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Abstract
In a cooperative multi-agent system (MAS), agents communicate with each other using
the wireless medium. As agents move in the environment in order to fulfill the MAS’
higher level task, their location changes and so does the wireless communication channel
they experience. To enable a successful coordination, it is paramount for the agents
to retain connectivity among themselves. In order to achieve this, the availability of
explicit channel knowledge for the MAS’ future configuration is needed. Since the agents
determine their location from sensors, any expected residual location uncertainty for the
MAS’ future configuration will have an implication on the channel knowledge. For this
reason, a computationally attractive yet accurate method to predict the wireless ad-hoc
communication channel for any configuration and location uncertainty of the agents is
needed.

In this thesis, we employ Gaussian processes (GPs) for learning of channel model
parameters and for channel prediction at arbitrary (unvisited) transmitter (TX) and re-
ceiver (RX) locations. In an indoor measurement campaign, we investigate the ad-hoc
wireless communication channel and its properties with respect to path-loss and shad-
owing from obstacles. We derive a suitable GP model, where we incorporate spatial
correlation of communication links caused by shadowing. The effectiveness of our ap-
proach in a cooperative MAS is demonstrated, where the bit error rate (BER) among the
agents’ communication links is minimized. Furthermore, we extend our GP framework
allowing to make distributed predictions using a consensus scheme.

We found that the incorporation of location uncertainty into channel prediction al-
lows to outperform approaches where this is neglected. The incorporation of location
uncertainty at both, the TX and the RX location, leads not only to robust estimates of
the underlying channel parameters, but also to realistic channel predictions with respect
to the agents’ true location uncertainty. Applied to a cooperative MAS, we see that
the BER and BER uncertainty can be significantly reduced. Finally, with a distributed
channel prediction, we observe a trade-off between computation complexity and accuracy
of prediction.

Natural extensions of our GP channel prediction framework could include distributed
parameter learning and efficient methods to handle a high number of measurements.

Keywords: Gaussian processes, spatial correlation, channel prediction, parameter learn-
ing, multi-agent systems, wireless ad-hoc networks, distributed algorithms.

i





List of Included Publications

The thesis is based on the following appended papers:
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Acronyms

BER bit error rate

CC command center

cdf cumulative distribution function

C-MAS MAS with direct communication among agents

GPS global positioning system

I-MAS MAS only communicating with infrastructure

LOS line-of-sight

NLOS non-LOS

MAP maximum a posteriori

MAS multi-agent system

ML maximum likelihood

MQAM amplitude modulation with M bits per symbol

MSE mean squared error

pdf probability density function

RX receiver

SNR signal-to-noise ratio

SR search-and-rescue robot

TX transmitter

UAV unmanned aerial vehicle
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Chapter 1

Introduction

1.1 Motivation

Multi-agent systems (MAS) employ the wireless medium for communication and often
for positioning as well. Typical examples of MAS include mobile wheel-driven robots
for surveillance and search-and-rescue operations, or unmanned aerial vehicles (UAVs)
for remote sensing, e.g., to detect forest fires [1] or for chemical plume tracking [2].
We can distinguish two types of communication in such systems: (a) agents directly
communicating with infrastructure (e.g., an anchor node or a command center), denoted
by I-MAS and (b) cooperative MAS, denoted by C-MAS, where agents also communicate
directly among each other. These two different systems are outlined in Fig. 1.1.

Typical examples in an I-MAS setting may include that agents maintain connectivity
with infrastructure [3], or that data is proactively cached for a mobile user to balance
channel load [4, 5]. For C-MAS, typical examples may include a swarm of UAVs navi-
gating through an environment [1, 6], autonomous cars cooperating on sensor data or for
throughput maximization at an intersection [7, 8].

Since mobile agents employ the wireless medium for communication, it is important
to have accurate, yet computationally efficient, channel models allowing them to pursue
their higher level tasks successfully. This includes as well channel prediction, i.e., when
knowledge of the channel is needed for configurations of the agents where no measure-
ments are available. The I-MAS wireless channel depends on the environment, the fixed
anchor position, as well as the mobile agents’ position. Its properties have been well
studied and accurate channel and propagation models have been developed, many based
on cellular communication systems [9]. C-MAS wireless channel models, on the other
hand, are less developed. One reason for this is, that demand for C-MAS has been low in
the past. A C-MAS channel model is more complex, since it needs to consider mobility
of both link endpoints (mobile agent to mobile agent communication) in contrast to an
I-MAS channel model.

In general, the wireless channel can be considered as being composed of three parts:
a deterministic part due to path-loss, a part due to shadowing because of obstacles, and
a final part due to multi-path [9]. Shadowing is spatially correlated and measurements
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(a) Example of an I-MAS.

(b) Example of a C-MAS.

Figure 1.1: Examples of different types of MAS. In the I-MAS case, the agents (cars)
communicate only with infrastructure (street light). In the C-MAS case, the agents
communicate directly with each other. The wireless communication link is indicated by
an orange dashed line.
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have shown that it decorrelates in the order of 50–100 m outdoors [9] and 1–5 m indoors
[10, 11]. Multi-path, on the other hand, decorrelates on a much smaller scale within a
few wavelengths [9]. Based on this, several different channel models have been developed.
The most simple model is the disc model, where communication quality is assumed good if
the receiver (RX) is located within a radius r of the transmitter (TX) and bad otherwise.
The next step towards a more accurate model considers deterministic path-loss. The
incorporation of such simple channel models into the higher level control problem for, e.g.,
connectivity maintenance has been extensively studied by the control community [12–18].
More sophisticated channel models incorporate shadowing and multi-path as well. These
components are modeled either in a probabilistic or a deterministic way (e.g., through
ray-tracing [9]). Although more accurate, such models come with some drawbacks. For
instance, a ray-tracing based channel model is not applicable in real-time applications
due to the high computational demand. Furthermore, it is not always possible to estimate
all model parameters from measurements, e.g., for ray-tracing this means that reflection
properties of all surfaces in the environment need to be estimated.

An attractive tool for channel prediction is through the usage of Gaussian processes
(GPs) [19], where deterministic path-loss and spatially correlated shadowing is modeled.
Through the incorporation of measurements in the form of a measurement database, an
accurate and still computationally efficient channel prediction is possible. Additionally
to channel prediction, the GP framework allows to estimate the underlying model pa-
rameters from measurements. For accurate channel prediction and parameter estimation
the location of the mobile agents needs to be known exactly. In reality, this is seldom the
case, since mobile agents need to determine their location from sensors. For instance, for
a GPS sensor the positioning quality varies with the number of visible satellites, their
geometry, and the operation environment (land, urban, sub-urban, indoors). In [20], a
GP based channel predictor was presented, which allows the incorporation of the agents
location uncertainty in an I-MAS setting. Although useful, it cannot be applied in a
C-MAS setting due to the mobility of both the TX and the RX. Furthermore, the whole
measurement database needs to be available at each agent. This is not practical in a
C-MAS context, where a distributed approach using only local information is preferred.

As part of this thesis, we develop a GP based channel predictor for a C-MAS setting,
where we model location uncertainty of both link endpoints. This allows us not only
to estimate the underlying channel parameters of ad-hoc wireless channels in a robust
manner, but also to predict the channel at arbitrary (unvisited) locations. Furthermore,
a distributed version of the channel predictor is developed. Distributed processing over
the wireless channel is thereby achieved by a consensus scheme [21]. Our channel pre-
dictor is incorporated into a higher level optimization problem, where we aim to find the
optimal configuration of mobile robots such that the bit error rate (BER) of the wireless
communication network is minimized.

1.2 Thesis Outline

This thesis is divided into two parts. In the first part, we give a brief introduction on
channel gain prediction in a C-MAS setting. We present in Chapter 2 ad-hoc channel
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measurements and a suitable statistical channel model. This is followed by Chapter 3,
where we give a general introduction on GPs. We address learning of model parameters
from measurements, centralized and distributed prediction, as well as the incorporation
of the presented statistical channel model allowing to explicitly model spatial correlation
of shadowing. In Chapter 4, we present an application example of the proposed GP
based channel prediction framework, aiming at improving the communication quality
among C-MAS. Finally, in Chapter 5, we summarize our contributions. In part two of
this thesis, the included papers are appended.



Chapter 2

The Wireless Ad-Hoc
Propagation Channel

In this chapter, we present channel measurements and the C-MAS channel model we rely
on. Towards this end, we first present the measurement campaign we have performed.
This is followed by the presentation of a known empirical statistical channel model, which
we relate to the collected measurements and discuss briefly its validity. Following that, we
highlight two spatial correlation models, one where only the RX is mobile corresponding
to an I-MAS setting, and one where TX and RX are mobile corresponding to a C-MAS
setting.

2.1 Ad-Hoc Channel Measurements

In order to justify any model assumptions in the development of our channel prediction
framework, we have performed a measurement campaign, where we recorded indoor ad-
hoc channel measurements in a hallway at the Department of Signals and Systems at
Chalmers University of Technology. For this campaign, we placed the RX at several
different positions along a line following the hallway. On a hallway perpendicular to it,
we placed the TX on several different positions also along a line, where the first location
thereby corresponds to position 6.5 m on the RX line. The full measurement scenario is
outlined in Fig. 2.1. For every position of the TX and RX, the received power in dBm
was recorded using commodity hardware radios of type Netgear N150 Wireless adapter.
The measurement parameters are stated in Table 1.

In Fig. 2.2 the received signal power in dBm is plotted over the distance between
the TX and RX locations. Note that the hardware used provides the received power
readings only in integer dBm values. From the figure, we can observe a power loss with
increasing distance, but due to the complexity of the indoor propagation environment it
is difficult to come up with an accurate and computationally efficient channel model. We
are therefore interested in a simple channel model, which captures the signal propagation
sufficiently well with respect to its application. It should be noted that, any such model
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Table 2.1: Measurement parameters

Parameter Value

Total number of different RX positions 10,900
Total number of different TX positions 11
Spatial resolution RX positions 0.02m
Spatial resolution TX positions 1m
Shortest TX-RX distance 1m
Transmit power PTX 20dBm
Antenna height 0.85m
TX communication frequency 2.422GHz

is only an approximation of the real channel.

2.2 Statistical Channel Model

Consider a workspace W ⊂ R2. The TX located at qTX ∈ W emits a signal with power
P lin

TX through the wireless channel. Until the signal is received at the RX located at qRX,
it experiences distance-dependent path-loss, large-scale fading caused by obstacles in the
propagation path, and small-scale fading due to multi-path. The received signal power
can be expressed as [22]

P lin
RX(qTX, qRX) = P lin

TXg0 ||qTX − qRX||−η2 ψ(qTX, qRX) |h(qTX, qRX)|2, (2.1)

where g0 is a constant capturing antenna and other propagation gains, η is the path-loss
exponent, ψ is the position dependent shadowing and h captures small-scale fading. Let
us assume that measurements average out small-scale fading, either in time (measure-
ments taken over a time window), frequency (measurements represent average power over
a large frequency band), or space (by using multiple antennas) the received signal power
in dBm is then expressed as

PRX(qTX, qRX) = L0 − 10η log10 ||qTX − qRX||2 + Ψ(qTX, qRX), (2.2)

where constant L0 = PTX + 10 log10(g0) + 10η log10(d0), d0 is a reference distance, and
Ψ(qTX, qRX) = 10 log10 ψ(qTX, qRX). We assume that large-scale fading (shadowing) fol-
lows a log-normal distribution, i.e., Ψ(qTX, qRX) ∼ N (0, σ2

Ψ), where σ2
Ψ is the shadowing

variance [9].

2.3 Measurement-Model Relationship

We assume the RX provides us with a noisy observation of the received signal power in
dBm such that

y = PRX(qTX, qRX) + n, (2.3)
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Figure 2.1: Floorplan together with TX and RX locations where channel measurements
have been recorded. All walls consist of reinforced concrete. For every TX position, the
RX moved along the indicated RX trajectory recording every 0.02 m the received signal
power in dBm.



8 The Wireless Ad-Hoc Propagation Channel

TX-RX distance in m
0 2 4 6 8 10 12 14 16

P
R

X
 in

 d
B

m

-80

-70

-60

-50

-40

-30

-20

measurement
path-loss only model

Figure 2.2: Measured received power in dBm with respect to TX-RX Euclidean distance.
The estimated deterministic path-loss parameters are L̂0 = −19.88 dB and η̂ = 3.65. The
path-loss only model ignoring any present spatial correlation is plot in red.
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Figure 2.3: Empirical pdf of zero-mean measurements yc plot in blue bars. A Gaussian
approximation is plot in red.
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Figure 2.4: Recorded received power in dBm for different TX and RX positions. The
RX moved perpendicular to the TX starting at TX position 6.5 m. Measurements have
been spatially averaged to remove small-scale fading.

where n ∼ N (0, σ2
n) and σ2

n is the measurement noise variance. In order to make (2.2)
applicable, we need to ensure multi-path is not present in y. For this, we have performed
spatial averaging over a distance of 0.4 m along the RX trajectory. Assuming now (2.2)
holds, we can determine the channel constants collected in a vector α = [L0, η]T via
least-squares (LS) estimation with solution

α̂ = (FTF )−1FTy, (2.4)

where y = [y1, y2, . . . , yN ]T, F = [1N ,−d], d = 10[log10 ‖qTX,1 − qRX,1‖, log10 ‖qTX,2 −
qRX,2‖, . . . , log10 ‖qTX,N − qRX,N‖]T and 1N is a column vector with N ones. From

our measurements we have obtained L̂0 = −19.88dBm and η̂ = 3.65. The model (2.2)
is plot in red in Fig. 2.2 using the estimated parameters. In (2.2), shadowing Ψ is
assumed Gaussian with variance σ2

Ψ. To verify this is true, we first obtain the zero mean
measurements by

yc = y − Fα̂, (2.5)

and then investigate its probability density function (pdf). In Fig. 2.3, we have plotted
the empirical pdf of yc together with a Gaussian fit, where we found Ψ ∼ N (0.04, 6.882).1

From the figure, we observe that shadowing is not exactly Gaussian distributed. It has
a positive skewness but, with respect to accuracy and complexity of the channel model,
a Gaussian approximation may still be reasonable.

For a static propagation environment and homogeneous TX and RX units, the trans-
mission channel can be considered reciprocal [23]. This means if the role of TX and RX

1Note, since σ2
n in (2.3) is in general very low compared to σ2

Ψ, we have omitted it here and therefore
making it a part of σ2

Ψ.
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Figure 2.5: Left: The Gudmundson correlation model considers wireless communication
links between different RX locations for a common TX location. Right: An ad-hoc
correlation model needs to consider wireless communication links where the TX locations
differ as well.

units is interchanged, the instantaneous channel characteristics remain the same. In (2.2),
the part due to path-loss only depends on the distance between TX and RX and is there-
fore independent of the TX/RX roles. The second part of (2.2) models shadowing and
to ensure channel reciprocity holds we need to ensure that Ψ(qTX,qRX) = Ψ(qRX,qTX)
(c.f. [9, 22]).

Shadowing is, in general, spatially correlated, i.e., RX locations which are spatially
close to each other experience similar shadow fading. For instance, if the TX-RX propa-
gation path is blocked at one RX location, it may be also blocked at close-by RX locations
with respect to the obstacle dimensions. This can be observed in Fig. 2. In the figure,
the RX position indicates the position along the RX trajectory shown in Fig. 2.1 and
similarly for the TX position. A line-of-sight (LOS) situation occurs when the RX is
around 6.5 m resulting in high received signal power. For RX positions more distant
than 6.5 m a non-LOS (NLOS) situation occurs due to the blockage from the wall.

For a common TX endpoint qTX ∈ W, a well-known correlation model is the Gud-
mundson model for different RX locations qRX,i,qRX,j ∈ W [24]. This case is illustrated
in Fig. 2.5a. The covariance between RX i and j with zero-mean measurements yc,i and
yc,j follows an exponential decay, i.e.,

CGij (dij) = E[yc,iyc,j ] = σ2
Ψ exp

(
−dij
dc

)
, (2.6)

where dij = ‖qRX,i − qRX,j‖ and dc is the decorrelation distance. In Fig. 2.6a, the
covariance under this model is plotted as a function of the distance between the RXs.
The parameters σΨ = 6.882 and dc = 3.51 have been used.

This model can be extended to account for ad-hoc communication links with non-
common TX endpoints qTX,i,qTX,j ∈ W (see, for example [25, 26]), under the assump-
tion that the TX–RX distance is large compared to the displacement between the TX
endpoints and the RX endpoints. This case is illustrated in Fig. 2.5b. The covariance
under this model becomes [25]

CWij (dTX,ij , dRX,ij) = E[yc,iyc,j ] = σ2
Ψ exp

(
−dTX,ij

dc

)
exp

(
−dRX,ij

dc

)
, (2.7)
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Figure 2.6: Top: covariance (2.6) as a function of distance dij between RX i and RX j.
Bottom: covariance (2.7) as a function of the distances dTX,ij and dRX,ij . The following
parameters have been used: σΨ = 6.88 and dc = 3.51 m.

where dTX,ij = ‖qTX,i−qTX,j‖ and similarly for the RX. In Fig. 2.6b, the covariance un-
der this model is plotted as a function of the distances between the TXs and the distance
between the RXs. For brevity, we omit a discussion on the validity of these correlation
models and instead refer the reader to [24–26]. Note, both presented models only depend
on the distances between the link endpoints thus maintaining channel reciprocity.

Next, we will exploit the spatial correlation for channel gain prediction, where we
make use of the channel model (2.2) together with the shadowing correlation model
(2.7).
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Chapter 3

Gaussian Process Regression

In this chapter, we introduce the GP based channel prediction framework. First, we
define the GP model and address then the two important phases of GPs: (i) learning
of the underlying model parameters, and (ii) prediction of a (non-linear) function at an
unvisited location with the help of a measurement database. In general, the prediction
phase makes use of the full measurement database, which is not practical in a C-MAS
setting, where each agent has only access to its own local measurement database. For
this reason, we adapt the centralized GP prediction allowing a distributed prediction in
a wireless network using a consensus scheme. Finally, we make use of the GP framework
in the context of channel prediction addressing both, the learning phase to determine the
underlying channel parameters from measurements, and the prediction phase allowing to
predict the wireless ad-hoc channel between arbitrary transmitter and receiver locations.

3.1 Standard Gaussian Process

3.1.1 Model

According to [27], a Gaussian process is defined as a probability distribution over func-
tions f(x) such that the set of values f(x) evaluated at an arbitrary set of points
x1,x2, . . . ,xN jointly have a Gaussian distribution.

We write the GP of a real stochastic process f(x) with input x ∈ RD as [19]

f(x) ∼ GP(µ(x), k(x,x′)) (3.1)

with mean function

µ(x) = E[f(x)] (3.2)

and covariance function (also called kernel function)

k(x,x′) = E[(f(x)− µ(x)(f(x′)− µ(x′)]. (3.3)
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Many choices of kernel functions are available of which the γ-exponential family is com-
monly selected. It is given by [19]

k(x,x′) = exp

(
−
(‖x− x′‖

l

)γ)
(3.4)

for 0 < γ ≤ 2, where the exponential kernel is obtained for γ = 1 and the squared
exponential kernel for γ = 2. A necessary and sufficient condition for a kernel to be valid
is that the resulting Gram matrix K with entries Kij = k(xi,xj), ∀xi,xj is positive
semidefinite [27]. A way of constructing valid new kernels is to combine valid (simpler)
kernels following some rules. As an example, consider two valid kernels k1(x,x′) and
k2(x,x′). Then valid kernels are constructed by [27]

k3(x,x′) = ck1(x,x′), (3.5)

k4(x,x′) = k1(x,x′) + k2(x,x′), (3.6)

k5(x,x′) = k1(xa,x
′
a)k2(xb,x

′
b), (3.7)

where c > 0 is a positive constant and x = [xT
a ,x

T
b ]T (not necessarily disjoint). There

exist more rules to construct valid kernels, but rules (3.5), (3.6), and (3.7) will turn out
to be sufficient for our studies.

In order to apply GPs for regression, we need to take the noise on the observed
function values into account. The measurement is given by

y = f(x) + n, (3.8)

where we assume n ∼ N (0, σ2
n). The GP model parameters are collected in a vector θ

and comprise the parameters of the mean function µ(x), the kernel function k(x,x′), as
well as the measurement noise standard deviation σn.

The joint distribution of measurements y = [y1, y2, . . . , yN ]T and inputs
X = [x1,x2, . . . ,xN ] is Gaussian with

p(y|X,θ) = N (µ(X),C), (3.9)

where µ(X) = [µ(x1)T,µ(x2)T, . . . ,µ(xN )T]T andCij = Kij+1{i=j}σ2
n. Here, 1{I=J} =

1 for I = J and 0 otherwise. The measurement database comprising all N measurements
is denoted by D = {X,y}. With D, the GP model parameters θ can be learned. Once
the learning phase is complete, the function value f(x∗) for an arbitrary input x∗ can
be predicted. Learning and prediction phase are explained next.

3.1.2 Learning Phase

Here, we are interested in estimating θ from D. An estimator for θ is obtained by
minimizing the negative log-likelihood with respect to θ. It can be written as

θ̂ = arg min
θ
{− log p(y|X,θ)} (3.10)

∝ arg min
θ

{
log |C|+ (y − µ(X))TC−1(y − µ(X))

}
, (3.11)
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where C and µ depend on θ. Note that the negative log-likelihood is in general non
convex. For this reason, we decided to use a global search to find the optimal θ. Our
approach is outlined in Sec. 3.4.1.

Although a global search is optimal, it comes with the drawback of a high compu-
tational cost. A computationally more attractive approach is to perform a local search
via a gradient based method. In [28], it is pointed out that such an approach often leads
to a local minimum which might not explain the data well. This can be impeded by
performing an a posteriori (MAP) estimation over the hyperparameters instead of max-
imum likelihood (ML) estimation. In this way, the prior on the hyperparameters will
act as a regularization term such that unlikely hyperparameters will not lead to a local
minimum. Since we assume there is no prior knowledge on θ available, we cannot follow
this approach here.

3.1.3 Prediction Phase

With the GP model parameters θ and the training database D at hand, we are ready
to determine the predictive distribution of f(x∗) for the arbitrary input x∗. It is given
by [19]

p(f(x∗)|D,θ) = N (m(x∗), σ
2(x∗)) (3.12)

with mean
m(x∗) = µ(x∗) + kTC−1(y − µ(X)) (3.13)

and variance
σ2(x∗) = k∗∗ − k∗C−1kT

∗ , (3.14)

where k∗∗ = k(x∗,x∗) and k∗ = [k(x1,x∗), k(x2,x∗), . . . , k(xN ,x∗)]T.

3.2 Gaussian Process with Uncertain Inputs

So far, we have considered the input x of a GP to be known and hence deterministic. In
practice, this is seldom the case. Consider for instance that x represents the position of
an agent. This quantity needs to be estimated from (noisy) measurements and therefore,
we need to model it as a random variable. Then, the earlier presented GP framework,
which considers x to be deterministic, cannot be applied anymore.

To see this, consider x∗ ∼ N (u∗,Σx∗). The predictive distribution f(u∗) is obtained
by [29]

p(f(u∗)|D,u∗,Σx∗ ,θ) =

∫
p(f(x∗)|D,x∗,θ)p(x∗|u∗,Σx∗)dx∗, (3.15)

which is not Gaussian anymore since

p(f(x∗)|D,x∗,θ) =
1√

2πσ2(x∗)
exp

(
− (f(x∗)−m(x∗))2

2σ2(x∗)

)
, (3.16)

which is nonlinear in x∗. Following [28, 29], we can approximate the predictive distribu-
tion by a Gaussian

p(f(u∗)|D,u∗,Σx∗ ,θ) ≈ N (m(u∗), σ
2(u∗)) (3.17)
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and compute its expected moments instead. The expected mean function can be obtained
by computing the expectation with respect to the location uncertainty

m(u∗) =

∫
µ(x∗)p(x∗)dx∗ (3.18)

and the expected covariance function can be obtained by

Kij =

∫∫
k(xi,xj)p(xi)p(xj)dxidxj , for i 6= j, (3.19)

Kii =

∫
k(xi,xi)p(xi)dxi, for i = j. (3.20)

Note, for the special case of the squared exponential kernel, where γ = 2 in (3.4) and
p(x∗) is Gaussian, closed form expressions for the expected moments exist. Furthermore,
uncertainty in the input x∗ not only occurs in the prediction phase as we have highlighted
here. Also uncertainty in the training setX might be present, which affects both learning
of the model parameters and prediction. For ease of discussion, we omit the implications
of uncertainty in the training set. However, we address this in detail in the appended
Papers A and B.

3.3 Distributed Gaussian Process

Here, we focus on distributed prediction over multiple agents which are all part of a
connected (wireless) communication network. Assume all I agents know θ and x∗. Ad-
ditionally, each agent i has a local database Di such that D =

⋃I
i=1Di. Furthermore,

assume there is no overlap between the databases such that |D| =
∑I
i=1 |Di|. Then, in

general

p(f |D) = p(Di|D1,D2, . . . ,Di−1,Di+1, . . . ,DI , f)

× p(D1,D2, . . . ,Di−1,Di+1, . . . ,DI |f)p(f), (3.21)

where we have omitted the terms x∗ and θ for readability. For an efficient distributed
prediction, we want that each agent only needs access to its own database. Therefore we
perform the following approximation similar to [30]

p(Di|D1,D2, . . . ,Di−1,Di+1, . . . ,DI , f) ≈ p(Di|f). (3.22)

According to [30], this is in general not true, but it might be a good approximation if
the correlation among the databases is low. This can be achieved if mobile agents collect
measurements for building their local database Di for every agent i in geographically
non-overlapping regions or, as pointed out by [30], by clustering the database D and
assigning each database cluster Di to a different agent i. We then have

p(f |D) ∝ p(f)

I∏
i=1

p(Di|f), (3.23)
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which yields after applying Bayes’ rule

p(f |D) ∝
∏I
i=1 p(f |Di)
p(f)I−1

, (3.24)

where p(f) is the a priori predictive pdf at the test input x∗ with mean µ(x∗) and variance
k∗∗, i.e., without a training database. Since all distributions involved are Gaussian, the
moments of the right hand side of (3.24) can be computed exactly in a distributed manner
using neighbor communication only through a consensus scheme [21].

We know p(f |Di) = N (mi(x∗), σ2
i (x∗)), where we have used (3.13) and (3.14), and

similarly for the a priori pdf p(f) = N (ma(x∗), σ2
a(x∗)), where in this case Di = ∅.

Since the product of a Gaussian pdf is proportional to a Gaussian, and so is the ratio of
two Gaussian pdfs 1 , we can rewrite (3.24) by

p(f |D) ∝ Nf (µn, σ
2
n)

Nf (µd, σ2
d)

(3.25)

with

µn =

∑I
i=1 σ

−2
i (x∗)mi(x∗)∑I

i=1 σ
−2
i (x∗)

, (3.26)

σ2
n =

(
I∑
i=1

σ−2
i (x∗)

)−1

, (3.27)

µd = ma(x∗) (3.28)

σ2
d =

σ2
a(x∗)
I − 1

, (3.29)

such that
p(f |D) ∝ Nf (µpost, σ

2
post) (3.30)

with

σ2
post =

1

σ−2
n + σ−2

d

, (3.31)

µpost = σ2
post

(
σ−2

n µn − σ−2
d µd

)
. (3.32)

A distributed computation of (3.24) is achieved in the following way. Each agent com-
putes locally first the denominator of (3.24), i.e., the product of the prior pdfs. Then, to
compute the numerator of (3.24) we use average consensus [21]. In doing so, we initialize
the variables

α
(0)
i = Iσ−2

i (x∗)mi(x∗), (3.33)

β
(0)
i = Iσ−2

i (x∗) (3.34)

1Note that, Nf (µ1,Σ1)Nf (µ2,Σ2) ∝ Nf
((

Σ−1
1 + Σ−1

2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
,
(

Σ−1
1 + Σ−1

2

)−1
)

and
Nf (µ1,Σ1)

Nf (µ2,Σ2)
∝ Nf

((
Σ−1

1 − Σ−1
2

)−1 (
Σ−1

1 µ1 − Σ−1
2 µ2

)
,
(

Σ−1
1 − Σ−1

2

)−1
)

[30].
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Figure 3.1: MSE versus size of the database per agent for a total database size of 1, 000.
The figure is taken from appended Paper C.

for each agent i. The superscript of α and β denote the iteration step of the consensus
algorithm, where

γ
(l)
i = [α

(l)
i , β

(l)
i ]T (3.35)

and the consensus update rule

γ
(l+1)
i = γ

(l)
i + κ

∑
j∈Ni

(γ
(l)
j − γ

(l)
i ) (3.36)

is applied. Here, κ > 0 is a small step-size depending on the communication graph and
Ni denotes the neighborhood set of agent i. In this way, we have ensured that

α
(∞)
i =

I∑
i=1

σ−2
i (x∗)mi(x∗) (3.37)

and

β
(∞)
i =

1

σ2
n

, (3.38)

allowing to retrieve (3.26) and (3.27).

Due to the assumption of independent databases Di, the prediction quality is deterio-
rated with respect to the fragmentation of D. In Fig. 3.1 the mean squared error (MSE)
between the centralized (I = 1) and the distributed case (I > 1) is plotted for different
number of measurements per agent. Implementation and simulation details can be found
in appended Paper C.
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3.4 GP Regression for Channel Gain Prediction

Here, we are interested in modeling the received signal power (in dBm) as a GP with
inputs x = [qT

TX, q
T
RX]T consisting of the TX location qTX ∈ W and the RX location

qTX ∈ W, respectively. Then

PRX(x) ∼ GP(µcGP(x), ccGP(x,x′)). (3.39)

The mean µcGP(x) is obtained by computing the expectation of (2.2) with respect to the
large-scale fading Ψ(x), yielding

µcGP(x) = L0 − 10η log10 ||qTX − qRX||2. (3.40)

Under the assumption that spatial channel correlation is isotropic, it can be characterized
by the Euclidean distance dTX between the TX locations of two communication links x
and x′, and by their RX distance dRX, respectively. This relationship is illustrated in
Fig. 3.2. Therefore we define the covariance function

k(x,x′) = σ2
Ψ exp

(
−d

γ
TX

dγc

)
exp

(
−d

γ
RX

dγc

)
+ 1{x=x′}σ

2
proc, (3.41)

where dTX = ‖qTX − q′TX‖, dRX = ‖qRX − q′RX‖, parameter σ2
Ψ denotes the variance

of the shadowing process, and parameter σ2
proc is the variance of an additional white

noise process able to model fluctuations of PRX, which cannot be explained by spatial
correlation and measurement noise only. This could, for instance, be a model mismatch
with respect to real measurements. The parameter dc is the decorrelation distance. For
γ = 1 we have the model of [25], and if one of the link endpoints distance is zero, which
is the case if qTX = q′TX or qRX = q′RX, we obtain the Gudmundson model [24]. Note
that kernel (6) is constructed from the γ-exponential family (3.4) by making use of the
kernel construction rules (3.5), (3.6), and (3.7).

Assuming the noise power σ2
n is known, the hyper-parameter vector is

θ = [L0, η, σΨ, σproc, dc]
T. (3.42)



20 Gaussian Process Regression

3.4.1 Learning Phase

As pointed out in Sec. 3.1.2, learning the hyperparameter vector θ can be challenging.
We therefore perform a simpler sub-optimal two-step approach [20, 31]. First, we perform
a least-squares estimation on the deterministic path-loss parameters L0 and η:

L̂0, η̂ = arg min
L0,η

N∑
i=1

(yi − (L0 − 10η log10 ‖qTX,i − qRX,i‖))2
(3.43)

leading to the closed-form expression (2.4). Following that, a ML estimation using the
zero-mean measurements yc = [yc,1, yc,2, . . . , yc,N ]T is performed to find the remaining
hyperparameters σΨ, σproc and dc. The zero-mean measurements yc are obtained by
(2.5). The ML estimation solves

σ̂Ψ, σ̂proc, d̂c = arg min
σΨ,σproc,dc

{
log |C|+ yT

c C
−1yc

}
, (3.44)

where we have used a global search to find the shadowing hyperparameters similar to [20].

3.4.2 Prediction Phase

With the estimated hyperparameter vector θ, channel gain prediction can be performed
as explained in Sec. 3.1.3. In doing so, the mean function (3.40) and the kernel function
(3.41) are used.

3.4.3 Incorporation of Channel Reciprocity

The GP framework as introduced previously does not consider channel reciprocity per se.
The reason for this is that, through the definition of the input vector x = [qT

TX, q
T
RX]T,

an implicit ordering has been introduced. There are several ways how channel reciprocity
can be ensured: by applying an operator on the input vector x to make it independent
on the link direction, by modifying the kernel function, or by extending the measurement
database by its reciprocal counterpart. In our work, we have chosen the latter approach,
where for every measurement yi recored at TX-RX location pair xi an additional entry
in the database D is made with the same measurement, but where the role of TX and
RX are interchanged in xi.



Chapter 4

Application: Optimal Router
Configuration Under Location
Uncertainty

In this chapter, we apply the developed GP based channel prediction framework in a
network context. In particular, we minimize the bit error rate (BER) along a given
communication path. Consider the exemplary communication network outlined in Fig.
4.1, where there is a control center (CC), a mobile search-and-rescue robot (SR) and
several mobile support robots acting as communication relays, which allow to increase
the operating range of the search-and-rescue robot. Thanks to our channel prediction
framework, optimal locations of each of the communication relays can be found such that
the BER from CC to SR is minimized. Since every robot knowns its own location only
with limited accuracy provided by its sensors, we need to consider this in the channel
prediction framework as it has been introduced in Sec. 3.2.

4.1 Model

Consider L agents (robots) operating in the workspace W. The agents build a commu-
nication network, which can be described by a graph G = (V,E) with the agents as
vertices V and the wireless communication between them modeled as edges E ⊂ V × V .
Assuming reciprocal channels, each edge (communication link) consists of a TX located
at qi−1 and a RX located at qi for i = 2, 3, . . . , L. An edge is then described by the
vector xi,i−1 = [qT

i−1, q
T
i ]T. The set of all valid configurations is denoted X ⊂ W. For

the sake of brevity, we omit here the case when robots locations are uncertain. Instead,
we refer the reader to appended Paper A.

We are now ready to present the optimization objective. The BER can be defined as
the probability that the received bit at agent i does not correspond to the transmitted
bit at agent i− 1. It is denoted Pb(i|i− 1). Assuming additive white Gaussian noise and
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Figure 4.1: Communication network between a search-and-rescue robot SR, relay robots
2, 3 and 4, and the command center CC. Each of the mobile robots has some location
uncertainty illustrated by the gray error ellipses. This needs to be modeled in the channel
prediction to achieve the higher level task such as, e.g., maximizing the communication
quality.

quadrature amplitude modulation with M bits per symbol (MQAM) the BER between
robot i and i− 1 can be approximated by [9]

Pb(i|i− 1) ≈ 0.2 exp(−cγi,i−1), (4.1)

where c = 1.5/(M − 1), M is the constellation size, and γi,i−1 is the signal-to-noise ratio
(SNR) between TX i − 1 and RX i. Following [32], instead of minimizing the BER, we
maximize the probability of correct reception Pc(i|i− 1) = 1−Pb(i|i− 1). For the whole
network this yields

Pc ≈
L∏
i=2

Pc(i|i− 1) (4.2)

assuming the communication graph is a chain as illustrated in Fig. 4.1. Note that, bit
flips leading to a correct reception are not considered and hence (4.2) acts as a lower
bound on the probability of correct reception. Then, (4.1) combined with (4.2) yields
the objective

J(X) =

L∏
i=2

(
1− 0.2Eγi,i−1 [exp(−cγi,i−1)]

)
, (4.3)

which we seek to maximize over the locations X = [x2,x3, . . . ,xL]. Here, we have
assumed the communication links to be independent and the expectation is due to the
fact that SNR γi,i−1 is a random variable. The expectation cannot be solved analytically,



4.2 Results 23

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

true BER

cd
f

cGP (Nr = 1)

uGP (Nr = 1)

cGP (Nr = 2)

uGP (Nr = 2)

Figure 4.2: The cdf of the achieved end-to-end BER is plot for a multi-relay communi-
cation with cGP and uGP. The figure is taken from appended Paper A.

but a tight approximation exists (c.f. appended Paper A). The resulting optimization
problem is

maximize
X∈X

J(X). (4.4)

4.2 Results

In Fig. 4.2, the cumulative distribution function (cdf) of the true achieved BER for one
(Nr = 1) and two (Nr = 2) relay robots is plotted for the case of using the GP based
predictor, which is denoted cGP in the figure. Solving (4.4), when location uncertainty
of the agents is explicitly modeled as highlighted in Sec. 3.2, leads to an improved
performance with respect to the experienced BER. This case is denoted by uGP in the
figure. Note that in the case of cGP, the true experienced BER is less with only one relay
(Nr = 1) compared to using two relays (Nr = 2). This seems odd, especially since the
inter-robot distance is less. The reason for this is the following. After solving (4.4), the
optimal locations of the robots are found but once they steer to their optimal location,
they will not exactly end up at this location due to the robots location uncertainty.
Hence the true BER is different. This phenomenon is more pronounced with more relay
robots having more sources of location uncertainty. For uGP this is not an issue, since
any location uncertainty of the robots has been considered in solving (4.4).
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Chapter 5

Contributions

Included Publications

1. Paper A: “Channel Prediction with Location Uncertainty for Ad-Hoc Net-
works”
Multi-agent systems (MAS) rely on positioning technologies to determine their physi-
cal location, and on wireless communication technologies to exchange information.
Both positioning and communication are affected by uncertainty, which should be
accounted for. This paper considers an agent placement problem to optimize end-to-
end communication quality in a MAS, in the presence of such uncertainties. Using
Gaussian processes (GPs), operating on the input space of location distributions, we
are able to model, learn, and predict the wireless channel. Predictions, in the form of
distributions, are fed into the communication optimization problems. This approach
inherently avoids regions of the workspace with high position uncertainty and leads to
better average communication performance. We illustrate the benefits of our approach
via extensive simulations, based on real wireless channel measurements. Finally, we
demonstrate the improved channel learning and prediction performance, as well as the
increased robustness in agent placement.

2. Paper B: “Channel Gain Prediction for Multi-Agent Networks in the
Presence of Location Uncertainty”
Coordination among mobile agents relies on communication over a wireless channel
and can thus be improved by channel prediction. We present a Gaussian process
framework to learn channel parameters and predict the channel between arbitrary
transmitter and receiver locations. We explicitly incorporate location uncertainty in
both learning and prediction phases. Simulation results show that if location uncer-
tainty is not modeled appropriately, it has a degenerative effect on the prediction
quality.

3. Paper C: “Distributed Channel Prediction for Multi-Agent Systems”
Multi-agent systems (MAS) communicate over a wireless network to coordinate their
actions or to report their mission status. Connectivity and system-level performance
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can be improved by channel gain prediction. We present a distributed Gaussian
process regression (GPR) framework, suitable for MAS. The framework combines a
Bayesian Committee Machine with an average consensus scheme, thus distributing
not only the memory, but also computational and communication loads. Through
Monte Carlo simulations, we demonstrate the performance of the proposed GPR.
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