
be interesting to see the performance loss as a result of the reduction of
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Figure 6.9: Comparison between subspace-based estimator and AML esti-
mators.

the overhead. Figure 6.11 and 6.12 illustrate the performance comparison
between the subspace-based estimator with 300 pilots and the combined
ML algorithm with 40 pilots. The probability of unsuccessful acquisition is
plotted against SNR and NFR respectively. Apparently, the gap between
these two is not very significant. For instance, if we allow 3 – 4 dB loss
in SNR at acquisition error probability of 10−2, then the number of pilots
can be dropped from 300 to 40. The gap between these two can be further
reduced by slightly increasing the number of pilots for the AML algorithm.

6.11 Summary

In this chapter, several pilot-assisted multi-user acquisition algorithms,
namely the WSC, MMSE, subspace-based, and AML estimators were in-
troduced. Compared to the ML estimator, they reduce the computational
complexity from exponential to polynomial, which makes them more feasi-
ble for implementation. We consider the use of periodic training sequence
to obtain an estimate of autocorrelation matrix of the received observation
vector in the presence of fading and AWGN. Simulation results show that
they achieve good acquisition performance in presence of the MAI. This is
in contrast with the conventional SC which does not work well in multiuser
environments. All of them are non-coherent synchronization algorithms.
The extension to their coherent variants is rather straightforward by incor-
porating the channel estimates into the equations of the acquisition algo-
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rithms, as we did in the derivation of the coherent demodulation schemes
in Chapter 3. We would expect some performance gain accomplished by
channel estimation in this case.

By comparison, the subspace-based algorithm in general gives more re-
liable and more accurate estimate of delays at the expense of large overhead
induced by the training. While the overhead is greatly reduced by the it-
erative AML algorithms at the cost of increased computational complexity
which is needed for iteration process. If the receiver has fast and powerful
signal processing capability, which is the case in the base station, the AML
algorithms are preferred. Like the subspace-based algorithm, the MMSE
estimator and WSC also need a long training sequence. They might have
good performance when the channel is corrupted with colored noise, and
would be preferable choices under such circumstances. This however, needs
to be verified with further experiments.

All the algorithms introduced in this chapter require users’ training at
the same time, they are therefore applicable when we have a dedicated pilot
channel for synchronization. This should be feasible because in some 3G
standard, the I-channel is employed for transmitting data, while Q-channel
is the control channel reserved for synchronization and channel estimation.
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Figure 6.10: Combined successive and parallel ML delay estimator.
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Figure 6.11: Comparison of SNR performance between subspace-based es-
timator and AML estimator.
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Chapter 7

PULSE SHAPING CONSIDERATIONS

Most work examining the performance of DS-CDMA systems only con-
siders the use of rectangular chip waveforms since the transmitted signal
can be formed, and the chip matched filter can be implemented readily.
This simplifies the simulation models, and considerably reduces the sim-
ulation complexity. Due to these reasons, the rectangular chip pulses are
used in our previous simulations. However, they are mainly of interest to
academic research. More spectrally efficient waveforms are employed in
practical systems in order to satisfy the bandwidth limitations imposed by
the channels and to limit the out-of-band power. Therefore, it would be
important to study the behavior of the receiver algorithms when spectrally
efficient pulse shapes, e.g., square root raised cosine (RRC) waveforms (see
Section 1.1.2.2) are used for modulation.

The topic of chip waveform design was studied in several papers. For
instance, in [55], optimum pulse shapes are designed to minimize the MAI
given a restriction on out-of-band power, and chip pulses are limited to the
chip duration Tc. In [56], chip waveforms, such as Blackman and Kaiser
pulses, are examined and their performance in a micro-cellular packet mo-
bile radio system is compared.

Square root raised cosine chip pulses are used in 3G systems, such as
W-CDMA [57]. The effect of RRC on the bit error rate of the conven-
tional receiver in the systems with periodic short spreading sequences was
evaluated in [58], for AWGN and Rayleigh fading channels. However, the
study on the effect of pulse shaping for the long-code CDMA systems, and
especially for multiuser detectors is still lacking. In this part of the work,
we numerically evaluate and compare the performance of rectangular pulse
and square root raised cosine pulses with different rolloff factors for conven-
tional receiver and multiuser detectors. Based on the simulation results,
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some recommendations are made on how to choose RRC pulses in practical
systems, e.g., the selection of rolloff factor, truncation length, etc..

7.1 Simulation Models

The two models used for pulse shaping simulations are illustrated in Fig-
ure 7.1 and 7.2. The first one is passband model, similar to the trans-
mitter block diagram depicted in Figure 2.1 except that we only consider
single-path flat fading channel and exchange the order of pulse shaping
and summation of users’ signals in the transmitter to simplify the com-
puter simulations. In this way, only two instead of 2K filtering operations
are needed (one for I channel – the data channel, the other one for Q chan-
nel). The same principle holds for the baseband model in which the carrier
modulation in the transmitter and frequency down-conversion (downmix-
ing) in the receiver are omitted. These two models would produce the same
results. For simplicity, we mainly consider the baseband equivalent model
for our simulations.

It is concluded in [58] that a DS-CDMA system is rather robust against
adjacent channel interference. Hence, we don’t consider the presence of ad-
jacent systems with carriers in the vicinities of the one used in the simulated
system.
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7.2 Numerical Results

Figure 7.3 shows the different pulses used in our simulations. The impulse
response of the RRC filter is [57]

ψ(t) =
sin [πt(1 − α)/Tc] + 4αt cos [πt(1 + α)/Tc] /Tc

πt [1 − (4αt/Tc)2] /Tc
(7.1)

We use RRC pulses with rolloff factors α = 0.1, 0.5, 0.9, truncated to
Tr = 4T chip intervals on each side of the peak. The rectangular pulse
has the spectral deficiency of infinite bandwidth occupancy, which can be
observed from its spectrum plot. Given the same truncation length, the
sidelobes reduce as the rolloff factor α increases. However, the excess band-
width also increases with α.

Figure 7.4, 7.5, and 7.6 show the performance of the conventional re-
ceiver, PIC, and IIS, respectively, for different pulses under the assumption
of perfect synchronization. In those experiments, the parameters are con-
figured as follows: the number of users K = 6, the oversampling rate η = 8,
truncation interval Tr = 4T .

Figure 7.4 shows that all the pulses have the same performance for the
conventional matched filter receiver (MF). This comes as no surprise con-
sidering that the MF is only optimal in WGN channel, it is very sensitive
to MAI. When the MF is used, MAI will be the main cause for the degra-
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Figure 7.3: Different pulses (upper plots) and their corresponding spectra
(lower plots).The x-axis for pulses is normalized to the symbol
interval T , the frequency axis for spectra is normalized to the
symbol rate 1/T , the magnitude of the spectra is plotted in dB
scale. All pulses are normalized to a peak value of unity.

dation of the system performance. The choice of pulses will not change
the amount of interference imposed on each user. That explains why the
performance of the conventional receiver is irrelevant to the choice of pulses.

Fig. 7.5 and 7.6 show the performance of different pulses for 4-stage
PIC and IIS respectively. In this case, MAI can be effectively canceled or
suppressed by multiuser detection schemes. Noise and ISI will be domi-
nant factors on the system performance. In the low SNR region, the noise
is dominant, the users have the same amount of noise regardless of what
pulses are chosen, therefore, all the pulses have approximately the same
performance. In the high SNR region, the performance is mainly influ-
enced by ISI because noise is weak. The RRC pulses with low rolloff factor
(e.g., α = 0.1) introduce more ISI due to larger out-of-band power caused
by truncation, therefore perform slightly worse than the ones with higher
rolloff factor (e.g., α = 0.5, 0.9). When SNR increases, ISI becomes more
and more dominant, the distinction becomes clearer.

Rectangular pulse gives a lower bound for the BER performance in case
of perfect synchronization. It is finite in time, does not need any truncation,
therefore, does not introduce any ISI if the channel is band unlimited.

The 4-stage PIC (Fig. 7.5) almost exhibits the identical results as IIS
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Figure 7.4: Performance of different pulses for conventional receiver (η =
8, Tr = 4T,K = 6).

(Fig. 7.6). It is reasonable to assume that the RRC pulses behave similarly
for all the linear and nonlinear multiuser detectors. We shall use 4-stage
PIC in all the subsequent experiments.

Perfect synchronization is assumed in the investigations we have done so
far. To see the effect of imperfect synchronization on different pulse shapes,
we measure their performance versus synchronization errors in Figure 7.7
and 7.8. We can see that the rectangular pulse is more sensitive to synchro-
nization errors than the RRC pulses with large rolloff factor, e.g., α = 0.9,
but more robust to synchronization errors than the RRC pulses with small
rolloff factor, e.g., α = 0.1.

The eye diagrams are useful visual tools for evaluating the performance
of different pulse shapes. They are generated using an oscilloscope con-
nected to the output of the chip matched filter and before the sampler.
Therefore, what we see on the oscilloscope is the convolution of the chip
waveform ψ(t) ∗ ψ(−t). The convolution of a rectangular pulse is a trian-
gular pulse, and the convolution of a RRC pulse becomes a raised cosine
(RC) pulse. The oscilloscope is re-triggered at every symbol period. By
relying on the persistence of a typical oscilloscope display, the result is an
overlaying of consecutive received symbol waveforms which form ’eye’ pat-
tern on the screen. We re-create this effect with computer simulation and
plot it in Figure 7.9.

As demonstrated in the diagrams, the eye pattern of the triangular pulse
is more open compared to the eye pattern of the RC pulse with α = 0.1.
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Figure 7.5: Performance of 4-stage PIC as function of SNR (η = 8, Tr =
4T,K = 6).
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Figure 7.7: Performance of different pulses as function of synchronization
errors (η = 10, Tr = 4T,K = 6).

−5 0 5 10 15 20

10
−2

10
−1

10
0

Performance of pulses in presence of synchronization errors (τ
e
=0.2T

c
)

B
it 

er
ro

r 
ra

te

Signal to Noise Ratio E
b
/N

0
 [dB]

PIC with Rectangular pulse
PIC with RRC pulse, α=0.1
PIC with RRC pulse, α=0.5
PIC with RRC pulse, α=0.9

Figure 7.8: Performance of different pulses in presence of synchronization
errors (η = 10, Tr = 4T,K = 6, τe = 0.2Tc).



128 Pulse Shaping Considerations

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Eye patterns of different pulse shapes

T
ria

ng
ul

ar

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

R
C

, α
=

0.
1

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

R
C

, α
=

0.
5

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

time t/T

R
C

, α
=

0.
9

Figure 7.9: Eye diagrams of employed pulse shapes.

That explains why the rectangular pulse is more robust to synchronization
errors than the RRC pulse with α = 0.1. Because it has a wider eye
opening, thus exhibits a larger margin against MAI and additive noise.
The same argument can be made reversely to explain why the rectangular
pulse is more sensitive to synchronization errors than the RRC pulse with
α = 0.9.

The eye opening of the RC pulse with α = 0.5 is nearly as wide as the
triangular pulse. It is, however, more flat around the optimum sampling
point, thus more robust to small synchronization errors (up to τe = 0.25Tc).
This is also verified in Figure 7.8. When the synchronization error τe =
0.2Tc, the BER curve for RRC pulse with α = 0.5 lies below the one for
rectangular pulse.

When the synchronization error τe reaches half chip interval, none of
the pulses has any margin against MAI and additive noise. In this case, the
decision is entirely determined by MAI and noise. Therefore all pulses con-
verge to approximately the same error rate as demonstrated in Figure 7.7.

In Figure 7.10, we measure the performance of different pulses versus
oversampling rate η to see what would be proper value of η in simulations
when evaluating the performance of an RRC pulse. Apparently, η has to
be no less than 5. The performance gets saturated when it goes beyond
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Figure 7.10: The impact of oversampling rate η on the simulation results
(4-stage PIC, Tr = 4T,K = 6).

this point.

Note that all the RRC pulses have infinite length. We have to do trun-
cation to make them realizable. In Figure 7.11, we measure the perfor-
mance of different RRC pulses as function of the truncation interval Tr,
attempting to find out a suitable truncation length for different pulses. As
expected, the RRC pulses with smaller α value need longer truncation in-
terval, and vice versa. Even Tr = T is enough for a RRC pulse with rolloff
factor α = 0.9. Generally speaking, Tr = 5T would be sufficient for all
RRC pulses. In this simulation, no bandwidth constraint is imposed on the
channel. Therefore, the out-of-band power caused by the truncation is not
taken into account.

Shorter truncation length will reduce the complexity of pulse shaping
filter, but also lead to larger sidelobes of the signal spectrum (increase of the
out-of-band power as illustrated in Figure 7.12), which in turn will increase
the intersymbol interference (ISI) and degrade the system performance.
In order to test the impact of truncation in a more realistic scenario, we
impose the bandwidth constraint and feed the signals through a bandpass
channel with bandwidth of the pass band equal to 0.75/T on each side
of the carrier frequency, which is approximately the bandwidth required
by the RRC pulse with α = 0.5 (its frequency response is depicted by
the solid line in Fig. 7.13). Figure 7.14 shows similar results compared to
the case of no bandwidth constraint (Figure 7.11). We can conclude that
small amount of the out-of-band power can be tolerated without causing
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noticeable performance degradation.

We then narrow down the pass band of the channel to 0.5/T on each side
of the carrier frequency, which is approximately the bandwidth required by
the RRC pulse with α = 0.1 (see the dashed curve in Fig. 7.13). Figure 7.15
shows that the performance of the RRC pulse with α = 0.9 becomes worse
due to the relatively large out-of-band power. In this case, it is better to
use RRC pulses with low rolloff factor value, like α = 0.1, 0.5 in order to
fit into the narrow bandwidth of the channel.

7.3 Summary

The selection of chip waveform affects not only the bandwidth efficiency,
but also the performance of a DS-CDMA system. Pulses should be designed
to minimize the MAI and ISI. The bandwidth constraint of practical sys-
tems generally precludes the use of rectangular pulse. However, we have
justified in this work that employing rectangular pulse is an effective way of
simplifying computer simulations when evaluating the performance of re-
ceiver algorithms, because it yields similar results to the ones produced by
the RRC pulses. However, one has to be aware that the RRC pulses with
low rolloff factors perform slightly worse, especially when the noise level is
low. They are also more sensitive to synchronization errors. Due to those
reasons, the RRC pulses with large rolloff factor are preferred in practice in
order to make the systems more resistant to ISI and synchronization errors,
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Figure 7.14: The impact of truncation on the performance of different pulses
(4-stage PIC, η = 8,K = 6, bandpass channel 1 is imposed).
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as well as to simplify the filter design as discussed below. The price to pay
for the better performance is larger bandwidth requirement. The excess
bandwidth increases linearly with the rolloff factor. This performance and
bandwidth trade-off has to be considered when selecting chip waveforms.

We have shown that moderate out-of-band power caused by the trunca-
tion of RRC pulses can be tolerated without causing noticeable performance
degradation. To minimize the filter complexity without loss of system per-
formance, we recommend a truncation interval Tr = T – 5T depending on
the rolloff factor. In general, the higher value of rolloff factor, the shorter
truncation length is needed, which means simpler filter design.

Although the simulation results are derived with long-code CDMA sys-
tems, we believe the conclusions drawn above are widely applicable, e.g.,
for short-code CDMA systems as well as non-spread spectrum systems.
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Chapter 8

SYSTEM MODEL FOR CODED SYSTEM

In the second part of this thesis, we study the orthogonally modulated DS-
CDMA system with convolutional encoding over time-varying frequency
selective Rayleigh fading channels. Convolutional codes are employed to
further improve the performance and power efficiency of the system. It is
believed that CDMA systems exhibit their full potential, when combined
with forward error correction coding (FEC) [59].

The block diagram of the transmitter is shown in the upper part of
Fig. 8.1. The kth user’s lth information bit is denoted as bk[l] ∈ {+1,−1}
(k = 1, . . . ,K, l = 1, . . . , Lb, and Lb is the block length). The information
bits are convolutionally encoded into code bits {uk[nl ]} ∈ {+1,−1}, where
uk[

n
l ] denotes the nth code bit due to bk[l]. For example, in case of a rate

1/3 code, bk[l] is encoded into uk[
0
l ], uk[

1
l ], uk[

2
l ].

Code bits are subsequently interleaved and each block of log2M
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Table 8.1: Mapping between input bits and Walsh codewords. The Walsh
chip sequence sm is derived by repeating (spreading) each bit of
wm by N/8 times.

Code bits Symbol index Walsh codeword

u′k[0l ] u′k[1l ] u′k[2l ] m = ik(j) wm

+1 + 1 + 1 0 w0 : +1 +1 +1 + 1 +1 + 1 + 1 + 1

+1 + 1 − 1 1 w1 : +1 +1 +1 + 1 −1 − 1 − 1 − 1

+1 − 1 + 1 2 w2 : +1 +1 −1 − 1 +1 + 1 − 1 − 1

+1 − 1 − 1 3 w3 : +1 +1 −1 − 1 −1 − 1 + 1 + 1

−1 + 1 + 1 4 w4 : +1 −1 +1 − 1 +1 − 1 + 1 − 1

−1 + 1 − 1 5 w5 : +1 −1 +1 − 1 −1 + 1 − 1 + 1

−1 − 1 + 1 6 w6 : +1 −1 −1 + 1 +1 − 1 − 1 + 1

−1 − 1 − 1 7 w7 : +1 −1 −1 + 1 −1 + 1 + 1 − 1

coded and interleaved bits {u′k[nl ]} ∈ {+1,−1} is mapped into wik(j) ∈
{w0, . . . ,wm, . . . ,wM−1}, which is one of the M Walsh codewords. The
subscript ik(j) ∈ {0, 1, . . . ,M −1} denotes the kth user’s jth Walsh symbol
index. The index of the log2M systematic bits of each Walsh codeword
wik(j) is given by

i =
M

2s+1
, s = 0, 1, · · · , log2M − 1

In case M = 8, the mapping rule is given in Table 8.1 below. Three
systematic bits are w1

ik(j),w
2
ik(j),w

4
ik(j), where w

p
ik(j) denotes the pth bit

of the codeword. The columns corresponding to the systematic bits are
highlighted in the table.

The interleaver and deinterleaver are denoted as Π and Π−1, respec-
tively, in Fig. 8.1 and the following figures. The purpose of interleaving is
to separate adjacent code bits in time so that, ideally, each code bit will
experience independent fading.

The system model presented here differs from the one in Chapter 2 in
how the Walsh symbols are formed. The remaining part is almost identical.
It is, however, still repeated below to ease reading.

The Walsh codeword, wik(j) ∈ {+1,−1}M , is then repetition encoded
into

sk(j) = rep{wik(j), N/ log2(M)} ∈ {+1,−1}N (8.1)

where rep{·, ·} denotes the repetition encoding operation, where its first
argument is the input bits and the second one is the repetition factor.
Therefore, each bit of the Walsh codeword is spread (repetition coded) into
Nc = N/M chips, and each Walsh symbol is represented by N chips and
denoted as sk(j) ∈ {s0, · · · , sM−1}.
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The Walsh sequence sk(j) is then scrambled (randomized) by a scram-
bling code unique to each user to form the transmitted chip sequence

ak(j) = Ck(j)sk(j) ∈ {+1,−1}N (8.2)

where Ck(j) ∈ {−1, 0,+1}N×N is a diagonal matrix whose diagonal ele-
ments correspond to the scrambling code for the kth user’s jth symbol. We
still consider the use of long codes, e.g., the scrambling code differs from
symbol to symbol. The purpose of scrambling is to separate users. From
equation (8.2), one can see that scrambling is accomplished by chip-wise
multiplication, and does not introduce any rate change.

The scrambled sequence ak(j) is pulse amplitude modulated using a
unit-energy chip waveform ψ(t) to form the baseband signal. For simplicity,
we assume that ψ(t) is a rectangular pulse with support t ∈ [0, Tc) (the chip
duration is denoted by Tc, its relation with symbol duration T is T = NTc);
however, the proposed methods in this thesis can be extended for other
waveforms, e.g., square-root raised cosine pulses.

The baseband signal is multiplied with a carrier and transmitted over
a Rayleigh fading channel with noise power spectral density N0/2 and
with Lk resolvable paths, having time-varying complex channel gains
hk,1(t), hk,2(t), . . . , hk,Lk

(t) and delays τk,1, τk,2, . . . , τk,Lk
(see the lower

part of Fig. 8.1). The received signal is the sum of K users’ signals plus ad-
ditive white complex Gaussian noise n(t). After frequency down-conversion
and chip matched filtering (CMF), the received signal r(k, j) ∈ C

Nk cor-
responding to the kth user’s jth transmitted Walsh sequence sk(j) can be
written in vector form as

r(k, j) = A(k, j)h(j) + n(k, j)

= Xk(j)hk(j) + ISI(k, j) + MAI(k, j) + n(k, j) (8.3)

where the columns of the matrix A(k, j) are the delayed version of trans-
mitted chip sequences ak(j) for k = 1, 2, · · · ,K, one column per path. The
length of the processing window Nk, is larger than the symbol interval N
to account for the asynchronous and multipath nature of the channel. The
columns are weighted together by h(j), whose elements are the path gains
of all users’ paths. The received vector r(k, j) can be written as the sum of
four terms: the signal of interest Xk(j)hk(j), the intersymbol interference
(ISI), the multiple access interference (MAI), and the noise represented by
n(k, j) which is a vector of complex noise samples with zero mean and
variance N0. The columns of the matrix Xk(j) are essentially the shifted
versions of the chips due to the kth user’s jth symbol, one column per path
(the shift is determined by the path delay). The vector

hk(j) = [hk,1(jT ) hk,2(jT ) · · · hk,l(jT ) · · · hk,Lk
(jT )]T
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corresponds to the channel gains of the kth user’s paths, it is part of h(j)
as shown in (2.4).

To facilitate reading, the frequently used acronyms and notations are
summarized in Table 8.2.
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Table 8.2: Acronyms and notations used in Part two of the thesis

CE channel estimation

MAP maximum a posteriori

VA Viterbi algorithm

HIVA hard input VA

SIVA soft input VA

SOVA soft output VA

MF matched filter

IC interference cancellation

IS interference suppression

HDIC hard (decision) interference cancellation

SDIC soft (decision) interference cancellation

HDIS hard (decision) interference suppression

SDIS soft (decision) interference suppression

SISO soft-input, soft-output

LLR log-likelihood ratio

ik(j) kth user’s jth Walsh symbol index

wik(j) kth user’s jth Walsh codeword

w
p
ik(j) pth bit of wik(j)

bk[l] kth user’s lth information bit

uk[
n
l ] nth code bit due to bk[l]

u′k[
n
l ] interleaved version of uk[

n
l ]

Ck(j) kth user’s scrambling matrix for the jth symbol

sk(j) kth user’s jth transmitted chip sequence

hk,l lth path complex channel gain for kth user’s jth symbol

λ(·, ; I) unconstrained LLR at input of a SISO device

λ(·, ;O) modified LLR at output of a SISO device

L(·) soft input or output of non-SISO devices
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Chapter 9

SOFT DEMODULATION AND DECODING

In conventional systems, M -ary symbol demodulation and convolutional
decoding are conducted separately in the receiver, only hard decisions are
passed between these two blocks. In this chapter, we propose several iter-
ative schemes based on some soft demodulation and decoding algorithms.
Instead of making hard decision on the transmitted M -ary symbols from
the received observations, we compute the reliability value for the code bits
from which orthogonal symbols are formed. This soft information is then
deinterleaved and decoded. The detected bits (either hard or soft estimates)
can be fed back to demodulator for channel estimation and multiuser detec-
tion. For channel decoding, the soft-output MAP (maximum a posteriori)
or Log-MAP algorithm can be used instead of the VA (Viterbi algorithm)
for better performance. Maximum achievable performance for the system
is obtained by iterating this soft demodulation and VA/Log-MAP decoding
process. The performance of different strategies are evaluated numerically
and proved to achieve substantial performance gain compared to the con-
ventional hard decision based scheme, especially when the soft demodulator
is assisted by decision directed channel estimation and interference cancel-
lation/suppression techniques, and also when demodulation and decoding
are performed jointly in an iterative manner. Additional enhancement is
noticed when VA is replaced by Log-MAP decoder. It is also shown that
the interference cancellation and channel estimation based on the soft de-
cision feedback further improves the system performance compared to the
hard decision directed approach with minor increase in the complexity.

143
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9.1 Introduction

The conventional receiver in a DS-CDMA system consists of a bank of
matched filters, each matched to a particular user’s signature waveform.
In such a receiver, multiple access interference (MAI) is considered as noise
and is not exploited by the receiver. Multiuser detection is an effective
tool to increase the capacity of interference-limited CDMA systems and
alleviate some technical requirements, such as power control. Under a
wide range of conditions, e.g., low user correlations, MUD allows uncoded
asynchronous DS-CDMA systems to achieve performance comparable to
that of the single-user system [60].

Several iterative MUD schemes were proposed in the first part of this
thesis for uncoded M -ary orthogonal systems with affordable complexity
and performance much better than the standard receiver, especially in high-
capacity networks in which the interference from other users is large. In
order to fully explore the potential of multiuser detectors, we need to ac-
quire accurate measurements of the fading channel to do coherent detection
or interference cancellation. We showed that the use of iterative multiuser
detection with decision-directed channel estimation provides substantial
capacity gains compared to the conventional receiver.

Convolutional coding is employed in this system to improve the error
correcting capability and power efficiency of the system. Combined with
FEC coding, MUD can overcome its limitations in highly correlated mul-
tiuser systems [61]. Therefore, in some proposed systems, MUD is employed
in conjunction with FEC coding to obtain greater capacity and throughput.

The problem of joint multiuser detection and decoding was treated, e.g.,
in [21, 22, 60, 61, 62, 63, 64]. Soft interference cancellation, linear MMSE
filtering, or trellis based Log-MAP multiuser detector, etc. were proposed
in those papers to reduce the deteriorative effect of interference before sin-
gle user decoding is done. However, the algorithms developed in the above
papers are constrained to uncascaded systems with a single convolutional
code, and the issue of joint detection/decoding and channel estimation is
not investigated except in [21] where a soft input MMSE channel estima-
tion algorithm was proposed. If soft information is to be used for channel
estimation and interference cancellation, a serially concatenated system
would be rather different from the non-concatenated systems in that the
soft values are not directly available for all the inner code bits from the
outer decoder. In particular, in our case, we can only extract the soft
information for the systematic bits of the Walsh codewords from the Log-
MAP decoder, which necessitates the design of a soft modulator to derive
the soft estimates for parity bits. This chapter is devoted to the research
on those unexplored topics. With emphasis on the development of soft
demodulation algorithms, we investigate different approaches to iterative
soft demodulation and decoding for this serially concatenated CDMA sys-
tem with orthogonal modulation and convolutional coding in a multi-user
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environment over multipath fading channels. Hard/soft decision-directed
interference mitigation and channel estimation are proposed to improve the
reliability of the demodulation process. Different channel decoding algo-
rithms, e.g., VA and Log-MAP algorithms are considered and their perfor-
mance compared. Two alternatives of interfacing inner demodulator and
outer decoder, namely partitioned approach and integrated approach [62],
are studied. The former one treats demodulation and decoding separately;
while the latter one performs them together in the iteration process.

9.2 Demodulation and Decoding Schemes

The task of the receiver is to detect the information bits transmitted from
all users, i.e., detect bk[l] (l = 1, 2, . . . , Lb and k = 1, 2, · · · ,K) given the
observation r(k, j), for k = 1, 2, · · · ,K and j = 1, 2, · · · , Lc

log2M
. To this

end, first we need to demodulate the received signal to transmitted Walsh
sequence sk(j) or directly to the code bits {u′k[nl ]} which are subsequently
convolutionally decoded to obtain an estimate of {bk[l]}. Four different
demodulation and decoding strategies are studied in this chapter and out-
lined in Fig. 9.1. The first one is the conventional scheme with partitioned
hard demodulation and HIVA decoding; the second one is still partitioned
approach, but with soft demodulation and SIVA; the third scheme is an
integrated approach with soft demodulation and SIVA decoding; the last
one is an integrated approach with soft demodulation and Log-MAP de-
coding. Different iterative multistage demodulators are used for different
schemes. The third layer of the tree diagram indicates the types of demod-
ulator applicable for each scheme. One can see from the diagram that the
MF-based noncoherent demodulation is always used at the initial stage;
HDIC/HDIS, SDIC/SDIS based soft demodulators can be employed at the
subsequent stages for both scheme 2 and 4. However, the hard decisions
used for HDIC/HDIS and soft decisions used for SDIC/SDIS are derived
differently for these two schemes. The hard version of scheme 2 (4) is named
scheme 2.1 (4.1), the soft version is named scheme 2.2 (4.2). Readers are
referred to Table 8.2 for the acronyms and abbreviations. The design and
implementation of different algorithms are discussed next.

9.2.1 Scheme 1: partitioned hard demodulation,
HIVA decoding

The conventional scheme is delineated in Fig. 9.2. Based on the received
observation r(k, j), the receiver makes hard decisions on the transmitted
sequences ŝk(j) ∈ {s0, · · · , sM−1} using symbol matched filter or more
advanced multiuser detectors. The detected symbols are converted to bits
{û′k[nl ]}. In case M = 8, the conversion rule is specified in Table 8.1. The
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Figure 9.1: Different demodulation and decoding schemes.

converted bits {û′k[nl ]} are then deinterleaved and decoded with hard input
VA (HIVA) decoder.

In case a multistage multiuser detector is used, the iteration is only
inside the demodulation block. The performance is improved in an iterative
manner due to the fact that the channel is more accurately measured and
interference is better detected (meaning better interference mitigation), as
the iteration goes on.

Since only hard decisions are passed from demodulator to decoder, per-
formance loss is inevitable. It is a well known fact that for VA, hard-decision
decoding is 2 – 3 dB inferior to soft-decision decoding in an additive white
Gaussian noise channel and the gap is even greater in presence of fading.
In order to enable soft decoding, we propose three soft demodulation algo-
rithms in Section 9.3. Different ways of interfacing the soft demodulator
and channel decoder are introduced below. They are presented in order of
increased complexity and improved performance.

9.2.2 Scheme 2: partitioned soft demodulation, SIVA
decoding

Instead of estimating the transmitted M -ary sequence sk(j) and then con-
verting them into bits {u′k[nl ]}, we can directly derive soft reliability value
for each bit u′k[

n
l ] from the received vector r(k, j). Assuming bits +1 and
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Figure 9.2: Conventional demodulation and decoding (scheme 1).
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−1, are equally probable, i.e., P (u′k[
n
l ] = +1) = P (u′k[

n
l ] = −1), a posteriori

log-likelihood ratio (LLR) for a transmitted +1 and a transmitted −1 in
the bit sequence {u′k[nl ]} is defined as [23]

λ(u′k[
n
l ];O) = ln

f(u′k[
n
l ] = +1|r)

f(u′k[
n
l ] = −1|r) = ln

f(r|u′k[nl ] = +1)P (u′k[
n
l ] = +1)

f(r|u′k[nl ] = −1)P (u′k[
n
l ] = −1)

= ln
f(r|u′k[nl ] = +1)

f(r|u′k[nl ] = −1)
= ln

∑

m:u′
k
[n
l
]=+1 f(r|wm)

∑

m:u′
k
[n
l
]=−1 f(r|wm)

= ln

∑

m:u′
k
[n
l
]=+1 f(r|sm)

∑

m:u′
k
[n
l
]=−1 f(r|sm)

(9.1)

For the purpose of designing receiver algorithms, we make some approxi-
mation assuming that the conditional probability f(r|sm) or equivalently,
f(r|wm) can be approximated as f(r|sm) = A exp{Bzk(m)}, where zk(m)
is the decision statistic from demodulator, based on the hypothesis that the
mth Walsh symbol is transmitted from user k, and A and B are some con-
stants. We then derive the LLR for code bits under this assumption. The
derivation of zk(m) for different soft demodulators is thoroughly studied in
Section 9.3. Here, we only describe the basic principles of soft demodula-
tion. In the above equation, we denote m : u′k[

n
l ] = ±1 as the set of Walsh

sequences {sm} that correspond to the code bit u′k[
n
l ] = ±1. Typically, one

term will dominate each sum in (9.1), which suggests the “dual-maxima”
rule [65]

λ(u′k[
n
l ];O) ≈ ln

max
m:u′

k
[n
l
]=+1

f(r|sm)

max
m:u′

k
[n
l
]=−1

f(r|sm)

= max
m:u′

k
[n
l
]=+1

{zk(m)} − max
m:u′

k
[n
l
]=−1

{zk(m)} (9.2)

In caseM = 8, the kth user’s jth Walsh codeword wik(j), or equivalently,
the Walsh sequence sk(j) corresponds to 3 code bits: u′k[

0
l ], u

′
k[

1
l ], u

′
k[

2
l ]. We

know from Table 8.1 that u′k[
0
l ] = +1 holds for m = 0, 1, 2, 3 and u′k[

0
l ] = −1

holds for m = 4, 5, 6, 7. Therefore, the soft metric for the first bit of a 3-bit
block can be computed as

λ(u′k[
0
l ];O) ≈ max{zk(0), zk(1), zk(2), zk(3)} − max{zk(4), zk(5), zk(6), zk(7)}

Similarly,

λ(u′k[
1
l ];O) ≈ max{zk(0), zk(1), zk(4), zk(5)} − max{zk(2), zk(3), zk(6), zk(7)}

λ(u′k[
2
l ];O) ≈ max{zk(0), zk(2), zk(4), zk(6)} − max{zk(1), zk(3), zk(5), zk(7)}

We use the notations λ(·, ; I) and λ(·, ;O) at the input and output ports of
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Figure 9.3: Partitioned soft demodulation with HDIC/HDIS, SIVA decod-
ing (scheme 2.1).

a SISO. They refer to the unconstrained LLRs when the second argument
is I, and modified LLRs according to the code constraints when it is O.
The second argument I or O is sometimes omitted to simplify notation
whenever no ambiguity arises. Other soft values are denoted by L(·). They
are usually soft inputs or outputs of non-SISO devices.

The scheme based on this soft decision rule is shown in Fig. 9.3. Note
that there are two outputs from the soft demodulator: the soft decision
about the transmitted Walsh symbol zk(m) and the LLRs for code bits
λ(u′k[

n
l ];O). The former one is used to make hard decision on the Walsh

symbol index ik(j) or transmitted Walsh sequence sk(j)

îk(j) = arg max
m∈{0,...,M−1}

zk(m)

or

ŝk(j) = arg max
sm

f(r|sm) (9.3)

The above two equations are equivalent under the assumption stated
earlier. The estimated sequence ŝk(j) is needed for estimating the multi-
path complex channel gains and HDIC/HDIS based soft demodulation.

The deinterleaved LLR value λ(uk[
n
l ]; I) = Π−1{λ(u′k[

n
l ];O)} is deliv-

ered as soft input to the channel decoder.

Compared to the traditional scheme illustrated in Fig. 9.2, a soft de-
modulator has replaced the hard demodulator so that soft-input VA (SIVA)
decoding can be implemented. Since the soft demodulator directly outputs
the soft value for the code bits {u′k[nl ]}, the symbol-to-bit converter is not
needed, which slightly simplifies the receiver structure.

The use of hard decision for sk(j) for interference cancellation makes
the system vulnerable to error propagation. The probability of error prop-
agation can be reduced through the feedback of soft information instead of
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hard decisions [21]. Fig. 9.4 shows the scenario of soft demodulation and
channel estimation (CE) using L(sk(j)), some soft estimate of the Walsh
sequence sk(j). The derivation of L(sk(j)) is discussed below for scheme
2.2 and also in Section 9.2.4 for scheme 4.2. In this case, we need not only
the LLRs for code bits {u′k[nl ]}, but also for the Walsh codeword wik(j).
For systematic bits of wik(j), the LLRs simply are

λ(w1
ik(j);O) = λ(u′k[

0
l ];O); λ(w2

ik(j);O) = λ(u′k[
1
l ];O);

λ(w4
ik(j);O) = λ(u′k[

2
l ];O)

The first parity bit is always +1, therefore, its LLR value λ(w0
ik(j);O) =

∞. For the other parity bits

λ(w3
ik(j);O) ≈ max{zk(0), zk(1), zk(6), zk(7)} − max{zk(2), zk(3), zk(4), zk(5)}

λ(w5
ik(j);O) ≈ max{zk(0), zk(2), zk(5), zk(7)} − max{zk(1), zk(3), zk(4), zk(6)}

λ(w6
ik(j);O) ≈ max{zk(0), zk(3), zk(4), zk(7)} − max{zk(1), zk(2), zk(5), zk(6)}

λ(w7
ik(j);O) ≈ max{zk(0), zk(3), zk(5), zk(6)} − max{zk(1), zk(2), zk(4), zk(7)}

(9.4)

The soft estimates {L(sk(j))} are derived by spreading {λ(wik(j);O)} using
equation (8.1). Clearly, the added complexity by deriving soft values rather
than making hard decisions is minor if we compare (9.4) with (9.3). The
use of L(sk(j)) in soft demodulation will be discussed shortly in Section 9.3.

All the above schemes are not optimized in the sense that the demod-
ulator can not benefit from information derived from the channel decoder.
Demodulation and decoding are strictly partitioned into two blocks. In the
following, we present the integrated approach, where the problem of joint
soft demodulation and decoding is approached by expanding the iteration
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loop over the concatenation of demodulation and decoding blocks.

9.2.3 Scheme 3: integrated soft demodulation and
SIVA decoding

The first integrated scheme is illustrated in Fig. 9.5. As we did earlier,
the computed soft metrics {λ(u′k[

n
l ];O)} are de-interleaved and decoded to

get the estimated information bits {b̂k[l]}. Then we go through the same
encoding, interleaving and modulation processes as in the transmitter to
yield an estimate of the code bits {û′k[nl ]} and Walsh sequences ŝk(j).

Here we still use SIVA decoder to yield hard decision on {bk[l]}. It
differs from the aforementioned algorithms in that the decisions from the
channel decoder are fed back to the demodulator. The estimate of ŝk(j)
needed for channel estimation and interference mitigation is not delivered
from the demodulator itself, but from the output of the channel decoder.
As will be clear later on, spanning the iteration loop over the two blocks is
really crucial in improving the system performance. The price to pay is the
added complexity mainly due to the channel decoding at every iteration
instead of doing it once for all. Going through convolutional encoding,
interleaving and modulation processes every time also slightly increase the
complexity.

9.2.4 Scheme 4: integrated soft demodulation and
Log-MAP decoding

A further enhancement idea is to replace the VA decoder with some SISO
decoder which produces soft output for both information bits {bk[l]} and
code bits {uk[nl ]}. Based on the soft input λ(uk[

n
l ]; I) and the trellis struc-

ture of the convolutional code, the kth user’s SISO channel decoder com-
putes a posteriori LLR of each information bit λ(bk[l];O) and each code
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bit λ(uk[
n
l ];O) as

λ(bk[l];O) = ln
P [bk[l] = +1|λ(uk[

n
l ]; I)]

P [bk[l] = −1|λ(uk[nl ]; I)]
(9.5)

λ(uk[
n
l ];O) = ln

P [uk[
n
l ] = +1|λ(uk[

n
l ]; I)]

P [uk[nl ] = −1|λ(uk[nl ]; I)]
(9.6)

where λ(bk[l];O) is used to make decision on the transmitted information
bit at the final iteration, while λ(uk[

n
l ];O) is used for channel estimation

and interference cancellation/suppression in the demodulator at the next
iteration.

Several SISO algorithms can be used to compute the channel decoder
outputs (9.5) and (9.6). For estimating the states or outputs of a Markov
process, the symbol-by-symbol MAP algorithm is optimal. It differs from
VA in the optimality criterion. The VA minimizes the frame or packet
error probability and the MAP algorithm minimizes symbol error proba-
bility [66]. The MAP algorithm searches for the most probably transmitted
symbol, given the received vector. It, however, poses numerical represen-
tation problems, and requires a large number of additions and multiplica-
tions. Max-Log-MAP solves the numerical problem and reduces the com-
putational complexity, but are suboptimal especially at low SNR region.
A further simplication yields the soft-output Viterbi algorithm (SOVA),
it has simpler structure but inferior performance compared to Max-Log-
MAP. By complementing the max(·) operation with a correction function,
Log-MAP algorithm avoids the approximations in the Max-Log-MAP and
is equivalent to (true) symbol-by-symbol MAP, but without its numerical
problems. Therefore, for the purpose of this study we consider the use of
Log-MAP, which will be explained in detail in Section 10.2. For a complete
treatment on different SISO algorithms, their similarities, differences and
performance comparisons, readers are recommended to consult [67].

The improved iterative decoding schemes are shown in Fig. 9.6 and
Fig. 9.7. The demodulator and decoder are each implemented with a SISO
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Figure 9.7: Integrated soft demodulation with SDIC/SDIS and Log-MAP
decoding (scheme 4.2).

algorithm and operate in an iterative feedback mode where the information
derived by the channel decoder is fed back to demodulator. The soft metrics
from demodulator are then deinterleaved and decoded to carry on with the
next iteration.

As common practice in iterative decoding, the soft outputs
{λ(uk[

n
l ];O)} from the Log-MAP decoder can be interleaved and fed back

to the SISO inner soft demodulator as extrinsic information. This issue is
throughly treated in Chapter 10, where we show that extrinsic information
really helps improve the quality of demodulator if handled properly. Several
enhancement ideas were proposed to make more efficient use of extrinsic in-
formation. However, the main focus in this chapter is the soft demodulation
without extrinsic feedback. The soft outputs from the Log-MAP decoder
are used by the demodulator only for the purposes of channel estimation
and interference mitigation. Our intention is to perform an extensive inves-
tigation on different approaches to improve the demodulation and decoding
performance, without the complications of extrinsic information.

Scheme 4.1 shown in Fig. 9.6, is similar to scheme 3, shown in Fig. 9.5,
except that the SIVA decoder is replaced by a Log-MAP decoder and the
code bits {û′k[nl ]} are estimated by making hard decisions on the outputs
of the channel decoder, i.e., {û′k[nl ]} = sgn(Π{λ(uk[

n
l ];O}). A Log-MAP

decoder is more complex than a VA decoder due to the need for forward
and backward recursions and calculation of correction terms for the max(·)
operation. Refer to [67] for a thorough discussion on the complexity of
different optimal and sub-optimal decoding algorithms.

Scheme 4.2 shown in Fig. 9.7, differs from scheme 4.1 in that it uses
soft information L(sk(j)) for soft demodulation and channel estimation
with the intention to reduce the likelihood of error propagation. Instead
of estimating sk(j), we can derive the soft estimate of sk(j) by feeding
λ(u′k[

n
l ]) = Π{λ(uk[

n
l ];O)} into a soft modulator which computes λ(wik(j)),

the LLRs of the codeword wik(j), then derive L(sk(j)) by repetition encod-
ing (spreading) λ(wik(j)). Next, we shall explain how the soft modulator
is implemented.
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In case M = 8, we can see from Table 8.1 that the parity bits are formed
by three systematic bits w1

ik(j),w
2
ik(j),w

4
ik(j) as1

w0
ik(j) = +1; w3

ik(j) = w1
ik(j) ⊕ w2

ik(j); w5
ik(j) = w1

ik(j) ⊕ w4
ik(j);

w6
ik(j) = w2

ik(j) ⊕ w4
ik(j); w7

ik(j) = w1
ik(j) ⊕ w2

ik(j) ⊕ w4
ik(j)

The LLRs for systematic bits are

λ(w1
ik(j)) = λ(u′k[

0
l ]); λ(w2

ik(j)) = λ(u′k[
1
l ]); λ(w4

ik(j)) = λ(u′k[
2
l ])

Considering the fact that the interleaver breaks the memory of the con-
volutional encoding process, the bits u′k[

0
l ], u

′
k[

1
l ], u

′
k[

2
l ] can be modeled as

statistically independent random variables. Also assume that they are in-
dependent conditioned on the received signal, then the LLRs for parity bits
can thus be computed according to [23] by

λ(w3
ik(j)) = λ(w1

ik(j) ⊕ w2
ik(j))

= 2arctanh
{
tanh(λ(u′k[

0
l ])/2) · tanh(λ(u′k[

1
l ])/2)

}

≈ sgn{λ(u′k[
0
l ])} · sgn{λ(u′k[

1
l ])} · min{|λ(u′k[

0
l ])|, |λ(u′k[

1
l ])|}

λ(w5
ik(j)) = λ(w1

ik(j) ⊕ w4
ik(j))

= 2arctanh
{
tanh(λ(u′k[

0
l ])/2) · tanh(λ(u′k[

2
l ])/2)

}

≈ sgn{λ(u′k[
0
l ])} · sgn{λ(u′k[

2
l ])} · min{|λ(u′k[

0
l ])|, |λ(u′k[

2
l ])|}

λ(w6
ik(j)) = λ(w2

ik(j) ⊕ w4
ik(j))

= 2arctanh
{
tanh(λ(u′k[

1
l ])/2) · tanh(λ(u′k[

2
l ])/2)

}

≈ sgn{λ(u′k[
1
l ])} · sgn{λ(u′k[

2
l ])} · min{|λ(u′k[

1
l ])|, |λ(u′k[

2
l ])|}

λ(w7
ik(j)) = λ(w1

ik(j) ⊕ w2
ik(j) ⊕ w4

ik(j))

= 2arctanh

{
2∏

n=0

tanh(λ(u′k[
n
l ])/2)

}

≈
2∏

n=0

sgn{λ(u′k[
n
l ])} · min

n=0,1,2
{|λ(u′k[

n
l ])|} (9.7)

The approximation in (9.7) can be further approximated by omitting the

1In order to ease understanding, we use M = 8 as an example for the derivation of
the soft demodulation and soft cancellation algorithms. However, the extension of the
proposed algorithms to other M values is straightforward.
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min{·} operations, which yields

ŵ0
ik(j) = +1; ŵ1

ik(j) = sgn{λ(u′k[
0
l ])};

ŵ2
ik(j) = sgn{λ(u′k[

1
l ])}; ŵ4

ik(j) = sgn{λ(u′k[
2
l ])};

ŵ3
ik(j) = ŵ1

ik(j) ⊕ ŵ2
ik(j) = sgn{λ(u′k[

0
l ])} · sgn{λ(u′k[

1
l ])}·

ŵ5
ik(j) = ŵ1

ik(j) ⊕ ŵ4
ik(j) = sgn{λ(u′k[

0
l ])} · sgn{λ(u′k[

2
l ])}

ŵ6
ik(j) = ŵ2

ik(j) ⊕ ŵ4
ik(j) = sgn{λ(u′k[

1
l ])} · sgn{λ(u′k[

2
l ])}

ŵ7
ik(j) = ŵ1

ik(j) ⊕ ŵ2
ik(j) ⊕ ŵ4

ik(j) =

2∏

n=0

sgn{λ(u′k[
n
l ])} (9.8)

which are the hard decisions made in the modulator in Fig. 9.6. Compared
to hard decisions expressed by (9.8), the soft derivation only slightly in-
creases the computational complexity by introducing min{·} operations as
shown in (9.7).

Channel estimation using the soft estimates of sk(j) is introduced in
Section 5.6. We shall see how they can be used for soft demodulation in
Section 9.3.

9.3 Soft demodulation algorithms

The improved algorithms discussed above all require the design of soft de-
modulator that can produce soft outputs to enable soft input channel de-
coding. In a serially concatenated system, the quality of the inner demod-
ulation or decoding is decisive for the system performance. The derivation
of different soft demodulators are given below. For simplicity of notation
we will suppress the index k and/or j from sk(j),Ck(j), r(k, j), A(k, j),
n(k, j), Xk(j) and hk(j), etc., whenever no ambiguity arises.

9.3.1 Soft demodulation with matched filter

Let rk,l, (l = 1, 2, · · · , Lk) denote the delay aligned version of the received
vector due to the transmission of the jth symbol from the kth user’s lth

path and denote the vector r̃k,l = [r̃k,l(1) r̃k,l(2) · · · r̃k,l(N)] ∈ C
N as

rk,l scrambled with the scrambling sequence Ck. The descrambled vector
r̃k,l can be expressed as r̃k,l = skhk,l + mk,l + ik,l + nk,l, where sk ∈
{s0, s1, · · · , sM−1} is the transmitted Walsh sequence. The desired signal
vector skhk,l is due to the contribution from kth user’s lth path. The vectors
mk,l and ik,l stand for the MAI and ISI term respectively.

If we approximate both the MAI and ISI terms as independent complex
Gaussian random vectors: mk,l ∈ CN (0, NmIN ) and ik,l ∈ CN (0, NiIN ),
then r̃k,l can be reformed as r̃k,l = skhk,l + ñk,l where ñk,l = mk,l +
ik,l + nk,l ∈ C

N has PDF ñk,l ∼ CN (0, N ′
0IN ) and N ′

0 = N0 + Nm + Ni.
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Also, ñk,1, · · · , ñk,Lk
are uncorrelated after despreading due to descram-

bling. Therefore,

f(r|sm) =

Lk∏

l=1

f(r̃k,l|sm)

f(r̃k,l|sm) =
1

(πN ′
0)
N

exp

(

−‖r̃k,l − smhk,l‖2

N ′
0

)

λCMF(u′k[
n
l ];O) ≈ ln

max
m:u′

k
[n
l
]=+1

Lk∏

l=1

f(r̃k,l|sm)

max
m:u′

k
[n
l
]=−1

Lk∏

l=1

f(r̃k,l|sm)

= ln

exp

(

−
Lk∑

l=1

‖r̃k,l − s+hk,l‖2/N ′
0

)

exp

(

−
Lk∑

l=1

‖r̃k,l − s−hk,l‖2/N ′
0

)

=
1

N ′
0

Lk∑

l=1

{
‖r̃k,l − s−hk,l‖2 − ‖r̃k,l − s+hk,l‖2

}

≈ 2

N ′
0

Lk∑

l=1

Re
{
h∗k,ls

+∗r̃k,l − h∗k,ls
−∗r̃k,l

}
(9.9)

In equation (9.9), s+ denotes the Walsh sequence sm that corresponds to
maxm:u′

k
[n
l
]=+1 f(r|sm), and s− is defined similarly. In the above equation,

we can omit the constant 2/N ′
0 since it is just a scaling factor for all the

LLR values, therefore, does not have any effect on the decision.

A non-coherent version of the MF soft demodulator can be obtained
similarly in a path-by-path manner as

λNMF(u′k[
n
l ];O) ≈

Lk∑

l=1

|s+∗r̃k,l| −
Lk∑

l=1

|s−∗r̃k,l| (9.10)

Estimates of the complex channel gains hk,l are not needed to compute
the LLR value for bit u′k[

n
l ] in the above equation. This is particularly useful

in the beginning of the iteration process when the estimate of channel fading
process is not yet available. On the contrary, the coherent MF demodulator
expressed by (9.9) is not often used because the channel is unknown at the
initial stage. In the subsequent stages, both channel and interference can be
estimated in a decision directed mode, and more powerful coherent MUD
(IC/IS) techniques can be used. This will be discussed in Section 9.3.2
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and 9.3.3.

Referring to equation (9.2), zk(m) =
∑Lk

l=1 Re{ĥ∗k,ls∗mr̃k,l} and zk(m) =
∑Lk

l=1 |s∗mr̃k,l| for the coherent and noncoherent MF demodulator, respec-

tively. In the first decision metric, ĥk,l is an estimate of hk,l. The original
complex channel gain in (9.9) is unknown, it has to be replaced by its
estimated version.

9.3.2 Soft demodulation with hard/soft decision inter-
ference cancellation

Once the transmitted signals are estimated for all the users at the previous
iteration, interference can be removed by subtracting the estimated signals
of the interfering users from the received signal r to form a new signal
vector r′ for demodulating the signal transmitted from user k, i.e.,

r′hard = r − ŷ + X̂kĥk (9.11)

where r ∈ C
Nk denote the received signal vector due to the transmission

of the jth symbol from the kth user, and r′hard ∈ C
Nk is its interference

canceled version after subtracting the contributions from all the other users
using hard decision feedback. The vector ŷ = Âĥ represents the estimated
contribution from all the users calculated by using the data matrix Â and
channel vector ĥ estimated at the previous iteration. The vector X̂kĥk is
the estimated contribution from all paths of user k.

When L(sk), the soft estimate of the transmitted sequence, is available
from the either soft demodulator (see Section 9.2.2) or soft decoder (see
Section 9.2.4), we can carry out soft IC. The rationale is that the hard
IC tends to propagate errors and increase the interference with incorrect
decision feedback; while with soft cancellation, an erroneously estimated
symbol usually has small LLR, and hence the soft estimate of this symbol
is small and does not make much contribution to the feedback, therefore
error propagation is avoided.

If λ(wp
ik(j)) is derived from soft demodulator expressed by (9.4), ac-

cording to the definition λ(wp
ik(j)) = ln

P (wp

ik(j)
=+1|r)

P (wp

ik(j)
=−1|r) , the soft estimate

(expected value given the received observation) for each bit of the Walsh
codeword is computed by

E[wp
ik(j)|r] = (+1) × P{wp

ik(j) = +1|r} + (−1) × P{wp
ik(j) = −1|r}

= (+1)
e
λ(wp

ik(j)
)

1 + e
λ(wp

ik(j)
)

+ (−1)
e
−λ(wp

ik(j)
)

1 + e
−λ(wp

ik(j)
)

= tanh{λ(wp
ik(j))/2}
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If λ(wp
ik(j)) is derived from soft modulator expressed by (9.7), then the

soft estimate of each bit can be computed as

E[w0
ik(j)|r] = +1; E[w1

ik(j)|r] = tanh{λ(u′k[
0
l ])/2};

E[w2
ik(j)|r] = tanh{λ(u′k[

1
l ])/2}; E[w4

ik(j)|r] = tanh{λ(u′k[
2
l ])/2};

E[w3
ik(j)|r] = tanh{λ(u′k[

0
l ])/2} · tanh{λ(u′k[

1
l ])/2};

E[w5
ik(j)|r] = tanh{λ(u′k[

0
l ])/2} · tanh{λ(u′k[

2
l ])/2};

E[w6
ik(j)|r] = tanh{λ(u′k[

1
l ])/2} · tanh{λ(u′k[

2
l ])/2};

E[w7
ik(j)|r] =

2∏

n=0

tanh{λ(u′k[
n
l ])/2} (9.12)

Comparing with equation (9.8), it is evident that the additional complexity
by computing E[wp

ik(j)|r] instead of making hard decision on w
p
ik(j) is small.

The complexity increase is due to the replacement of sgn(·) operation with
tanh(·).

The soft estimate E [sqk| r] for each Walsh chip s
q
k, q = 1, · · · , N is de-

rived by spreading (repetition encoding) the soft bit of Walsh codeword
E[wp

ik(j)|r], p = 1, · · · ,M . The repetition factor is N/M . The cancellation

residual after soft cancellation becomes

r′soft = r − E[y|r] + E[Xk|r]ĥk (9.13)

where E[y|r] = E[A|r]ĥ, and the columns of E[A|r], E[Xk|r] are derived
by scrambling E[sk|r] with Ck and compensating with the path delays.

In case of perfect cancellation, r′ (r′hard or r′soft) only contains the con-
tribution from the kth user plus original additive Gaussian noise n ∈ C

Nk

with PDF n ∼ CN (0, N0INk
), i.e., r′ = Xkhk + n. Therefore,

f(r′|sm) =
1

(πN0)Nk
exp

(

−‖r′ − Xk,mhk‖2

N0

)

λIC(u′k[
n
l ];O) ≈ ln

max
m:u′

k
[n
l
]=+1

f(r′|sm)

max
m:u′

k
[n
l
]=−1

f(r′|sm)

= ln
exp(−‖r′ − X+hk‖2/N0)

exp(−‖r′ − X−hk‖2/N0)

=
1

N0

{
‖r′ − X−hk‖2 − ‖r′ − X+hk‖2

}

=
2

N0
Re
{
h∗
kX

+∗r′ − h∗
kX

−∗r′
}

(9.14)

where X+ denotes the Xk,m that corresponds to maxm:u′
k
[n
l
]=+1 f(r′|sm),
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and X− is defined similarly.

The original hk is unknown, it has to be estimated. In (9.14), we should

replace it with its estimates ĥk instead. An estimate of the channel vector
ĥk can be obtained using detected data from previous iteration. Channel
estimation was treated in Chapter 5. With the channel estimate ĥk, we
can combine the hypothesized contributions from all the paths of the same
user. The soft metric need not to be computed in a path-by-path fashion
like we did for the noncoherent MF demodulator.

9.3.3 Soft demodulation with hard/soft decision inter-
ference suppression

The idea of interference suppression (IS) is to suppress the estimated in-
terference by filtering (orthogonal projection). The motivation for us to
investigate the potential of IS is that an erroneously estimated symbol will
lead to a doubling of the interference when using hard cancellation. How-
ever, when using suppression, an erroneously estimated symbol will cause
the suppression of a non-existing signal. This will lead to some suppression
of the desired signal, but the overall penalty may be less than in the can-
cellation case; the penalty will be even less when soft suppression is used
as will be evidenced by the simulation results.

To construct the suppression filter, we need to know (or estimate) the
structure of the interference. Consider the matrix U ∈ R

Nk×(Ltot−Lk)

defined as
U =

[

A1 · · · Ak−1 Ak+1 · · · AK

]

which is formed from A by deleting the columns that are due to the kth

user. The symbols Nk, Ltot, and Lk denote the processing window length,
the total number of paths of all the users, and the number of paths for user
k, respectively.

We can suppress the interference by projecting r on the null space of
U which is computed as P⊥

U = I−UU†, where U† = (U∗U)−1U∗ denotes
the left pseudoinverse of U (assume U has full column rank). This implies
that P⊥

UAi = 0 for all i 6= k, and thus

P⊥
Ur = P⊥

U[Ah + n] =
K∑

i=1

P⊥
UAihi + P⊥

Un = P⊥
UAkhk + P⊥

Un

The interference is suppressed by projecting r on P⊥
U which is orthogo-

nal to the subspace spanned by the MAI (columns of U). It can be easily
shown that P⊥

U = P⊥∗
U , P⊥2

U = P⊥
U, and P⊥

U = P⊥∗
U P⊥

U. Since a linear
transformation of a Gaussian random variable is still a Gaussian random
variable, and the original noise vector has the statistics n ∼ CN (0, N0I),
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the covariance matrix for the projected noise vector ñ = P⊥
Un is

E[ññ∗] = E[P⊥
Unn∗P⊥∗

U ] = P⊥
UE[nn∗]P⊥∗

U = P⊥
U(N0I)P

⊥∗
U = N0P

⊥
U

(9.15)

The conditional PDF can be approximated as

f(P⊥
Ur|sm) ≈ exp

[
−(P⊥

Ur − P⊥
UXk,mhk)

∗(N0P
⊥
U)−1(P⊥

Ur − P⊥
UXk,mhk)

]

(π)Nk det(N0P
⊥
U)

=
exp

[

− (P⊥
U

r−P⊥
U

Xk,mhk)∗(P⊥
U

)−1(P⊥
U

r−P⊥
U

Xk,mhk)
N0

]

(π)Nk det(N0P
⊥
U)

=
1

(π)Nk det(N0P
⊥
U)

exp

[

− (r − Xk,mhk)
∗P⊥

U(r − Xk,mhk)

N0

]

=
exp

[

− (P⊥
U

r−P⊥
U

Xk,mhk)∗(P⊥
U

r−P⊥
U

Xk,mhk)
N0

]

(π)Nk det(N0P
⊥
U)

=
1

(π)Nk det(N0P
⊥
U)

exp

[

−‖P⊥
Ur − P⊥

UXk,mhk‖2

N0

]

(9.16)

The LLRs can thus be computed as

λIS(u′k[
n
l ];O) ≈ ln

max
m:u′

k
[n
l
]=+1

f(r|sm)

max
m:u′

k
[n
l
]=−1

f(r|sm)

≈ ln

max
m:u′

k
[n
l
]=+1

exp(−‖P⊥
Ur − P⊥

UXk,mhk‖2/N0)

max
m:u′

k
[n
l
]=−1

exp(−‖P⊥
Ur − P⊥

UXk,mhk‖2/N0)

= ln
exp(−‖P⊥

Ur − P⊥
UX+hk‖2/N0)

exp(−‖P⊥
Ur − P⊥

UX−hk‖2/N0)

=
1

N0

{
‖P⊥

Ur − P⊥
UX−hk‖2 − ‖P⊥

Ur − P⊥
UX+hk‖2

}

=
2

N0
Re
{
h∗
kX

+∗P⊥
Ur − h∗

kX
−∗P⊥

Ur
}

(9.17)

In the above equation, hk and U needs to be replaced with ĥk and
Û; the constant 2/N0 in (9.14) and (9.17) can be omitted for the same
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reason as stated earlier. In addition to simplicity, another advantage of
using max approximation to compute the LLR shown in (9.1) and (9.2)

is the avoidance of estimating noise variance N0. The matrix Û is formed
from Â, the estimate of A at the previous iteration by deleting the columns
that are due to the kth user.

In the same way as the soft IC is formed, the soft IS can be accomplished
by using soft estimate of U conditioned on the received observation:

E[U|r] =
[

E[A1|r] · · · E[Ak−1|r] E[Ak+1|r] · · · E[AK |r]
]

The soft projection matrix becomes Psoft = I − E[U|r]E[U|r]†. The
SDIS soft demodulation can be expressed by equation (9.17) by replacing
P⊥

U with Psoft.

Referring to equation (9.2), zk(m) = Re{ĥ∗
kX

∗
k,mr′} and zk(m) =

Re{ĥ∗
kX

∗
k,mPr}, respectively for IC and IS demodulator. Note that the

computation of the projected vector Pr (P can be either P⊥
Û

for HDIS or

Psoft for SDIS) involves matrix inversions at a symbol rate since the MAI
matrix U differs from symbol to symbol. On the contrary, the vector r′

(either r′hard for HDIC or r′soft for SDIC) is derived just by subtraction op-
erations. Therefore, the IC demodulator is less computationally intensive
than the IS demodulator.

We need estimates of the complex channel gains to do coherent de-
modulation as discussed above. The maximum likelihood (ML) channel
estimator is derived in Chapter 5 as

ĥML
hard(k, j) =








Â(k, j)

· · ·
Â(k, j +D)








† 






r(k, j)

· · ·
r(k, j +D)








(9.18)

When E[A|r] is available, the soft version of the ML channel estimator
can be formed as

ĥML
soft(k, j) =








E[A(k, j)|r(k, j)]
· · ·

E[A(k, j +D)|r(k, j +D)]








† 






r(k, j)

· · ·
r(k, j +D)








(9.19)

As mentioned in Chapter 5, the estimation results can be further en-
hanced by applying smoothing operation on the original ML channel esti-
mates. Comparing (9.18) vs. (9.19), one can see the use of soft information
in channel estimation itself does not introduce any additional complexity.
It is the derivation of soft values that is little more complicated than making
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hard decisions as discussed in Section 9.2.2 and Section 9.2.4.

9.4 Numerical Results

In the simulations, we employ a rate Rc = 1/3 Maximum Free Distance
(MFD) convolutional code [1] with constraint length 5 and generator poly-
nomials (25, 33, 37) in octal form for all the users. Block interleaving is
applied to the convolutionally encoded bits to decorrelate the fading effect.
Each block of log2 8 = 3 interleaved bits from each user is then converted
into one of M = 8 Walsh codewords spread to a total length of N = 64
chips. The number of chips per inner code bit is Nc = N/M = 8. If the or-
thogonal modulation is viewed as part of spreading, the effective spreading
factor of the system is N/ log2M = 64/3 chips per convolutionally coded
bit (64 chips per information bit).

Channels are independent multipath Rayleigh fading channels with
the classical “bath tub” power spectrum. That is, the channel gain
hk,l(t) is a complex circular Gaussian process with autocorrelation function
E[h∗k,l(t)hk,l(t+τ)] = Pk,lJ0(2πfdτ) where fd is the maximum Doppler fre-
quency, J0(x) is the zeroth order Bessel function of the first kind, and Pk,l
is the average power of hk,l(t). The Doppler shifts on each of the multi-
path components are due to the relative motion between the base station
and mobile units. Here, the normalized Doppler frequency is assumed to
be fdT = 0.01. Perfect slow power control is assumed in the sense that
Pk =

∑Lk

l=1 Pk,l =
∑Lk

l=1 E[|hk,l|2], the average received power, is equal for
all users. The number of multipath channels Lk is set to be 3, (Lk = L = 3)
for k. Channel estimation is conducted with the ML algorithm presented in
Chapter 5, and channel smoothing is accomplished by an FIR filter derived
from Hamming window of length 19.

The long scrambling codes Ck are randomly assigned. The noise vari-
ance N0, and Ck as well as path delays τk,1, τk,2, . . . , τk,Lk

are assumed to
be known to the receiver. One simplifying assumption is made such that
the delays of all the users’ paths are multiples of the chip duration. How-
ever, the presented algorithms are general and can be extended to include
arbitrary delays. The block size is set to 1540 Walsh symbols, which corre-
sponds to 1540 × 3 = 4620 code bits. The simulation results are averaged
over random distributions of fading, noise, delay, and scrambling code with
minimum of 10 blocks of data transmitted and at least 100 errors gener-
ated. To study the behavior of each algorithm, the number of iterations
is usually set to 6 or 7, since it is observed that almost all the algorithms
would converge after 5 or 6 iterations.

The above parameter setting also applies to the experiments in Chap-
ter 10.

It should be emphasized that the interleaving design is essential for
the system performance. We test the schemes discussed in Section 9.2
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Figure 9.8: Performance of different block interleavers.

with different interleavers. The block size of 4620 code bits are passed
through different block interleavers which exhibit large discrepancies in the
results as demonstrated in Fig. 9.8, especially for the integrated schemes
3 and 4. The interleaver of size 66 × 70 in general works better than the
others for the studied system. It is therefore chosen for all the subsequent
experiments. Another expected discovery from Fig. 9.8 is that the system
performance improves as the receiver complexity increases. Conventional
receiver has lowest complexity and poorest performance, it is not able to
operate reliably at Eb/N0 = 6 dB in 12-user system. On the contrary, the
integrated algorithms with Log-MAP decoding has highest computational
complexity, but the performance is the best of all (with properly designed
interleaver, BER can be kept well below 10−3 at Eb/N0 = 6 dB with 6
iterations).

In Fig. 9.9 and 9.10, we compare the performance of all the discussed
algorithms with HDIC and HDIS demodulators, respectively in a 12-user
system. Apparently, in both cases, the most significant gain (over 2 dB
at BER < 10−2.5) is obtained by replacing hard demodulator with soft
demodulator. By going from partitioned approach to integrated approach
also gives substantial improvement (around 1 dB). The improvement by re-
placing VA with Log-MAP decoding is relatively small, but still noticeable.
Comparing these two figures one can see that IC demodulator produces bet-
ter results than IS demodulator. To achieve BER= 10−4, Eb/N0 ≈ 6.5 dB
is required with HDIC-Log-MAP; while Eb/N0 ≈ 9 dB is required with
HDIS-Log-MAP. Therefore, the difference between IC and IS scheme is
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Figure 9.9: Different schemes with IC demodulator.

over 2 dB.

The behavior and convergence property of two integrated schemes are
further investigated in Fig. 9.11 and Fig. 9.12. As indicated in Fig. 9.11, the
performance gain by replacing SIVA decoding with Log-MAP decoding is
obvious during the first 3 iterations; however, the gap tends to decrease as
they reach convergence, at which point, the difference is 0.3 dB at BER of
10−4. For both schemes, the gain at each iteration increases with increased
SNR. A reasonable level of SNR needs to be maintained in order to benefit
from the iteration process. With Eb/N0 = 9 dB and target BER of 10−3,
the system capacity with IC soft demodulation and Log-MAP/SIVA decod-
ing can be seen from Fig. 9.12, and is summarized in Table 9.1. The gain
by iterations becomes smaller as the system becomes more heavily loaded.
We observe from these plots that all the algorithms converge to maximum
achievable performance after 4 – 6 iterations, beyond which improvement
through the iteration process becomes insignificant.

Finally, the performance of soft cancellation/suppression and channel
estimation are examined in Fig. 9.13, and 9.14. Compared with their hard
counterparts, the gain by applying soft information for interference allevia-
tion and channel estimation for partitioned/integrated approach is 0.1/0.2
dB for IC and 0.2/0.4 dB for IS. Although the enhancement is marginal,
it has the tendency of increasing as SNR increases and as system becomes
more heavily loaded. From the experiments, we noticed that the perfor-
mance degradation introduced by the approximation in (9.7) is negligible.
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Table 9.1: Test results for system capacity at Pb = 10−3 and
Eb/N0 = 9 dB shown by Figure 9.12.

Number of iterations 1 2 3 4 5

Capacity with HDIC-Log-MAP (users) 10 19 23 27 30

Capacity with HDIC-SIVA (users) 6 14 19 23 27

9.5 Conclusions

In this chapter, we analyzed and compared the performance and complex-
ity of several strategies for demodulating and decoding orthogonally mod-
ulated and convolutionally coded signals in frequency selective channels,
with the emphasis placed on the development of soft demodulation algo-
rithms which is the main contribution of this work. We have shown that of
all the presented enhancement ideas, the replacement of hard demodulator
with soft demodulator is most crucial in the improvement of system perfor-
mance. The MF, IC, and IS based soft demodulators are introduced and
compared. The noncoherent MF soft demodulator is usually used at the
first stage of the iteration process to obtain an initial estimate of data for
channel and interference estimation, which are needed for subsequent stages
of HDIC/HDIS or SDIC/SDIS soft demodulation. The IC and IS demod-
ulators differ in that the former one estimates and subtracts interference
from the received vector before demodulation; the latter one, on the other
hand, removes the estimated interference from the received observation by
filtering. The IC soft demodulator is preferred because it achieves superior
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performance with less complexity compared to the IS soft demodulator. In
general, when long codes are employed, the use of linear demodulators be-
comes cumbersome, as in this case, the crosscorrelations between different
users’ signature sequences vary at the data rate.

In order to remove deteriorative effect of interference, we need an es-
timate of the fading channel. Both channel estimation and interference
cancellation/suppression can be implemented using the hard/soft decisions
either from the output of demodulator or channel decoder. In the for-
mer case, the demodulation and decoding blocks are partitioned as in the
conventional system; in latter case, the two blocks are connected in an it-
erative fashion so that the output of the channel decoder can be fed back
to the demodulator. The integrated approach outperforms the partitioned
approach, at cost of higher complexity. The increase in complexity is due
to the need of going through channel decoding, modulation, sometimes
also encoding processes at each iteration to derive an estimate of trans-
mitted sequences. Convolutional decoder can be implemented either with
VA or Log-Map algorithm. Noticeable gain is obtained by replacing VA
with Log-MAP, especially at the first few iterations. It is attributed to
fact that Log-MAP is designed to minimize symbol (bit) error probability,
thus yielding better estimate of information bits as well as better estimate
of code bits for channel estimation and interference mitigation. Besides,
Log-MAP decoding also enables SDIC/SDIS and soft CE, which are im-
possible with VA decoding. However, the gain comes with penalty of the
increased complexity and memory consumption due to the implementation
of forward and backward recursions in the decoding process. In order to
utilize the soft outputs from Log-MAP decoder to improve the performance
of the soft demodulator, a soft modulator is proposed in this chapter to de-
rive an soft estimate of transmitted chip sequence for SDIC/SDIS and soft
CE. Based on the numerically results and analysis, we conclude that the
use of soft information for IC/IS and CE can slightly improve the system
performance with minor increase in complexity compared to IC/IS and CE
using hard decisions.

Different strategies are examined and compared numerically, and their
behaviors interpreted in this chapter. To summarize, we conclude that
significant gains are obtained by replacing the hard demodulator with a
MUD assisted soft demodulator and also by integrating demodulation and
decoding rather than performing them separately. The replacement of hard
output channel decoder and hard decision directed IC/IS, CE with their soft
counterparts further enhance the reliability of the system, however, the gain
is less significant. The general conclusion is that the performance improves
with increased computational complexity. This performance/complexity
tradeoff has to be considered in the receiver design of a practical CDMA
system.
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Chapter 10

ITERATIVE DECODING WITH EXTRINSIC
INFORMATION

M -ary orthogonal modulation is essentially a process of block coding. This
chapter aims at tackling the problem of joint iterative decoding of serially
concatenated inner block code and outer convolutional code in multiuser
environments. The (logarithm) maximum a posteriori probability, (Log)-
MAP criterion is used to derive the iterative decoding schemes. In our sys-
tem, the soft output from inner block decoder is used as a priori information
for the outer decoder. The soft output from outer convolutional decoder is
used for two purposes. First, it may be fed back to the inner decoder as
extrinsic information for the systematic bits of the Walsh codeword. Sec-
ondly, it is utilized for channel estimation and multiuser detection. We
also show that the inner decoding can be accomplished without extrinsic
information, and in some cases, e.g., when the system is heavily loaded,
yields better performance than the decoding with unprocessed extrinsic in-
formation. This implies the need for correcting the extrinsic information
obtained from outer decoder. Different schemes are examined and com-
pared numerically and it is shown that iterative decoding with properly
corrected extrinsic information or with non-extrinsic/extrinsic adaptation
enables the system to operate reliably in the presence of severe multiuser
interference, especially when the inner decoding is assisted by decision di-
rected channel estimation and interference cancellation techniques. Ad-
ditional gain is noticed when soft information rather than hard decision
feedback is used for channel estimation and interference cancellation.

169
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10.1 Introduction

Turbo codes represent an important advancement in the area of power
efficient communications. The practical importance of turbo codes stems
from the fact that they enable reliable communications at signal-to-noise
ratios close to the channel capacity with simple component codes, yet admit
high performance iterative soft decoding algorithms with complexity not
significantly higher than that of the decoder for single constituent code.

In a conventional communication receiver, only bits, or hard-decisions
are passed between the subsystems. Information is lost and becomes un-
available to the subsequent stages whenever hard-decisions are made. Also,
preceding stages can not benefit from the information derived by the follow-
ing stages. The interface between each subsystem can be greatly improved
by applying “turbo processing principle” which was first employed for de-
coding parallel concatenated convolutional codes, known as Turbo codes.
With turbo processing, each subsystem is implemented with a soft-input,
soft-output (SISO) algorithm, such as MAP or Log-MAP. Soft decision val-
ues, typically in the form of log-likelihood ratios (LLRs), are passed down
the chain and refined by the subsequent stages. The soft output of the final
stage is then fed back to the first stage and a second iteration of the pro-
cessing is initiated. Several iterations of turbo processing can be executed
to improve performance.

The turbo principle is a general strategy of iterative feedback decoding
or detection [68], and can be used in a more general way than just for
the decoding of parallel concatenated convolutional codes. It has been
successfully applied to many detection/decoding problems such as serial
concatenation, equalization, coded modulation, multiuser detection, joint
source and channel decoding and others [69].

The problem of iterative decoding for serially concatenated codes (con-
sisting of inner code and outer code) has been addressed e.g., in [70] for
serially concatenated convolutional codes and in [23, 71] for serially con-
catenated block code and convolutional code. Analogous to the decoding of
turbo codes, the inner decoder extracts the soft information from the outer
decoder to update and improve its soft decision on code bits. The inner
decoder also provide the outer decoder with soft unquantized decisions to
improve performance. The process of passing soft information between two
SISO stages proceeds, and after a few iterations, the information data are
decoded with a hard decision at the output of the outer decoder. In [71, 72],
a MAP demodulator and a SOVA (soft-output VA) decoder were applied
to a similar system using M -ary modulation and FEC. A performance gain
of about 0.6 dB at a bit error rate (BER) of 10−3 was noticed for a sin-
gle user system in AWGN channel when compared against the conventional
non-SISO demodulator and decoder. It was indicated in [72] that the inter-
leaver design has significant impact on the system performance. However,
some important issues e.g., channel estimation and MAI mitigation were
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not addressed in the above references.

In addition to FEC, multiuser detection is another effective tool to in-
crease the capacity of interference limited CDMA systems. The algorithms
developed for joint multiuser detection and decoding in most literature are
confined to uncascaded systems with single convolutional code, and the is-
sue of joint detection/decoding and channel estimation is not investigated.
In this chapter, we study iterative decoding of a serially cascaded asyn-
chronous CDMA system which involves convolutional coding and orthog-
onal modulation. The contribution of this work is the treatment of joint
multiuser detection, decoding and channel estimation by utilizing turbo
processing principle for the systems in question. The iterative decoding is
assisted by hard or soft decision directed channel estimation and interfer-
ence cancellation to effectively combat interference. Some correction and
adaptation algorithms are proposed to better utilize the extrinsic informa-
tion in bad channels (severe multiuser interference environment).

The iterative receiver structure for decoding the data transmitted by
user k is illustrated in Fig. 10.1. It consists of two stages: a SISO inner
block decoder, followed by a SISO outer convolutional decoder. The two
stages are separated by the deinterleaver Π−1 and the interleaver Π. The
kth user’s outer convolutional decoder takes λ(uk[

n
l ]; I), the extrinsic values

of the code bits, as input. It delivers as output an update of the LLRs of the
code bits λ(uk[

n
l ];O), as well as the LLRs of the information bits λ(bk[l];O),

based on the code constraints. The latter are used for making hard deci-
sions on transmitted information bits at the final iteration; while the former
are used for two purposes: deriving extrinisic information λ(u′k[

n
l ]; I) for in-

ner decoding and deriving estimate of transmitted Walsh sequence ŝk(j) for
channel estimation and multiuser detection. The inner decoder accepts a
priori information λ(u′k[

n
l ]; I) and channel values and delivers soft output

value λ(u′k[
n
l ];O). Decoding is based on alternately decoding the two com-

ponent codes and passing the updated extrinsic information which is part
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of the soft output of the SISO decoder to the next decoding stage. The
process is repeated until no further refinement is noticed and ended by
making a hard decision on the LLR values of the information bits in the
last iteration.

To avoid statistical dependencies between the soft values of several it-
eration steps, it is necessary to feed back only the extrinsic value

λ(uk[
n
l ]; I) = Π−1{λ(u′k[

n
l ];O) − λ(u′k[

n
l ]; I)}

to the outer decoder and

λ(u′k[
n
l ]; I) = Π{λ(uk[

n
l ];O) − λ(uk[

n
l ]; I)}

to the inner decoder as shown in Fig. 10.1. These two decoder modules are
discussed in detail next.

10.2 SISO Outer Convolutional Decoder

In case the code rate of the convolutional code is Rc = 1/r, the informa-
tion bit bk[l] is encoded into code bits uk[

n
l ], n = 1, 2, · · · , r. To facilitate

understanding of the principle of outer decoding, we take a simple exam-
ple and assume a rate 1/2 convolutional code with generator polynomial
(7, 5) in octal form as demonstrated in Fig. 10.2. In this case, the code
trellis is binary, one branch corresponds to a single information bit bk[l]
and two corresponding code bits uk[

0
l ], uk[

1
l ]. Let us denote the state met-

rics at the (l − 1)th node αl−1(s
′) and those at the lth node αl(s), where

s′ ∈ {s′0, s′1, s′2, s′3} and s ∈ {s0, s1, s2, s3} are the generic states at the
(l − 1)th and lth nodes, respectively.

Since Log-MAP algorithm is equivalent to (true) symbol-by-symbol
MAP, while without the numerical representation problems posed in
MAP [67], it is adopted here for outer convolutional decoding. With Log-
MAP algorithm, αl(s) is computed recursively as

αl(s) = max
s′

∗[αl−1(s
′) + γl(s

′, s)]; (10.1)

with initial conditions α0(0) = 0, α0(s 6= 0) = −∞, and γl(s
′, s) is the

branch metric for the branch connecting state s′ at node (l − 1) to state
s at node l. In (10.1), the summation is over all the states s′ where the
transition (s′, s) is possible. The function max∗() is defined as

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|) (10.2)

which is max operation compensated with a correction term ln(1+e−|x−y|).
The state metrics for the portion of the trellis beyond the lth node can be
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computed similarly by a backward recursion starting at the last node

βl−1(s
′) = max

s

∗[βl(s) + γl(s
′, s)]; (10.3)

with initial conditions βLb
(0) = 0, βLb

(s 6= 0) = −∞, and Lb is the block
length. The summation is over all the states s where the transition (s′, s)
is possible.

Let B+
l be the set of state pairs (s′, s) such that the information bit is

+1 at time l. Similarly define B−
l . In the case shown in Fig. 10.2,

B+
l = {(s′0, s0), (s′1, s0), (s′2, s1), (s′3, s1)}

B−
l = {(s′0, s2), (s′1, s2), (s′2, s3), (s′3, s3)} (10.4)

The LLR value of the information bit bk[l] at the output of the channel
decoder is given by

λ(bk[l];O) = ln

∑

B+
l

exp[αl−1(s
′) + γl(s

′, s) + βl(s)]

∑

B−
l

exp[αl−1(s
′) + γl(s

′, s) + βl(s)]

= max
B+

l

∗[αl−1(s
′) + γl(s

′, s) + βl(s)]

− max
B−

l

∗[αl−1(s
′) + γl(s

′, s) + βl(s)] (10.5)
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Let U+
l0 be the set of state pairs (s′, s) such that the first code bits uk[

0
l ]

is +1. Similarly define U−
l0 . In the case shown in Fig. 10.2,

U+
l0 = {(s′0, s0), (s′3, s1), (s′1, s2), (s′2, s3)}

U−
l0 = {(s′1, s0), (s′2, s1), (s′0, s2), (s′3, s3)}

The LLR value of the first code bit uk[
0
l ] at the output of the channel

decoder is given by

λ(uk[
0
l ];O) = ln

∑

U+
l0

exp[αl−1(s
′) + γl(s

′, s) + βl(s)]

∑

U−
l0

exp[αl−1(s
′) + γl(s

′, s) + βl(s)]

= max
U+

l0

∗[αl−1(s
′) + γl(s

′, s) + βl(s)]

− max
U−

l0

∗[αl−1(s
′) + γl(s

′, s) + βl(s)] (10.6)

The soft value of the second code bit uk[
1
l ] can be computed in a similar

way. To reduce the complexity, the max∗() operation can be approximated
by max(), i.e., ignoring the compensation term in (10.2), which leads to
the so-called max-log-MAP algorithm.

According to the definition λ(uk[
n
l ]; I) = ln

P (uk[nl ]=+1)
P (uk[n

l
]=−1) , we can readily

derive [23]

P (uk[
n
l ] = ±1) =

exp[±λ(uk[
n
l ]; I)]

1 + exp[±λ(uk[nl ]; I)]

=
exp[−λ(uk[

n
l ]; I)/2]

1 + exp[−λ(uk[nl ]; I)]
· exp[uk[

n
l ]λ(uk[

n
l ]; I)/2]

= Al exp[uk[
n
l ]λ(uk[

n
l ]; I)/2] (10.7)

For a rate Rc = 1/r code, the branch metric, γl(s
′, s) can be computed

as [22]

γl(s
′, s) = ln

r∏

n=1

P (uk[
n
l ]) =

r∑

n=1

lnP (uk[
n
l ])

=

r∑

n=1

lnAl +

r∑

n=1

ln{exp[uk[
n
l ]λ(uk[

n
l ]; I)/2]}

= al +

r∑

n=1

uk[
n
l ]λ(uk[

n
l ]; I)/2 (10.8)

The constant al is independent of uk[
n
l ] and will be canceled since γl(s

′, s)



10.3 SISO Inner Block Decoder 175

PSfrag replacements

−
Block Decoder

λ(u′; I)
λ(u′;O)

Lcy

Lcy + λe(u′)

Figure 10.3: Inner decoding with extrinsic feedback.

appears both in the numerator (where uk[
n
l ] = +1) and denominator (where

uk[
n
l ] = −1) of equations (10.5) and (10.6). In the case shown in Fig. 10.2,

γl(s
′, s) =

1

2
{uk[0l ]λ(uk[

0
l ]; I) + uk[

1
l ]λ(uk[

1
l ]; I)}

10.3 SISO Inner Block Decoder

Fig. 10.3 illustrates the principle for inner decoding when the extrinsic
values are used. The decoder accepts a priori information λ(u′; I) and
channel values Lcy. The vector u′ ∈ {u′k[nl ]} is of length log2M , it consists
of the log2M systematic bits of the Walsh codeword wik(j). The soft output
λ(u′;O) can be expressed in the form

λ(u′;O) = Lcy + λ(u′; I) + λe(u′) (10.9)

which consists of three parts: the channel value Lcy; a priori information
λ(u′; I) about u′ provided from the outer decoder; extrinsic value λe(u′)
which is the updated information about the current bit obtained through
the decoding process from all the other bits through constraints of the code.
The output is subtracted by λ(u′; I) to eliminate the statistical dependency
before feeding to the outer decoder.

The LLR of a transmitted +1 and −1 for every coded and interleaved
bit u′k[

n
l ] from each user k = 1, 2, . . . ,K is given according to [69, 71] by

λ(u′k[
n
l ];O) = ln

P [u′k[
n
l ] = +1|y]

P [u′k[
n
l ] = −1|y]

= ln

∑

m:u′
k
[n
l
]=+1 P (wm|y)

∑

m:u′
k
[n
l
]=−1 P (wm|y)

= ln

∑

m:u′
k
[n
l
]=+1 exp

(
1
2

∑N
i=1 L(wi; yi) · wi

)

∑

m:u′
k
[n
l
]=−1 exp( 1

2

∑N
i=1 L(wi; yi) · wi)

= ln

∑

m:u′
k
[n
l
]=+1 exp( 1

2L
Twm)

∑

m:u′
k
[n
l
]=−1 exp( 1

2L
Twm)

(10.10)



176 Iterative Decoding with Extrinsic Information

where we use the notation m : u′[nl ]k = ±1 to denote the set of Walsh codes
{wm} that correspond to the code bit u′k[

n
l ] = ±1, and assume u′k[

n
l ] is one

of the log2M systematic bits of the inner Walsh codeword. The ith bit of
the Walsh codeword wm is denoted as wi ∈ {+1,+1}. The vector y is of
length M , and is due to the kth user’s jth transmitted Walsh symbol, and is
obtained by despreading and Rake combining of the received vector r(k, j)
or its interference canceled version r′(k, j). The vectors u′ and y change
from one processing window to the next, which is not explicitly shown in
the figure and equations to simplify notation. The process of despreading
and multipath combining will be elaborated shortly in the next subsection
when different approaches of inner decoding are discussed. Each element
of the vector L = [L(w1; y1), L(w2; y2), . . . , L(wM ; yM )]T is defined as

L(wi; yi) =

{

Lc · yi + λ(u′k[
n
l ]; I), for i = M

2s+1 , s = 0, . . . , log2M − 1

Lc · yi, otherwise

which is the channel value yi multiplied with channel reliability Lc supple-
mented with a priori information λ(u′k[

n
l ]; I) for the log2M systematic bits

of each codeword wm, and Lc is defined such that Lcyi = ln p(yi|wi=+1)
p(yi|wi=−1) .

Typically, one term will dominate each sum in (10.10), which suggests the
“dual-maxima” approximation [65, 71]

λ(u′k[
n
l ];O) ≈ 1

2
max

m:u′
k
[n
l
]=+1

LTwm − 1

2
max

m:u′
k
[n
l
]=−1

LTwm (10.11)

The vectors y and L should be formed and Lc computed according to
the chosen strategy for the inner decoding, which can be a traditional single
user approach or a MUD-aided approach as discussed below.

10.3.1 Conventional single user approach

The conventional inner decoding scheme is illustrated in Fig. 10.4. For
simplicity of notation we will suppress the index k and/or j from
sk(j),Ck(j), r(k, j), A(k, j), n(k, j), Xk(j) and hk(j), etc., whenever no
ambiguity arises.

Let rk,l, (l = 1, 2, · · · , Lk) denote the delay aligned version of the re-
ceived vector due to the transmission of the jth symbol from the kth user’s
lth path. The vector r̃k,l = [r̃k,l[1] r̃k,l[2] · · · r̃k,l[N ]]

T ∈ C
N and ñk,l ∈ C

N

are rk,l and the original noise vector n descrambled with the scrambling
sequence Ck. Ideally, different user’s scrambling sequences are orthogonal
to each other (their crosscorrelations are approximately zero) and their au-
tocorrelations approximate delta function. Hence, rk,l after descrambling
and despreading will hopefully only contain the contribution from kth user’s
lth path plus additive noise.
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Figure 10.4: Internal structure of the conventional SISO inner decoder.

Let us assume unit chip energy and define

r̃dk,l =
[
r̃dk,l[1] · · · r̃dk,l[M ]

]
∈ C

M

The ith element r̃dk,l[i] is the output of the lth path’s despreader correspond-
ing to wi, it is formed simply by

r̃dk,l[i] =

Nc∑

n=1

r̃k,l[(i− 1)Nc + n]

= hk,l ·Nc · wi +

Nc∑

n=1

ñk,l[(i− 1)Nc + n] (10.12)

where Nc = N/M is the number of chips for each bit wi. Let us define
y = [y1 y2 · · · yM ] the output of Maximum Ratio Combiner (MRC) with
element yi computed as

yi = Re

{
Lk∑

l=1

ĥ∗k,l · r̃dk,l[i]
}

= Re

{
Lk∑

l=1

ĥ∗k,l

Nc∑

n=1

r̃k,l[(i− 1)Nc + n]

}

(10.13)

where ĥk,l is an estimate of the channel gain hk,l. Substituting (10.12)

into (10.13) and assume perfect channel estimation, i.e., ĥk,l = hk,l, we



178 Iterative Decoding with Extrinsic Information

derive

yi = Re

{
Lk∑

l=1

h∗k,l

(

hk,l ·Nc · wi +

Nc∑

n=1

ñk,l[(i− 1)Nc + n]

)}

= Nc · wi
Lk∑

l=1

|hk,l|2 + Re

{
Lk∑

l=1

h∗k,l

Nc∑

n=1

ñk,l[(i− 1)Nc + n]

}

= Nc · wi · P̆k + nyi (10.14)

where P̆k =
∑Lk

l=1 P̆k,l =
∑Lk

l=1 |hk,l|2 is the received power from all paths
of user k.

Since the descrambling operation does not change the noise statistic,
we have the complex noise sample ñk,l[i] ∼ CN (0, N0), and

Nc∑

n=1

ñk,l[(i− 1)Nc + n] ∼ CN (0, NcN0)

Thereby,

nyi = Re

{
Lk∑

l=1

h∗k,l

Nc∑

n=1

ñk,l[(i− 1)Nc + n]

}

∼ N (0, N ′
0/2)

N ′
0 = Nc · P̆k ·N0 (10.15)

Recall that yi = Nc · P̆k · wi + nyi, thus

p(yi|wi = ±1) =
1

√

πN ′
0

exp

[

−(yi ∓NcP̆k)
2

N ′
0

]

ln
p(yi|wi = +1)

p(yi|wi = −1)
=

−(yi −NcP̆k)
2 + (yi +NcP̆k)

2

N ′
0

=
4NcP̆kyi

NcP̆kN0

=
4

N0
· yi (10.16)

From (10.16), we obtain the channel reliability value Lc = 4/N0. In
reality, the code orthogonality condition is hardly fulfilled. Also there will
be errors in channel estimation, the condition ĥk,l = hk,l can not be guar-
anteed. The algorithm derived based on these assumptions is therefore
quite suboptimal. Especially, the presence of MAI and ISI will deteriorate
the system performance. One way to work around this problem would be
to increase the value of N0 to capture the MAI and ISI. A more effective
measure to alleviate their effect is the use of multiuser detection (MUD)
techniques, which will be discussed next.
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10.3.2 MUD approach

The aperiodic nature of the long codes employed in this work usually pre-
cludes the use of linear multiuser detection schemes like MMSE detector
and decorrelator, etc. due to high computational complexity. Therefore,
only the nonlinear parallel interference cancellation scheme is considered
here. The inner decoding scheme combined with interference cancellation
is depicted in Fig. 10.5. Interference cancellation with hard and soft deci-
sion feedback will be discussed next.

10.3.2.1 Hard decision interference cancellation

Hard decision interference cancellation (HDIC) is performed by estimating
the transmitted signals in parallel for all the users, and then subtracting
the estimated signals of the interfering users from the received signal r to
form a new signal vector rHDIC

k,l for demodulation of the signal transmitted

from the lth path of user k. Mathematically, it is expressed as

rHDIC
k,l = r − Âĥ + âkĥk,l (10.17)

where r ∈ C
Nk denote the received signal vector due to the transmission of

the jth symbol from the kth user’s lth path, it contains Nk chips (usually
Nk > N due to multipath delay spread). The vector rHDIC

k,l ∈ C
Nk is its

interference canceled version after subtracting the contributions from all the
other users and the same user’s other paths using hard decision feedback.
The vector Âĥ represents the estimated contribution from all the users
calculated by using the data matrix Â and channel vector ĥ estimated at
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the previous iteration. The vector âkĥk,l is the estimated contribution from
the lth path of user k.

The derivation of Lc is the same as in Section 10.3.1 except rk,l is
replaced by rHDIC

k,l , the delay compensated and MAI and ISI canceled

version of the received vector due to the transmission of the jth symbol
from the kth user’s lth path. The MAI and ISI are estimated by mak-
ing tentative hard decisions on the output from the outer decoder, i.e.,
ûk[

n
l ] = sgn{Π(λ(uk[

n
l ];O))} (see Fig. 10.1) for all k. Then we go through

block encoding and spreading to produce an estimate of the transmitted
chip sequence ŝk, which is used for both interference cancellation and chan-
nel estimation. Channel estimation was treated in Chapter 5.

In the ideal situation, the MAI from other users and ISI from the same
user’s other paths are canceled. Going through the same procedure as
shown in (10.12) – (10.16), we come up with the same channel reliability
value Lc = 4/N0. However, the mechanisms for deriving rk,l and rHDIC

k,l

are different (single user and MUD approach, respectively) which result in
different y and L vectors used in equations (10.10) – (10.11) for computing
LLR values.

It should be noted that the inner decoding can be accomplished with-
out extrinsic information. In this case, L(wi; yi) = Lcy for all i in equa-
tion (10.10) and (10.11). The switch in Fig. 10.1 is turned off. The perfor-
mance can still be improved at each iteration without extrinsic information
because we get better estimate of the channel ĥk and transmitted sequence
ŝk (better cancellation) as the iteration proceeds.

10.3.2.2 Soft decision interference cancellation

To reduce the likelihood of error propagation, we can use soft informa-
tion L(sk) instead of hard decision on sk for interference cancellation and
channel estimation. When soft IC is used, the iterative decoding scheme
illustrated in Fig. 10.1 should be modified accordingly. Fig. 10.6 shows the
revised version.

In [21, 22], interference cancellation and channel estimation using soft
information were proposed, which is, however, not directly applicable in
our scenario, because we do not have the soft estimates for all the inner
code bits, but only for the systematic bits. To derive the LLR value of
sk, we feed λ(u′k[

n
l ]) = Π{λ(uk[

n
l ];O)} into a soft inner encoder which

computes λ(wp
ik(j)), the LLRs for codeword bits w

p
ik(j), then spread them

to derive L(sk). The design of the soft encoder (modulator) was introduced
in Section 9.2.4. With soft estimate of sk, we can derive the cancellation
residual after soft cancellation as

rSDIC
k,l = r − E[A|r]ĥ + E[ak|r]ĥk,l (10.18)

where E[ak|r], and the columns of E[A|r], are derived by scrambling E[sk|r]
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with Ck and compensating with path delays.
We need estimates of the complex channel gains to do maximum ratio

combining as discussed in Section 10.3.1 and 10.3.2. Both hard and soft
versions of the ML estimator are described in the previous chapter, and are
not repeated here.

10.4 Numerical Results

Different approaches are evaluated numerically with computer simulations.
The simulation parameter setting is the same as in Section 9.4.

Fig. 10.7 shows the results of iterative decoding for single user system
with conventional approach (no interference cancellation is needed in this
case). The gain by applying extrinsic information to the inner decoding is
1.3 dB at BER of 10−5 and 0.8 dB at BER of 10−3 when compared against
non-extrinsic feedback case, which is more than the 0.6 dB gain reported
in [71] for AWGN channel. If the approximation in (10.11) is used for inner
decoding and the operation max∗ is replaced by max in (10.1) – (10.6) for
the outer decoding, the performance loss is noticeable in low SNR region,
and gradually becomes smaller as SNR increases. To study the behavior
of each algorithm, the number of iterations is usually set to 7 (except in
Fig. 10.15 and 10.16), since it is observed that almost all the algorithms
would converge after 5 or 6 iterations.

We need to stress the fact that the interleaving design is essential for the
system performance. To find out the optimum interleaver for the system in
question, we pass the block size of 4620 code bits through different block in-
terleavers, which exhibit large discrepancies in the results as demonstrated
in Fig. 10.8. The interleavers of size 66 × 70 and 44 × 105 in general work
better than others for the studied system. When the algorithm converges
at the 6th or 7th iteration, the former one attains the best performance. Al-
though the results are shown only for HDIC aided iterative decoding with
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extrinsic information, a similar trend is also noticed for other algorithms.
The interleaver size is therefore set to be 66 × 70 for all the conducted
experiments.

Different schemes discussed above are compared in Fig. 10.9. As ex-
pected, HDIC aided iterative decoding outperforms the conventional single
user approach in a multiuser environment. The results also show that the
reliability of the extrinsic information goes down as the number of user
increases. It is attributed to the fact that these algorithms assume per-
fect channel estimation and perfect cancellation. However, this is not the
case in a system with high level of interference. When the number of user
goes beyond 14, the HDIC aided decoding without extrinsic information
performs better than the one with extrinsic information. A similar trend
is also observed with conventional approach, not as drastic though (the
gain by applying extrinsic information gradually diminishes as the number
of user increases). In the next subsection, we propose some schemes to
improve the reliability of the extrinsic information, and make it useful in
heavily loaded systems.

10.5 Correction/Adaptation of Extrinsic In-
formation

It is stated in [73] that for bad channels the reliability information of soft
decoder output is too optimistic. The output can be considered as being
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multiplied by a factor, that depends on the current BER. To become closer
to the true LLR, the output has to be normalized (corrected). Although the
authors drew the conclusion for the soft-output-Viterbi-decoder (SOVA) in
bad channels (low SNR), we discovered similar problem also with our de-
coding scheme in severe interference environment. As indicated in Fig. 10.9,
when the level of interference increases, the extrinsic information becomes
unreliable and leads to worse performance than decoding without extrin-
sic feedback. That implies the need for normalization or correction of the
extrinsic values.

Fig. 10.10 shows the histogram of the output (λ) of the SISO outer de-
coder at different iterations. Apparently, λ can be approximated as Gaus-
sian distributed variable with mean value mλ (or −mλ) and variance σ2

λ.
The pdf of λ conditioned on the bit u = ±1 being transmitted can be
expressed as

p(λ|u = ±1) =
1√

2πσλ
· exp

[

− 1

2σ2
λ

(λ∓mλ)
2

]

(10.19)

The conditional LLR, given the observation of the decoder output is
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calculated as [73]

λ(u) = ln
P (λ|u = +1)

P (λ|u = −1)
= ln

[

e
− 1

2σ2
λ

((λ−mλ)2−(λ+mλ)2)
]

= (2mλ/σ
2
λ) · λ (10.20)

which means the output λ has to be multiplied with the factor c = 2mλ/σ
2
λ

to obtain the real LLR. Since the value of c depends on the current BER of
the decoder output, which can vary from block to block, c has to be calcu-
lated for each block individually. From our experiments, we also notice that
slightly better results can be achieved when modifying the normalization
factor as

c =

{

2mλ/σ
2
λ, if 2mλ/σ

2
λ < 1

1, otherwise

The performance of this extrinsic normalization scheme is shown by the
dashed curve in Fig. 10.11. It works rather well for a moderate number
of users (up to 20 users). However, it gradually becomes ineffective as the
system becomes more heavily loaded. We tend to think that the correction
factor should be proportional to the reciprocal of the total number of user
K to combat the detrimental effect of the interference. The solid line in
Fig. 10.11 shows this correction method (c = 1.3/K) yields better perfor-
mance than the extrinsic normalization scheme introduced above in severe
MAI situation.

We compared different correction factors c = 1/K, 1.3/K, 1.5/K in
Fig. 10.12. In HDIC case, decoding with c = 1.3/K and c = 1.5/K give
almost identical result, c = 1/K is slightly worse. All of them perform
better than decoding without extrinsic feedback, the gain is 0.4 – 1.1 dB
in 15 user case. It proves that extrinsic information really helps improve
the decoding performance if properly manipulated. With the conventional
approach, the gain by introducing extrinsic correction is not noticeable:
c = 1.3/K and c = 1 (meaning no extrinsic correction) yield almost the
same result. It is worth noticing the significant gain achieved by incor-
porating HDIC into inner decoding compared to the conventional scheme,
the difference can be as large as 2.4 dB. However, the price to pay for the
performance improvement is the added complexity due to the interference
cancellation process.

Another work around method to mitigate the deteriorative effect of the
interference and to exploit extrinsic information more efficiently is to use
some adaptive scheme. The basic idea is to do decoding without extrinsic
feedback for a few iterations, the channel becomes cleaner (MAI and ISI
are more effectively suppressed) and closer to single user channel as the
iteration goes on. Then we turn on the extrinsic feedback and let it run
for a few more iterations. The results of this adaptive decoding scheme
are shown Fig. 10.13 and Fig. 10.14. Seven iterations (4 stages without
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Figure 10.11: Performance of extrinsic correction/normalization schemes.

extrinsic feedback and 3 stages with unprocessed extrinsic feedback) are
carried out in the test. It can be observed from Fig. 10.13 that adaptive
decoding always performs better than decoding with unprocessed extrinsic
information, it, however, converges to decoding without extrinsic feedback
when the system becomes more heavily loaded (even performs slightly worse
when the number of users goes beyond 19). But as indicated in Fig. 10.14
the gain achieved by the adaptive scheme tends to become bigger as SNR
increases.

The initial LLRs are statistically independent in the iterative decoding
process, however, since the decoders use indirectly the same information,
the improvement through the iterative process becomes marginal, as the
LLRs become more and more correlated. The convergence property of
the iterative decoding algorithms is examined in Fig. 10.15. One can ob-
serve from the figure that iterative decoding without extrinsic information
converges faster than the one with extrinsic information. Clearly, when ex-
ploited properly, extrinsic information improves the system performance,
especially when SNR and the number of iterations increases. In both cases,
6 or 7 stages would suffice for maximum achievable performance.

Fig. 10.16 demonstrates the promising results when soft information
rather than the hard decision feedback is used for interference cancellation
and channel estimation. From the experiment results, an improvement of
up to 0.5 dB gain is observed at BER around 10−5 for a 21-user system
when the algorithm converges. As discussed earlier, the added complexity
for deriving soft information rather than using hard decision feedback is
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Figure 10.12: Performance of iterative decoding as function of SNR.
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Figure 10.14: Adaptive iterative decoding: performance as function of SNR.
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minor, which makes iterative decoding with soft IC and CE an attractive
solution.

10.6 Conclusions

In this chapter, we presented an integrated approach to iterative mul-
tiuser detection, decoding and channel estimation for convolutionally coded
and orthogonally modulated asynchronous CDMA systems in multipath
Rayleigh fading channels. In addition to be used as extrinsic information
for the inner decoder, tentative hard/soft decisions can be made on the
output of the outer decoder for MAI and ISI cancellation to improve the
performance of the inner soft decoder. Hard/soft decision directed channel
estimation was also proposed for multipath Rake combining before decoding
is done. Inner decoding can be done with or without extrinsic information.
In the latter case, the performance improvement at each iteration is due
to improved interference cancellation and channel estimation with decision
feedback. The soft extrinsic information was found to have reduced relia-
bility in bad channels (when the system is heavily loaded). Some extrinsic
correction and non-extrinsic/extrinsic adaptation schemes were proposed
to reduce the detrimental effect of the interference. The numerical results
show that the inner decoding with corrected extrinsic feedback or with
non-extrinsic/extrinsic adaptation outperforms the one without extrinsic
feedback and that inner decoding with MAI and ISI cancellation is much
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superior to the conventional single user decoding. Furthermore, soft in-
formation rather than hard decision feedback can be used for interference
cancellation and channel estimation in order to achieve the best perfor-
mance for the considered schemes.
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