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ABSTRACT

Hepatocellular carcinoma (HCC) has a high mortal-
ity rate and early detection of HCC is crucial for the
application of effective treatment strategies. HCC is
typically caused by either viral hepatitis infection or
by fatty liver disease. To diagnose and treat HCC
it is necessary to elucidate the underlying molecu-
lar mechanisms. As a major cause for development
of HCC is fatty liver disease, we here investigated
anomalies in regulation of lipid metabolism in the
liver. We applied a tailored network-based approach
to identify signaling hubs associated with regula-
tion of this part of metabolism. Using transcrip-
tomics data of HCC patients, we identified significant
dysregulated expressions of lipid-regulated genes,
across many different lipid metabolic pathways. Our
findings, however, show that viral hepatitis causes
HCC by a distinct mechanism, less likely involving
lipid anomalies. Based on our analysis we suggest
signaling hub genes governing overall catabolic or
anabolic pathways, as novel drug targets for treat-
ment of HCC that involves lipid anomalies.

INTRODUCTION

The incidence of hepatocellular carcinoma (HCC) contin-
ues to increase worldwide, and lack of early detection and
treatment causes a major burden for the health care sec-
tor (1). This highly lethal cancer rarely shows symptoms
at an initial stage, and it is therefore difficult to detect at
an early stage (2). Moreover, there is no effective means of
treatment (3) due to its unknown pathogenic mechanism.
Furthermore, HCC is a highly recurring cancer even after
liver resection (2).

Several lines of evidence imply that lipid anomalies un-
derlie HCC pathogenesis: increasing risks in patients with
obesity (4), diabetes (5) and hepatic steatosis (6). Also, in-
creased de novo lipogenesis in tumor samples (7) substan-

tiates lipid anomaly underlying its pathogenesis. This has
prompted to develop genetic or metabolic markers relevant
to lipid metabolism for detection of HCC (8–10). However,
the complex manner of lipid regulation impedes the identi-
fication of genes responsible for lipid anomalies in HCC.

The liver has a key role in lipid metabolism and
in maintaining plasma lipoprotein homeostasis by lipid-
sensing regulators and lipid-regulating enzymes. Peroxi-
some proliferator-activated receptors (PPARs), members of
the nuclear receptor superfamily, serve as hepatic lipid sen-
sors and govern intrahepatic lipid metabolism by control-
ling enzymes involved in lipid metabolism through signaling
events (11,12). Enzymes of lipid metabolism catalyze reac-
tions in the beta-oxidation of fatty acids, de novo lipogenesis,
lipid droplet formation and lipid uptake or secretion (12).
Signal transductions enable controlling the level of enzymes
in lipid metabolism based on sensed intracellular lipid level
and hereby produce lipids required by the cell or degrada-
tion of excess fatty acids. However, signaling proteins medi-
ating the communication between sensors and transcription
factors controlling expression of enzyme encoding genes re-
main to be elucidated despite their mechanistic importance.
This lack of knowledge is due to the complex and massive
nature of signaling networks.

Despite much knowledge about signaling networks,
a lack of a tailored network approach delays detec-
tion of implicated signaling genes, especially involved in
lipid metabolism. Unlike well-characterized genome-scale
metabolic models (GEMs) (13,14), analysis and simulation
of signaling networks poses a daunting challenge. Some
well-curated databases of signaling pathways provide only
limited signaling maps (15–17). However, recent large-scale
interactome data allow uncovering signaling events impli-
cated in various conditions (18–21), but underlying algo-
rithms have not accounted for the context of metabolic reg-
ulation. Thus, signaling genes involved in lipid anomalies
have not been examined in a comprehensive manner. Re-
cently, taking metabolic context into account, a novel hub-
ness, called bridgeness (22), allowed identification of signal-
ing hub genes linking bile acid sensors and bile acid en-
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zymes. Unlike other hubness measures that count overall
connectivity in a network, bridgeness focuses on genes hav-
ing connectivity within designated signaling paths, such as
paths between metabolic regulators and enzymes. Its for-
mula also showed the possibility to identify important sig-
naling genes implicated in other parts of metabolism.

Here, we applied a tailored network-based approach to
investigate lipid-regulating genes, signaling hub genes and
enzymes, in HCC. Based on an integrated signaling net-
work, which combines both curated signaling pathway data
and large-scale interactome data, we first identified signal-
ing hub genes involved in various lipid metabolic pathways
in the liver. Investigating RNA-seq data of HCC patients,
from a large genomic data repository of cancer patients, The
Cancer Genome Atlas (TCGA), we examined dysregulated
expressions of lipid-regulated genes, across all lipid path-
ways. Also, comparing HCC patients having a viral hepatitis
factor, we attempted to distinguish pathogenic mechanism
of viral hepatitis from lipid anomalies. Finally, harnessing
the power to identify implicated signaling hub genes, we
proposed signaling hub genes governing overall catabolic or
anabolic pathways that could be new potential drug targets
for treatment of HCC.

MATERIALS AND METHODS

Identifying signaling hubs, based on an integrated network
and a curated metabolic model

In order to establish a comprehensive signaling network, six
BioPAX (23)-formatted databases were integrated by using
the Java library Paxtools (24) (the first step in Supplemen-
tary Figure S1). By Paxtools, all databases were merged and
converted into ‘Single Interaction Format (SIF)’, suited for
topological analysis, by ‘Level 3’ rules, which are sets of
terms describing types of biomolecular interactions, with-
out indirect interaction rules like ‘Consecutive Catalysis
Rule’, ‘Controls Together Rule’ and ‘Metabolic Catalysis’
of ‘Control Rule’. During integration, we excluded inter-
actions containing small molecules in order to find only
macromolecular hubs, i.e. genes. Also, ‘generic’ molecules,
which are defined by generic name and thus not mapped
with unique molecule IDs, were excluded during integra-
tion. Basically, this network is a directed network, combined
with unidirectional interactions (e.g. transcriptional regu-
lation) and bidirectional interactions (e.g. protein–protein
interaction). An integrated network with SIF-format was
imported into a network object of the igraph R package
(25), with annotations of lipid sensors and enzymes in the
network and through this object its network characteristics
such as shortest path length were analyzed (the third step in
Supplementary Figure S1). To quantify how a given protein
links between sensors and enzymes we used a hubness score
that was formalized using a previously developed measure,
bridgeness (22). We applied a bridgeness measure on all
genes in the integrated network, using a shortest path infor-
mation generated by igraph. Finally, based on a high bridge-
ness, we selected top-100 hub genes between given pathway
enzymes and sensors, regarding them as signaling hubs of a
given lipid pathway (the fourth step in Supplementary Fig-
ure S1). In addition, we excluded genes not-mapped having
an Entrez gene ID from signaling hub candidates because

of difficulties with follow up studies when the gene does not
have a unique ID (e.g. gene expression analysis).

Taking only free fatty acids (FFAs) and eicosanoids
into consideration, we selected (or reconstructed) 37 lipid
metabolic pathways (i.e. subsystems) having those lipids as
substrates of their reactions from a curated liver GEM,
iHepatocyte2322 (13) (the second step in Supplemen-
tary Figure S1). Enzymes with their corresponding lipid
metabolic pathways were obtained from iHepatocyte2322
by a Java library, JSBML (26). Focusing on only lipid
metabolism, we reconstructed a new lipid-specific ‘Pool re-
actions’ pathway, by selecting enzymes of reactions pooling
FFAs: a list of FFAs was obtained from fatty acids con-
tained in ‘NEFA blood pool’ and ‘SMCFA blood pool’ in
the model. Likewise, we reconstructed a ‘Transport, FFA’
pathway, by selecting enzymes transporting FFAs. In case of
reconstructing a ‘Transport, Pool’ pathway, enzymes trans-
porting FFA-containing pool metabolites, shown in ‘Pool
reactions’ pathway, were used. These three lumped path-
ways were also included in the analysis.

Comparison to known signaling genes in existing curated
pathway databases

We collected information about known signaling genes of
PPAR or nuclear receptor pathways from the Reactome
and BioCarta databases through the MSigDB repository
(27). We aggregated the top-100 signaling hubs for the 37
lipid metabolic pathways described above and compared
those hubs with signaling genes of PPAR or nuclear recep-
tor pathways by hypergeometric tests. We also identified the
top-100 hubs in the integrated network by degree, closeness
and betweenness, and compared them with the signaling
genes by hypergeometric tests.

Comparison to lipid anomaly genes

We first collected lipid anomaly genes from a human
phenotype ontology (HPO) database (28). From abnor-
mal phenotype-to-gene mappings provided in the database,
genes that are mapped to ‘Abnormality of lipid metabolism’
(HP: 0003119) were selected as lipid anomaly genes (Sup-
plementary Table S1). To test the statistical significance of
overlap between lipid anomaly genes and signaling hubs or
enzymes, we only used lipid anomaly genes that are shown
in the integrated network. Considering all genes in the net-
work as background, we examined the statistical signifi-
cance of overlap using a hypergeometric test. Also, we used
enzymes that are shown in the integrated network, for com-
parison between lipid anomaly genes and enzymes.

Comparison to genes associated with tissue-specific pheno-
types

For comparison, we collected genes associated with tissue-
specific phenotypes from the phenotype-to-gene mapping
table of HPO database (28). For liver tissue, genes associ-
ated with ‘Abnormality of the liver’ (HP:0001392), for bone
marrow tissue, those with ‘Abnormality of bone marrow
cell morphology’ (HP:0005561), and for kidney tissue, those
with ‘Abnormality of the kidney’ (HP:0000077) were se-
lected and compared with tissue-specific signaling hubs. To
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select tissue-specific signaling hubs, we first identified sig-
naling hubs of 37 lipid metabolic pathways from the generic
human GEM (HMR v2.0) and tissue-specific GEMs for
liver, bone marrow and kidney (13,29) over the same in-
tegrated network. Then, across lipid metabolic pathways
for each tissue-specific GEM, we obtained corresponding
tissue-specific signaling hubs by excluding signaling hubs
that can be identified by tissue-specific GEM as well as
by generic human GEM. After identifying tissue-specific
signaling hubs by each metabolic pathway, we aggregated
those hubs and compared to genes associated with their cor-
responding tissue phenotypes by hypergeometric tests.

Pathway-level analysis of gene expressions

RNA-seq data of HCC patients were collected from the
TCGA database using the TCGA-Assembler (30): by giv-
ing patient TCGA IDs as an input to TCGA-Assembler,
we obtained gene-level RNA-seq data of corresponding pa-
tients (expression levels in terms of transcripts per million
(TPM)). After rounding off normalized values to integers,
we identified the significance of differential gene expres-
sions, as gene-level statistics, between tumor and matched
control samples by a negative binomial test using the DE-
Seq R package (31) (the fifth step of Supplementary Fig-
ure S1). Additionally, enriched gene ontology (GO) terms
of differentially expressed genes having adjusted P-value <
0.01 were examined by the BiNGO package (32). After cal-
culating P-values of all genes from negative binomial tests
we have compared log P-value distributions between back-
ground genes (i.e. all genes detected in RNA-seq data) and
signaling hubs or enzymes in a given lipid pathway (the sixth
step of Supplementary Figure S1). To compare P-value dis-
tributions, we conducted a one-sided Kolmogorov–Smirnov
(KS) test, using the built-in ‘stats’ package in R.

Based on the clinical information of TCGA RNA-seq
data, we classified RNA-seq data of HCC patients into two
groups, a group of HCC patients with viral hepatitis and
a group of HCC patients without viral hepatitis. RNA-seq
samples having no clinical information about their patient
status or medical history about viral hepatitis were excluded
in this stage. We examined differential expressions of tu-
mors between the two patient groups (HCC patients with
viral hepatitis and HCC patients without viral hepatitis).
Limma R statistical package (33) was used to normalize
corresponding TCGA RNA-seq data (Voom function (34))
and to calculate gene-level statistics of a factorial model
via design and contrast matrices. Making a factorial model
by the design and contrast matrices, with factoring sam-
ple conditions (i.e. tumors and controls) and sample sub-
groups (patients with viral hepatitis and patients without
viral hepatitis) in the model, we calculated Limma’s mod-
erated t-statistics for the difference of differential tumor
expressions (i.e. differential gene expressions between tu-
mors and matched controls) between HCC patients with
viral hepatitis and HCC patients without viral hepatitis.
From P-values of all genes calculated from the moderated
t-statistics, we compared log P-value distributions between
the background genes and lipid regulating genes, signaling
hubs or enzymes, of given lipid pathway by KS one-sided
tests. Next, we classified RNA-seq samples into three sub-

groups based on Pearson’s correlation coefficients of gene
expressions of samples by hierarchical clustering. By each
subgroup of RNA-seq samples, we re-examined differential
expressions of tumors between the two patient groups at the
gene- and pathway-level, like described above.

In-group specificity

Catabolic or anabolic signaling hubs were identified by in-
group specificity. On the basis of cosine similarity, hubness
vector (i.e. hubness scores across pathways) and specificity
vector of a given gene were used to formalize in-group speci-
ficity like below:

In-group specificity, G =
�H · �S

|| �H|| || �S|| (−1 ≤ G ≤ 1) ,

where hubness vector, �H = (H1, H2, . . . , Hn), Hi = a
bridgeness in a given pathway i, n = a number of all path-
ways and specificity vector, �S = (S1, S2, . . . , Sn) , Si =
{ 0, Pathway i /∈ a given group

1, i f Pathway i ∈ a given group
If the hubness vector of a given gene resembles the speci-

ficity vector of a certain group, thus showing high hubness
scores exclusively in that group, its in-group specificity tends
to be high. We analyzed in-group specificities on seed hub
genes, which were selected by averaged hubness scores in a
given group of pathway. We took 10% as criterion of select-
ing seed hub genes over genes shown in the integrated net-
work, except sensors, enzymes and genes not-mapped with
Entrez IDs.

RESULTS

Identification of signaling hubs of liver lipid metabolism

We identified signaling hub genes of liver lipid metabolism
that provide links between lipid-sensing regulators (PPAR-
�, �/� and � ) and lipid-regulated enzymes in liver (Fig-
ure 1A). We first established a comprehensive signaling net-
work by integrating databases of curated signaling path-
ways (PID (17), Panther (15) and Reactome (16)) and large-
scale interactomes (PhosphositePlus (35), HPRD (36) and
CORUM (37)), resulting in a network with 15 915 genes and
575 634 interactions (see network characteristics in Sup-
plementary Figure S2). Information about lipid enzymes
in the liver was taken from a well-curated GEM for liver
cells (iHepatocyte2322) (13): we chose lipid enzymes from
37 lipid metabolic pathways regulating free fatty acids or
eicosanoids, which are major lipids involved in PPAR sig-
naling (11,12,38). By each lipid metabolic pathway given we
separately identified signaling hub genes to corresponding
enzymes of the pathway. Based on a hubness tailored for
signaling hubs of metabolism called bridgeness (22), we se-
lected the top-100 genes from the integrated network, and
considered them as signaling hub genes of a given lipid
pathway (signaling hubs shown in Supplementary Table S2
and overall pipeline in Supplementary Figure S1). Unlike
other general hubness (e.g. betweenness), bridgeness is de-
signed to quantify a hubness within specific paths between
given sensors and enzymes and gives different scores to
same genes in the network according to given sensors and
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Figure 1. Signaling hubs of liver lipid metabolism. (A) Hub genes of signaling between lipid sensors (PPAR-�, �/� and � ) and lipid enzymes were identified
from an integrated signaling network. Hepatic lipid enzymes were chosen from a curated genome-scale metabolic model for liver cells, iHepatocyte2322 and
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enzymes of interest. For that reason, signaling hub genes
that we identified did not show high hubness in overall net-
work and thus mostly differ from general hub genes of the
network (ranks of the signaling hub genes in other general
hubness measures shown in Supplementary Figure S3). In-
triguingly, we found that known signaling genes of PPAR
or nuclear receptor pathways, which are known as actively
signaling in the liver (39), from canonical signaling pathway
databases (Reactome and BioCarta) were significantly over-
lapping with hub genes identified by bridgeness (hypergeo-
metric test P < 1 × 10−12), even more than hub genes iden-
tified by other general hubness measures (Table 1). Thus, we
confirmed that a tailored hubness, bridgeness was suitable
to identify signaling genes within specific paths, like paths
between lipid-sensing regulators, PPARs and lipid enzymes.

Some signaling hub genes we found were linked to many
lipid metabolic pathways extensively (Figure 1B). Based
on the number of involved lipid pathways, hub genes can
be classified into two kinds of hubs: global hubs and
local hubs. A total of 47 hub genes showed up in an
average of 33.9 of 37 lipid pathways (91.6%), and they
therefore represent global hubs (a black bracket region
in Figure 1B). Essential supporters of PPAR signaling––a
sort of nuclear receptor signaling––were most of global
hubs, including retinoid X receptors (PPAR heterodimers
(11)), histone deacetylases (40), and nuclear receptor co-
activators/-repressors (40). In accordance with the PPAR-
supporting molecular function, global hubs are enriched in
GO terms like ‘nucleoplasm’, ‘transcription regulator activ-
ity’ and ‘nuclear hormone receptor binding’ (adjusted p-
value: 6.0×10−27, 6.1×10−28 and 1.7×10−20, respectively).
On the other hand, local hub genes (total 391 genes) ap-
peared in an average of 5.38 lipid pathways (14.6%), with
showing the diverse spectrum of molecular functions. In-
terestingly, among local hubs are well-known lipid regu-
lators such as, sterol regulatory element-binding proteins
(SREBPs) (41), liver X receptor alpha (LXR�) (42) and
hepatocyte nuclear factor 4 alpha (HNF-4�) (43).

More intriguingly, we found that many hub genes are as-
sociated with abnormal lipid phenotype (Figure 1C and D).
We collected 94 genes involved in lipid anomalies (Supple-
mentary Table S1) from a HPO database, which compre-
hensively displays genes involved in abnormal human phe-
notypes, based on literature evidence (28). Hypergeometric
tests showed that lipid anomaly genes are significantly over-
lapping with signaling hubs (Figure 1C, P = 2.6 × 10−4) as
well as with lipid sensors (PPARs)/enzymes (Figure 1D, P
= 1.5 × 10−4). Thus, both lipid sensors/enzymes and signal-
ing hub genes are likely involved in lipid anomalies and may
also be involved in causing lipid anomalies in liver tissue.

In addition, we examined if the signaling hubs we identi-
fied from the integrated network, by bridgeness, were specif-
ically associated with liver tissue phenotype (Figure 1E and
Table 2). From HPO database we collected genes associated
with tissue-specific phenotypes, such as liver, bone marrow,
and kidney phenotypes, and compared them with identi-
fied signaling hubs. We chose bone marrow and kidney tis-
sues for comparison because they are metabolically distinct
from liver metabolism. For more specific comparison, we
selected liver-specific signaling hubs of lipid pathways that
can be identified by liver metabolism (i.e. iHepatocyte2322),
not by generic human metabolism (i.e. HMR v2.0) (Sup-
plementary Table S3). Interestingly, we observed that liver-
specific signaling hubs were significantly overlapping with
genes associated with liver phenotype (P-value < 0.05, Fig-
ure 1E), not with genes associated with bone marrow and
kidney phenotypes (P-values, 0.27 and 0.074, respectively,
see Table 2). For benchmarking, we also identified tissue-
specific signaling hubs of bone marrow and kidney based
on tissue-specific GEMs (29) (Supplementary Tables S4 and
S5), in a similar way that the liver-specific signaling hubs
were identified. We found that those tissue-specific signal-
ing hubs were significantly and specifically overlapping with
genes of the corresponding tissue phenotypes (Figure 1F
and G, Table 2), thus confirming that signaling hubs of liver
lipid metabolism identified by bridgeness were highly liver-
specific.

Dysregulated signaling hubs and enzymes in patients with
HCC

Aiming to investigate dysregulated lipid metabolism in
HCC, we analyzed gene expressions of lipid-regulating
genes, both signaling hub genes and lipid enzymes, in pa-
tients with HCC (Figure 2). We first gathered RNA-seq
data of 207 patients with HCC, from TCGA. Applying a
negative binomial test on the RNA-seq data using the DE-
Seq analysis package (31), we examined differential expres-
sions between 207 tumor samples and 49 matched control
samples from patients (see differentially expressed genes
(DEGs) (adjusted P-value < 0.01) in Supplementary Ta-
ble S6). Interestingly, among all the DEGs, the most highly
enriched GO terms (Supplementary Table S7) were lipid
metabolism-related terms (e.g. ‘carboxylic acid metabolic
process’), thereby reinforcing that lipid anomaly is a key
part of HCC pathogenesis.

We also examined expressions of lipid-regulating genes
at the pathway-level. For each lipid pathway we estimated
the statistical significance of differential expressions of sig-
naling hubs or enzymes. For the estimation, P-values of

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
classified into 37 lipid metabolic pathways. For every lipid pathway, we identified top-100 signaling hub genes separately. (B) Hub genes overlapping across
lipid pathways were shown in a heatmap. Each row indicates hub genes involved in a certain lipid pathway (if involved, they were colored as black). Most
of the largely overlapping genes, referred to as global hubs, were genes supporting nuclear receptor, including PPAR, signaling, such as RXRs, HDACs
and nuclear receptor (NR) co-activators/-repressors. Known lipid regulators, SREBPs, LXR� and HNF-4� were less overlapping and therefore referred
to as local hubs. Also, based on the HPO database, we examined whether hub genes (C) or sensors/enzymes (D) are associated with a lipid anomaly
phenotype and both hub genes and sensors/enzymes were significantly overlapped with known lipid anomaly genes in the database. Next, we examined
if (E) identified hub genes of liver lipid metabolism were specifically overlapping with gens associated with liver tissue phenotype. Likewise, we identified
signaling hubs of lipid metabolism in other tissues, such as (F) bone marrow and (G) kidney and compared them with genes associated with their tissue
phenotypes. Interestingly, those signaling hubs were significantly overlapping with their tissue phenotypic genes. Abbreviations: FA, fatty acid; FFA, free
fatty acid; UFA, unsaturated fatty acid; PUFA, poly-unsaturated fatty acid.
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Table 1. Overlap between signaling hubs we found and known signaling genes of existing signaling pathway databases. Statistical significances of overlaps
were calculated by hypergeometric tests

Source Pathway

Overlap to signaling
hubs identified by
bridgeness (438
genes): number
(P-value)

Overlap to top-100
hubs identified by
degree: number
(P-value)

Overlap to top-100
hubs identified by
closeness: number
(P-value)

Overlap to top-100 hubs
identified by
betweenness: number
(P-value)

REACTOME Nuclear receptor
transcription
pathway (51 genes)

18 (6.7 × 10−16)* 0 (1) 4 (2.9 × 10−4)* 3 (4.0 × 10−3)*

REACTOME Regulation of lipid
metabolism by PPAR
alpha (115 genes)

67 (<1 × 10−20)* 3 (0.036) 6 (8.6 × 10−5)* 3 (0.036)

BIOCARTA PPARA pathway (57
genes)

34 (<1 × 10−20)* 4 (4.5 × 10−4)* 18 (<1 × 10−20)* 14 (<1 × 10−20)*

BIOCARTA RAR RXR pathway
(15 genes)

10 (6.0 × 10−13)* 1 (0.09) 2 (3.9 × 10−3)* 1 (0.09)

*P-value <0.01.

Table 2. Overlap between tissue-specific signaling hubs of liver, bone marrow and kidney and genes associated with their tissue-specific anomaly pheno-
types. Each row indicates a set of tissue-specific signaling hubs and each column indicates a set of tissue-specific phenotypic genes that were compared with
tissue-specific signaling hubs. Statistical significances of overlaps were calculated by hypergeometric tests. Bolded was the most significant among overlaps
of tissue-specific signaling hubs to genes associated with tissue-specific phenotypes of liver, bone marrow and kidney

Tissue-specific signaling hubs
Overlap to liver phenotype genes
(493 genes): number (P-value)

Overlap to bone marrow
phenotype genes (289 genes):
number (P-value)

Overlap to kidney phenotype genes
(517 genes): number (P-value)

Liver-specific signaling hubs (98
genes)

8 (0.011)* 3 (0.26) 6 (0.099)

Bone marrow-specific signaling
hubs (198 genes)

8 (0.27) 10 (0.0034)** 13 (0.013)*

Kidney-specific signaling hubs
(166 genes)

9 (0.074) 5 (0.18) 12 (0.0081)**

*P-value < 0.05.
**P-value < 0.01.

signaling hub genes or enzymes in a given lipid pathway
were compared with P-values of background genes (i.e. all
detected genes in RNA-seq data) using a Kolmogorov–
Smirnov (KS) test. Throughout many lipid pathways, ex-
pressions of signaling hubs or enzymes were dysregulated in
patients with HCC (Figure 2). Among metabolic pathways
being highly dysregulated (i.e. pathways having P-values
under 0.05) are catabolic pathways (60%) and transport
pathways (100%) (Figure 2, top), whereas in case of signal-
ing hubs anabolic pathways (46.7%) and pooling pathways
(60%) (lipid pathway classification shown in Supplementary
Table S8) were the most significant (Figure 2, bottom). As
a whole, most lipid pathways were disturbed by dysregu-
lated expressions of their lipid-regulating genes, signaling
hub genes and enzymes.

Among the dysregulated lipid pathways, noteworthy
are eicosanoid-related pathways (Figure 2). Eicosanoids
are signaling lipids having impact on inflammatory
and immune response and even cancer development
(44). Unlike other anabolic pathways, most enzymes of
eicosanoid-related pathways (arachidonic acid, leukotriene
and prostaglandin pathways) were dysregulated. Even
in an ‘eicosanoid metabolism’ pathway with many non-
dysregulated enzymes, signaling hubs and key synthases
of cancer-promoting lipid, PGE2 were significantly
dysregulated (prostaglandin E synthase (PTGES) and

prostaglandin E synthase 2 (PTGES2): adjusted P-value
= 1.9 × 10−4 and 3.5 × 10−2; fold change = 7.5 and 1.5,
respectively). Thus, by investigating both signaling hubs
and enzymes we identified lipid anomalies to be associated
with HCC.

HCC patients with viral hepatitis reveal a distinct mechanism,
less likely involving lipid anomalies

We next sought to further investigate the dysregulation of
lipid-regulating genes associated with a major risk factor
of HCC, viral hepatitis (B and C) infection. Despite obvi-
ous hepatocellular carcinogenesis of viral hepatitis, the un-
derlying mechanisms still remain obscure (45). Here, we at-
tempted to identify if lipid anomalies are also involved in
HCC caused by viral hepatitis, by analyzing expressions
of signaling hubs and enzymes of lipid metabolism. First,
based on patients’ clinical information in TCGA, we col-
lected RNA-seq data of HCC patients by classifying them
into two groups: HCC patients with viral hepatitis, both
B and C (53 patients, with samples of 53 tumors and 12
matched controls) and HCC patients without viral hepatitis
(124 patients, with samples of 124 tumors and 34 matched
controls). Noticeably, we found that between the two pa-
tients groups, matched control samples are highly correlated
(mean ρ = 0.93), but HCC tumor samples are not (mean
ρ = 0.67) (Supplementary Figure S4A). We then examined
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Figure 2. Dysregulated expressions of signaling hubs and enzymes across lipid pathways, in patients with HCC. For each lipid pathway, we examined
differential expressions of enzymes (top) and signaling hubs (bottom), between tumor samples and matched control samples. Lipid pathways were classified
into four major categories: catabolism, anabolism, pooling and transport. Many enzymes in catabolic and transport pathways were dysregulated at the
gene expression level. On the other hand, many hub genes in anabolic and pooling pathways were dysregulated at the gene expression level. Abbreviations:
same as Figure 1.

differential expressions between tumors and matched con-
trols by each patient group, and lastly, estimated the statisti-
cal significance of differential expressions of signaling hubs
and enzymes at the pathway-level (Figure 3), in a similar
way of Figure 2.

From pathway-level P-values (KS test P-values) of the
two patient groups (Figure 3), we found that expressions
of lipid-regulating genes between tumors and controls were
markedly distinct in a group of patients with viral hepatitis,
compared to a group of patients without viral hepatitis. In
case of enzymes (Figure 3A and C), many lipid pathways
tend to be less significant in patients with viral hepatitis.
In addition, in case of signaling hubs (Figure 3B and D),
many lipid pathways, even tend to be non-significant in pa-
tients with viral hepatitis. In particular, anabolic pathways’
signaling hubs, which were mostly dysregulated in overall
HCC patients, showed substantial differences. Only 2 of 15
anabolic pathways were dysregulated in patients with viral
hepatitis. Moreover, pathways involved in de novo lipogen-

esis, a prominent feature of HCC, were not dysregulated (a
red bracket in Figure 3B and D).

We further examined differential expressions in tumors
between the two patient groups by additional statistical
tests. First, from the factorial model of Limma R statistical
package, we investigated individual genes if their differen-
tial expressions between tumors and matched controls were
distinct in a specific patient group (Supplementary Table
S9). From the gene-level statistics (i.e. Limma’s moderated
t-statistics) of the factorial model, we examined pathway-
level differential expressions of lipid-regulating genes in tu-
mors between the two patient groups (Supplementary Fig-
ure S5A), in a similar way of Figure 2. Here, we observed
weak differential expressions of signaling hubs in tumors
between the two patient groups because of tumor hetero-
geneity, as revealed in sample correlations. In order to con-
trol tumor heterogeneity while comparing the two patient
groups, we clustered tumor samples into three subgroups
based on gene expression similarity (Supplementary Fig-
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Figure 3. Distinct expressions of signaling hubs and enzymes revealed in HCC patients with viral hepatitis. In two patient groups of HCC, (A and B) a
patient group with viral hepatitis B and C and (C and D) a patient group without viral hepatitis, we separately examined differential expressions of signaling
hubs and enzymes. Interestingly, in patients with viral hepatitis, (A) most pathways’ enzymes and (B) signaling hubs were less dysregulated. Of note, fatty
acid biosynthesis pathways (a red bracket), called de novo lipogenesis pathways, did not reach the statistical significance of P-value = 0.05, suggesting that
viral hepatitis leads to HCC, irrespective of lipid anomalies. Abbreviations: same as Figure 1.

ure S4) and within each subgroup we compared tumor
gene expressions between the two patient groups again,
through the factorial model like above. A subgroup hav-
ing most low-grade tumors, class 1 (Supplementary Figure
S4B), has significantly distinct tumor expressions in signal-
ing hubs, in particular those of de novo lipogenesis, between
the two patient groups (Supplementary Figure S5B), imply-
ing that even before tumors became aggressive, viral hep-
atitis showed a distinct pathogenesis. On the other hand, a
subgroup having more high-grade tumors, class 3, has sig-
nificantly distinct tumor expressions in signaling hubs of
most lipid pathways (48.6%) between the two patient groups
(Supplementary Figure S5C). For class 2 subgroup, which
has most aggressive tumors among subgroups, we could not
perform the comparison as there were only data for tumors
from patients with viral hepatitis. Based on those findings,
we concluded that viral hepatitis leads to HCC by a distinct
mechanism, less likely involving lipid anomalies.

Catabolic or anabolic signaling hubs

We next attempted to find signaling hub genes govern-
ing overall catabolic or anabolic pathways. Applying an

in-group specificity, which measures hubness elevated ex-
clusively in a given group of pathways, we examined the
catabolic or the anabolic specificity of signaling hubs (Fig-
ure 4). Interestingly, signaling hubs only present in catabolic
pathways tend to have higher catabolic specificity and lower
anabolic specificity and signaling hubs only found in an-
abolic pathways showed opposite tendencies. By t-tests, we
found that these differences were statistically significant (be-
tween two signaling hub groups, the difference of catabolic
specificities: t-test P-value = 3.74 × 10−11; the difference
of anabolic specificities: t-test P-value = 3.72 × 10−10).
Thus, taking advantage of in-group specificity, we applied
in-group specificities on seed hub genes, which are the 10%
genes with highest mean hubness in catabolic or anabolic
pathways. Among the seed hub genes, we selected the top-
10 genes with highest in-group specificities as group-specific
hubs: catabolic or anabolic signaling hubs (Table 3).

Some hub genes were found to regulate de novo lipo-
genesis (anabolism) or fatty acid oxidation (catabolism).
The top-scoring anabolic hub gene, the sterol regulatory
element-binding protein 1 (SREBP1, synonym: SREBF1),
is a known master regulator of de novo lipogenesis (41). By
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Table 3. Catabolic or anabolic signaling hubs. We showed the characteristics of catabolic or anabolic signaling hubs, with in-group specificity (with rank)
and representative ranks of hubness scores (averaged-rank and top-rank) across a given group of pathways

Hub type Name (Entrez ID)
In-group
specificity (rank)

Hubness rank in
catabolic
pathways: average
(top)

Hubness rank in
anabolic
pathways: average
(top)

Hubness rank in
pooling pathways:
average (top)

Hubness rank in
transport pathways:
average (top)

Catabolic
signaling hubs

GSC (145258) 0.6673 (1) 1039.8 (79) 3073.9 (2219) 2824.0 (1595) 3449.5 (2427)

FOXA2 (3170) 0.6663 (2) 754.9 (4) 1323.9 (816) 1671.4 (1419) 1393.0 (1391)
GLI1 (2735) 0.6587 (3) 408.5 (14) 1005.7 (671) 1058.6 (888) 669.5 (580)
RUNX3 (864) 0.6555 (4) 351.5 (108) 1054.8 (462) 1108.0 (789) 762.0 (681)
FOXH1 (8928) 0.6492 (5) 519.4 (191) 1093.4 (566) 1139.0 (900) 1628.0 (1610)
FOXG1 (2290) 0.6489 (6) 709.3 (300) 1492.8 (816) 1582.6 (1245) 1549.5 (1476)
SMAD9 (4093) 0.6485 (7) 70.9 (13) 225.9 (24) 161.8 (27) 107.0 (46)
SKP1 (6500) 0.6483 (8) 773.1 (416) 1645.1 (465) 1697.8 (1129) 1257.0 (1077)
SLC2A4 (6517) 0.6478 (9) 86.3 (9) 203.5 (9) 284.8 (142) 115.5 (59)
NCOA2 (10499) 0.6450 (10) 13.7 (11) 55.2 (13) 86.0 (19) 23.5 (19)

Anabolic
signaling hubs

SREBF1 (6720) 0.6758 (1) 836.1 (678) 361.7 (59) 722.6 (191) 645.5 (540)

PNO1 (56902) 0.6707 (2) 2038.8 (1322) 890.5 (173) 1854.4 (988) 1459.5 (1266)
ZBTB17 (7709) 0.6702 (3) 567.9 (374) 262.4 (120) 655.0 (322) 529.5 (249)
EWSR1 (2130) 0.6698 (4) 469.9 (50) 202.7 (7) 326.0 (142) 530.5 (391)
SP1 (6667) 0.6668 (5) 194.0 (63) 91.1 (6) 115.2 (52) 114.5 (97)
USF2 (7392) 0.6655 (6) 1250.5 (564) 763.7 (221) 1126.2 (807) 921.0 (715)
TP63 (8626) 0.6650 (7) 351.9 (122) 225.3 (12) 484.0 (225) 507.5 (284)
C1D (10438) 0.6640 (8) 1144.9 (928) 986.3 (264) 2219.4 (1179) 994.5 (874)
RPS3A (6189) 0.6632 (9) 1609.9 (1240) 1166.9 (35) 1497.6 (925) 1944.5 (1611)
NDRG1 (10397) 0.6627 (10) 1161.1 (212) 924.7 (24) 1200.0 (772) 1226.5 (948)

Figure 4. In-group specificity of signaling hubs. In order to distinguish
catabolism- and anabolism-specific hub genes, we measured the in-group
specificity of hub genes in catabolic or anabolic pathways. Notably, hubs
shown only in anabolic pathways (blue) tend to be located in top-left re-
gion (high anabolic specificity and low catabolic specificity). On the other
hand, hubs shown only in catabolic pathways (red) tend to be in bottom-
right region. We also found significant differences of catabolic and anabolic
specificity between two hub groups (red and blue) by t-tests (P-values, 3.74
× 10−11 and 3.72 × 10−10, respectively). Based on in-group specificities,
we identified catabolic or anabolic signaling hubs.

regulating genes for fatty acid synthesis, SREBP-1c (hep-
atic major isoform of SREBP1) governs overall lipid syn-
thesis in the liver. The second highest scoring catabolic hub
gene, forkhead box protein A2 (FOXA2) also controls lipid

metabolism, by activating genes involved in beta-oxidation
(46,47). Mice with haplo-insufficient FOXA2 have a de-
creased beta-oxidation index in liver, thus substantiating
its role as a catabolic regulator. Other genes also revealed
their association with lipid metabolism: p63 and the glu-
cose transporter type 4 (GLUT4). p63 (synonym: TP63), a
homolog of the metabolic regulator p53, also regulates lipid
metabolism. Recent studies revealed that loss of TAp63 (p63
isoform) leads to deregulation of lipid metabolism, with in-
creasing fatty acid synthesis and decreased fatty acid oxi-
dation (48). Also, GLUT4 (synonym: SLC2A4) is related
to lipid metabolism: GLUT4-null mice show increased hep-
atic de novo lipogenesis (49) which underpins its associa-
tion to lipid metabolism. In addition, an enriched GO term
‘transcription factor activity’ (adjusted P-value = 1.65 ×
10−7) in both catabolic and anabolic hubs implies that even
other signaling hubs with unknown association with lipid
metabolism have a pivotal role in regulating certain biolog-
ical processes, including lipid metabolism.

DISCUSSION

Here, we identified signaling hub genes of liver lipid
metabolism in a systematic manner, and examined their co-
expression with lipid enzymes in HCC. These signaling hub
genes have not earlier been linked to lipid anomalies in
HCC, but using our tailored network-based approach we
could identify these genes. Our analysis revealed that not
only lipid enzymes, but also signaling hub genes showed
dysregulated expressions, and even synergistically leading to
lipid anomalies in HCC. We further found that there are dis-
tinct signaling hub genes and enzymes associated with HCC
pathogenesis caused by viral hepatitis. Lastly, our tailored
network-based approach uncovered catabolic and anabolic
signaling hub genes that could serve as novel drug targets
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for treatment of HCC, by alleviating lipid anomalies during
its pathogenesis.

Until now, many studies have related lipid-sensing regula-
tors or lipid-regulating enzymes to lipid anomalies and con-
sidered them as therapeutic drug targets (50–52). Fibrates
or statins are well-known lipid-regulating drugs by targeting
PPARs (lipid sensor) or HMG-CoA reductase (cholesterol
biosynthetic enzyme), and they have also been found to have
potentials to reduce HCC risks (53). However, these drugs
have been used for improving systemic lipid metabolism,
not targeted for lipid anomalies in liver tissues. Instead,
a drug targeting signaling hubs of liver lipid metabolism
might be a new therapeutic option for alleviating lipid ab-
normality only in the liver tissue. In the present study, we
found significant abnormalities of lipid anabolic pathways
in HCC patients, and these anabolic signaling hubs would
be promising selective drug targets of lipid dysfunctional
metabolism associated with HCC tumors.

Notably, beside an abnormal lipid, HCC pathogenesis
involves abnormal immune response, called cirrhosis (54):
almost 80% of patients with HCC have cirrhotic livers
(2). Hence, till now, lipid anomaly has been considered as
a first alteration and cirrhosis as a second alteration to
cause HCC (55). Interestingly, we found that eicosanoids,
important signaling lipids associated with inflammation,
were dysregulated, thus possibly indicating abnormal in-
flammation. Therefore, the dysregulation of lipid-regulating
genes we identified might enable diagnosis of both the first
and second alteration causing HCC. Comparing eicosanoid
anomalies between fatty liver disease (without inflamma-
tion) and HCC (with inflammation) might allow us to un-
derstand the gap between these two pathological condi-
tions, and furthermore to diagnose the progression of fatty
liver disease into HCC before the second alteration.

The relationships identified here between the signaling
and other metabolic pathways also extend our knowl-
edge about the occurrence of HCC. In a cell, the regu-
lation of energy-controlling metabolites, such as glucose,
lipid, cholesterol and bile acid, is strongly coordinated with
each other. Intriguingly, from our signaling hub genes,
we found both nuclear receptors and AMP-activated pro-
tein kinase (AMPK), which regulate other metabolic path-
ways: LXR� (synonym: NR1H3) that regulates cholesterols
and lipids (42,56), small heterodimer partner (SHP) (syn-
onym: NR0B2) regulating bile acids (57), and AMPK1
and AMPK2 (synonym: PRKAA1 and PRKAA2) that
regulates the overall energy metabolism (58). Therefore,
developing more comprehensive methods for investigat-
ing overall energy metabolism will give more insights to
our understanding of inter-regulations within overall en-
ergy metabolism, eventually mechanisms of all metabolic
anomalies underlying several diseases, including HCC.

In summary, to identify lipid anomalies shown in HCC,
we identified signaling hub genes by a tailored network-
based approach. Based on RNA-seq data of patients with
HCC, we examined lipid-regulating genes, both signaling
hub genes and lipid enzymes, and found significant dysregu-
lated expressions among these genes. We also found that vi-
ral hepatitis causes HCC in a distinct mechanism, less likely
involving lipid anomalies. Finally we identified catabolic or
anabolic signaling hubs also that might be associated with

HCC pathogenesis and be possible drug targets for treat-
ment of HCC.
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