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Distributed Storage in Mobile Wireless Networks
with Device-to-Device Communication

Jesper Pedersen, Alexandre Graell i Amat, Senior Member, IEEE,
Iryna Andriyanova, Member, IEEE, and Fredrik Briannstrom, Member, IEEE

Abstract—We consider the use of distributed storage (DS) to
reduce the communication cost of content delivery in wireless
networks. Content is stored (cached) in a number of mobile
devices using an erasure correcting code. Users retrieve content
from other devices using device-to-device communication or from
the base station (BS), at the expense of higher communication
cost. We address the repair problem when a device storing data
leaves the cell. We introduce a repair scheduling where repair is
performed periodically and derive analytical expressions for the
overall communication cost of content download and data repair
as a function of the repair interval. The derived expressions are
then used to evaluate the communication cost entailed by DS
using several erasure correcting codes. Our results show that DS
can reduce the communication cost with respect to the case where
content is downloaded only from the BS, provided that repairs are
performed frequently enough. If devices storing content arrive to
the cell, the communication cost using DS is further reduced and,
for large enough arrival rate, it is always beneficial. Interestingly,
we show that MDS codes, which do not perform well for classical
DS, can yield a low overall communication cost in wireless DS.

Index Terms—Caching, content delivery, device-to-device com-
munication, distributed storage, erasure correcting codes.

I. INTRODUCTION

T IS predicted that the global mobile data traffic will exceed

30 exabytes per month by 2020, nearly a tenfold increase
compared to the traffic in 2015 [1]. This dramatic increase
threatens to completely congest the already burdened wireless
networks. One popular approach to reduce peak traffic is to
store popular content closer to the end users, a technique
known as caching. The idea is to deploy a number of access
points (called helpers) with large storage capacity, but low-rate
wireless backhaul, and store data across them [2], [3]. Users
can then download content from the helpers, resulting in a
higher throughput per user. In [4] it was suggested to store
content directly in the mobile devices, taking advantage of the
high storage capacity of modern smart phones and tablets.
The requested content can then be directly retrieved from
neighbouring mobile devices, using device-to-device (D2D)
communication. This allows for a more efficient content deliv-
ery at no additional infrastructure cost. Caching in the mobile

This paper was presented in part at the IEEE Information Theory Workshop,
Jeju Island, Korea, October 2015.

This work was partially funded by the Swedish Research Council under
grants 2011-5961 and 2011-5950, and by the European Research Council
under Grant No. 258418 (COOPNET).

J. Pedersen, A. Graell i Amat, and F. Brinnstrom are with the De-
partment of Signals and Systems, Chalmers University of Technology,
SE-41296 Gothenburg, Sweden (e-mail: {jesper.pedersen, alexandre.graell,
fredrik.brannstrom } @chalmers.se).

I.  Andriyanova is with the ETIS-UMR8051 group, EN-
SEA/University of Cergy-Pontoise/CNRS, 95015 Cergy, France (e-mail:
iryna.andriyanova@ensea.fr).

devices to alleviate the wireless bottleneck has attracted a
significant interest in the research community in the recent
years [5]—[8]. In all these works, simple content caching and/or
replication (i.e., a number of copies of a content are stored in
the network) is considered. Additionally, the use of maximum
distance separable (MDS) codes to facilitate decentralized
random caching was investigated in [8].

A relevant problem in D2D-assisted mobile caching net-
works is the repairing of the lost data when a storage device
is unavailable, e.g., when a storage device fails or leaves the
network. Repairing of the lost data was considered in [9],
where the communication cost incurred by data download and
repair was analyzed for a caching scheme where data is stored
in the mobile devices using replication and regenerating codes
[10]. A strong assumption in [9] is that the repair of the lost
content is performed instantaneously. As a result, content can
always be downloaded from the mobile devices. Under the
assumption of instantaneous repair, the caching strategy that
minimizes the overall communication cost is 2-replication.

In this paper, we consider content caching in a wireless
network scenario using erasure correcting codes. When using
erasure correcting codes to cache content, caching bears strong
ties with the concept of distributed storage (DS) for reliable
data storage. Indeed, the set of mobile devices storing content
can be seen as a distributed storage network. The fundamental
difference with respect to DS for reliable data storage is
that data download can be done not only from the storage
nodes, but the base station (BS) can also assist to deliver
the data. Therefore, the strict guarantees on fault tolerance
can be relaxed, which brings new and interesting degrees of
freedom with respect to erasure-correcting coding for DS for
reliable data storage. Here, to avoid confusion with standard
(uncoded) caching, we will use the term wireless distributed
storage, highlighting the resemblance with DS using erasure
correcting codes for reliable data storage in, e.g., data centers.
Similar to the scenario in [9], we consider a cellular system
where mobile devices roam in and out of a cell according
to a Poisson random process and request content at random
times. The cell is served by a BS, which always has access
to the content. Content is also stored across a limited number
of mobile devices using an erasure correcting code. Our main
focus is on the repair problem when a device that stores data
leaves the network. In particular, we introduce a more realistic
repair scheduling than the one in [9] where lost content is
repaired (from storage devices using D2D communication or
from the BS) at periodic times.

We derive analytical, closed-form expressions for the overall
communication cost of content download and data repair as
a function of the repair interval. The derived expressions are



general and can be used to analyze the overall communication
cost incurred by any erasure correcting code for DS. As an
example of the application of the proposed framework, we
analyze the overall communication cost incurred by MDS
codes, regenerating codes [10], and locally repairable codes
(LRCs) [11]. We show that wireless DS can reduce the overall
communication cost as compared to the basic scenario where
content is only downloaded from the BS. However, this is
provided that repairs can be performed frequently enough.
Moreover, in the case when nodes storing content arrive to
the cell, the communication cost using DS is further reduced
and, for large enough arrival rate, it is always beneficial as
compared to BS download. The repair interval that mini-
mizes the overall communication cost depends on the network
parameters and the underlying erasure correcting code. We
show that, in general, instantaneous repair is not optimal. The
derived expressions can also be used to find, for a given repair
interval, the erasure correcting code yielding the lowest overall
communication cost.

Non-instantaneous repairs, the so-called “lazy” repairs, have
already been proposed for DS in data centers [12], [13] to
reduce the amount of data that has to be transmitted within the
storage network during the repair process, known as the repair
bandwidth. However, contrary to [12], [13], in the wireless
scenario considered here the non-instantaneous repairs impact
both data repair and download. We show that, somewhat
interestingly, erasure correcting codes achieving a low repair
bandwidth do not always perform well in a wireless DS setting.
On the other hand, MDS codes, which entail a high repair
bandwidth, can yield a low overall communication cost for
some repair intervals.

Notation: The probability density function (pdf) of a random
variable X is denoted by fx(-). Expectation and probability
are denoted by E[-] and P(-), respectively. We use bold
lowercase letters « to denote vectors and bold uppercase letters
X for matrices.

II. SYSTEM MODEL

We consider a single cell in a cellular network, served by a
BS, where mobile devices (referred to as nodes) arrive and
depart according to a Poisson random process. The initial
number of nodes in the network is M. Nodes wish to download
content from the network. For simplicity, we assume that there
is a single object (file), of size F' bits, stored at the BS. We
further assume that nodes can store data and communicate
between them using D2D communication. The considered
scenario is depicted in Fig. 1.

Arrival-departure model. Nodes arrive according to a Pois-
son process with exponential independent, identically dis-
tributed (i.i.d.) random inter-arrival times T, with pdf

fr,(t) = Mxe ™™ X >0, t >0, (1)

where M X is the expected arrival rate of a node and ¢ is time,
measured in time units (t.u.).

The nodes stay in the cell for an i.i.d. exponential random
lifetime 77 with pdf

le (t) = ,u'eilltv p=>0,1t2>0, 2

m

Figure 1. A wireless network with data storage in the mobile devices (nodes).
A new node arrives to the network at rate M \. The departure rate per node is
1. Blue nodes store exactly « bits each. The green node requests the file and
downloads it from the storage nodes (solid arrows), or from the BS (dashed
arrow). The repair onto a node (in red) is carried out by transmitting ypop bits
from storage nodes (solid arrows) or ~ggs bits from the BS (dashed arrow).

where p is the expected departure rate of a node. The number
of nodes in the cell can be described by an M/M /oo queuing
model where the probability that there are ¢ nodes in the cell

is [14] _

(i) = LB o oasi
For simplicity, we assume that © = A, i.e., the flow in and out
from the cell is the same and the expected number of nodes
in the cell stays constant (equal to M).

Data storage. The file is partitioned into k£ packets, called
symbols, of size % bits and is encoded into n coded symbols,
n > 2, using an (n, k) erasure correcting code of rate R =
k/n < 1. The encoded data is stored in m nodes, 2 < m < n,
referred to as storage nodes. Note that m < n implies that a
storage node may store multiple coded symbols. For some of
the considered erasure correcting codes, this is the case (see
Section VI). To simplify the analysis in Sections III and 1V,
we set m < M. This guarantees that the probability that the
number of nodes in the cell is smaller than m is negligibly
small, i.e.,

3)

m—1

> wi) <1, )
using (3). For example, for m < 10 and M = 30, (4) is
less than 7.2 - 106, Therefore, with high probability the file
can be stored in the cell. In the results section we show that
this simplification has negligible impact and that the analytical
expressions match closely with the simulation results.

Each storage node stores exactly « bits, i.e., we consider a

symmetric allocation [15]. Hence!,

1 F _F
: o )
Incoming process. Nodes arriving to the cell may bring

cached content. The expected arrival rate of nodes storing

content is mA;, A\c < pu. We also assume that the expected

'Without loss of generality, we assume o € N.



arrival rate of nodes not carrying content is M A—mA, so that
the expected arrival rate of a node (with or without content) is
MM and the expected number of nodes in the cell is M (see
above). The incoming process is discussed in more detail in
Section V.

Data delivery. Nodes request the file at random times with
i.i.d. random inter-request time 7; with pdf

fr(t) = we™", (6)

where w is the expected request rate per node. Whenever pos-
sible, the file is downloaded from the storage nodes using D2D
communication, referred to as D2D download. In particular,
we assume that data can be downloaded from any subset of
h storage nodes, 1 < h < m, which we will refer to as the
download locality. In other words, D2D download is possible
if h or more storage nodes remain in the cell. In this case,
the amount of downloaded data is ha > F bits.2 In the case
where there are less than h storage nodes in the cell, the file is
downloaded from the BS, which we refer to as BS download.
In this case, F' bits are downloaded.

Communication cost. We assume that transmission from the
BS and from a storage node (in D2D communication) have
different costs. We denote by pps and ppyp the cost (in cost
units (c.u.) per bit, [c.u./bit]) of transmitting one bit from the
BS and from a storage node, respectively. Therefore, the cost
of downloading a file from the BS and the storage nodes is
pesF and ppypha, respectively. Furthermore, we define p £
pBs/pp2p > 0, where p > 1 corresponds to a high traffic load
in the BS-to-device link and p < 1 reflects a scenario where
the battery of the devices is the main constraint.

w>0,t>0,

A. Repair Process

When a storage node leaves the cell, its stored data is
lost (see blue node with orange stripes in Fig. 1). Therefore,
another node needs to be populated with data to maintain the
initial state of reliability of the DS network, i.e., m storage
nodes. The restore (repair) of the lost data onto another node,
chosen uniformly at random from all nodes in the cell that do
not store any content, will be referred to as the repair process.
We introduce a scheduled repair scheme where the repair
process is run periodically. We denote the interval between two
repairs by A (in tu.), A > 0. Note that A = 0 corresponds
to the case of instantaneous repair, considered in [9].

Similar to the download, repair can be accomplished from
the storage nodes (D2D repair) or from the BS (BS repair),
with cost per bit ppyp and pps, respectively. The amount of
data (in bits) that needs to be retrieved from the network
to repair a single failed node is referred to as the repair
bandwidth, denoted by ~. For simplicity, we assume that each
repair is handled independently of the others. In particular, we

2To simplify the analysis in Sections Il and IV, we assume that the
download bandwidth is the same irrespective of whether the request comes
from a storage node itself or not, i.e., users do not have access to their own
stored data. This is a reasonable approximation if m < M. Furthermore, this
may be a practical assumption. Due to concerns about security in systems that
allow for D2D connectivity, it has been proposed to isolate part of the memory
in the mobile devices to be used only for DS, so that devices cannot have
access to their own cached data [16].

assume that D2D repair can be performed from any subset of r
storage nodes, 1 < r < m, by retrieving 8 < « bits from each
node. In other words, D2D repair is possible if there are at
least r storage nodes in the cell at the moment of repair. In this
case, Ypop = 18 > «, and the corresponding communication
cost is ppypypep. Parameter r is usually referred to as the
repair locality in the DS literature. If there are less than r
storage nodes in the cell at the moment of repair, then the
repair is carried out by the BS. In this case, ygs = «, with
communication cost pgs~yps. Note that ypop/vss > 1. For both
repair and download, we assume error-free transmission.

Parameters m, h, r, @ and 3, and subsequently ypyp and
~Bs, depend on the erasure correcting code used for storage.
Since m, h and r are very important parameters, an erasure
correcting code in DS is typically defined with the triple
[m, h, r]. This will be further explained in Section VI.

III. REPAIR AND DOWNLOAD COST

In this section, we derive analytical expressions for the
repair and download cost, and subsequently for the overall
communication cost, as a function of the repair interval A. For
analysis purposes, we initially disregard the incoming process,
i.e., set A\ = 0. The case . > 0 is then addressed in Section V
building upon the results in this section. We denote by C; the
average communication cost of repairing lost data, and refer
to it as the repair cost. Also, we denote by Cy the average
communication cost of downloading the file, and refer to it as
the download cost. The (average) overall communication cost
is denoted by C, where C' £ C, + Cy. The costs are defined
in cost units per bit and time unit, [c.u./(bitxt.u.)].

For later use, we denote by b;(m, p) the probability mass
function (pmf) of the binomial distribution with parameters m
and p,

(N

bi(m, p) = (T)p%l -p)™', 0<i<m.

A. Repair Cost

The repair cost C; has two contributions, corresponding to
the cases of BS repair and D2D repair. Denote by mP?P and
mBS the average number of nodes repaired from the storage
nodes and from the BS, respectively, in one repair interval.
Then, C, (in [c.u./(bitxt.u.)]) is given by

Cr ®)

= ﬁ (pBS’YBSm?S + PDZD’YDZDmPZD) )
where pgsyss and ppopyp2p (in c.u.) are the cost of repairing
a single storage node from the BS and from storage nodes,
respectively (see Section II-A), and we normalize by F' such
that C; does not depend on the file size.

The repair cost, C;, is given in the following theorem.

Theorem 1. Consider the DS network in Section Il with
departure rate u, communication costs pgs and ppop, BS
repair bandwidth ~gs, file size F, repair interval A, and
probability p that a node has not left the network during a
time A. Furthermore, consider the use of an [m, h,r] erasure



correcting code with D2D repair bandwidth ~pyp. The repair
cost is given by

r—1

~ 1
Cr=7x <PBS’YBS > (m —i)bi(m, p)

=0

+ppappoD Y (M — i)bi(m,P)> SN )

i=r

Proof: As the inter-departure times are exponentially
distributed, the probability that a storage node has not left
the network during a time A and is available for repair is

p=P(T > A) = e H4,

Hence, the probability that ¢ storage nodes are available for
repair is b;(m, p). If i storage nodes remain in the cell, then
m — 1 repairs need to be performed. D2D repair is performed
if ¢ > 7, and BS repair is performed otherwise. Therefore,

m r—1

mP>?P = Z(m —i)b;j(m,p), mbES = Z(m — 1)b;(m, p).
i=r i=0

Using these expressions in (8), we obtain (9). [ |

Remark 1. We see from (8) that if pssyss < pp2pYD2D; i-€.
p < % D2D repair should never be performed, as repairing
always from the BS yields a lower repair cost. In this case the
repair cost would be

_ 1 B
C’rBS = ﬁsz’)’Bsm(l —e “A).

B. Download Cost

Similar to C,, the download cost Cy has two contributions,
corresponding to the case where content is downloaded from
the BS and from the storage nodes. Denote by pgs and ppap
the probability that, for a request, the file is downloaded from
the BS and from the storage nodes, respectively. Then, Cy can
be written as

~ Mw
Ca=—F% (pesF'pes + poophappon) (10)

where pgsF' and ppypha are the cost of downloading the file
from the BS and from the storage nodes, respectively (see
Section II), and Mw is the overall request rate per t.u.. Again,
we normalize by ' so that the cost does not depend on the
file size. The download cost is given in the following theorem.

Theorem 2. Consider the DS network in Section Il with
expected number of nodes in the cell M, departure rate p,
request rate w, communication costs pgs and pmp, file size
F, and repair interval A. Furthermore, consider the use of an
[m, h,r] erasure correcting code that stores « bits per node.
Let ji; =iy fori=h,...,m, and p; = e~ ">, The download
cost is given by

_ ha le=l—-pitx J
Ci=M —— — E | I .
d w(sz-i-(PDzD i pBS) A 2y jfhj_i

j#i

(1)

m(t)
( storage node departure
m -/

Tm
Tm -1

Figure 2. Number of available storage nodes within the repair interval A.
At t = 0, there are m storage nodes available. S}, is the time after which
less than h storage nodes are available, hence D2D download is no longer
possible.

The proof is given in Appendix A. Here, for ease of under-
standing, we give an outline of the proof. Since ppyp+pss = 1,
it follows from (10) that to derive Cy is sufficient to derive
ppap- Let m(t) be the number of storage nodes alive in the cell
within a repair interval, i.e., for ¢ € [0, A), with m(0) = m.
It is important to observe that m(t) is described by a Poisson
death process [14], since storage nodes may leave the cell,
and no repair is attempted before a time A. This random
process is illustrated in Fig. 2. At some point, too many storage
nodes have left the network, such that the number of available
storage nodes goes below h and D2D download is no longer
possible. Denote the (random) time this occurs by Sy, i.e.,
m(t) < h ¥t > Sy, t €[0,A) (see Fig. 2). Denote by W,
the arrival time of the (th file request within a repair interval,
t € [0,A). The probability ppyp can then be derived in two
steps.

1) Find the pdf of the arrival time of the file requests within
a repair interval A, We.

2) Find the probability that a request arrives before Sy,
Ppop = IP(VT/@ < Sh) (.e., D2D download is possible).

Remark 2. If pgsF' < ppophay, ie, p < % performing BS
download only is optimal. The download cost is then

CPS = Muwpgs. (12)

We also have the following result about the behavior of Cy
in (11).

Corollary 1. For ;i > 0, Cy is monotonically increasing with
Aifp> hfa, monotonically decreasing with A if p < h?a,
and constant otherwise.

Proof: The proof follows directly from differentiating Cy
with respect to A and is therefore omitted. [ ]

C. Overall Communication Cost

Combining Theorems 1 and 2, one obtains the expression
for the overall communication cost,
C=0C,+Cy. (13)
Note that, in general, C' is not monotone with A. We can
derive the following result for A = 0 (instantaneous repair)
and A — oo (no repair).



Corollary 2.

AII_I}O C= F ('yDZDm,u + Mwha). (14)
Moreover; for 11 > 0,
lim C = Mwpgs. (15)
A—oo
Proof: See Appendix B. ]

For instantaneous repair (A = 0), both repair and download
are always performed from the storage nodes. Thus, the
two terms in (14) correspond to the D2D repair and D2D
download, and we recover the result in [9]. For A — oo, data
is never repaired (hence, C; = 0). For p > 0, the number of
storage nodes in the cell w1ll become smaller than s at some
point, and D2D download is no longer possible. Therefore, the
overall communication cost in (15) is the BS download cost
in (12).

IV. HYBRID REPAIR AND DOWNLOAD

In the system model in Section II and the analysis in
Section III we assumed that if repair (resp. download) cannot
be completed from storage nodes (because there are less than
r (resp. h) storage nodes available in the cell), BS repair
(resp. download) is performed. Alternatively, for both repair
and download, a node might retrieve data from the available
storage nodes using D2D communication and retrieve the rest
from the BS to complete the repair or the download. We
will refer to this setup as partial D2D repair and partial D2D
download, and the scheme that implements it as the hybrid
repair and download scheme. In the following, we extend the
analysis in Section III to the hybrid scheme.

A. Repair Cost

Assume that, at the time of repair, ¢ < 7 storage nodes
are available, i.e., repair cannot be accomplished exclusively
from the storage nodes. However, i/ bits could be retrieved
from the ¢ available storage nodes and the remaining ypyp —
i = (r —i)[ bits to complete the repair from the BS. The
corresponding communication cost is (pgs(T — ¢) + ppapt) 3.
For the conventional scheme, D2D repair is not possible for
1 < 7, and the repair cost corresponds to that of BS repair,
i.e., psyss. This implies that, if ¢ < r, partial repair leads
to a reduced repair cost if (pps(r — 4) + pp2p?)S < pPBSTBS
or, equivalently, 7 > 55— gr — %) 2 c Fori <7, the
hybrid scheme performs partial D2D repair if 7 > ¢ and BS
repair otherwise. The repair cost is given in the following
theorem.

Theorem 3. Consider the DS network in Section II using the
hybrid scheme. The repair cost is given by

o 1 - .
Ghsbrid — A (szq/Bs Z(m —)bi(m, p)

i=0
£ 5o

1=a+1

—4)(pes(r — i) + ippap) Bbi (M, p)

+ pPp2DYD2D Z(m -

1=r

whereazmin{t £8s (r—m)J,T—l}, (r_m)z
PBS — PD2D B B
0 for all codes in Section VI, and p = e M.

Proof: Tt follows the same lines as the proof of Theo-
rem 1. u

B. Download Cost

Similar to the repair case, if ¢ < h storage nodes are
available at the time of a file request, the file cannot be
downloaded solely from the storage nodes. However, i« bits
could be downloaded from the ¢ available storage nodes and
the remaining (h — )« bits from the BS, with communication
cost (pgs(h — i) + ppopi)a. For the conventional scheme,
the download cost corresponds to that of BS download, i.e.,
pesF'. Hence, the hybrid scheme leads to a lower download
cost if (pps(h — ) + ppapi)a < ppsF, or equivalently, i >
pm”% ( E) £ d. For i < h, the hybrid scheme performs
partial D2D download if % > d and BS download otherwise.
The download cost is given in the following theorem.

Theorem 4. Consider the DS network in Section Il using the
hybrid scheme. Let j; = i and p; = e M2, fori=1,...,m.
The download cost is given by

~hybri Mw I 1l—pi1r J
Chybrld _ pBSF 1- — 7 : :
d F A ; i g];[1 Jj—1
i
h—1
+ szFZ c + Z (pes(h — @) + ippop)ac;
i1=a+1
J
+ ppopha— — |, (16)
I
J;ﬁi
where a = min{{pBSp_B;Dm (h— g)J Jh — 1}, (h— g) >0,
and
SIS
= Z - L
A =1 Hi Jj=t J ¢
g
=1 — Py N J
B Pl =
z’—z+l J=i+1
g7
Proof: See Appendix C. |

V. REPAIR AND DOWNLOAD COST WITH
AN INCOMING PROCESS

The analysis in the preceding sections does not consider the
possibility that nodes arriving to the cell may bring content. In
a real scenario with neighboring cells, however, this may be
the case. We will refer to the arrival of nodes with content
as the incoming process. Considering an incoming process
significantly complicates the analysis. This is due to the fact
that arriving nodes may bring content that is not directly useful,
in the sense that they may bring code symbols which are
already available in another storage node. At a given time,
it is likely that some symbols will be stored by more than



one storage node, while other symbols will not be present
in the storage network (due to node departures). As a result,
the analysis needs to consider storage node classes, where
a node class defines the set of storage nodes storing given
code symbols. In general, for an [m, h,r] erasure correcting
code, there are m storage node classes, since all code symbols
are different. The case of simply replicating the data (using a
repetition code) is a bit different. Despite the fact that all code
symbols are equal, for the analysis of m-replication we still
need to consider m storage node classes, i.e., we treat each of
the code symbols of the m-replication as they were different.

In this section, we extend the analysis in Sections III and
IV to the scenario with an incoming process. In particular,
we show that Theorem 1 and Theorem 2 can also be used
to analyze the repair and download costs for this scenario by
using different input parameters. More precisely, we consider
the scenario where storage nodes of a given class arrive to the
cell according to a Poisson process with expected arrival rate
Ac < . An incoming storage node brings a single code symbol
of a given class. Furthermore, nodes not storing content arrive
according to a Poisson process with expected arrival rate M \—
mA.. The departure rate for all nodes is 1 = A, i.e., as before,
the average number of nodes in the cell is M. We assume
the practical scenario where the BS maintains a list of the
nodes storing content, which is communicated periodically to
all nodes in the cell every ® t.u.. For simplicity, we assume
that @ = A.

A. Repair Cost

Denote by ¢;(t) the number of class-i storage nodes in the
cell at time ¢. Also, denote by ¢; (¢) the probability that class
i is empty at time ¢, i.e., g;0(t) = P(c;(t) = 0). Since all
storage node classes have the same arrival and departure rate,
we can drop subindex ¢ and write g; o(t) = qo(t) Vi. Also, let
g = (o, q1, - . .) be the stationary distribution, where g; is the
probability that class ¢ has j storage nodes. Equation (9) in
Theorem 1 can then be used for the scenario with an incoming
process by setting p < (1 — go).

The difficulty here lies in computing q. Without repairs, the
evolution of ¢;(t) is given by a Poisson birth-death process,
which can be modeled by an M/M /oo Markov chain model.
In this case, the stationary distribution q = (qo, ¢1, - - .) exists
and can be computed. However, the repairs performed every
A t.u. interfere with the stationarity of the process. Indeed, in
the presence of repairs, the evolution of ¢;(¢) does no longer
correspond to a Poisson birth-death process. In this case, the
analysis appears to be formidable.

Here, we propose the following two-step procedure to
compute q. Consider a single repair interval of duration A,
where ¢;(A) is the number of storage nodes in class i at
time A. Within a repair interval ¢ € [0, A), ¢;(¢) is described
by a Poisson birth-death process®. Since storage node classes
are independent of each other and have the same arrival and
departure rates, we can focus on a single class. Hence, we will
drop the subindex 7 in ¢;(¢) and simply write ¢(t).

3This is contrast to the case with no incoming process, where the evolution
of ¢;(t) for ¢t € [0, A) is described by a Poisson death process.

Let P;;(t) = P(c(t) = j|c(0) = i) denote the transition
probability function of the continuous-time M/M /oo Markov
chain representing the Poisson birth-death process. P;;(t)
can be computed by deriving a set of differential equations,
called Kolmogorov’s forward equations, whose solution can
be computed as follows [17]. Let P(¢) be the S x S matrix
with (¢, j)th entry P;;(t), where S—1 is the maximum number
of storage nodes of one class. Also, let r;; be the transition
rates of the continuous-time Markov chain. Then P(¢) can be
computed as [17]

el L
P =6 23 UGL a7
=0

1

where G is the generator of the Markov chain, with entries
9ij»1=0,...,9—=1and j=0,...,5 —1, given by

gij = rij for i # j,
5—1

9ii = — E Tig,
=0

with

Ao ifj=i+1
i ifj=i—-1
0 otherwise

(18)

rij =

The infinite power series in (17) converges for any square
matrix G, and can be efficiently computed using, e.g., the
algorithm described in [18].

Note that in our scenario, S is not finite. However, if
Ae < p the probability of having ¢(t) = j storage nodes of a
given class at time ¢, P(c(t) = j), sharply decreases with j.
Therefore, we can limit S to a sufficiently large value, and by
solving (17) get a very good approximation of P(A).

Given P(A), we can estimate the stationary distribution g
recursively. For a given distribution at time ¢ = 0, g(0), we
can compute q(iA) as

S—1
(D) =Y Py(N)a((i—1)A), j=0,....,5—1, (19)
=0

where §o(1A) = 0 and ¢1(iA) = qo(iA) + g1 (iA), due to the
repair, and G¢(iA) = qo(iA) for £ =2,...,5 — 1.

Equivalently, this recursion can be written in compact form
as

= lim g(0)(P(A)X)", (20)
q=qP(A), @b

where X is an S x S matrix with entries xgg = 0, x;; = 1
for ¢ > 0, and zg; = 1. Note that g and q are the stationary
distributions before and after repair, respectively.

Theorem 5. Consider the DS network in Section Il with
departure rate u, arrival rate of storage nodes of a given
class M., arrival rate of nodes not storing content M\ —m,
communication costs pgs and pmop, BS repair bandwidth ~gs,
file size F, and repair interval A. Furthermore, consider
the use of an [m,h,r] erasure correcting code with D2D



repair bandwidth vpyp. The repair cost is given by (9) with
p < (1—qo), and qq is given by the first element of q in (21).

Proof: The proof follows from the discussion above. W

Theorem 6. Consider the DS network in Section Il with
departure rate i, arrival rate of storage nodes of a given class
Ao, and arrival rate of nodes not storing content M\ — m,
using the hybrid scheme. The repair cost is given by the
expression in Theorem 3 with p < (1 — qo), and qo is given
by the first element of q in (21).

Proof: The proof follows from the discussion above. W

Remark 3. It is important to remark that the analysis for
the scenario with an incoming process does not consider the
departure of individual storage nodes, but rather the departure
of whole classes, i.e., all nodes of a given class. Thus, r and
m in (9) should not be interpreted as r storage nodes and
m storage nodes, respectively, but as v and m storage node
classes.

Remark 4. Note that in the analysis above we have made
the assumption that the stationary distribution q exists. While
we do not have a formal proof for this, our numerical results
suggest that it does exist. In fact, the recursion (20) and (21)
converges to the same q independently of q(0).

B. Download Cost

Assume that after repair there are ¢ storage nodes of a
given class, say class ¢. With some abuse of notation, let
¢i(t,£) be the number of storage nodes of class ¢ at time
t, where parameter ¢ indicates that ¢;(t = 0) = {. The
evolution of ¢;(¢,¢) for t € [0,A) is given by a Poisson
death process. Denote by U, the time instant at which the
last of the ¢ storage nodes in class-i leaves the cell. Uy is
hypoexponentially distributed with pdf given by (31), with
h =1 and m = £. The expected value of Uy is [19, Sec. 1.3.1]
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1
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Note that U; is exponentially distributed.

Let U be the time instant at which the last of the storage
nodes in class 7 leaves the cell or, in other words, the time
instant at which the whole class 7 leaves the cell. The pdf of
U is a weighted sum of the pdfs U,, weighed by ¢y, i.e., itis a
weighted sum of hypoexponential distributions. The expected
value of U is

(22)

(23)

Let b(t) be the number of nonempty storage node classes
in the cell at time t. Computing Cy exactly requires to
compute the distribution of the time instant at which b(t)
changes from h to h — 1, denoted by S}, similar to the case
with no incoming process (see Appendix A). Unfortunately,
due to the fact that the pdf of U is a weighted sum of
hypoexponential distributions, computing the pdf of U seems
unfeasible. Here, we propose to approximate the pdf of U by

an exponential pdf. Indeed, it appears that ¢ is in general the
largest element in q, therefore the distribution of U has a large
exponential component. Assuming that U is well approximated
by an exponential distribution with mean fi~!, the download
cost for the scenario with an incoming process can then
be computed using (11) in Theorem 2 by setting p < fi,
where now a storage node departure should be interpreted
as a storage node class departure. We have observed that by
approximating the pdf of U by an exponential distribution with
mean ji~! = E[U], the analytical results match very well with
the simulations for the whole range of interesting values of u
and A, as shown in the results section. The download cost for
the hybrid scheme is found by using (16) in Theorem 4 with

4 fi.

VI. ERASURE CORRECTING CODES IN DISTRIBUTED
STORAGE

From Sections III-V, it can be seen that the overall com-
munication cost C' depends on the network parameters p (\),
Ae» M, and w, and on the parameters m, h, r, a, and (3
(and subsequently on ypp = 78 and s = «), which are
determined by the erasure correcting code used for DS. An
erasure correcting code for DS is typically described in terms
of the number of nodes used for storage, the download locality
and the repair locality, and is defined using the notation
[m, h, r]. In this section, we briefly describe MDS codes [20],
regenerating codes [10] and LRCs [11] in the context of DS.
We also connect the code parameters [m, h,r] with the code
parameters (n, k). In Section VII, we then evaluate the overall
communication cost of DS using these three code families.

We remark that the analysis in the previous sections applies
directly to MDS and regenerating codes. However, due to the
specificities of LRCs, Theorem 1 needs to be slightly modified,
as shown in Section VI-C below.

A. Maximum Distance Separable Codes

Assume the use of an (n, k) MDS code for DS. In this case,
each storage node stores one coded symbol, hence m = n
and amps = % Due to the MDS property, D2D repair and
D2D download require to contact r = h = k storage nodes.
Therefore, an (n, k) MDS code in a DS context is described
with the triple [n, k, k]. Moreover, fvps = amps = % ie.,
vp2p = F. The fact that an amount of information equal to
the size of the entire file has to be retrieved to repair a single
storage node is a known drawback of MDS codes [10]. The
simplest MDS code is the n-replication scheme. In this case,
each storage node stores the entire file, i.e., oy, = F' and
r=h=k=1.

B. Regenerating Codes

A lower repair bandwidth yp,p (as compared to MDS codes)
can be achieved by using regenerating codes [10], at the
expense of increasing r [10]. Two main classes of regener-
ating codes are covered here, minimum storage regenerating
(MSR) codes and minimum bandwidth regenerating (MBR)
codes. MSR codes yield the minimum storage per node, i.e.,



aymsr 1S minimum, while MBR codes achieve minimum D2D
repair bandwidth. Regenerating codes have two repair models,
functional repair and exact repair [21]. In exact repair, the lost
data is regenerated exactly [21]. In functional repair, the lost
data is regenerated such that the initial state of reliability in
the DS system is restored [21], but the regenerated data does
not need to be a replica of the lost data [21]. Here, we consider
only exact repair, since it is of more practical interest [22].

An exact-repair [m, h,r] MSR code in a DS system has k =
h(r—h+1) and n = m(r—h+1), withr = 2(h—1),...,m—1
[22].* Hence, using (5),

1 F F m(r—h+1) F
SR R m h(r—h+1l) h
Furthermore [22],
F F 1
BMSR:E:E'T_}L_FI_OCMS&

with equality only when r» = h, which is only possible for
h =1 and h = 2 due to the restriction on the values for the
repair locality. The repair bandwidth,

— B _F r <
7DD = TPMSR = 7 r_hil-=

is minimized for » = m — 1 [10]. We remark that the storage
per node o (and hence the average download cost) for an
(m,h) = [m, h,h] MDS code and an [m, h, ] MSR code are
equal.

An MBR code further reduces the repair bandwidth at the
expense of increasing the storage per node. An exact-repair
[m, h,r] MBR code has k = hr — (%) and n = mr for r =
h,...,m —1 [22]. Using (5), we have
1 F F 2mr F 2r
OMBR = R T Rkt 1)

Furthermore [22],

F,

h 2r—h+1

F F 2 <
E h 2r—h+1—
Similar to the MSR codes, the repair bandwidth of an MBR
code,

BMBR = QMBR-

F 2r
Yp2p = TBMBR hor—htl -
is minimized for r = m — 1 [10].

Note that an [m, 1, r] regenerating code has exactly the same
overall communication cost as an m-replication scheme.

C. Locally Repairable Codes

A lower repair locality r (as compared to MDS codes) is
achieved by using LRCs [11]. An [m,h,r] LRC has k = rh
and n = m(r + 1), where r < h and (r + 1) | m. Each node
stores

1 F F m(r+1) F r+1
WRET W R m rh h

bits. The storage nodes are arranged in G = 17 disjoint repair
groups with 741 nodes in each group. Any single storage node

r

“The design of linear, exact-repair MSR codes with r < 2(h— 1) has been
proven impossible [23].

can be repaired locally by retrieving ~ppp = 7PLrc bits from r
nodes in the repair group [11]. A storage node involved in the
repair process transmits all its stored data, i.e., S rc = QLRrC,
hence

F
Y20 = TBLRC = E(T +1) < F.

If local D2D repair is not possible, repair can be carried
out globally by retrieving hapgrc bits from any subset of h
storage nodes. Since it is necessary to distinguish between
local and global repairs (as opposed to MDS and regenerating
codes), the expression of the repair cost C; in Theorem 1 does
not apply to LRCs and needs to be modified. We denote by
mp® and m2;P the average number of nodes repaired from
the storage nodes locally and globally, respectively, in one
repair interval. We will also need the following definitions.
Let X 2 (Xo,X1,...,X,41) be the random vector whose
component X; is the random variable giving the number of
repair groups with ¢ storage node departures in a repair interval
A. Note that X; takes values in {0,1,...,G} and ), X; =
G. The probability of ¢ storage node departures in a repair
group is y; 2 ("TH)p T17(1 — p)i, where p = e 2 is the
probability that a storage node has not left the network during
a time A. Let x £ (29, 21,...,2,41) be a realization of X

and let Y £ (yOa Yi, - .- 7y’r’+1)' Then’
v,
xr

5 is the multinomial

x:|x|=G
G!
zolxi!xry

(24)

where |z| £ 3,2, (§) 2

coefficient, and y* = [[, y7".
The repair cost for LRCs is given in the following theorem.

Theorem 7. Consider the DS network in Section Il with
departure rate u, communication costs pgs and ppop, BS
repair bandwidth ~gs, file size F, and repair interval A.
Furthermore, consider the use of an [m,h,r] LRC with G
disjoint repair groups and D2D repair bandwidth ~pyp. The
repair cost is given by

~ 1

G = A (pBsyBSmE® + ppop (D20 + harrempy”))
(25)
where
me =mp” (1 —p),
G r+1 r+1
LR Ol () 1D SERTH DR
x:|z|=G 1=2 =1
B = (1 — p) — 2 — 2,
p = e "2 and 1{-} is an indicator function.
Proof: See Appendix D. [ ]

It is easy to verify that Corollary 2 holds also for LRCs.

D. Lowest Overall Communication Cost for Instantaneous
Repair

For instantaneous repair, the minimum overall communica-
tion cost is given in the following lemma.
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Figure 3. Normalized overall communication cost C'/Mwp versus the repair
interval A for a selection of MDS codes, regenerating codes and LRCs with
R = 1/3, compared to the normalized BS download cost (dotted line).

Lemma 1. For A = 0 (instantaneous repair), the lowest
possible overall communication cost for any [m,h,r] linear
code with m = n, regenerating codes and LRCs is
Cin(A = 0) = min lim C = ppop(2u + Mw),
m,h,r A—0
where lima_,o C is given in (14) in Corollary 2. The minimum
is achieved by 2-replication.

Proof: See Appendix E. ]
This is in agreement with the result in [9], where 2-
replication was shown to be optimal.

VII. NUMERICAL RESULTS

In this section, we evaluate the overall communication cost
C (computed using (9) and (11)) for the erasure correcting
codes discussed in the previous section. For the results, we
consider a network with A = 30 nodes, where the number of
storage nodes is m < 10. This gives a probability smaller than
7.2 -1075 of having less than m nodes in the cell (see (4)),
which is considered negligible. Without loss of generality, we
set the departure rate 4 = 1 and ppyp = 1, i.e,, p = pgs.
Figs. 3-9 refer to a system with no incoming process, i.e.,
Ac = 0, while Figs. 10 and 11 consider the presence of an
incoming process, A; > 0.

Fig. 3 shows C normalized to the cost of downloading from
the BS, Mwp, i.e., C /Muwp, as a function of the normalized
repair interval, pA = A, for a selection of MDS codes,
regenerating codes and LRCs with R = 1/3. The ratio
between the request rate and departure rate is w/p = 0.02,
i.e., the average request rate in the cell is Mw = 0.6 requests
per tu., and p = 40. The meaning of w/u = 0.02 is that
each node places in average 0.02 requests per node life time.
Also, in the figure A = 1 means that the repair interval is
equal to one average node lifetime. Simulation results® are

SWhen simulating the wireless DS system, the repair process is not executed
if the number of nodes in the cell is less than m at the particular repair instant.

also included in the figure (markers). Note that since we
normalize C' to the BS download cost, values below ordinate
1 correspond to the case where DS is beneficial. For relatively
high repair frequencies, all codes yield lower C' than BS
download. However, C /Mwp exceeds 1, i.e., BS download
is less costly than the DS communication cost, for values of
the repair interval larger than a threshold, which we define as

Amax = sup {A C < wa} . (26)

For A > Ap,x, retrieving the file from the BS is always less
costly, therefore storing data in the nodes is useless. Apax
depends on the network parameters M, w, p and p as well as
the code parameters m, h and r.

We see from Fig. 3 that the value of A that minimizes C,
denoted by Ay, depends on the code used for storage. In
particular, Ay = 0 for the [9,3,8 MSR code, i.e., instanta-
neous repair is optimal. Performing an exhaustive search for
m < 10, it is readily verified that the same is true for any of
the codes in Section VI with » = m — 1. It is reasonable to
assume that this will be the case also for m > 10. On the other
hand, Ay > 0 for the [9,3,3] MDS code. A, depends on
the network and code parameters. In particular, the tolerance
to storage node departures in a repair interval affects Agpy.
In Section VII-A, we investigate how the network parameters
affect C and A,y In Section VII-B, we explore how the code
parameters affect C.

A. Effect of Varying Network Parameters

Fig. 4 shows how A« increases with p for the same codes
as in Fig. 3 and w/p = 0.05. For p < 5, approximately,
Apnax = —oo for all considered codes, i.e., it is never beneficial
to use the devices for storage and the file should always
be downloaded from the BS. It is worth noticing that, for
moderate-to-large p, the [9,3,8] MSR code requires in the
order of 10 repairs per average node lifetime while the [9, 3, 3]
MDS code requires only around 0.66 repairs per node lifetime
for DS to be beneficial over BS download. The main difference
between the [9, 3, 3] MDS code and the [9, 3, 8] MSR code is
the number of storage node departures in a repair interval that
the code can tolerate such that D2D repair is still possible, i.e.,
m —r. The [9, 3, 3] MDS code can handle the departure of up
to 6 storage nodes while the [9, 3, 8] MSR code can tolerate a
single departure only. This explains the higher repair frequency
required by the MSR code.

For the [6,3,2] LRC and p = 20, Fig. 5 shows how
C/Mwp and Ap.x are affected by the ratio w/u. We see
that increasing w/p reduces C'/Mwp for all A and that Ay
increases with w/p. The same behavior is observed using
any of the codes in Section VI, which can be verified by
the following manipulations of the equations in Section III.
The case w/u — oo corresponds to C'/Mwp — Cy/Muwp,
which can be readily seen by taking the limit w — oo in (13),
using (9) and (11), for fixed and finite p. This shows that the
overall communication cost is essentially the download cost
for a sufficiently high w/u. Since Cy/Mwp is monotonically
increasing in A (Corollary 1) and C/Mwp — 1 as A — oo
(Corollary 2), we also have that A, — oo for w/u — oo.
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Figure 4. The maximum repair interval Apax versus the transmission cost
ratio p.
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Figure 5. Normalized overall cost C'/Mwp versus the repair interval A for
the [6, 3, 2] LRC for different values of the ratio w/pu, as compared with the
normalized BS download cost (straight dotted line). The arrow points in the
direction of increasing w/p.

Hence, DS always leads to a lower overall communication
cost, as compared to the BS download cost, for sufficiently

large w/p.

B. Results of Changing Code Parameters

We investigate how the repair locality r affects C. Fig. 6
shows C'/Mwp versus A for the [9, 3,7] MSR code for p = 40
and w/p = 0.02. We observe that for A = 0 the lowest
C is achieved for » = 8, i.e., the highest possible repair
locality. This is due to the fact that for regenerating codes
~p2p is minimized for r = m —1 (see [10] and Section VI-B).
However, increasing A requires decreasing r to yield the
lowest C.. This is due to the improved tolerance to storage node
departures as r decreases. The result is interesting, because it
means that in wireless DS, if repairs cannot be accomplished

—o—r=4
m-r=>5

C/Mwp

\ I I
0 1.5 2

Figure 6. Normalized overall cost C/Mwp versus the repair interval A
for the [9, 3, 7] MSR code compared with the normalized BS download cost
(dotted line). The arrow shows the direction of increasing r.

very frequently, repair locality is a more important parameter
than repair bandwidth. On the other hand, if repairs can be
performed very frequently, repair bandwidth becomes more
important than repair locality, because tolerance to storage
node departures is not critical. In general, there is a tradeoff
between the repair bandwidth and the tolerance to storage node
departures (directly related to the repair locality), which holds
true for any of the codes in Section VI. How to set the the
parameter r depends on how frequently we can repair the DS
system.

C. Improved Communication Cost Using the Hybrid Scheme

We return to the hybrid repair and download scheme
presented in Section IV to investigate the gains in overall
communication cost as compared to the cost when using the
conventional scheme. We remark that the hybrid scheme does
not improve C for all codes in Section VI. In particular,
for finite p, C; is only reduced if 3 < a (Theorem 3) and
Cy is only improved if a < F (Theorem 4). Fig. 7 shows
C/Muwp versus A for all codes in Fig. 3 that achieve lower
C when using the hybrid scheme. We set w/p = 0.1 and
p = 10 and include simulation results in the figure (markers).
Dashed curves correspond to the conventional scheme, and
solid curves to the hybrid scheme. We see from the figure that
regenerating codes achieve a large cost reduction, especially
for small A, when using the hybrid scheme. This is since both
C. and Cy are reduced. A smaller cost reduction is observed
for MDS codes and LRCs.

D. Codes Achieving Minimum Cost for Given A

The analytical expressions for the overall communication
cost derived in Sections III and IV can be used to find, for a
given repair interval, the code achieving the lowest C. We have
performed an exhaustive search for all MDS codes (including
replication), regenerating codes and LRCs, with m < 10, to
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Figure 8. Codes achieving minimum C for some A for w/p = 0.02, p = 40,
and I' = 3.

find the code achieving the lowest C for each A. Like [15],
we also introduce an overall storage budget constraint of T’
files (I'F’ bits) across the nodes in the cell, i.e., ma < I'F.
In particular, we set I' = 3, meaning that the code rate is
R>1/3.

Fig. 8 shows C'/Mwp for all codes that entail the lowest C
for some value of A for w/u = 0.02 and p = 40. For A =0
(instantaneous repair) 2-replication is optimal (see Lemma 1).
However, 2-replication remains optimal only if repair can
be accomplished at least around 80 times per average node
lifetime. For slightly larger A, MBR codes achieve the lowest
cost. It is worth stressing that the MBR codes achieving the
lowest C for some A are characterized by a low repair locality
(r =h and r = h + 1), i.e., fault tolerance to storage node
departures to allow D2D repair is more important than the
repair bandwidth. Somewhat surprisingly, MDS codes offer
the best performance for higher A, despite the large ~pyp.
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Figure 9. Codes achieving minimum C™Pi with the hybrid repair and

download scheme for some A when w/p =1, p =40, and ' = 3.

We remark that LRCs are not optimal for any A due to the
poor tolerance to storage node departures in local D2D repair
and a larger o than MDS codes for a given global tolerance to
storage node departures. Ap,x ~ 0.8 is the largest A such that
DS is beneficial over BS download, using any of the codes in
Section VI.

Fig. 9 shows the codes that achieve the lowest overall cost
Chybrid _ Shybrid | C”gybﬂd for some values of A for the hybrid
scheme with w/p = 1 and p = 40. Increasing w/p, Cy is
the main contribution to C' (see Section VII-A). Since « has
significant impact on Cy, we expect codes with small a to
achieve the minimum cost. Indeed, we note that MDS codes
and MSR codes, which have minimum «, achieve the lowest
C for a region of values of A. As expected, 2-replication is
optimal for instantaneous repair.

E. Scenario with an Incoming Process

In Fig. 10 we plot the analytical curves and simulation
results for the [9, 3, 3] MDS code for the scenario with an in-
coming process and several values of A, when w/u = 0.02 and
p = 40. The analytical curves for C; (not shown here) match
perfectly with the simulation results. However, as mentioned
in Section V-B, to compute Cy we make the assumption that
the pdf of the random variable representing the time instant
at which the last of the storage nodes in a given class leaves
the cell is exponentially distributed. This translates into some
slight discrepancies for Cy, which obviously show also for C.
However, Fig. 10 reveals a very good agreement between the
analytical results and the simulation results, which justifies
the assumption made. As expected, increasing ). decreases
the overall communication cost, since the average lifetime of
a storage node class increases. Note that A\; = 0 corresponds to
the case with no incoming process. For A\, = 0.5 and A\, =1,
where the latter corresponds to the realistic scenario where
the arrival rate and departure rate of storage nodes is equal,
wireless DS is beneficial for any A.
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Figure 11. Codes achieving minimum C for some A when A\ = p = 1,
w/p=10.02, p=40,and ' = 3.

Fig. 11 shows the codes that achieve lowest C' for some
values of A for the scenario with an incoming process, where
Ae=p=1,w/pu=0.02 p=40, and I' = 3. DS is always
beneficial, with replication and MDS codes performing the
best for some A, while regenerating and LRC codes perform
poorer. Note that the discrepancies between the analytical and
simulation results, in particular for 2-replication, are due to
the assumption in the computation of Cy4. However, the match
is still very good.

VIII. CONCLUSIONS

We investigated the use of distributed storage in the mobile
devices in a wireless network to reduce the communication
cost of content delivery to the users. We introduced a repair
scheduling where the repair of the data lost due to device

departures is performed periodically. For this scenario, we
derived analytical expressions for the overall communication
cost, due to data download and repair, as a function of the
repair interval. Using these expressions, we then investigated
the performance of MDS codes, regenerating codes and LRCs.

We showed that wireless DS can reduce the overall com-
munication cost with respect to the scenario where content
is downloaded solely from the BS. However, depending on
the network parameters, there may exist a maximum value of
the repair interval after which retrieving the file from the BS
is always less costly. Therefore, in such cases DS is useful
if repairs can be performed frequently enough. The required
repair frequency depends on the network parameters and the
code used for storage. In the case of an incoming process of
nodes storing content, the communication cost using DS can
be further reduced. In this scenario, for large enough arrival
rate of nodes bringing content, the use of wireless DS with
D2D communication always entails a lower communication
cost than downloading content only from the BS. Interestingly,
MDS codes yield better performance than codes specifically
designed for DS, such as regenerating codes and LRCs, if
repair cannot be performed very frequently. The reason is that
in this case a large tolerance to node failures and low repair
locality is required.

Our analysis shows that the use of erasure correcting codes
to store (cache) content in the mobile devices is promising
to reduce the communication cost of content delivery in a
wireless network.

One interesting extension of this work is to consider the
location of the mobile devices. In this case, the communication
cost can be modeled as being dependent on the transmission
distance. Another interesting extension of the analysis is to
consider a library of files of varying popularity. For this
scenario, one may analyze the use of different erasure cor-
recting codes for files with different popularity, and exploiting
multicast opportunities [8].

APPENDIX A
PROOF OF THEOREM 2

To derive ppyp we first have to find the distribution of file
requests within a repair interval A. Let W, be the time instant
of the (th request and let W, £ W, mod A be the time of
the ¢th request in relation to a repair interval. The pdf of W,
is given by the following lemma.

Lemma 2. The distribution of Wy for t € [0,A) is

— o0
wé wt

~ _ we S ANe—1 —wAi
fw, () = T ;(t +iA)f e WA 27)
Proof: W, is computed as the sum of ¢ inter-request
times with pdf given by (6). Thus, W, is an Erlang distributed
random variable with pdf [14, Sec. 3.4.5]

wEtE—le—wt

The transformation g : W, — Wz is given by t = g(x),
where

g(z) =z — A,

fw, (1) = (28)

z€[in, (i+1)A), i>0.  (29)



Note that ¢'(x) = 1 for x € (iA, (i + 1)A). Moreover,

lim,ia_ ¢'(x) = limyia, ¢'(x) = 1 and ¢'(z) is con-
tinuous and well defined. Let x; be the roots of (29),
v =g Ht)=t+iA, tc0,A).
Then, [14, Th. 4.2]
)= X oo s = 2 v i),

and (27) is obtamed using (28) [ |
Define I/VOO = limy_ oo W[ We have the following result.

Lemma 3. The distribution of W, for t € [0,A) is

fi. =1

and the limit is achieved exponentially fast in (.
Proof: Using Lerch’s transcendent [24, Sec. 25.14]
n [ee) n -1
—wA Y . —wA1
<I>(e ,I—E,A>—;(A+z> e , >1,
the pdf of W, (Lemma 2) can be rewritten as
(wA)fe—wt —wA t
5 ()= ————® “sr1-4,— .
fW[,() A(E—]_)' € ’ ’A
According to [25, Cor. 4],
(WA)Z —wA t
- “wail1—d,— ) =e*.
oo (£— 1) ’ A c
Hence, for an infinite number of requests

—wt

: ~ _ € (LUA)K —wA t _ 1
lm f, (1) = =3~ fim (51)‘1’(@ RN R

Furthermore, using [25, Th. 3], as £ — oo,

¢
1 472 + (wA)?
fWe(t)§A+O<<OJA> >7 (30)

where 7”47rsz(wA)2 > 1. Therefore, the convergence is expo-
nentially fast in /. ]

We proceed with the second step of the proof. Within a
repair interval, the number of storage nodes m(t) in the cell
is described by a Poisson death process [14, Sec. 8.6]. Denote
by T; the time interval for which m(t) = 4, i = h,...,m
(see Fig. 2 for an illustration). Note that 7; is exponentially
distributed with rate p; = tu, since there are ¢ storage nodes
in the cell and the departure rate per node is p (see Section II).
Denote by S}, the time instant at which m(t) changes from h
to h—1, i.e., the time after which D2D download is no longer
possible. S;, can be written as

Sh = zm: Tl
i=h

The pdf of S}, is given by [19, Sec. 1.3.1]

Z Mm,um 1-

Jhﬂj
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fSh ,Uz)

, t>0. (3

Note that P(S, > A) > 0 for finite A, which implies that,
with some probability, m(t) > h for the duration of the repair
interval. In this case, ppyp = 1.

We now have all the prerequisites to derive ppyp. D2D
download is possible if at least h storage nodes are available
in the cell. Thus,

L
. 1 ~
Pp2p = nglgo I ZIP’ (We < Sh) .
=1
From the convergence result of Lemma 3, it follows that

ppop = P (VT/OO < Sh> =P (VT/OO

0
Z/_ S —s, () dt

where [14]
/= [ fir (t+5)f5, (5) ds

*Sh<0)

vaocfsh(

Using the results of Lemma 3 and (31), we get after some
calculation

Pp2p = Zi/o etitdt (1 — e rit ﬁ
i=h Y T~

j:h
J#i
1 w—=1-— _j
= — 32
It “
J#l

By inserting (32) into (10) and using ppyp + pas = 1, we
obtain (11).

APPENDIX B
PROOF OF COROLLARY 2

Consider the case A — 0. For the repair cost (Theorem 1),

. =~ bz(ma p)

AILHO Cr=— (pBS’VBS Z AILHO —_—
bi m,

+/pD20VD2D Z —1) lim (Ap)> ;

where b;(m, p) is given in (7) and p = e 2. Note that

lim L(m, P)
A—0

(m> ef,u,Ai(l _ efp,A)mfz
= lim
A—0 A

< > hm e HA (1 - e*“A)m_i_l (me*”A - z)

_ mu,
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where in (a) we used I’Hdpital’s rule. Hence,

bi(m,p)

ifi=m—1,
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)
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1
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and

m

;(m — 1) ilino A = (m—(m—1))mu = mpy.
This implies
lim C; = ppopYpapmit- (33)
A—0
For the download cost (Theorem 2),
Alglo Cy=Muw (sz
ha "1 l1—pirr g
+ <PD2DF - pBS) Zh Eilgo A l_Ihj = z)
1= Jj=
i
ha Ui j
=M —_—— — . 34
w(PBs+(PD2DF pBS)ZHj—i> (34)
i=h J;h
Ve

To simplify the expression, consider the function
1
[, =)’

which can be expanded as the sum of partial fractions as [26,
Ch. 6]

flx) = (35)

Ms

36
zfxnj G 1) (30)

i—h
! j#i

Now, note that the sum in (34) can be expressed as

- H] a i (b)
S -3 it s s 1T

i=h j= hj_Z i=h Jh(']_z
i
where in (a) we used (36), and in (b) we used (35). Using
this in (34) we obtain

h
lim Cd waDQD 70(

A—0 F (37)

Finally, the expression (14) is obtained by using

lim C = hm C. + hm Cy.
A—0

Now, assume A — oo. For the average repair cost (Theo-
rem 1)

Iim C.=—=|{p E
1 r ( BS/BS
m

N bi(m,
+pPD2DYD2D Z(m —1) Am (Ap)> .

— i) Jim =

i=r
Now,
R I £ S e e e
Am oA =) A A =0,

which implies lima_, C.=0.

For the average download cost (Theorem 2),

_ ha
li =M — —
Am Cq w|pBs + (ﬂmD Ja pBS)
m m .
1 1—p; J
— 1i
% Z < A TA ]Uh i—il
J#i
where j1; = i, p; = e *2. As lima_ oo % =0V 4, then
lim Cd = MWPBS,
A— o0
and (15) follows.
APPENDIX C

PROOF OF THEOREM 4

Following the proof of Theorem 2 (Appendix A), the
probability that there are m(t) = 4 storage nodes available
at the time of a request is

C; £ ]P)(Si+1 < W < S)

The two probabllltles in (38) can be obtained by replacing h
with ¢ and ¢ 4+ 1 in (32),

1_1/7 .
P(We — S; < 0) = AZ pjl_[.],

i'=1 =1 J v
g7’
i Ls~ Lope 11
IP(WOO*SH_1<O):K Z . H TR
pmip1 M D) T
g7

If no storage nodes are available, we always have to rely on
BS download. By replacing h with 1 in (32), we get that this
occurs with probability

PRs =1 — — Z — Di H J
=R
If m(t) > h, D2D download is performed. This occurs with
probability ppyp, derived in Theorem 2.
For m(t) = i,1 <4 < h—1, the hybrid scheme will achieve
a lower download cost if pgsF' > (pgs(h — 1) + ippop ), ie.,

(39)

if
i> s (h F) 2 4.
PBS — PD2D «
Let
a=min{|d|,h—1}.

For 1 <4 < a, downloading F' bits from the BS will give the
lowest possible cost. For a +1 < ¢ < h — 1, downloading i«
bits through D2D communication and (h — i)« bits from the
BS will give the lowest possible cost. The average download
cost in the hybrid regime is hence

=hybri Mw -
P = o <pBSFpBS +ppsF Y ci

i—1
h—1
+ > (ps(h

— i) + ippop)ec; + pDZDhapD2D> .
i=a+1

(40)



Finally, (16) is obtained by using (32) and (39) in (40).

APPENDIX D
PROOF OF THEOREM 7

Recall that a storage node can be repaired locally or globally
in D2D communication. Only single node departures (within
a repair group) can be repaired locally. Using (7), the average
number of local D2D repairs in a repair group is

br(r+1,p) = (r+1)p"(1—p),

_m_

where p = e 2. Since there are G = 17 disjoint repair
groups, the average number of local D2D repairs per m storage
nodes is

m®® = G(r+1)p" (1 —p) = mp" (1 — p).

This entails a cost ppopYpopm s [c.u.].

We now compute the average number of global D2D
repairs m>;°. Let X = (Xo,X1,...,X,41), where X; €
{0,1,...,G}, >, X; = G, is the random variable giving the
number of repair groups with ¢ storage node departures in
a repair interval A. The number of global repairs is given
by Z:;l 1X;, under the constraint that there are at least
h storage nodes available at the time of a repair, i.e., if
Z:;l 1X; < m — h. Therefore, by averaging over all possible
realizations @ = (xg,x1,...,%.+1) of X, we obtain

G r+1 r+1
D2D _ _— - _
Mg = Z (w>yw . Zw:, 1 {ZZ% <m h} ,
x:|x|=G =2 =1
where |z| £ 3, 2y, (§) £ m and y® £ [, 47"
The communication cost associated to global D2D repairs is
poopharemy® [c.u.].
Finally, using (7), the average total number of storage node

departures in a repair interval is

m

> (m = i)bi(m,p) = m(1 - p).

i=0
All storage nodes that are not repaired in D2D are repaired
by the BS. Therefore,

D2D
r,l

D2D

mr,g s

mBS =m(1—p) —m

with communication cost ppsyssm2S [c.u.].
Finally, adding the three contributions ppopyp2DmEr,
pDZDhaLRCmEgZD and ppsyssmPS, and dividing by A and

normalizing by F', we obtain (25).

APPENDIX E
PROOF OF LEMMA 1

The overall communication cost for A = 0 is (Corollary 2)

.~ _ PpmeD
Alglo C = = (Yp2pmp + Mwha).

41)

Consider an [m, h, 7] linear code with m = n and minimum
Hamming distance d > 2. It follows that o = %, 8 = a,
and h > k, where the equality is achieved for MDS codes.

Furthermore, note that d = m — h + 1. Also, from [27],

dgn—k—[lﬂ—i—z (42)

Using m = n and the fact that d > 2 in (42), we can write
k k
r

> k4 —.
r
Now, using this, ypop = 78 = ra, and a = % in (41) we
obtain

.~ _ Pp2D
ianOC =7 (Ypapmp + Mwha)
h
= pp2D (;mﬂ + ka)

h
> P2 ((7“ +Dp+ ka>

> ppop (20 + Mw) (43)

where in the last inequality we used » > 1 and h > k. It
is easy to verify that the lower bound in (43) is achieved by
2-replication.

Now, consider LRCs. We get
% (r+1) > 2F,
since h < m and r > 1. Also,

r+1

mypop = I

hairc = F > F.

Inserting this into (41) gives that LRCs yield a higher overall
communication cost than (43).

Consider now MBR codes. We would like to minimize
m7ypep under the constraints m > 2, h > 1, and h < m,
forr=m—1.For h=m—1, mypyp = 2F. For h < m—1,
relaxing the integer constraints on m and h,

_4Fm2—m(h+1)+1
om TP =2 (2m —h —1)2
Consequently, m~ypyp is minimized for h = m — 1 and the
minimum is equal to 2F. We proceed to minimize hayggr for
r = m — 1 under the same constraints. For h = 1, we have
haygr = F. Also, for h > 1,

0 m—1

an Momsr = 2E G0
As a result, mypop and haymgr are jointly minimized for
m = 2 and h = 1. Thus, the MBR code, which is indeed
2-replication, achieves the lower bound in (43).

We proceed to investigate the overall communication cost
when A = 0 for MSR codes. By setting + = m — 1
we minimize pyp With respect to r. We relax the integer
constraints on m and h. By differentiating m~yp,p with respect
to h and setting the derivative equal to zero, we find

> 0.

> 0.

. _m
arg m}in mMYpop = 5
Under the constraints m > 2, h > 1 and h < m, we have
0
T, M1D2D o =52 > 0.

This implies that m~pyp is minimized for m = 2 and h = 1
and that the minimum is equal to 2F. Since haysg = F,
mApap and haysg are jointly minimized form = 2 and h = 1.
Therefore, the [2,1,1] MSR code, which corresponds to 2-
replication, achieves the lower bound in (43). This concludes
the proof.
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