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Abstract

Background

Five-to-eighteen percent of pregnancies worldwide end in preterm birth, which is the major

cause of neonatal death and morbidity. Approximately 30% of the variation in gestational

age at birth can be attributed to genetic factors. Genome-wide association studies (GWAS)

have not shown robust evidence of association with genomic loci yet.

Methods

We separately investigated 1921 Norwegian mothers and 1199 children from pregnancies

with spontaneous onset of delivery. Individuals were further divided based on the onset of

delivery: initiated by labor or prelabor rupture of membranes. Genetic association with ultra-

sound-dated gestational age was evaluated using three genetic models and adaptive per-

mutations. The top-ranked loci were tested for enrichment in 12 candidate gene-sets

generated by text-mining PubMed abstracts containing pregnancy-related keywords.

Results

The six GWAS did not reveal significant associations, with the most extreme empirical p =

5.1 × 10−7. The top loci from maternal GWAS with deliveries initiated by labor showed signif-

icant enrichment in 10 PubMed gene-sets, e.g., p = 0.001 and 0.005 for keywords "uterus"

and "preterm" respectively. Enrichment signals were mainly caused by infection/inflamma-

tion-related genes TLR4, NFKB1, ABCA1,MMP9. Literature-informed analysis of top loci

PLOS ONE | DOI:10.1371/journal.pone.0160335 August 4, 2016 1 / 22

a11111

OPEN ACCESS

Citation: Bacelis J, Juodakis J, Sengpiel V, Zhang G,
Myhre R, Muglia LJ, et al. (2016) Literature-Informed
Analysis of a Genome-Wide Association Study of
Gestational Age in Norwegian Women and Children
Suggests Involvement of Inflammatory Pathways.
PLoS ONE 11(8): e0160335. doi:10.1371/journal.
pone.0160335

Editor: Zongli Xu, National Institute of Environmental
Health Sciences, UNITED STATES

Received: March 22, 2016

Accepted: July 18, 2016

Published: August 4, 2016

Copyright: © 2016 Bacelis et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The data underlying
this study was obtained from a third party and is a
subject to some legal restrictions. The data originates
from the Norwegian Mother Child cohort (MoBa),
which is controlled by the MoBa Scientific
Management Group. The research data can be
accessed via electronic application forms at http://
www.fhi.no/en/online-publications/data-access-from-
health-registries-health-studies-and-biobanks/data-
from-large-health-studies/research-and-data-access-
from-the-n/. Data will be available upon request to all

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0160335&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.fhi.no/en/online-publications/data-access-from-health-registries-health-studies-and-biobanks/data-from-large-health-studies/research-and-data-access-from-the-n/
http://www.fhi.no/en/online-publications/data-access-from-health-registries-health-studies-and-biobanks/data-from-large-health-studies/research-and-data-access-from-the-n/
http://www.fhi.no/en/online-publications/data-access-from-health-registries-health-studies-and-biobanks/data-from-large-health-studies/research-and-data-access-from-the-n/
http://www.fhi.no/en/online-publications/data-access-from-health-registries-health-studies-and-biobanks/data-from-large-health-studies/research-and-data-access-from-the-n/
http://www.fhi.no/en/online-publications/data-access-from-health-registries-health-studies-and-biobanks/data-from-large-health-studies/research-and-data-access-from-the-n/


revealed further immunity genes: IL1A, IL1B, CAMP, TREM1, TFRC, NFKBIA,MEFV, IRF8,
WNT5A.

Conclusion

Our analyses support the role of inflammatory pathways in determining pregnancy duration

and provide a list of 32 candidate genes for a follow-up work. We observed that the top

regions from GWAS in mothers with labor-initiated deliveries significantly more often over-

lap with pregnancy-related genes than would be expected by chance, suggesting that

increased sample size would benefit similar studies.

Introduction
The timing of human parturition is a poorly understood phenotype [1]. In the United States
the reported rate of preterm birth (PTB), defined as birth occurring at less than 37 completed
weeks of gestation, is 9.6% [2]. Worldwide PTB rates range from about 5% in some Northern
European countries to 18% in Malawi [3]. PTB is the leading cause of death among neonates
[4]. According to a US report, preterm born infants have a 15-fold higher mortality rate than
those born at term [4]. More than 50% of deaths are attributable to only 2% of all infants—the
ones who are born at less than 32 weeks of gestation [4]. PTB is also correlated with long-term
adverse health consequences such as cerebral palsy, mental retardation, autism and schizophre-
nia, conditions that render individual dependent on the healthcare system. More than 50% of
PTB occur in pregnancies without known risk factors. The currently available means of predic-
tion (epidemiology- and biomarker-based models) and prevention (tocolytics, antibiotics, pro-
gesterone) are not effective enough to substantially reduce the rates of PTB and its adverse
consequences [5].

Approximately 85% of all pregnancies have a spontaneous onset of delivery, with gestational
age not affected by doctor’s decision to induce birth or to perform an elective caesarean section
[6]. These pregnancies can be used for analysis of genetic factors affecting gestational age.

Up to 30% of variation in human gestational age could be accounted for by genetic factors,
as reported by large register-based studies [7, 8]. The evidence of an acting genetic component
motivated two genome-wide association studies (GWAS). In 2013 Uzun et al. [9] explored
maternal genomes (884 preterm cases, 960 term controls). In 2015 Zhang et al. [10] investi-
gated maternal (935 preterm cases, 946 term controls) and neonatal genomes (916 preterm
cases, 935 term controls). The authors did not find robust statistical evidence of association
between PTB and the 560 000 and 800 000 (respectively) single-nucleotide polymorphisms
(SNPs) tested.

The failure to identify genes increasing the risk for PTB could be due to insufficient sample
size, however it could also be due to the following problems: 1) preterm birth status has a lower
information content than gestational age; 2) low accuracy of gestational age dating; 3) different
onsets of delivery might reflect different aetiologies; 4) omission of genetic variants with low
minor-allele frequency from analyses; 5) omission of non-additive genetic models in analyses;
6) mixed ethnicities in a study sample; 7) omission of prior knowledge about SNP function and
the biological role of implicated genes. In our study we tried to avoid these shortcomings.

The aim of the study was to find SNPs that are associated with gestational age at birth. The
use of gestational age, as opposed to the use of dichotomous PTB, provides an advantage, as it
utilizes the full information present in the phenotype [11]. Our secondary aim was to highlight
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the genes that might mediate discovered associations, by identifying common biochemical
pathways, networks, and functional similarities between the top genes. In the broadest sense,
our study aims to account for a part of heritability of human gestational age at birth.

We structured our GWA study into six parts: investigating each of the subtypes (labor-initi-
ated / PROM-initiated deliveries) separately and also together, while analysing maternal and
fetal genomes separately.

Methods

The Dataset
Study population. The Norwegian Mother and Child Cohort (MoBa) is a nationwide

pregnancy cohort managed by the Norwegian Institute of Public Health [12]. It includes more
than 107 000 pregnancies recruited from 1999 through 2008. Most of the pregnant women in
Norway received a postal invitation in connection to the routine ultrasound screening at gesta-
tional weeks 17–19. Participation rate was 42.7%. For the current study, individuals were sam-
pled from the Version 4 database containing 71 669 pregnancies. The MoBa dataset is linked to
the Medical Birth Registry of Norway (MBRN), for additional information see [13].

For genotyping we selected mothers and live-born children from singleton pregnancies of
mothers in the age group of 20–34 years resulting in a spontaneous onset of delivery. Pregnan-
cies with complications (e.g., preeclampsia, gestational diabetes, placental abruption, placenta
previa, cervical cerclage, small for gestational age, fetal malformation), pregnancies of mothers
with pre-existing medical conditions (e.g., diabetes, hypertension, inflammatory bowel disease,
systemic lupus erythematosus, rheumatoid arthritis), as well as pregnancies conceived by in
vitro fertilization were excluded [14]. Random sampling was done from two gestational age
ranges: 154–258 days (preterm births) and 273–286 days (term births), thus creating an over-
sampling of lower gestational ages (S1 Fig). In total 1921 mothers and 1199 children were
selected for genotyping using blood-extracted DNA. All mothers gave a written consent to use
anonymised data in scientific research. The Norwegian Regional Ethics Committee for Medical
Research approved the study (REK/Sør-Øst 2010/2683 S-6075).

Phenotype and covariates. We used gestational age expressed in days as a dependent vari-
able, as continuous phenotype contains more information than a dichotomous case/control
classification. MBRN provides an accurate second-trimester ultrasound-based evaluation of
gestational age. Pregnancies initiated by labor were analysed separately from pregnancies start-
ing with prelabor rupture of membranes (PROM), with one additional analysis where all preg-
nancies were considered together (Fig 1).

We also used non-genotyped MoBa cohort data with more than 70 000 pregnancies to eval-
uate potential impact of known covariates and risk factors on gestational age. Together, the
evaluated covariates explained only 1% of variation in the continuous phenotype. Since 22.8%
of genotyped individuals did not have values for some of these covariates, we decided to use the
larger sample of genotyped individuals and not to use adjustment.

Genotyping quality control. The genotype missingness filter for SNPs and individuals
was set to 3%. Individuals with heterozygosity estimates deviating by more than 3 SD from the
group mean were removed. For each mother-mother or child-child pair related closer than sec-
ond cousins, a random individual was removed. Hardy-Weinberg filter removed SNPs with
p< 10−6. Non-Europeans were excluded after principal components analysis using the first
three principal components and a threshold of 10 SD on the Euclidean distance from CEU
cluster (HapMap). No minor-allele frequency filter was applied. Genomic inflation factor was
estimated following standard procedures using continuous unadjusted gestational age in
maternal samples (restricted to labor-initiated deliveries), linear regression, additive genetic
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model and minor-allele frequency restriction to> 0.06. All genomic positions are presented in
hg19 coordinates.

Association tests
Three genetic models (additive, recessive, dominant) were used to test for association with
unadjusted continuous gestational age expressed in days (Fig 1). Permutation procedures are
essential to avoid biases introduced by skewed phenotype distribution (a notable feature of ges-
tational age), and by low counts of individuals in the minor genotypic group. We used permu-
tation-based testing implemented in PLINK (v1.90b2n, 64-bit, 2 Nov 2014, Linux), with
parameters for adaptive permutations: alpha = 5×10−8, beta = 5×10−8, min = 10,max = 1×109,
b = 1 and a = 0.001 [15]. Each SNP was assigned the most extreme empirical p-value from the
three genetic models [16]: additive, recessive and dominant. X chromosomal SNPs were tested
using only additive model. Two separate studies investigated our dataset for PTB association
with X chromosomal SNPs [14] and mitochondrial SNPs [17] previously.

Gene-set enrichment analysis with INRICH
Clumping. To merge adjacent and correlated SNPs, PLINK function “—clump” was used.

Clumps were formed around “index variants” with p-value< 0.0005. Index variants were cho-
sen greedily starting with the lowest p-value. Sites that were less than 250 kb away from an

Fig 1. Schematic overview of the workflow in analyses. C—child genomes,M—maternal genomes; add/rec/dom—additive, recessive and dominant
genetic models respectively.

doi:10.1371/journal.pone.0160335.g001
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index variant, had r2 larger than 0.25 with it, and had association p-value smaller than 0.05
were assigned to that index variant's clump. The r2 values were computed using founders in the
same genomic data.

PubMed gene-sets. We checked if the top GWAS loci were enriched in genes with known
relations to pregnancy or reproductive anatomy. To test this, we used 12 keywords to create 12
gene-sets by text-mining the PubMed database, as described in the next paragraph and Fig 1.
Out of these, 4 keywords represent pregnancy conditions (“gestation”, “parturition”, “preg-
nancy”, “preterm”), another 4 describe female anatomy (“cervix”, “endometrium”, “myome-
trium”, “uterus”), and the last 4 portray fetal anatomy (“fetus/embryo”, “chorion”, “amnion”,
“placenta”). We also created 16 gene-sets for keywords unrelated to pregnancy to be used as a
control in enrichment analysis: 8 representing conditions and 8 representing anatomy (S1
Table).

Between June 1st and August 31st, 2015, the PubMed database was scanned for abstracts
containing any semantic form or Latin/Greek form of the selected keyword together with the
words indicating the genetic nature of a publication (“gene”, “genes”, “genomic”, “genetic” or
“GWAS”; plus corresponding MeSH terms), but restricted to abstracts not containing 65 cus-
tom-built non-human subject indicators (e.g., “cat”, “feline”, “cow”, “bovine”) or 466 custom-
built medical-condition indicators (e.g., listeriosis, erythema, hepatitis, neuroblastoma). The
latter indicators were constructed by text-mining the ICD code database (www.cms.gov) and
searching for words with common disease suffixes (e.g., "-osis", "-itis", "-emia", "-oma"). These
restrictions were applied to avoid inclusion of genes that represent medical conditions or spe-
cies not present in our GWAS data. Abstracts were mined searching for gene names by cross-
referencing each capitalised word with 23 945 HGNC [18] gene names. We took precaution to
avoid false identification of commonly used acronyms as gene names, e.g., gene AGA and
“Apropriate for Gestational Age”, gene FGR and “Fetal Growth Retardation”, gene SPTB and
“Spontaneous Preterm Birth”. In order to further reduce erroneous assignment of genes to key-
words, only the genes mentioned in more than 1 abstract were used. In order to obtain a better
representation of the keyword, we also used an "exclusivity" filter: the abstract must not contain
more than one different keyword (with exception for very common and control keywords). All
keywords and PubMed queries are listed in S1 Table.

Enrichment analysis. Each clump produced by PLINK represents a genomic region
defined by distance, linkage disequilibrium (LD) and statistical association with the phenotype.
INRICH [19] is a tool that detects overlap between such regions and predefined gene sets and
reports the empirically estimated p-value of enrichment. For this purpose INRICH iteratively
generates random clumps of similar size and SNP-density and then creates a distribution of
enrichment statistic under the null-hypothesis (“no enrichment”). P-values estimated with this
method are expected to be robust and unbiased. Analysis was performed using the INRICH
algorithm (v.1.0, updated Oct/24/2014, Linux). GWAS interval was considered to be a 'hit' for
a predefined gene-set if it fell within 25 kb of any of the genes in that set, 100 000 permutations
were used to estimate p-values for each gene-set, maintaining 90–110% SNP density match.
The 300 top clumps from each of the six GWAS (mothers, children × labor, PROM, all) were
tested against 12 pregnancy-related gene-sets and 16 control gene-sets from the PubMed
abstract mining (Fig 1).

Literature-informed analysis of GWAS results. By manually cross-referencing the 300
top SNPs from maternal GWAS in labor-initiated deliveries with the HaploReg v4.1 database
(www.broadinstitute.org/mammals/haploreg, [20]) and with the scientific publication database
MEDLINE, we selected biologically-relevant SNPs with their implicated genes. We grouped
genes into categories, based on biological pathway that could modify gestational age. A prior
evidence of association with gestational age / preterm birth, or evidence of interaction or
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functional/structural similarity among the top genes were used as the criteria for reporting
genes in the result tables.

Results

Genotyping quality control
After quality control procedures of genotyping data, 1743 maternal and 1109 fetal samples
were left and had relevant phenotypic data (1407 labor and 336 PROMmothers; 884 labor and
225 PROM children). The number of genotyped SNPs passing the quality-control procedures
is 513 273 autosomal and 12 304 from the X chromosome. Mitochondrial, Y chromosomal
SNPs and pseudo-autosomal SNPs were not analysed in this study. Principal components anal-
ysis of genotyping data assured that study individuals belong to a homogeneous European pop-
ulation. Geographical homogeneity was also reflected by genomic inflation factor, estimated to
be 0.993 and indicating no population stratification effects in GWAS for this phenotype.

Association tests
None of the 525 577 SNPs tested with the additive, recessive and dominant genetic models
showed a genome-wide significance (p< 5×10−8) in any of the six GWA analyses. The most
extreme association was observed in a GWAS with PROMmothers (p = 5.1 × 10−7, SNP
rs6977715 in the DPP6 gene). Due to the further-described findings in the post-GWAS analy-
sis, in Fig 2 we present only the results from a GWAS of maternal genomes and labor-initiated

Fig 2. Manhattan plot for maternal GWAS of gestational age in labor-initiated deliveries. In total 1 407 genomes were analysed. Each SNP was
assigned the most extreme empirical p-value from the three genetic models (additive, recessive, dominant). The top line indicates a genome-wide
significance level (5×10−8), while the bottom line marks a significance level (5×10−4) determining the number of “clumps” (independent loci that were used in
gene-set enrichment analyses). Genes from gene-set enrichment analyses are marked in blue, while other biologically relevant genes (from the literature-
informed analyses) are marked in black.

doi:10.1371/journal.pone.0160335.g002
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deliveries, with the top 20 independent loci together with proximal genes highlighted in
Table 1. The top results from the remaining GWA analyses are presented in S2 Fig and S1
File.

Table 1 was pruned to show only independent loci. BP—physical position on the chromo-
some in hg19 coordinates, P—the most extreme empirical p-value from three genetic models,
E/R—the effect allele and the reference allele,Mod—the most significant genetic model for that
SNP, nXX—number of individuals in each genotypic group,mXX—mean gestational age in
each genotypic group. Interpretation of mean gestational age values should take into account
the bimodal phenotype distribution of genotyped individuals (S1 Fig). Genes were assigned to
SNPs based on a 100 kb offset rule. Asterisk (�) indicates a gene family with multiple genes in
that locus. No multiple-test correction is applied. Bolded genes are described in the literature-
informed analyses. Genes with unknown function (LINC, LOC etc.) are not listed.

The GWAS with labor-initiated deliveries and the GWAS with all deliveries shared approxi-
mately one-third and one-half of the top SNPs in maternal and fetal genomes respectively,
while top SNPs from GWAS with PROM-initiated deliveries were mostly unique (Fig 3).

Gene-set enrichment analysis with INRICH
Gene-sets. The sizes of the gene-sets in the PubMed-constructed pregnancy-themed

group are as follows: 123 “preterm” genes, 214 “gestation” genes, 20 “parturition” genes, 540
“pregnancy” genes; maternal anatomy group: 59 “cervix” genes, 116 “endometrium” genes, 23
“myometrium” genes, 74 “uterus” genes; fetal anatomy group: 14 “fetus/embryo” genes,
35”chorion” genes, 45 “amnion” genes, 259 “placenta” genes. The full list of gene-set sizes with

Table 1. Top 20 independent loci frommaternal GWAS of gestational age in labor-initiated deliveries.

Chr BP SNP P E/R Mod nEE nER nRR mEE mER mRR Genes

6 164389165 rs593254 3.32e-6 A/G ADD 76 480 851 260 264 268

2 134837980 rs13410504 5.64e-6 G/A REC 7 237 1163 221 265 267

1 226209989 rs17515010 1.00e-5 G/A REC 4 141 1261 205 264 266 SDE2, PYCR2, LEFTY2, H3F3A, H3F3AP4
1 81391541 rs17105699 1.03e-5 G/A DOM 6 165 1232 273 259 267

20 7618077 rs6086132 1.06e-5 A/G DOM 162 649 596 269 268 263

5 10501076 rs2589658 1.15e-5 C/A REC 330 684 393 262 267 267 ROPN1L, ROPN1L-AS1,MARCH6, ANKRD33B

4 103537442 rs1609798 1.48e-5 A/G REC 128 601 677 259 266 268 NFKB1,MANBA

9 130417033 rs10117075 1.55e-5 A/G REC 12 190 1205 237 268 266 TTC16, TOR2A, STXBP1, SH2D3C, PTRH1, FAM129B

14 91352234 rs6575165 1.56e-5 A/G ADD 87 478 842 260 264 268 TTC7B, RPS6KA5

10 88336279 rs2588278 1.58e-5 A/G ADD 260 680 467 270 266 264 WAPAL, OPN4, LDB3

1 36879232 rs3007217 1.81e-5 G/A ADD 150 593 664 270 268 264 STK40, SH3D21, OSCP1,MRPS15, LSM10, EVA1B,
CSF3R

16 18067234 rs151699 1.86e-5 C/A REC 1 133 1272 161 266 266

16 3344618 rs220381 2.12e-5 G/A DOM 159 559 689 270 268 264 ZSCAN32, TIGD7, OR2C1, OR1F2P, OR1F1,
MTRNR2L4,MEFV

10 87762136 rs11201867 2.33e-5 A/G ADD 22 304 1081 275 270 265 GRID1

1 22345093 rs3117048 2.49e-5 A/G REC 146 633 628 273 266 265 WNT4, HSPG2, CELA3B, CELA3A, CDC42

4 112524778 rs10015214 2.60e-5 A/G DOM 312 675 420 266 268 263

6 41164005 rs6915083 2.64e-5 G/A REC 197 648 561 261 268 266 TREM*, TREML*, NFYA, ADCY10P1
16 85941774 rs305080 2.67e-5 A/G REC 143 586 678 273 266 265 IRF8

1 88453303 rs3008465 2.67e-5 C/A ADD 71 532 802 272 268 264

6 123749752 rs1343962 2.80e-5 A/G ADD 303 713 390 263 266 269 TRDN

doi:10.1371/journal.pone.0160335.t001
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respective PubMed queries is shown in S1 Table. The full list of genes in each set is given in the
S2 File.

Fig 3. Overlap between top results in six GWAS. The top 1000 SNPs were selected from each GWA analysis. Numbers in the Venn diagrams
represent the number of SNPs. Numbers of individuals in each analysis were 1743, 1407, 336 (mothers) and 1109, 884, 225 (children) for all
together, labor-initiated and PROM-initiated deliveries respectively.

doi:10.1371/journal.pone.0160335.g003
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Enrichment analysis. Only the maternal GWAS with labor-initiated deliveries showed
consistent enrichment in all relevant candidate gene-sets, and consistently showed no enrich-
ment in the control gene-sets (Fig 4).

In this particular analysis (mothers with labor-initiated deliveries), out of 300 selected top
GWAS clumps, the INRICH algorithm removed 116 intervals without genes and then merged
some of the remaining to form a final number of 178 independent (non-overlapping) genomic
intervals. The top GWAS genes overlapping with candidate gene-sets are presented in Table 2
together with a probability of observing a similar or more extreme overlap under no genotype-
phenotype association. The gene-set with the most significant enrichment corresponds to the
keyword "uterus" (empirical p = 0.001). This gene-set contains 73 genes, 5 of which overlap

Fig 4. Enrichment in gene-sets generated using PubMed abstract text-mining. The figure shows an overlap between the genes implicated in six GWA
analyses (rows) and genes related to specific keywords (columns). The overlap is represented as probability (p-value) of similar or greater enrichment arising
due to pure chance under the null hypothesis of no enrichment (i.e., if GWAS would rank genes in a random order). The 300 top independent loci (“clumps”)
and their genes were used. The name of each gene-set indicates a keyword used in the PubMed abstract mining. The INRICH algorithm was used to
estimate empirical p-values.

doi:10.1371/journal.pone.0160335.g004

Table 2. Significantly enriched PubMed gene-sets in GWAS usingmothers with labor-initiated deliveries.

Gene set N genes Hits P Enriched genes

Preterm 123 6 0.005 IGF2, KCNQ3,MMP9, NFKB1, OPRM1, TLR4

Gestation 212 7 0.018 ENG, IGF2, KCNQ3,MMP9, NFKB1, OPRM1, TLR4

Parturition 20 2 0.031 MMP9, NFKB1

Pregnancy 536 12 0.046 ABCA1, DPY19L2, ENG, FRMD4A, GFI1, GNB3, IGF2, KCNQ3,MEFV,MMP9, NFKB1, TLR4

Ageing 76 3 0.049 IGF2,MMP9, NFKB1

Cervix 59 3 0.026 MMP9, NFKB1, TLR4

Endometrium 116 5 0.014 IGF2,MMP9, NFKB1, SP3, TLR4

Myometrium 23 3 0.002 MMP9, NFKB1, TLR4

Uterus 73 5 0.001 ENG, IGF2,MMP9, NFKB1, TLR4

Amnion 45 4 0.002 IGF2,MAP2,MMP9, NFKB1

Placenta 258 7 0.043 ABCA1, ENG, IGF2, KCNQ3,MMP9, NFKB1, TLR4

The column N genes indicates the number of genes in a gene-set, while Hits states how many overlap (25kb offset) with the genes from the top 300

independent GWAS loci ("clumps"). The empirical p-value of enrichment (P) is estimated using INRICH algorithm with 100 000 permutations. Only

significantly enriched gene-sets (p < 0.05) are shown out of 12 candidate sets and 16 control sets tested. No multiple-test correction is applied.

doi:10.1371/journal.pone.0160335.t002
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with top GWAS intervals: ENG (endoglin), IGF2 (insulin-like growth factor 2),MMP9 (matrix
metallopeptidase 9), NFKB1 (nuclear factor κ-B DNA binding subunit), TLR4 (toll-like recep-
tor 4). These genes were also present in many other significantly enriched candidate gene-sets.
Table 3 shows SNPs that implicated genes from Table 2, together with p-values from maternal
GWAS using labor-initiated deliveries and genomic coordinates of respective clumped regions.
Only 1 out of 16 control gene-sets ("ageing") was enriched (p = 0.05), while 10 out of 12 candi-
date gene-sets were enriched: all 4 pregnancy-themed sets, all 4 female anatomy sets, and 2 out
of 4 fetal anatomy sets.

Literature-informed analysis of GWAS results
Manual inspection of the top 300 SNPs from maternal GWAS in labor-initiated deliveries
highlighted 32 biologically relevant genes from 27 independent loci (Table 4). In total 284
genes had their biological background evaluated.

The SNPs were selected from the top 300 GWAS results, based on their proximity and/or
functional relationship with genes biologically relevant to gestational age. Rank—the rank of
that SNP among all GWAS results, based on the most significant empirical p-value (P) from
three genetic models, BP—physical position on the chromosome (Chr) in hg19 coordinates,
E/R—the effect allele and the reference allele,Mod—the most significant genetic model for that
SNP, nXX—number of individuals in each genotypic group,mXX—mean of gestational age in
each genotypic group. Interpretation of mean gestational age values should take into account
the bimodal phenotype distribution of genotyped individuals (S1 Fig). No multiple-test correc-
tion is applied.

We grouped these genes into four functional categories related to possible aetiologies of pre-
term birth: 1) bacterial or viral infection 2) utero-placental perfusion problems 3) cervical
insufficiency 4) hormonal imbalance.

Infection. Bacterial infection is a well-known cause of too short gestation [1]. We observed
14 SNPs that are known expression quantitative trait loci (eQTLs) for (or are located in

Table 3. Genomic loci that implicate the genesmentioned in Table 2.

Rank SNP P Clumped region Gene

7 rs1609798 1.48e-5 chr4:103396333..103647047 NFKB1

8 rs10117075 1.55e-5 chr9:130358236..130586688 ENG

13 rs220381 2.12e-5 chr16:3301897..3344618 MEFV

51 rs6718188 5.73e-5 chr2:174739352..174835769 SP3

57 rs12336969 6.10e-5 chr9:107679500..107684276 ABCA1

77 rs1607800 8.36e-5 chr12:63790463..63982989 DPY19L2

84 rs3740121 9.01e-5 chr10:13834678..13838604 FRMD4A

100 rs12202611 1.08e-4 chr6:154204327..154333183 OPRM1

114 rs2301137 1.22e-4 chr12:6956462..7053149 GNB3

142 rs7045953 1.56e-4 chr9:120446826..120485795 TLR4

169 rs2365661 1.96e-4 chr2:210154210..210391837 MAP2

187 rs3746512 2.18e-4 chr20:44577314..44662413 MMP9

211 rs1457776 2.39e-4 chr8:133355244..133423654 KCNQ3

285 rs4320932 3.28e-4 chr11:2117403..2171601 IGF2

295 rs6662618 3.48e-4 chr1:92935411..93148377 GFI1

The Rank represents a rank of an independent genomic region ("clump") based on the most extreme GWAS p-value (P) of the representative index SNP in

three genetic models. Genomic positions of regions are presented in hg19 coordinates.

doi:10.1371/journal.pone.0160335.t003
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proximity of) 17 immunity-related genes (Table 5). Most of these genes act through activation
of nuclear factor complex NF-κB, a central regulator of the terminal processes in human labor
and delivery [21].

Besides their individual connection to preterm birth via immunity mechanisms, ten genes
from independent loci interact among each other: Pyrin encoded byMEFV decreases activation
of NF-κB complex [24], which includes NFKB1; pellino protein encoded by PELI2 is necessary
for activation of NF-κB complex; NF-κB activation is induced by lipopolysaccharide and inter-
leukine encoded by IL1B; NFKB1 binds with IRF8 [51]; CAMP decreases expression of NFKB1
[52];NFKBIA gene (independent region fromNFKB1) product inhibits NFKB1 responses;
NFKBIA affects the expression of TFRC, as a defence-from-bacterial-infection strategy [41]; IL1B
increasesNFKBIA expression; SPSB2 gene together with theMEFV gene share a SPRY domain,
which is involved in innate immunity [53]; IL1B can increase expression ofMMP9 [54].

Viral infection is also a potential cause of preterm birth [55]. In Table 6 we present biologi-
cally relevant "viral-immunity" genes identified by maternal GWAS in labor-initiated deliver-
ies. During the pregnancy, the immune system actively supports the growing fetus. Viral
infection weakens this function allowing other microorganisms to propagate and lead to pre-
term birth [56]. Five genes are known to bind to each other and are likely to play a role in the

Table 4. Loci of biological relevance frommaternal GWAS of gestational age in labor-initiated deliveries.

Rank SNP Chr BP P E/R Mod nEE nER nRR mEE mER mRR Genes

5 rs17515010 1 226209989 1.00e-5 G/A REC 4 141 1261 205 264 266 LEFTY2

10 rs1609798 4 103537442 1.48e-5 A/G REC 128 601 677 259 266 268 NFKB1

11 rs10117075 9 130417033 1.55e-5 A/G REC 12 190 1205 237 268 266 ENG

13 rs2287116 9 130420813 1.55e-5 A/C REC 12 210 1185 237 267 266 TOR2A

19 rs220381 16 3344618 2.12e-5 G/A DOM 159 559 689 270 268 264 MEFV

22 rs3117048 1 22345093 2.49e-5 A/G REC 146 633 628 273 266 265 WNT4

24 rs6915083 6 41164005 2.64e-5 G/A REC 197 648 561 261 268 266 TREM1, TREML2, TREML4

25 rs305080 16 85941774 2.67e-5 A/G REC 143 586 678 273 266 265 IRF8

41 rs4312673 3 48401307 3.67e-5 A/G DOM 1 72 1332 282 256 267 CAMP

65 rs634335 1 36335862 5.63e-5 C/A DOM 23 310 1074 266 262 267 AGO3

66 rs6718188 2 174761611 5.73e-5 A/C ADD 157 611 638 269 268 264 SP3

75 rs12336969 9 107679500 6.10e-5 A/C REC 7 201 1199 229 267 266 ABCA1

88 rs2177539 7 16652523 7.24e-5 G/A REC 109 566 728 259 267 267 ANKMY2

98 rs3913369 3 55481075 8.22e-5 A/C ADD 69 498 840 262 264 268 WNT5A

100 rs12138039 1 156918137 8.29e-5 A/G DOM 6 185 1214 259 261 267 ARHGEF11

101 rs4075688 3 195848264 8.30e-5 G/A REC 177 668 559 261 266 268 TFRC

106 rs4789863 17 76897347 8.52e-5 A/G DOM 1 122 1281 251 259 267 TIMP2

109 rs11866271 16 24881152 8.74e-5 C/A DOM 107 582 713 266 264 268 TNRC6A

117 rs3021274 22 40395084 9.22e-5 A/G DOM 230 653 524 269 267 264 TNRC6B

138 rs12202611 6 154237443 1.08e-4 G/A REC 7 295 1105 230 266 266 OPRM1

146 rs395643 14 56541638 1.12e-4 G/A REC 14 310 1083 242 266 266 PELI2

157 rs2301137 12 7018949 1.22e-4 A/G DOM 86 536 784 267 263 268 GNB3, SPSB2

173 rs12435366 14 35838389 1.41e-4 A/G REC 97 550 745 259 267 266 NFKBIA

197 rs7045953 9 120485795 1.56e-4 G/A ADD 37 379 991 272 269 265 TLR4

266 rs3746512 20 44592636 2.18e-4 A/G REC 34 394 979 253 266 267 MMP9

284 rs4849122 2 113560921 2.34e-4 G/A REC 7 158 1242 233 266 266 IL1A, IL1B

293 rs1457776 8 133360660 2.39e-4 A/G REC 52 433 922 256 266 267 KCNQ3

299 rs942364 13 28896097 2.44e-4 A/G DOM 20 307 1080 270 262 267 PAN3

doi:10.1371/journal.pone.0160335.t004
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defense against viral infection by utilizing the RNA-induced silencing complex (RISC). Argo-
nautes (encoded by AGO1, AGO3, AGO4) are the main components of RISC together with
TNRC6A and TNRC6B (both TNRC genes are located on different chromosomes). The host

Table 5. An overview of infection-related genes.

SNP Rank p-
value

Gene Function / relevance

rs1609798 10 1.5e-5 NFKB1 SNP is an eQTL for nuclear factor NFKB1 [22] known for association with preterm birth [23].

rs220381 19 2.1e-5 MEFV SNP is an eQTL for pyrin (marenostrin) encoded byMEFV [22]. Pyrin is an important modulator of
innate immunity [24]. As a regulator of IL1B activation, pyrin might be involved in preterm birth,
especially after intrauterine infection [25].

rs6915083 24 2.6e-5 TREML2, TREM1,
TREML4

SNP is in LD (r2 = 0.7) with a missense mutation in TREML2. This mutation (rs3747742) is also an
eQTL for immunoreceptor encoded by a proximal gene TREM1 [22], which amplifies responses to
bacterial lipopolysaccharide and is elevated in the cord blood of preterm fetuses [26]. Mutation is also
an eQTL for a proximal gene TREML4 [22], which is a positive regulator of TLR7 signalling
responsible for detecting single-stranded viral RNA [27].

rs305080 25 2.7e-5 IRF8 SNP is an eQTL for interferon regulatory factor encoded by IRF8 [22]. Importantly, interferon-γ protein
is associated with preterm birth [28, 29], while SNP in interferon-γ gene is also associated with
preterm birth [30].

rs4312673 41 3.7e-5 CAMP A proximal gene CAMP encodes cathelicidin antimicrobial peptide, which binds to bacterial
lipopolysaccharides and regulates inflammatory response. CAMP is present in the first trimester
cervicovaginal secretions and is expressed at higher levels in women with bacterial vaginosis [31].
CAMP levels are higher in foetal membranes and myometrium after spontaneous labour than after
elective caesarean section [32]. The SNP is also an eQTL for a proximal gene ZNF589 [33], which
forms a fusion gene with CAMP.

rs12336969 75 6.1e-5 ABCA1 Intronic SNP in ABCA1 gene. Maternal expression of ABCA1 was previously associated with
decreased gestational age [34]. This relation could be explained by ABCA1 involvement in infection-
response [35]. Interestingly, a short-half-life ABCA1 protein binds to ARHGEF11 (Table 7), which
prevents ABCA1 degradation [36].

rs3913369 98 8.2e-5 WNT5A SNP is the most proximal toWNT5A gene and is in LD with 3'-UTR variant (r2 = 0.9).WNT5A is
upregulated under bacterial infection via TLR4 and NFKB activation, which induces interferon-γ
production [37]. Lipopolysaccharide enhancesWNT5A expression through TLR4 and NF-κB
pathways [38]. Interestingly, WNT5A induces expression of fibronectin [39], a marker for preterm birth
[40].

rs4075688 101 8.3e-5 TFRC SNP is an eQTL for transferrin receptor TFRC [22], which binds to iron-loaded transferrin and
sequesters iron inside a cell via receptor-mediated endocytosis. This is the first line of defense
against bacterial infection called "nutritional immunity" (bacterial pathogens are dependent on iron
from their hosts) [41]. Concentrations of transferrin receptors are significantly increased in women
with vaginal infection [42]. Similarly, elevated maternal serum ferritin (another iron-binding protein)
concentrations are associated with preterm birth [43] and intrauterine growth restriction [44], possibly
via similar defense mechanism.

rs395643 146 1.1e-4 PELI2 SNP is an eQTL for pellino protein [22] necessary for activation of NF-κB complex.

rs2301137 157 1.2e-4 SPSB2 SNP is an eQTL for SPSB2 protein [22], which is involved in infection defense via the nitric oxide
production [45].

rs12435366 173 1.4e-4 NFKBIA Proximal-gene product inhibits NFKB1 responses, also affects the expression of TFRC, as a defence-
to-bacterial-infection strategy [41].

rs7045953 197 1.6e-4 TLR4 SNP is an eQTL for toll-like receptor TLR4 [22] that recognizes structurally conserved molecules
derived from microbes. TLR4mRNA levels are significantly elevated in preterm-delivering women
[46]. TLR4 plays a critical role in inflammation-induced preterm birth in a murine model [47].

rs3746512 266 2.2e-4 MMP9 SNP is an eQTL for extracellular matrix remodelling enzyme matrix metalloproteinase MMP9 [22]. A
genetic variant in MMP9 promoter is associated with preterm birth [48]. In myometrium, bacterial
fragments increase the expression ofMMP9 [21].

rs4849122 284 2.3e-4 IL1A, IL1B Interleukins IL1A and IL1B are mediators between infection and inflammation. Genetic variants in
IL1A and IL1B were associated with preterm birth in [49] and [50] respectively.

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the

leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS

results.

doi:10.1371/journal.pone.0160335.t005
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can inhibit viral replication using a library of miRNAs that matches parts of viral RNA [57],
and a RISC complex [58]. Moreover, the ability to suppress RISC was suggested as a counter-
strategy deployed by viruses [59]. The ribonuclease subunit encoded by PAN3 binds to both
TNRC proteins, while ANKMY2 binds to AGO3.

Utero-placental perfusion problems. In Table 7 we show the second group of genes that
are involved in utero-placental perfusion problems characterised by either utero-placental
angiogenic imbalances (LEFTY2, ENG, KCNQ3, TIMP2,MMP9, ABCA1), maternal blood
pressure (TOR2A, ARHGEF11, GNB3), or by compromised placentation (WNT4,WNT5A).

Cervical insufficiency. Cervical ripening precedes the delivery and allows the fetus to pass
through otherwise too-narrow outlet. Two genes described previously might also be involved
in cervical ripening, compromising the structural integrity of extracellular matrix too early
(Table 8).

Hormonal imbalance. The fourth group represents three genes that are connected to hor-
monal problems (Table 9), which can lead to preterm birth.

Discussion
In our study, GWA analyses showed no genome-wide significant associations. However, using
a gene-set enrichment analysis of GWA results, we found evidence that genes acting in mothers
might contribute to gestational age in deliveries that start with labor. These genes are known
for their involvement in processes that affect the duration of gestation (e.g., infection/
inflammation).

Genome-wide association study
Using a standard genome-wide significance threshold of 5×10−8 none of the six GWA analyses
revealed significant associations. Similarly as in previous study [10], we used two types of study
individuals: mothers and children, as the genes affecting pregnancy might manifest via both
genomes. We further stratified our analyses based on the type of delivery initiation: deliveries
starting with PROM, deliveries that start with labor, and all pregnancies together (Fig 1).
Instead of dichotomising a continuous phenotype (preterm and term groups), we directly uti-
lised accurately dated (ultrasound-based method) gestational age, retaining phenotypic vari-
ability. The long tail of the skewed phenotype distribution was oversampled (S1 Fig) to gain
more power to detect large effects. The samples used in our study were collected in a single
country and represent ethnically homogenous population. We also investigated allelic interac-
tions (dominance effects) that are likely to contribute to the broad-sense heritability estimates
of gestational age [7]. Additionally, our study did not set arbitrary minor-allele frequency filters

Table 6. An overview of "viral-immunity" genes.

SNP Rank p-value Gene Function / relevance

rs634335 65 5.6e-5 AGO3 SNP is an eQTL for a proximal gene AGO3 [60], which is a component of RNA-induced silencing complex
(RISC).

rs2177539 88 7.2e-5 ANKMY2 Intronic SNP in the gene ANKMY2 encoding a protein, which binds to AGO3.

rs11866271 109 8.7e-5 TNRC6A SNP is an eQTL for a proximal gene TNRC6A [22], which encodes a component of RISC complex.

rs3021274 117 9.2e-5 TNRC6B The second most proximal gene encodes a component of RISC complex.

rs942364 299 2.4e-4 PAN3 SNP is an eQTL for a proximal gene PAN3 [33].

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the

leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS

results.

doi:10.1371/journal.pone.0160335.t006
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and used permutation-based association tests, which are less affected by phenotypic outliers or
small counts in the minor genotypic group. We believe that these analytical aspects supplement
the methods of preceding studies [9, 10].

The exploratory nature of our study (2 types of genomes × 3 types of onset of delivery × 3
genetic models) requires adequate corrections for multiple testing. However, as most of the
tests are not independent, a simple Bonferroni correction would be overly conservative. We
chose to present uncorrected p-values, at the same time cautioning the reader to remember
that more statistical tests were done than in a single GWAS.

Gene-set enrichment analysis
Subsequent gene-set enrichment analyses indicated that one of our GWAS ranked markers in a
biologically meaningful manner (Fig 4). Two previous GWA studies investigating preterm

Table 7. An overview of utero-placental perfusion genes.

SNP Rank p-
value

Gene Description

rs17515010 5 1.0e-5 LEFTY2 The third most proximal gene LEFTY2 encodes a growth factor, an important member of the Nodal signalling
pathway essential for uterine cycling, embryo implantation and endometrial decidualization [61].

rs10117075 11 1.6e-5 ENG SNP is in LD (0.44 r2) with synonymous mutation in gene ENG encoding transforming growth factor component
endoglin involved in angiogenesis and preeclampsia [62].

rs2287116 13 1.6e-5 TOR2A SNP is an eQTL for a potent hypotensive peptide TOR2A [60], which stimulates the release of vasopressin [63]
and is associated with impaired intrauterine growth [64].

rs3117048 22 2.5e-5 WNT4 SNP is located 99 kb from theWNT4 gene. Wnt4 is important signalling molecule in decidualisation [65] in the
mouse model.

rs12336969 75 6.1e-5 ABCA1 Intronic SNP in ABCA1 gene. Maternal expression of ABCA1 was previously associated with decreased
gestational age [34], which could be explained by the fact that ABCA1 is upregulated by hypoxia [66] and plays
a critical role in proper angiogenesis [67]. Interestingly, a short-half-life ABCA1 protein binds to ARHGEF11
(see below), which prevents ABCA1 degradation [36].

rs3913369 98 8.2e-5 WNT5A SNP is the most proximal toWNT5A gene and is in LD with 3'-UTR variant (r2 = 0.9).WNT5A encodes a major
signalling molecule critical to healthy embryo development in the uterus of a mouse model:Wnt5a-
dysregulated pregnant mice show increased resorption rates, poor decidual growth, disrupted placental
development, embryos were substantially smaller [68].

rs12138039 100 8.3e-5 ARHGEF11 SNP is a synonymous mutation in a gene that regulates vascular smooth muscle contraction. ARHGEF11
modulates the effects of angiotensin [69], a vasoconstrictive hormone associated with preterm birth [70] likely
due to a blood pressure-regulating potency. ARHGEF11 is also expressed in human myometrium at labour
[71]. It obtained the most extreme permutation p-value in a family-based association study of idiopathic preterm
birth [72]. Binds to ABCA1.

rs4789863 106 8.5e-5 TIMP2 SNP is an eQTL for a tissue inhibitor of metalloproteinases TIMP2 [22]. TIMP2 can react to angiogenic factors
and directly suppress the proliferation of endothelial cells, thus inhibiting trophoblast invasion and leading to
fetal hypoxia [73], intrauterine growth restriction, preeclampsia[74], and consequently preterm birth [75].
Maternal genetic variant in TIMP2 was associated with spontaneous preterm labor before [76].

rs2301137 157 1.2e-4 GNB3 SNP is an eQTL for multiple genes, one of which is GNB3 [33], encoding guanine nucleotide binding protein
transducin. A SNP in this gene is associated with essential hypertension; also there is statistical interaction
between this SNP, SNP in ACE gene (angiotensin I converting enzyme) and hypertension [77].

rs3746512 266 2.2e-4 MMP9 SNP is an eQTL for extracellular matrix remodeling enzyme matrix metalloproteinase MMP9 [22]. Excess
MMP9 expression (in response to infection/inflammation) may facilitate proteolysis of basement membrane
proteins in the extracellular matrix, impede trophoblast invasion in human decidua, impair spiral artery
remodeling and reduce uteroplacental blood flow [54].

rs1457776 293 2.4e-4 KCNQ3 Intronic SNP in gene KCNQ3 encoding potassium channel. KCNQ3 might be related to angiogenesis during
utero-placental vascular development [78]. Expression was significantly upregulated in preeclampsia. a
medical condition with structural/functional alterations in placental and maternal vasculature [79].

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the

leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS

results.

doi:10.1371/journal.pone.0160335.t007
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birth [9, 10] did not provide such evidence. Enrichment in known pregnancy-related genes jus-
tifies a closer inspection of top loci (see Literature-informed analyses) and warrants new GWA
studies with larger sample sizes.

The results from gene-set enrichment analysis (Fig 4) illustrate the advantage of stratifying
study subjects based on the onset of delivery. Only the GWAS investigatingmothers with
labor-initiated deliveries showed expected enrichment in pregnancy-related gene-sets and no
enrichment in control gene-sets. The reasons for this could be that maternal genes play a more
important role than the fetal. However, a smaller number of children (1.5-times less than
mothers) could also explain this observation. Similarly, GWAS investigating PROM deliveries
had a lower statistical power to detect associations (4-times smaller sample size) than GWAS
investigating labor-initiated deliveries. Also, genetically determined gestational age in PROM
pregnancies is likely to be shortened by environmental factors (e.g., the severity of the micro-
bial invasion of the amniotic cavity), thus introducing noise and reducing the power of GWAS.
Interestingly, even though analysis of mixed pregnancies had the largest sample size, it showed
low enrichment in pregnancy-related genes. This observation suggests that gestational age
determined by two onsets of delivery (labor and PROM) actually represents two separate
endophenotypes.

Table 8. An overview of cervical insufficiency genes.

SNP Index p-
value

Gene Description

rs4789863 106 8.5e-5 TIMP2 SNP is an eQTL for a tissue inhibitor of metalloproteinases TIMP2 [22]. TIMP2 inhibits protease activity in tissues
undergoing remodelling of the extracellular matrix, and can affect cervix dilation, which precedes delivery. Maternal
genetic variant in TIMP2 was associated with spontaneous preterm labor with intact fetal membranes [76], indicating
that TIMP2 more likely acts via cervix.

rs3746512 266 2.2e-4 MMP9 SNP is an eQTL for extracellular matrix remodeling enzyme matrix metalloproteinase MMP9 [22]. MMP9 plays a role
in cervical ripening [80]. A genetic variant inMMP9 promoter is associated with preterm birth [48].

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the

leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS

results.

doi:10.1371/journal.pone.0160335.t008

Table 9. An overview of hormonal genes.

SNP Rank p-
value

Gene Description

rs3117048 22 2.5e-5 WNT4 SNP is located 99 kb from theWNT4 gene. WNT4 is associated with hyper-androgenism in females (high levels of
testosterone, acne, hirsutism) [81], likely due to a mutation increasing androgen biosynthesis [82]. Encodes a
signaling protein that is negatively correlated with estrogen and progesterone levels [83], and is associated with
uterine hypoplasia [84], as it is a known morphogen controlling uterine changes during pregnancy [83].
Importantly, PTB risk is higher for mothers with polycystic ovary syndrome, notable for high androgen levels [85].
Also, small intrauterine space (uterine hypoplasia) might be causally linked to the shorter gestational age [86].

rs6718188 66 5.7e-5 SP3 SNP is an LD (0.92 r2) with the SNP in 3'-UTR of the gene SP3. SP3 mediates progesterone-dependent induction
of the hydroxysteroid dehydrogenase gene (involved in production of progesterone and testosterone) in human
endometrium [87].

rs12202611 138 1.1e-4 OPRM1 Proximal geneOPRM1 encodes μ-opioid receptor (MOR). The MOR is the main target of endogenous opioid
system [88], which has been implicated in the regulation of hormonal secretion and uterine contractility during
pregnancy [89, 90]. Interestingly, OPRM1 contains an important modern-human-specific variant [91] (gestational
in our species is very different from other primates).

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the

leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS

results.

doi:10.1371/journal.pone.0160335.t009
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Based on the results from gene-set enrichment analyses, in the literature-informed analyses
we chose to investigate only the top SNPs from thematernal GWAS in labor-initiated
deliveries.

Literature-informed overview of GWAS results
In the seminal publication by Romero et al. [92], the authors summarised the main pathologi-
cal processes involved in the preterm parturition syndrome: (1) intrauterine infection/inflam-
mation; (2) placental insufficiency (uteroplacental perfusion, angiogenic imbalances,
decidualisation); (3) uterine overdistension and contractility; (4) abnormal allograft reaction;
(5) allergy; (6) cervical insufficiency; (7) hormonal imbalance. Some genes implicated by the
top 300 SNPs from maternal GWAS in labor-initiated deliveries could be comfortably assigned
to these processes: infection/inflammation (NFKB1, TLR4, IRF8, ABCA1, TREML2,MEFV,
WNT5A, NFKBIA), placental insufficiency (ENG, TOR2A, IGF2, KCNQ3, GNB3, LEFTY2,
ARHGEF11,WNT4,WNT5A), cervical insufficiency (MMP9, TIMP2), and hormonal imbal-
ance (WNT4, OPRM1, SP3).

We found 32 genes (Table 4) that 1) had suggestive evidence of association in GWA analy-
sis, 2) were likely to have their function/expression affected by top GWAS SNPs, 3) had pheno-
type-relevant biological functions, and 4) their proteins formed clusters of interaction. Most of
these genes belong to the "bacterial infection" group (Table 5).

Similar future studies might benefit from these observations: inclusion of recessive and
dominant genetic models was advantageous, because allelic interactions (dominance effects)
implicated approximately 90% of genes with biological relevance (Table 4). Similarly, 30% of
genes would have been overlooked if a minor-allele frequency filter (MAF> 0.1) were to be
applied, and over 50% would have been lost if GWAS sample size were to be increased by add-
ing PROM-delivering mothers (N = 336) to the mothers with labor-initiated deliveries
(N = 1407).

Replication studies should take into account that common infections in various geographi-
cal regions and climates might be caused by specific strains/species of bacteria. Similarly, differ-
ent human populations might be unique in their immunity (vitamin D and sun exposure,
vaccination policies, specific hygiene-related behaviours).

Infection/inflammation-related genes from our analyses (Table 5) could be used in gene-
environment interaction (G×E) studies investigating how genotypes modulate the effect of
infection-during-pregnancy on the gestational age at birth. Such studies could create the tools
to identify women at high risk for delivering preterm.

Conclusion
In this study, no genome-wide significant associations with gestational age were found. We
highlight 32 genes for the follow-up research, providing suggestive statistical evidence and bio-
logical relevance to gestational age, especially via inflammatory-pathways. Our study illustrates
how post-GWAS analysis might give insights into the aetiology of the phenotype even without
clear GWAS signals.

Supporting Information
S1 Fig. Phenotype distribution is six GWAS analyses. Frequency denotes the number of indi-
viduals with a particular value of gestational age. The red line represents phenotype distribu-
tion in the whole MoBa cohort with same exclusion criteria applied as was for genotyped
sample, only without case-oversampling. Maximal height of the red line was adjusted to match
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the histogram height. Individuals in different histograms might represent the same pregnancy.
(TIFF)

S2 Fig. Manhattan plot for fetal GWAS of gestational age in labor-initiated deliveries. In
total 884 fetal genomes were used. Each SNP was assigned the most extreme empirical p-value
from three genetic models (additive, recessive, dominant). The top line indicates a genome-
wide significance level (5×10−8), while the bottom line marks a significance level (5×10−4)
determining the number of “clumps” (independent loci that are used in gene-set enrichment
analyses).
(TIF)

S1 File. Results from all 6 GWA analyses. Best_emp_P—the most extreme empirical p-value
from three genetic models, Eff/Ref—the effect allele and the reference allele, Genetic model—
the most significant genetic model for that SNP. Only SNPs with best_emp_P values�10−3 are
shown.
(ZIP)

S2 File. All genes from 12 pregnancy-related gene-sets.
(ZIP)

S1 Table. Text-mining PubMed abstracts for pregnancy-related genes. The table shows key-
words and their queries used to search PubMed database. Numbers of keyword-related genes
are shown before and after filtering.
(XLSX)
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