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ABSTRACT

We present CO(1–0) observations obtained at the Karl G. Jansky Very Large Array for 14 ~z 2 galaxies with
existing CO(3–2) measurements, including 11 galaxies thatcontain active galactic nuclei (AGNs) and three
submillimeter galaxies (SMGs). We combine this sample with an additional 15 ~z 2 galaxies from the literature
that have both CO(1–0) and CO(3–2) measurements in order to evaluate differences in CO excitation between
SMGs and AGN host galaxies, tomeasure the effects of CO excitation on the derived molecular gas properties of
these populations, and to look for correlations between the molecular gas excitation and other physical parameters.
With our expanded sample of CO(3–2)/CO(1–0) line ratio measurements, we do not find a statistically significant
difference in the mean line ratio between SMGs and AGN host galaxies as can be found in the literature; we
instead find = or 1.03 0.503,1 for AGN host galaxies and = or 0.78 0.273,1 for SMGs (or = or 0.90 0.403,1
for both populations combined). We also do not measure a statistically significant difference between the
distributions of the line ratios for these populations at the p=0.05 level, although this result is less robust. We find
no excitation dependence on the index or offset of the integrated Schmidt–Kennicutt relation for the two CO lines,
and weobtain indices consistent with N=1 for the various subpopulations. However, including low-z “normal”
galaxies increases our best-fit Schmidt–Kennicutt index to ~N 1.2. While we do not reproduce correlations
between the CO line width and luminosity, we do reproduce correlations between CO excitation and star-formation
efficiency.
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1. INTRODUCTION

Understanding the interaction between the growth of
galaxies and their central supermassive black holes has been
a key question in the field of galaxy evolution. The MBH–sbulge
relation at z=0 (e.g., Ferrarese & Merritt 2000; Gebhardt
et al. 2000), the concurrent peaks of both active galactic nuclei
(AGNs) and star-formation activity at ~z 2 (e.g., Madau
et al. 1996; Cowie et al. 2003; La Franca et al. 2005; Hopkins
& Beacom 2006; Bongiorno et al. 2007; Reddy & Stei-
del 2009), and observations suggesting departure from the
Magorrian relation (Magorrian et al. 1998) at 2z 2 (e.g.,
Walter et al. 2004; Alexander et al. 2008; Coppin et al. 2008;
Riechers et al. 2009; Kimball et al. 2015) imply close
coordination between galaxy evolution and the growth of
central supermassive black holes (although see Kormendy &
Ho 2013 for a review). While high-z quasars are generally rare,
a significant fraction have far-infrared (FIR) luminosities>1013

Le (e.g., Wang et al. 2008; Leipski et al. 2013, 2014), which
are mostly due to high star-formation rates (SFRs)
(>1000Me yr−1) fed by molecular gas reservoirs on the order
of 1010–1011 :M (e.g., Carilli & Walter 2013, and references
therein). Among FIR-bright galaxies near the peak of cosmic
growth, submillimeter galaxies (SMGs; Casey et al. 2014 and
references therein) are substantially more common than FIR-
luminous quasarsbut have comparable LFIR, star-formation

rates, molecular gas masses, and dynamical masses (e.g.,
Genzel et al. 2003; Tecza et al. 2004; Tacconi et al. 2006,
2008; Riechers et al. 2008a, 2008b; Ivison et al. 2010a;
Hainline et al. 2011; Hodge et al. 2012). Both SMGs and
optically selected AGNs (quasars) are suspected to trace
massive structure formation at high redshift since both
populations have similar clustering properties (e.g., Blain
et al. 2004; Hickox et al. 2012). SMGs, however, typically
have ∼1.5–2 orders of magnitude less massive black holes
(∼107 versus 109Me; e.g., Alexander et al. 2005, 2008). This
difference suggests that both high-z populations deviate from
the MBH–Må relation for nearby spheroidal galaxies (e.g.,
Tremaine et al. 2002; Marconi & Hunt 2003), but in different
directions (e.g., Alexander et al. 2008; Coppin et al. 2008;
Riechers et al. 2008b).
Given the many similarities in physical properties between

SMGs and AGNs, attempts have been made to fit both
populations into a unified picture (e.g., Granato et al. 2001;
Somerville et al. 2008; Bonfield et al. 2011) analogous to the
“classical” merger-driven ultra/luminous infrared galaxy
(U/LIRG)–quasar transition hypothesis at low redshifts (e.g.,
Sanders et al. 1988). However, evidence has been mixed
regarding the frequency of mergers within the SMG population
(e.g., Riechers et al. 2008a, 2008b; Tacconi et al. 2008; Davé
et al. 2010; Hayward et al. 2011, 2013; Swinbank et al. 2011;
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Hodge et al. 2012, 2013, 2015; Aguirre et al. 2013; Riechers
et al. 2013, 2014; De Breuck et al. 2014; Narayanan et al. 2015;
Sharon et al. 2015). Independent of merger state, theoretical
studies have found it necessary to invoke AGN-powered
feedback to end the starbursts of massive galaxies (e.g.,
Somerville et al. 2008). However, both the relative importance
of AGN feedback compared to stellar feedback (e.g., Bouché
et al. 2010; Davé et al. 2011, 2012; Shetty & Ostriker 2012;
Lilly et al. 2013; Cicone et al. 2014) and theexact feedback
mechanism for AGNs (outflows versus accretion suppression;
e.g., Croton et al. 2006; Hopkins & Beacom 2006; Gabor
et al. 2011; Cicone et al. 2014) are still debated. In addition,
recent work suggests that AGNs may enhance star formation in
galaxies’ centers (e.g., Stacey et al. 2010; Ishibashi &
Fabian 2012; Silk 2013).

If AGNs directly influence the star-formation history of
galaxies, their effects should be measured in the molecular
interstellar medium (ISM) that fuels star formation. At lowz,
molecular outflows have been observed in luminous AGNs
(e.g., Feruglio et al. 2010; Cicone et al. 2014), and very high
excitation CO lines have been observed in some AGNs (e.g.,
Weiß et al. 2007; Hailey-Dunsheath et al. 2012; Spinoglio et al.
2012), but these components represent a small fraction in mass
of the total molecular gas reservoirs in star-forming galaxies.

Promising evidence for AGNs affecting the bulk of galaxies’
molecular ISM has been found in the initial CO(1–0) samples
of ~z 2 SMGs and AGN host galaxies. The relatively recent
availability of Ka-band receivers on the Karl G. Jansky Very
Large Array (VLA) and the Robert C. Byrd Green Bank
Telescope (GBT) has led to a small but growing number of CO
detections in ~z 2–3 galaxies that are complete down to the
lowest rotational line, CO(1–0), which is crucial for tracing the
coldest gas components (e.g., Harris et al. 2010, 2012;
Swinbank et al. 2010; Danielson et al. 2011; Ivison et al.
2011, 2012, 2013; Riechers et al. 2011b, 2011c, 2011d;
Thomson et al. 2012, 2015; Fu et al. 2013; Sharon et al.
2013, 2015; for CO(1–0) detections at other redshifts using
other bands, see Carilli et al. 2002; Greve et al. 2003; Hainline
et al. 2006; Riechers et al. 2006, 2009, 2011d, 2013;
Dannerbauer et al. 2009; Aravena et al. 2010, 2014, 2016;
Carilli et al. 2010; Emonts et al. 2011). Observations revealed
that SMGs appear to have a common ¢ -LCO 3 2( )/ ¢ -LCO 1 0( ) line
luminosity ratio of »r 0.63,1 , indicative of a multiphase
molecular ISM including a previously unaccounted for cold
gas reservoir (e.g., Harris et al. 2010; Swinbank et al. 2010;
Danielson et al. 2011; Ivison et al. 2011; Thomson et al. 2012;
Bothwell et al. 2013; see Riechers et al. 2011c; Sharon et al.
2013, 2015). In contrast, AGN host galaxies at similar redshifts
appear to have an entirely different line ratio, =r 13,1 , which
could be indicative of only warm single-phase gas (Riechers
et al. 2011a; Thomson et al. 2012). While subunity values of
r3,1 are also expected for subthermally excited gas or cold gas
where there is a difference between the Planck and Rayleigh–
Jeans temperatures, commonly observed higher-J CO emission
from systems with <r 13,1 disfavor subthermal and low-
temperature single-phase interpretations of low r3,1 (e.g., Harris
et al. 2010). The apparent difference in CO(3–2)/CO(1–0) line
ratios for SMGs and AGN host galaxies can be interpreted as
supporting an evolutionary connection between the two
populations, such as high r3,1 occurring in late-stage mergers
where the molecular gas has been funneled by gravitational
torques to acentral high-density and/or AGN-dominated

region, or high r3,1 occurring once the bulk of the molecular
gas reservoir has been ejected by AGN (or stellar) feedback.
However, this single line ratio does not distinguish between
“direct” SMG–AGN evolutionary connections, where high r3,1
values are due to the influence of the central AGN,
and“indirect” models where galaxies’ changing r3,1 and
AGN activity mutually track some other evolutionary process.
The molecular gas excitation conditions and their differences

between galaxy populations haveimportant consequences for
characterizations of high-z sources since the lines ideally used
to trace the molecular gas mass, and thus star-forming
potential, of galaxies are dependent on the gas physical
conditions. The subunity ~r 0.63,1 found in (most) SMGs to
date means that molecular gas mass estimates based on the
CO(3–2) line luminosity would be off by a factor of ∼2 without
an appropriate excitation correction. If the average excitation
differs between galaxy populations, incorrect assumptions
about the excitation would bias comparisons between those
populations, potentially affecting theunderstanding of their
evolutionary connections. Incorrect gas masses could also
introduce biases in the observed Schmidt–Kennicutt relation
(Schmidt 1959; Kennicutt 1989), an empirical correlation
thatprobes the physical process responsible for star formation
(e.g., Bigiel et al. 2008 and references therein) and is frequently
used as input for numerical simulations of galaxy formation
(e.g., Springel & Hernquist 2003; Narayanan et al. 2008a;
Somerville et al. 2008; Juneau et al. 2009). Despite numerous
studies of the Schmidt–Kennicutt relation, differences in
methods (integrated versus spatially resolved studies; e.g.,
Young et al. 1986; Solomon & Sage 1988; Buat et al. 1989;
Kennicutt 1998, 1989; Gao & Solomon 2004; Bouché
et al. 2007; Bigiel et al. 2008; Krumholz et al. 2009; Bigiel
et al. 2010; Daddi et al. 2010; Genzel et al. 2010; Wei et al.
2010; Tacconi et al. 2013), assumptions (particularly gas mass
conversion factors; e.g., Bigiel et al. 2008; Daddi et al. 2010;
Genzel et al. 2010), gas and SFR tracers (e.g., Gao &
Solomon 2004; Narayanan et al. 2005; Bussmann et al. 2008;
Graciá-Carpio et al. 2008; Iono et al. 2009; Juneau et al. 2009;
Kennicutt & Evans 2012), and galaxy populations (e.g. Gao &
Solomon 2004; Daddi et al. 2010; Genzel et al. 2010; Tacconi
et al. 2013) leadto significant uncertainties in the relation’s
characteristics (such as the index of the power law) and
interpretation. Different molecular emission lines are sensitive
to different density regimes in the ISM (Krumholz &
Thompson 2007; Narayanan et al. 2008b, 2011), making the
observed index of the Schmidt–Kennicutt relation dependent
on the gas physical conditions. How the Schmidt–Kennicutt
index varies between gas tracers with different critical densities
therefore probes the underlying volumetric star-formation
relation (the Schmidt law) set by the physics of star formation.
The fidelity of different molecular gas tracers in capturing the
Schmidt–Kennicutt relation is particularly important for
comparisons between sources at different redshifts since
atmospheric and instrumentation limitations have caused the
molecular gas in most ~z 2–3 sources to be characterized with
mid-J CO lines ( =J 3upper , 4, 5), whereas the molecular gas in
local galaxies is mostly characterized using CO(1–0) or
CO(2–1). While several studies have examined the change in
the power-law index of the Schmidt–Kennicutt relation with
different CO lines with mixed results (e.g., Yao et al. 2003;
Bayet et al. 2009; Greve et al. 2014; Kamenetzky et al. 2015;
Liu et al. 2015), there has been no systematic study on the
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effects of excitation on the Schmidt-Kennicutt relation at high
redshift to date.

Here we present a systematic study of CO(1–0) emission for
nearly all ~z 2–3 SMGs and AGN host galaxies with existing
CO(3–2) detections at the time of the observations. We present
new observations of the CO(1–0) line obtained at the Karl G.
Jansky VLA for 14 objects, including 13 successful detections
and one new upper limit. We describe the observations and
discuss the sample in Sections 2 and 3, respectively. In
Section 4, we determine if the previously observed dichotomy
in r3,1 values between SMGs and AGN host galaxies holds up
for the expanded sample, evaluate the effects of the excitation
on the characterization of these galaxies’ star-formation
properties (e.g., the Schmidt–Kennicutt relation), and evaluate
evidence for an SMG–quasar transition among ~z 2–3
galaxies. Our results are summarized in Section 5.

We assume the flat WMAP9+BAO+H0 mean ΛCDM
cosmology throughout this paper, with W =L 0.712 and

= - -H 69.33 km s Mpc0
1 1 (Hinshaw et al. 2013).

2. OBSERVATIONS AND DATA REDUCTION

The observed sample was selected from all known ~z 2–3
SMGs and AGN host galaxies with existing CO(3–2)
measurements at the time of the observations, excluding those
with existing CO(1–0) measurements, those being observed in
CO(1–0) as part of other observing programs, and those with
prohibitively long integration times (four sources). Eight
galaxies from this observational program have already been
published (Riechers et al. 2011a, 2011b, 2011d). Here we
present an additional 14 objects: 11 AGN host galaxies (six
lensed and five unlensed) and three SMGs (two lensed and one
unlensed). The galaxies in our new observations have redshifts
in the range - -z2.0590 3.2399 and magnification factors as
high as m = 173. For our final analysis, we include 15
additional sources from the literature that have both CO(1–0)
and CO(3–2) measurements: three lensed AGN host galaxies
and 12 SMGs (eight lensed and four unlensed). These
additional sources have aredshift range similarto that of our
new sample, - -z2.2020 3.1999, and have a maximum
magnification of m = 45. The (magnification-corrected) FIR
luminosities of the complete sample (adopted from the
literature and listed in Table 2), including new and literature
CO(1–0)-detected sources, are largeand in the regime of
U/LIRGs and hyperluminous infrared galaxies (HyLIRGs)10

with - -L L11.2 log 13.3FIR( )☉ .
The classification of these sources as SMGs or AGN host

galaxies is entirely historical and uses their previous categoriza-
tions from the literature. We use the literature classifications in
order to compare our results with previous work that studiedthe
CO(3–2)/CO(1–0) line ratio differences between SMGs and
AGN host galaxies using the same literature-based classifications.
The SMGs and AGNs have comparable FIR luminosities that are
mostly ULIRG-like ( - <L L12.0 log 13.0FIR( )☉ ). Both cate-
gories have two LIRGs ( - <L L11.0 log 12.0FIR( )☉ ) each, and
there are two SMG HyLIRGs ( .L Llog 13.0FIR( )☉ ) and one

AGN host galaxy HyLIRG. The AGNs in this sample are either
optically selected quasars orradio-loud AGNs, with the exception
of F10214+4724.
Our observing program was carried out at the VLA over

multiple observing periods from fall 2009 tofall 2015 (programs
AR708, 11B-025, 11B-151, 12A-009, and 15B-329). Since this
period includes the commissioning of the Ka-band receivers and
the Wideband Interferometric Digital Architecture (WIDAR)
correlator, both the correlator setups and number of available
antennas varied between observations; the observations are
summarized in Table 1. Most observations were carried out in
the D configuration (minimum and maximum baselines of
40.0 m and 1.03 km, respectively), but some higher-resolution
C-configuration observations were also taken (minimum and
maximum baselines of 78.1 m and 3.39 km, respectively); the
number of antennas, thearray configuration, and the resulting
synthesized beam sizes are listed in Table 1 and accountfor
antennas that still lacked Ka-band receivers at the time of the
observations or antennas that were excluded from the analysis
because ofother technical problems.
For all observations except HS 1611+4719 (the first object

observed) and thedata obtained in fall 2015, we obtained the
full polarization information with 2 MHz spectral resolution.
For the fall 2015 data, we observed in dual polarization mode
with 1 MHz channel widths.11 The total contiguous bandwidth
in the two intermediate-frequency (IF) channel pairs was either
128 MHz or 1024 MHz each. For the wider bandwidth
observations, there are eight subbands per IF pair, each with
64 channels (128 MHz bandwidth) and no frequency overlap
between subbands. The two IF pairs were spaced 1 GHz apart
for all observations where the restrictions in Ka-band IF tuning
allowed it. For the narrower bandwidth observations, the two
IF pairs were tuned to overlap by 4 MHz (two channels) for all
observations where the IF pair tuning restrictions allowed it.
For HS 1611+4719, the channel size is 3.125 MHz, and there
are seven channels per IF pair (total bandwidth of 21.875 MHz
per IF pair). The two IF pairs were tuned to provide zero
frequency overlap and dual polarization. For the four cases
where restrictions in the IF pair tuning did not allow a 1 GHz
separation, the higher-frequency IF pair was tuned to either the
146.969 GHz CS(3–2) line (for RX J0911+0551, J22174
+0015, and B1359+154) or the 130.269 GHz SiO(3–2) line
(for J04135+10277).
Observations alternated between the target source (integra-

tion times of ∼3–9 minutes) and a nearby quasar (∼1 minute)
that is used for phase and secondary flux calibration. One of
3C286, 3C138, 3C147, or 3C48 was observed for bandpass and
primary flux calibrations. For three tracks, the flux calibrator
data werenot recorded or the data are bad. In those cases, we
used the phase calibrator for flux calibration, manually setting
the flux to the model values determined from whichever other
track was observed nearest in time. While the observed quasars
may be variable, for these particular sources we found that the
flux densities at the chosen frequency varied between observing
tracks by less than 10%, which is within the standard assumed
value of the flux calibration uncertainty for the Ka-band. In
order to check that our assumed fluxes are accurate, we verified
that the noise in the images of each individual track and in the
combined science image was appropriate using the radiometer

10 We use FIR luminosities as reported in the literature, which are calculated
using a variety of different methods in addition to using different wavelength
regimes to define FIR. Since simple corrections between wavelength
assumptions require either arbitrary choices of dust temperatures and modified
blackbody indices or model SEDs (spectral energy distributions)and produce
corrections that are within the scatter of the measurement techniques, we do not
correct for these differences here.

11 Although the second track from fall 2015 on B9138+666 has 2 MHz/full
polarization for the high-frequencyintermediate-frequency (IF) channel pair
and 1 MHz/dual polarization for the lower frequency IF pair.
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Table 1
Details of Observations

Source Date tint Nant Config.a Beamb Bandwidth Per Band Centers Phase Flux Sν
c νc

d/m/y (hr) IF pair (MHz) (GHz) Calibrator Calibrator (Jy) (GHz)

B1938+666 2011 Oct 9 0.30d 26 D 2 77 × 2 15, −54°. 03 1024 36.619, 37.619 J2006+6424 3C286 0.5462 37.1710
2015 Nov 6 0.90 24 D (2 81 × 2 17, −54°. 26) 36.7466, 37.7466 3C48 0.5372 36.2987
2015 Nov 6 0.90 24 D 0.5285

HS 1002+4400 2010 Apr 26 1.74 19 D 2 39 × 1 87, 12°. 15 128 37.1043, 37.2283 J0948+4039 3C286 1.0879 37.1043

HE 0230–2130 2011 Oct 8 0.19d 21 D 3 05 × 1 93, 3°. 12 1024 35.469, 36.469 J0204–1701 3C48 1.2141 35.0210
2015 Oct 29 0.49 26 D (3 25 × 2 00, 1°. 76) 35.469, 36.469 3C147 1.6115 35.0218
2015 Nov 30 0.49 21 D 1.6192 35.0213
2015 Dec 9 0.49 23 D 1.5878 35.0212

RX J1249–0559 2012 Jan 3 2.33 26 D 3 27 × 2 24, −10°. 90 1024 34.565, 35.565 J1246–0730 3C286 1.1484 34.1170

HE 1104–1805 2011 Oct 15 0.44d 20 D 1 69 × 1 12, −16°. 09 1024 33.634, 34.634 J1048–1909 3C286 1.5576 33.1860
2012 Apr 26 1.6 23 C (1 58 × 1 03, −8°. 38) 1.7176
2015 Dec 3 1.2 22 D 34.634, 35.634 1.2751 35.1863

J1543+5359 2010 Apr 6 0.38 16 D 1 08 × 0 97,26°. 72 128 34.1451, 34.2691 J1549+5038 3C286 0.7466 34.1451
2010 Dec 31 0.92 25 C (1 09 × 0 98, 26°. 15) 0.5407

HS 1611+4719 2009 Oct 24 3.07 14 D 2 65 × 2 43, −27°. 61 21.875 33.9328, 33.9547 J1620+4901 3C286 0.3180 33.9328
(2 51 × 2 44, −13°. 35)

J044307+0210 2010 Dec 31 1.25 24 C 1 53 × 1 05, −12°. 35 128 32.7882, 32.9122 J0442–0017 3C147 0.8889 32.7882
2011 Oct 19 0.65d 25 D (2 16 × 1 60, −14°. 83) 1024 32.914, 33.914 3C138 1.2130 33.4660
2015 Oct 27 0.85 24 D 3C147 0.8306 32.4673

VCV J1409+5628 2010 Jul 7 0.56 20 D 1 74 × 1 42, 57°. 33 128 32.1089, 32.2329 J1419+5423 3C286 0.9828 32.1089
2011 Oct 16 0.29d 25 D (1 62 × 1 33, 60°. 43) 1024 32.234, 33.234 0.3474e 32.7860
2011 Dec 5 0.90 26 D 0.3368
2012 Jan 29 0.49 25 C 0.3580

MG 0414+0534 2011 Oct 27 0.31d 26 D 3 06 × 2 50, 20°. 05 1024 31.741, 32.741 J0433+0521 3C138 1.5478 32.2930
2015 Oct 28 0.47 25 D (3 10 × 2 58, 18°. 42) 3C147 2.9426 32.2942

RX J0911+0551 2012 Feb 8 2.7 25 C 0 88 × 0 70, 38°. 34 1024 30.3025, 38.5248 J0909+0121 3C286 1.6651 38.0768
2012 Feb 12 2.7 26 C 1.4057

J04135+10277 2010 Aug 24 0.56 22 D 1 12 × 1 01, 11°. 92 128 29.9717, 32.1100 J0409+1217 3C147 0.2258 29.9717
2011 NOv 13 0.30d 26 D (1 01 × 0 90, 11°. 30) 1024 30.036, 33.807 3C138 0.3001 33.3590
2012 Feb 17 1.32 26 C 0.3021

J22174+0015 2010 Jul 15 3.92 21 D 3 26 × 2 74, −5°. 25 128 28.1218, 32.1100 J2218–0335 3C48 1.1649 28.1218
2011 Oct 19 0.77d 24 D (2 86 × 2 48, −4°. 17) 1024 28.184, 35.791 1.1714 35.3430
2011 Oct 21 0.77d 25 D 1.1505
2015 Nov 6 0.51 22 D 28.1858, 35.9188 1.2462 27.7375
2015 Nov 8 0.72 23 D 1.2323
2015 Nov 12 0.52 24 D 1.2137 27.7374
2015 Nov 13 0.51 24 D 1.2137
2015 Dec 3 0.51 25 D 1.1867

B1359+154 2010 Jul 5 1.41 21 D 1 73 × 1 46, 25°. 38 128 27.2026, 32.1100 J1415+1320 3C286 0.5424e 27.2026
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Table 1
(Continued)

Source Date tint Nant Config.a Beamb Bandwidth Per Band Centers Phase Flux Sν
c νc

d/m/y (hr) IF pair (MHz) (GHz) Calibrator Calibrator (Jy) (GHz)

2010 Aug 25 1.41 24 D (1 23 × 1 03, 31°. 19) 0.5354 27.2026
2011 Oct 15 0.31d 25 D 1024 27.251, 34.599 0.5390e 34.2790
2012 Jan 16 0.51 23 C 0.5378 34.2790

Notes. Columns with missing data denote repeat values that are unchanged from the previous observing track.
a For D-configuration observations, the minimum and maximum baselines are generally 40.0 m and 1.03 km, respectively. For C-configurationobservations, the minimum and maximum baselines are generally 78.0 m
and 3.39 km, respectively. The exceptions are as follows: the minimum baseline for the HS 1002+4400 track is 44.8 m, the minimum baselines for the first and third HE 0230–2130 tracks are 45.1 m, the minimum
baselines for the C-configuration tracks of J1543+5359 and J044307+0210are 78.1 m, the maximum baselines for the J044307+0210 and J22174+0015 tracks observed on 2011 October 19 are 1.49 km, and the
maximum baselines for thethird J044307+0210 track and the J22174+0015 tracks observed on 2015 November 8 and 2015 December 3 are 971 m. These changes in baseline lengths reflect observing tracks where
specific antennas were removed from the array or wereflagged out during data reduction.
b The beam FWHM and position angle for the integrated line map (listed first) and the continuum map (listed second andin parentheses if different from the line map).
c Phase calibrator model flux at listed frequency.
d These tracks were affected by the correlator error where only the first second of the three-second integration times were recorded; the data and listed integration times have been corrected to account for this problem.
e Assumed source flux at specified frequency; also used for flux calibration.
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equation. Pointing checks were carried out approximately once
an hour on either the phase or flux calibrator. We set initial
target integration times to achieve 5– s7 detections of the
integrated lines as predicted by the CO(3–2) fluxes assuming a
single thermalized gas phase. Although we adjusted integration
times if we obtained anadequate signal-to-noise ratio
(S/N)with less time or if the sources were undetected,
observations for some sources are incomplete, and we have
not hit the target S/N in all cases. We used three-second
correlator integration times per visibility data point for all
observations. However, during the observations for nine of the
14 sources, the WIDAR correlator malfunctioned and recorded
data from only the first second of each three-second integration
(for a factor of 3 reduction in S/N).12 In order to salvage
those data, we modified the time stamps and exposure times in
the measurement sets of the affected tracks using theCommon
Astronomy Software Application (CASA)13 to accurately
reflect how the data were obtained, although adjusting the
timestamps does not appear to affect the resulting maps.

Calibrations were done using CASA version 4.2.2 and using
the VLA pipeline prototype version 1.3.1 (without Hanning
smoothing). We slightly modified the pipeline so that only the
first and last channel of spectral windows were flagged out
(except for B1938+666). After running the pipeline, the
calibrated data werevisually inspected, and in some cases
additional antennas were flagged out (reflected in Table 1). The
pipeline script did not work for HS 1611+4719, so that data was
processed by hand in the same CASA version. All maps were
made using natural weighting in CASA. We also performed self-
calibration on the continuum emission for B1938+666 and MG
0414+0534, and baseline-based gain calibration for MG 0414
+0534. For sources with signficant continuum emission (B1938
+666, HE 0230–2130, RX J1249–0559, HE 1104+1805, J1543
+5359, VCV J1409+5628, MG 0414+0534, and B1359+154),
we performed uv-plane continuum subtraction prior to the
analysis of the integrated line maps. All other sources
hadeithersufficiently weak or undetected continuum emission
that did not require removal for analysis of the line maps.

3. RESULTS

We successfully detected the CO(1–0) line in 13 objects
(five of which are tentative) and did not detect the CO(1–0) line
in one object; the integrated line maps are shown in Figures 1
and 2. We consider the sources successfully detected if (1) the
peak of the CO(1–0) emission is spatially coincident with the
CO(3–2) emission to within twice the position uncertainty and
(2) the peak emission is at least 5× the map noise; if the peak is
in the range3–5σ, we consider the source to be tentatively
detected. To be considered a (tentative) detection, we also
require that the source emission be spatially distinct from any
nearby noise peaks and comparable to or larger than the
synthesized beam in size (listed in Table 1). Offsets between
the centroid positions of the CO(1–0) and CO(3–2) emission
range from ´0. 1to ´1. 9,and the astrometric uncertainties on the
CO(3–2) emission range from ´0. 11to ´1. 7. For strongly lensed
objects with multiple images that lack previous high-resolution
radio maps, we allow offsets of up to 1″ since astrometric
calibrations for optical data are less accurate. We discuss our
single CO(1–0) nondetection, for MG 0414+0534, in

Section 3.10. In addition to the CO(1–0) measurements, we
detected continuum emission in 10of the 14objects (Figures 1
and 2).
For most objects we lacked the S/N to precisely measure the

full line profile. In these cases, we calculated the CO(1–0) line
flux over the approximate FWHMsor full-width zero inten-
sities (FWZIs) measured for the CO(3–2) lines, choosing
whichever velocity range retrieves the most flux from the
source. In principle, the FWZI maps should retrieve larger
fluxes by definition, but in some cases the larger velocity range
incorporates noise that reduces the measured flux in our
marginally detected sources. While this method could bias our
resulting CO(3–2)/CO(1–0) measurements toward lower
values, we see no evidence for systematically low r3,1 values
in our new measurements. In addition, previous observations
indicate that the CO(1–0) emission may be broader in velocity
than the CO(3–2) emission (e.g., Hainline et al. 2006; Ivison
et al. 2011; Riechers et al. 2011d; Thomson et al. 2012), which
suggests that choosing larger velocity widths would more
accurately capture the broad CO(1–0) emission. The measured
integrated line fluxes and velocity integration widths are listed
in Table 2. With the exception of the sources with the
narrowest FWHMs (~ -200 km s 1), the measured line fluxes
were robust (within the statistical uncertainties) to perturbations
of~ -100 km s 1 in line centroid and velocity integration width.
For five sources, B1938+666, HE 1104–1805, VCVJ1409
+5628, RX J0911+0551, and J04135+10277, we were able to
measure the CO(1–0) line profiles (Figures 2–6).
We discuss the individual sources in the following sections.

We defer discussions comparing ournew CO(1–0) measure-
ments with existing (largely single-dish) literature values to
Section 4, where we also evaluate the effects on the
populations’ CO line ratio measurements.

3.1. B1938+666

We successfully detect CO(1–0) emission from the strongly
lensed radio-loud AGN host galaxy B1938+666 with a peak
S/N = 20.6 (Figure 1). We measure D = o-S v 0.931 0

o -0.07 0.09 Jy km s 1( ) (where the latter 10% uncertainty is
associated with the flux calibration) at the position of the
CO(3–2) emission from Riechers (2011). Gaussian fits to the
line profile (Figure 2; reduced c = 0.772 ) give a peak flux of

o1.61 0.13 mJy and FWHM of o -654 71 km s 1. The
velocity centroid yields a CO(1–0)-determined redshift of

= o-z 2.0592 0.00031 0 , which is consistent with the redshift
of the CO(3–2) line ( = o-z 2.0590 0.00033 2 ) from Riechers
(2011). The CO(1–0) emission is partially resolved, and
elliptical Gaussian fits to the uv data give an FWHM of
´ o ´1. 17 0. 23 and anaxis ratio consistent with unity (uv-
continuum fits assuming a ring-shaped emission distribution do
not converge). The source size is consistent with the diameter
of the Einstein ring, ~ ´0. 95 (King et al. 1997).
We also detect 114 GHz (rest-frame) continuum emission

from B1938+666 (peak S/N = 4970; Figure 1). We measure a
flux of = o oS 56.271 0.004 5.627 mJy114 ( ) , where the latter
10% uncertainty is associated with the flux calibration. The uv-
continuum fits assuming a ring-shaped emission distribution do
not converge. Assuming an elliptical Gaussian yields an
FWHM of 1 ´0. 5, which is inconsistent with the diameter of
theEinstein ring. However, if the radio continuum emission is
dominated by the northern arc (Browne et al. 2003), thena
smaller source size would be expected.

12 http://www.vla.nrao.edu/astro/archive/issues/#1009
13 https://casa.nrao.edu/
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3.2. HS 1002+4400

We successfully detect CO(1–0) emission from the optically
bright quasar HS 1002+4400 with a peak S/N = 6.30. We
measure D = o o-

-S v 0.53 0.14 0.05 Jy km s1 0
1( ) at the

position of the CO(3–2) emission from Coppin et al. (2008).
The CO(1–0) emission is unresolved. We do not detect
significant 115 GHz (rest-frame) continuum emission from
the source (with the same synthesized beam as the CO(1–0)

Figure 1. Velocity-integrated CO(1–0) line maps (left) and continuum maps (right) for the sources observed in this survey in order of increasing redshift. Contours are
multiples of so1.5 , except for the integrated line map of B1938+666 and the continuum maps of B1938+666, RX J1249-559, MG 0414+0534, and B1359+154,
where the contours are powers of so2 ( s s so o o2 , 4 , 8 , and so on); negative contours are dashed. Beam sizes are shown at lower left. Crosses mark the positions of
the sources (from the CO(3–2) observations for the unlensed galaxies; see references in Table 2) or images of the sources (from high-resolution optical/radio data for
strongly lensed galaxies; Browne et al. 2003; Kneib et al. 2000CASTLeS https://www.cfa.harvard.edu/castles/), and diamonds mark the position of the foreground
lensing galaxies. For B1938+666, the circle marks the position and size of the Einstein ring.
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emission). Assuming a point source, we derive a s3 upper limit
of 0.13 mJy.

3.3. HE 0230–2130

We tentatively detect CO(1–0) emission from strongly lensed
optically bright quasar HE 0230–2130 with a peak S/N = 4.95.
We measure D = o-S v 0.39 0.111 0 o -0.04 Jy km s 1( ) at the
position of the CO(3–2) emission (Riechers 2011). The CO(1–0)
emission is partially resolved and detected in the southern pair of
images (which are not resolved individually) and in the
northeastern image. It is possible that we have resolved out
some of the flux (the CO(3–2) emission in Riechers (2011) is
partially resolved in the east–west direction with a larger
´ ´ ´7. 3 4. 2 beam), and the emission from the northwestern
image is below our sensitivity limits. While the brightness ratio
between the two detected CO(1–0) peaks (0.83) is not consistent
with the optical ratios from the CASTLeS14 survey of lensed

galaxies (0.71–0.32, depending on whether you assume the
CO(1–0) originates in one or both of the southern images), if we
assume the optical image ratios, the expected emission from the
northwestern peak is well below the map noise.
We also tentatively detect 114 GHz (rest-frame) continuum

emission from HE 0230–2130 with a peak S/N = 4.38. We
measure m= o oS 46 11 5 Jy114 ( ) near the position of the
southern two images. We do not assume the weak secondary
peak is emission from the northwestern image (or the lensing
galaxies) despite its spatial coincidence since it is a s<3
detection and should not be brighter than the other images
(assuming the optical image ratios). However, it is possible that
differential lensing may be affecting the measured image ratios.
Assuming the optical image ratios, both northern images would
be within the noise of our continuum map.

3.4. RX J1249–0559

We tentatively detect unresolved CO(1–0) emission from the
X-ray absorbed quasar RX J1249–0559 with a peak S/N= 4.76.

Figure 1. (Continued.)

14 https://www.cfa.harvard.edu/castles/
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We measure D = o o-
-S v 0.20 0.04 0.02 Jy km s1 0

1( ) at the
position of the CO(3–2) emission from Coppin et al. (2008). We
also detect unresolved 114 GHz continuum emission from RX
J1249–0559 (peak S/N = 65.5), obtaining = oS 0.65114

o0.02 0.07 mJy( ) .

3.5. HE 1104–1805

We successfully detect CO(1–0) emission from thestrongly
lensed, optically bright quasar HE 1104–1805. The CO(1–0)
emission is detected in both images (with peak S/Ns of 7.68
and 5.80 for the western and eastern images, respectively)
where the western image appears spatially extended. We
measure D = o o-

-S v 0.56 0.08 0.06 Jy km s1 0
1( ) at the posi-

tion of the CO(3–2) emission from Riechers (2011) using a 3″
taper since some of the emission is potentially resolved out
(with taper, the synthesized beam FWHM is ´ ´ ´4. 09 3. 47 at a
position angle of −12°.11, and we retrieve ~25% more flux).
Using a single Gaussian to fit the line profile (Figure 3; reduced
c = 2.042 ) gives a peak flux of o2.11 0.26 mJy and
anFWHM of o -372 49 km s 1. The velocity centroid yields
a CO(1–0)-determined redshift of = o-z 2.3220 0.00021 0 ,
which is consistent with the redshift of the CO(3–2) line
( = o-z 2.3221 0.00043 2 ) from Riechers (2011). There is,
however, a conspicuous narrow peak in the line profile. If we
perform a double Gaussian fit (reduced c = 1.362 , which is a
significant improvement), we obtain peak fluxes of

o1.55 0.33 mJy and o4.11 0.58 mJy and FWHMs of
o -233 73 km s 1 and o -91 16 km s 1. The two peaks are

offset by o -209 29 km s 1, where the redshift for thebroa-
der,bluer peak is = oz 2.3204 0.0003. Both the single and
double Gaussian fits produce integrated line fluxes slightly
larger than our measured flux ( o -0.84 0.15 Jy km s 1 and

o -0.78 0.17 Jy km s 1, respectively), potentially due to there-
solved velocity structure, although the integrated line fluxes
fromboth Gaussian fits are consistent with our measured value
at 1 s2 .

We also detect 115 GHz continuum emission from HE
1104–1805 at the positions of the western and eastern images

(with peak S/Ns of 10.2 and 4.6, respectively), obtaining S115
= 120± 19(±12)μJy.
The average flux ratio between the two images in the optical

and infrared from the CASTLeS15 survey of lensed galaxies is
∼4.4. However, the flux ratios based on the CO(1–0) and
continuum maps are half the optical value. It is possible that the
CO(1–0) and 115 GHz continuum emission is distributed
differently from optical and infrared, causing differences in
the effective lensing magnification and thus observed bright-
ness ratios between the two images as a function of wavelength
(i.e., differential lensing may be occurring). It is also possible
that we have resolved out some of the flux, particularly in the
spatially extended western image, although that does not
explain the difference in the image ratios for the more compact
continuum emission.

3.6. J1543+5359

We tentatively detect CO(1–0) emission from the optically
bright quasar J1543+5359 with a peak S/N = 4.95. We
measure D = o-S v 0.10 0.021 0 o -0.01 Jy km s 1( ) at the
position of the CO(3–2) emission from Coppin et al. (2008).
The CO(1–0) emission is unresolved. We also detect
unresolved 115 GHz continuum emission from J1543+5359
(peak S/N = 5.21), obtaining = o oS 0.11 0.02 0.01 mJy115 ( ) .

3.7. HS 1611+4719

The optically bright quasar HS 1611+4719 is tentatively
detected with a peak S/N = 3.41 in the integrated CO(1–0)
map. We measure D = o o-

-S v 0.20 0.07 0.02 Jy km s1 0
1( )

at the position of the CO(3–2) emission from Coppin et al.
(2008). We do not detect 115 GHz (rest-frame) continuum
emission from the source. Assuming a point source, we derive
a s3 upper limit of 0.57 mJy.

3.8. J044307+0210

We detect CO(1–0) emission from the weakly lensed SMG
J044307+0210 with a peak S/N = 6.12 at the position of the
CO(3–2) emission from Tacconi et al. (2006). There is also a
second s3.34 peak to the southwest, but it is unclear if that
peak is associated with the CO(1–0) emission of J044307
+0210. Using only the brighter of the two peaks, we measure

D = o o-
-S v 0.12 0.03 0.02 Jy km s1 0

1( ) . However, if we
assume that the emission is more extendedand extract the
flux from the map with a 3″ taper applied (beam FWHM of
´ ´ ´4. 00 3. 68 at a position angle of 16°.35) that includes
the secondary peak, we then obtain D = o-S v 0.221 0

o -0.05 0.02 Jy km s 1( ) . This second flux is more in line with
the value reported for the single-dish measurement in Harris
et al. (2010). We therefore assume the larger flux measurement
from the tapered map in the subsequent analysis, which is the
value recorded in Table 2. We do not detect significant
117 GHz (rest-frame) continuum emission from the source.
Assuming a point source, we derive a s3 upper limit
of m25 Jy.

3.9. VCV J1409+5628

We successfully detect CO(1–0) emission from the optically
bright radio-quiet quasar VCV J1409+5628 with peak S/N =

Figure 2. CO(1–0) spectrum (thick solid histogram) and Gaussian fit to the line
profile (dashed line) for B1938+666 plotted relative to the CO(3–2)-
determined redshift ( = oz 2.0590 0.0003) from Riechers (2011). Thin
vertical lines denote the so1 uncertainty on the measured flux (o0.33 mJy,
on average). Channel widths are -50 km s 1. Gaps in the spectral coverage are
due to spectral window end channels that were flagged out during the data
reduction. Our best-fit CO(1–0)-determined redshift is = oz 2.0592 0.0003.

15 https://www.cfa.harvard.edu/castles/
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Table 2
List of ~z 2–3 Galaxies with CO(1–0) and CO(3–2) Detections

Source Typea zb μb LFIR
b,c FWHMb

Dvint ncont nS ,cont D-S v1 0
¢ -LCO 1 0( )

c D-S v3 2
b

r3,1 Referencesd

L1012( )☉ -km s 1( ) -km s 1( ) (GHz) (mJy) -Jy km s 1( ) -10 K km s pc10 1 2( ) -Jy km s 1( )
New

B1938+666 Q/L 2.0590 173e 0.17±0.02 529±75 750 114 56.27±5.63 0.93±0.11 0.12±0.01 9.1±1.1 1.09±0.19 (1), (2)
HS 1002+4400 Q 2.1015 1 9.62±1.83 640±160 1200 115 <0.13f 0.53±0.15 11.9±3.4 1.7±0.3 0.36±0.12 (3), (4)
HE 0230–2130 Q/L 2.1664 14.5 1.34±0.14 666±121 1000 114 0.046±0.012 0.39±0.12 0.64±0.19 8.3±1.2 2.35±0.79 (1), (2)
RX J1249–0559 Q 2.2470 1 6.65±1.29 1090±340 1600 114 0.65±0.07 0.21±0.05 5.1±1.2 1.3±0.4 0.71±0.27 (3), (5)
HE 1104–1805 Q/L 2.3221 10.8 1.26±0.26 441±81 440 115 0.120±0.023 0.56±0.09 1.4±0.2 7.5±1.2 1.49±0.35 (1), (2)
J1543+5359 Q 2.3698 1 7.31±2.12 520±140 520 115 0.11±0.02 0.10±0.02 2.9±0.7 1.0±0.2 1.07±0.32 (3), (4)
HS 1611+4719 Q 2.3961 1 8.85±1.35 230±40 230 115 <0.57f 0.20±0.08 5.8±2.2 1.7±0.3 0.92±0.39 (3)
J044307+0210 S/L 2.5090 4.4 1.51±0.36 415±62 415 117 <0.025f 0.22±0.06 1.5±0.4 1.4±0.2 0.70±0.20 (6), (7), (8)
VCV J1409+5628 Q 2.5832 1 20.58±1.15 311±28 550 117 0.063±0.009 0.27±0.07 8.6±2.3 2.3±0.2 0.95±0.26 (4), (9)
MG 0414+0534 Q/L 2.6390 20 1.17±0.08 580 580 117 95.4±9.5 <0.11f <0.19f 2.6±0.4 >2.56f (2), (10)
RX J0911+0551 Q/L 2.7961 21.8 1.13±0.06 129±18 200 131 0.065±0.009 0.22±0.04 0.38±0.07 2.22±0.44 1.10±0.29 (2), (11)
J04135+10277 S/L 2.8460 1.6 17.75±1.99 679±120 800 123 <0.024f 0.37±0.07 8.6±1.7 4.78±0.67 1.45±0.35 (12), (13)
J22174+0015 S 3.0990 1 4.52±1.20 560±110 1200 131 0.019±0.007 0.099±0.023 4.3±1.0 0.7±0.2 0.79±0.29 (14), (15)
B1359+154 Q/L 3.2399 118e 0.12±0.02 228±42 450 131 10.7±1.1 0.37±0.02 0.15±0.03 1.2±0.4 0.36±0.14 (1), (2)

Literature

J123549+6215 S 2.2020 1 7.66±2.31 600±50 L L L 0.32±0.04 7.78±0.97 1.6±0.2 0.56±0.10 (8), (16), (17)
F10214+4724 Q/L 2.2856 17 2.71±0.27 224±12 L L L 0.383±0.032 0.58±0.05 3.4±0.39g 0.99±0.14 (2), (18), (19)
HXMM01 S/L 2.3081 1.6 20±4 980±200 L L L 1.7±0.3 28.0±4.95 9.8±1.7 0.64±0.16 (20)
J2135-0102 S/L 2.3259 32.5 2.3±0.2 600 L L L 2.16±0.24g 1.78±0.20 13.2±1.3g 0.68±0.10 (21), (22)
J163650+4057 S 2.3853 1 10.23±2.38 710±50 L L L 0.34±0.04 8.14±0.96 2.3±0.3 0.75±0.13 (8), (16), (23)
J163658+4105 S 2.4520 1 6.92±1.61 800±50 L L L 0.37±0.07 10.84±2.05 1.8±0.2 0.54±0.12 (8), (16), (23)
J123707+6214 S 2.4876 1 4.34±1.38 434±90 L L L 0.329±0.041 9.91±1.23 1.13±0.14 0.38±0.07 (8), (24)
J16359+6612 S/L 2.5156 45 0.43±0.09 220±20 L L L 0.92±0.09 0.63±0.06 5.75±0.60g 0.69±0.10 (25), (26), (27), (28)
Cloverleaf Q/L 2.5575 11 4.93±0.68 416±6 L L L 1.387±0.144g 3.97±0.41 13.2±1.3g 1.06±0.15 (17), (29)
J14011+0252 S/L 2.5652 2.75 3.14±1.03 190±11 L L L 0.32±0.04 3.69±0.46 2.8±0.3 0.97±0.16 (28), (30), (31)
J00266+1708 S/L 2.7420 2.41 3.21±0.75 800 L L L 0.306±0.044 4.50±0.65 2.62±0.36 0.95±0.19 (28), (32)
J02399-0136 S/L 2.8076 25 0.46±0.05 824±212 L L L 0.60±0.12 0.89±0.18 3.1±0.4 0.57±0.14 (27), (28), (33)
J14009+0252 S/L 2.9344 1.5 6.74±1.57 412±24 L L L 0.31±0.04g 8.22±1.06 2.7±0.3 0.97±0.12 (27), (28), (34)
HLSW–01 S/L 2.9574 10.9 14.3±0.9 348±18 L L L 1.01±0.10 3.66±0.36 9.7±0.5 1.07±0.12 (35), (36)
MG 0751+2716 Q/L 3.1999 16 1.49±0.08 400±50 L L L 0.525±0.070 1.51±0.20 4.6±0.5 0.97±0.17 (2), (19), (37)

Other (for comparison)

cB58 LBG/L 2.7265 32 0.15±0.08f 174±43 L L L 0.052±0.013 0.057±0.014 0.37±0.08 0.79±0.26 (38), (39), (40)
Cosmic Eye LBG/L 3.0743 28 0.83±0.44f 190±24 L L L 0.077±0.013 0.12±0.02 0.50±0.07 0.72±0.16 (40), (41), (42)
HFLS3 S/L 6.3369 1.6 28.6±3.2 977±160 L L L 0.074±0.024 6.11±1.98 0.717±0.094 1.08±0.38 (43)

Notes.
a “S” denotes SMGs and “Q” denotes AGN host galaxies, as classified in the literature. “L” denotes if the galaxy is lensed. We also list two Lyman break galaxies (“LBG”) and a ~z 6 SMG for comparison.
b Literature values; see list of references in the last column.
c Magnification-corrected; see previous column for assumed magnification factors.
d References:(1) Riechers (2011), (2) Barvainis & Ivison (2002), (3) Coppin et al. (2008), (4) Omont et al. (2003), (5) Page et al. (2001), (6) Frayer et al. (2003), (7) Smail et al. (2002), (8) Tacconi et al. (2006), (9) Beelen et al. (2004), (10) Barvainis
et al. (1998), (11) D. Riechers (2016, in preparation), (12) Hainline et al. (2004), (13) Riechers (2013), (14) Greve et al. (2005), (15) Bothwell et al. (2013), (16) Ivison et al. (2011), (17) Chapman et al. (2003), (18) Riechers et al. (2011a), (19), Ao
et al. (2008), (20) Fu et al. (2013), (21) Danielson et al. (2011), (22) Ivison et al. (2010b), (23) Kovács et al. (2006), (24) Riechers et al. (2011b), (25) Sheth et al. (2004), (26) Kneib et al. (2005), (27) Thomson et al. (2012), (28)Magnelli et al. (2012),
(29) Weiß et al. (2003), (30) Downes & Solomon (2003), (31) Sharon et al. (2013), (32) Sharon et al. (2015), (33) Genzel et al. (2003), (34) Weiß et al. (2009), (35) Scott et al. (2011), (36) Riechers et al. (2011c), (37) Alloin et al. (2007), (38) Seitz
et al. (1998), (39) Baker et al. (2004), (40) Riechers et al. (2010), (41) Dye et al. (2007), (42) Coppin et al. (2007), (43) Riechers et al. (2013).
e Although Barvainis & Ivison (2002) suggest that the magnification factor should be a maximum of m = 20.
f s3 limit; see discussions of the individual sources for the assumed flux distributions.
g Published integrated line strengths include only the statistical uncertainty. Here we have added in quadrature an additional 10% flux calibration uncertainty to the statistical uncertainties reported in the literature.
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8.47. We measure D = o-S v 0.271 0 o -0.07 0.03 Jy km s 1( ) at
the position of the CO(3–2) emission from Beelen et al. (2004).
The CO(1–0) emission is unresolved. Gaussian fits to the line
profile (Figure 4; reduced c = 0.832 ) give a peak flux of

o0.64 0.12 mJy and anFWHM of o -487 101 km s 1. The
velocity centroid yields a CO-determined redshift of =zCO

o2.5836 0.0005, which is consistent with the redshift of the
CO(3–2) line ( = oz 2.5832 0.001; Beelen et al. 2004) and
slightly offset from optically determined redshifts (Korista
et al. 1993). We also detect unresolved 117 GHz continuum
emission from VCV J1409+56289 (peak =SNR 8.54),
obtaining m= o oS 63 7 6 Jy117 ( ) . We also note that
VCV J1409+5628 is one of the two sources where we have
included an observing track that lacks measurements of a
primary flux calibrator.

3.10. MG 0414+0534

The strongly lensed radio-loud AGN MG 0414+0534 is
undetected in CO(1–0). However, we do detect 117 GHz (rest-
frame) continuum emission from the source (peak S/N =
17,600), obtaining S117 = 95.413± 0.018(±9.541)Jy. The
continuum emission is spatially resolved, and an elliptical
Gaussian fit to the uv continuum yields a major axis FWHM of
~ ´1. 3 and anaxis ratio of ∼0.4 that originates near the
positions of the two brightest optical images of this quadruply-
lensed source. This indicates that most of the 117 GHz
continuum emission is from the eastern two images (consistent
with the 5 GHz continuum emission; Browne et al. 2003),
which are not resolved individually.

Based on the CO(3–2) integrated line measurement from
Barvainis et al. (1998), we should have detected CO(1–0) given
the sensitivity of our map. If we assume thermalized excitation
and that the line emission is distributed equally between the
four images to establish a conservative limit on the CO(1–0)
brightness, then each image should be at least s~3.5 ; using the
5 GHz image flux ratios and accounting for the small
separation of the brightest two images, we would expect a

s>10 detection. We see no residual structure in the image to
suggest that the bright continuum was poorly subtracted. We
examine the data as afunction of frequency, both in the image
plane and in the uv data, and wesee no evidence of line
emission at any of the observed frequencies. Observations of
other CO lines may help clarify our nondetection. For an upper
limit on the CO(1–0) line, we assume that the emission would
be resolvedand originate from all four of the lensed images,
which would be individually unresolved. With no assumptions
of the image brightness ratios, 95% of the CO(1–0) flux should
be contained within a box with an area of3.5 synthesized
beams (based on a Gaussian fit to the assumed emission
pattern), which yields a s3 upper limit of < -0.11 Jy km s 1.

3.11. RX J0911+0551

We detect CO(1–0) emission from the strongly lensed broad
absorption line quasar RX J0911+0551. RX J0911+0551 is
partially resolved into its four images (e.g., Burud et al. 1998):
with a peak S/N = 11.8 detection of the eastern three closely
spaced images and a s5.64 peak detection of the fourth western
image. We measure a total flux from the combined images of

D = o o-
-S v 0.22 0.03 0.02 Jy km s1 0

1( ) . Gaussian fits to the
line profile (Figure 5; reduced c = 0.632 ) give a peak flux of

o2.0 0.3 mJy and anFWHM of o -133 23 km s 1. The

velocity centroid yields a CO-determined redshift of
= oz 2.7961 0.0001CO , which is consistent with the redshift

of the CO(3–2) line (D. Riechers 2016, in preparation) and the
CO(7–6) and C I( lP P3

2
3

1) lines (Weiß et al. 2012).
We also tentatively detect 131 GHz continuum emission

from the eastern components of RX J0911+0551
(S/N = 4.53), obtaining m= o oS 65 16 7 Jy131 ( ) . Assuming
that the continuum flux ratio between the sum of the eastern
images and the western image matches the average flux ratio
determined in the optical and infrared from CASTLeS (7.2), the
expected 130 GHz flux for the western image is m~9 Jy (only
50% larger than the map’s rms noise). However, the optical
flux ratio is a factor of ∼1.5–2 greater than we observe in
CO(1–0) (3.6) or has been observed in CO(7–6) (4.8; Weiß
et al. 2012). Using the CO(1–0) flux ratio, the expected
131 GHz flux for the western image is m~18 Jy and should
therefore be detected at the s3 level. Using the CO(7–6) flux
ratio, the expect 130 GHz flux for the western image is

m~14 Jy and should remain undetected ( s<2 ).The differ-
ences in the brightness ratios between the images in the optical
and CO emission may be explained by differential lensing.
Given the nondetection of the western image, we favor the
optical or higher-J CO flux ratios (over the CO(1–0) flux ratios)
sincethe 130 GHz continuum emission may be associated with
the AGN and not the extended molecular gas reservoir.
We also searched for the CS(3–2) 146.969 GHz line that the

higher frequency IF pair was centered on. We do not detect any
CS emission after exploring several possible line widths and
derive a s3 upper limit of -0.11 Jy km s 1 assuming the same
spatially extended flux distribution and -200 km s 1 bin width as
used for the CO(1–0) line measurement (beam FWHM of
´ ´ ´0. 75 0. 63 at position angle 34°.36).

3.12. J04135+10277

We successfully detect CO(1–0) emission from the weakly
lensed SMG J04135+10277 with peakS/N = 9.6. We
measure D = o o-

-S v 0.37 0.06 0.04 Jy km s1 0
1( ) at the posi-

tion of the CO(3–2) emission from Riechers (2013), which is
not being emitted by the nearby quasarhost galaxy, as previous
low-resolution observations assumed. Gaussian fits to the line
profile (Figure 6; reduced c = 0.572 ) give a peak flux of

o0.49 0.11 mJy and FWHM of o -765 222 km s 1. The
velocity centroid yields a CO-determined redshift of

= oz 2.8421 0.0013CO , which is in slight tension with the
Hainline et al. (2004) = oz 2.846 0.002CO and issignficantly
offset from the GBT-determined CO(1–0) redshift from
Riechers et al. (2011a) ( = oz 2.8470 0.0004), as well as the
CO(3–2)-determined redshift ( = oz 2.8458 0.0006) from
Riechers (2013). It is unclear why the interferometric
CO(1–0) velocity centroid is ~ -400 km s 1 offset from
previously determined redshifts; there are no obvious problems
with the data or calibration. We note that the overall flux level
is lower than the single-dish measurement as well as being
offset in velocity, which suggests that we have perhaps
resolved out some extended emission that may be biased
toward the redder half of the line (although all measured
FWHMs are consistent within their uncertainties). A similar
unexplained offset has been observed in one other SMG,
SMM J02399–0136 (Thomson et al. 2012). The source appears
slightly extended relative to the natural weighting beam, but fits
to the uv-data do not converge on a source size.
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We do not detect 123 GHz continuum emission from J04135
+10277. Assuming a point source, we obtain a s3 upper limit
of m24 Jy. We also searched for the SiO(3–2) 130.26861 GHz
line that the higher-frequency IF pair was centered on. We do
not detect any SiO emission after exploring several possible
line widths, and wederive a s3 upper limit of -0.077 Jy km s 1

for a point-like source (beam FWHM of ´ ´ ´0. 94 0. 85 at a
position angle of 9°.77) using the same -800 km s 1 bin width
used for the CO(1–0) emission.

Finally, we look for emission from the nearby optical quasar
( = oz 2.837 0.003; Knudsen et al. 2003) originally assumed to
be the source of the CO and FIR emission. We detect no
continuum emission at the exact position of the optical quasar
(J2000 α= 4h 13m27 28, δ= 10° 27′ 41 4; Knudsen et al. 2003),

obtaining a s3 upper limit of m24 Jy. However, 1 8 south of the
optical quasar is a s4.8 peak with m= o oS 80 19 8 Jy122 ( ) , but
this emission may be noise or not associated with the quasar. We
also searched for CO(1–0) emission from the quasar and obtain a
s3 upper limit of -0.066 Jy km s 1 assuming a point-like source
and a -500 km s 1 line width.

3.13. J22174+0015

We tentatively detect the CO(1–0) line in the SMG J22174
+0015 with peak S/N = 4.8. We measure S1−0Δ v =

Figure 3. Continuum-subtracted CO(1–0) spectrum (thick solid histogram) and
Gaussian fits to the line profile (dotted and dashed lines) for HE1104–1805
plotted relative to the CO(3–2)-determined redshift ( = oz 2.3221 0.0004)
from Riechers (2011). Thin vertical lines denote the so1 uncertainty on the
measured flux (o0.51 mJy, on average). Channel widths are -50 km s 1. We
perform both single (dashed line) and double (dotted line) Gaussian fits to the
spectrum. For the single Gaussian fit, our CO(1–0)-determined redshift
is = oz 2.3220 0.0002.

Figure 4. CO(1–0) spectrum (thick solid histogram) and Gaussian fit to the line
profile (dashed line) for VCVJ1409+5628 plotted relative to the CO(3–2)-
determined redshift ( = oz 2.5832 0.0001) from Beelen et al. (2004). Thin
vertical lines denote the so1 uncertainty on the measured flux (o0.23 mJy, on
average). Channelwidths are -75 km s 1. The best-fit CO(1–0)-determined
redshift is = oz 2.5836 0.0005.

Figure 5. CO(1–0) spectrum (thick solid histogram) and Gaussian fit to the line
profile (dashed line) for RX J0911+0551 plotted relative to the CO(3–2)-
determined redshift ( = oz 2.7961 0.0001) from D. Riechers (2016, in
preparation). Thin vertical lines denote the so1 uncertainty on the measured
flux (o0.41 mJy, on average). Channelwidths are -25 km s 1. The best-fit
CO(1–0)-determined redshift is = oz 2.7961 0.0001.

Figure 6. CO(1–0) spectrum (thick solid histogram) and Gaussian fit to the line
profile (dashed line) for J04135+10277 plotted relative to the CO(3–2)-
determined redshift ( = oz 2.846 0.002) from Hainline et al. (2004). Thin
vertical lines denote the so1 uncertainty on the measured flux (o0.28 mJy, on
average). Channel widths are -100 km s 1. In light blue we show the GBT
spectrum of the CO(1–0) line from Riechers et al. (2011a) scaled down by
50%, and in light red we show the CO(3–2) spectrum from Riechers (2013)
scaled down by a factor of nine. Our best-fit CO(1–0)-determined redshift
is = oz 2.842 0.001.
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0.099± .021(±0.010)Jy km s−1 at the position of the CO(3–2)
emission from Greve et al. (2005). The CO(1–0) emission is
unresolved. We also tentatively detect 131 GHz (rest-frame)
continuum emission from J22174+0015, but the continuum
peak is weak ( =SNR 3.1) and slightly offset from the line
emission. We obtain m= o oS 19 6 2 Jy131 ( ) .

We also searched for the CS(3–2) 146.969 GHz line that the
higher-frequency IF pair was centered on. We do not detect any
CS emission after exploring several possible bin widths, and
wederive a s3 upper limit of -0.09 Jy km s 1 for a point-like
source (beam FWHM of ´ ´ ´2. 51 2. 17 at a position angle of
−0°.70) assuming the same -1200 km s 1 bin width used for the
CO(1–0) line.

3.14. B1359+154

We detect CO(1–0) emission from the strongly lensed radio-
loud AGN host galaxy B1359+154 with a peak S/N = 6.4.
We measure D = o o-

-S v 0.37 0.07 0.04 Jy km s1 0
1( ) at the

position of the CO(3–2) and CO(4–3) emission from Riechers
(2011). We also detect 131 GHz continuum emission from
B1359+154, obtaining = o oS 10.7 0.1 1.1 mJy131 ( ) and
peakS/N = 213. The emission is partially resolved for both
the CO and continuum maps; the continuum clearly shows
three peaks of emission. Because ofthe complicated lensing
configuration that creates six images of B1359+154 (e.g.,
Myers et al. 1999), it is difficult to associate the130 GHz peaks
with individual images, but the three peaks roughly correspond
to images A, B/C, and D/E/F and have the appropriate
relative brightnesses.

We also searched for the CS(3–2) 146.969 GHz line that the
higher frequency IF pair was centered on. We do not detect any
CS emission after exploring several possible line widths and
derive a s3 upper limit of -0.28 Jy km s 1 (assuming the same
spatially extended flux distribution and -450 km s 1 bin width
as for the CO(1–0) line measurement). The beam size for the
CS line upper limit is ´ ´ ´1. 09 1. 01 at a position angle of
52°.33. Lastly, we also note that B1359+154 is one of the two
sources where we have included observing tracks that lack
measurements of a primary flux calibrator.

4. ANALYSIS

4.1. Peculiar r3,1 Values and Comparisons
to Previous Measurements

Before we compare the distribution of r3,1 values to previous
results and look for correlations between molecular gas
excitation and other galaxy properties, we first compare our
new CO(1–0) detections to any previously existing measure-
ments and discuss the origins of some of our large r3,1 values.
Five galaxies (RX J0911+0551, J04135+10277, and J044307
+0210 from our observations; J14011+0252 and J14009
+0252 from the literature) have previous measurements of the
CO(1–0) line, mostly from single-dish observations at the GBT
(except RX J0911+0551). For RX J0911+0551, the previous
VLA data weretaken with the old narrow correlator, yielding a
line ratio ~r 0.953,1 (Riechers et al. 2011a), which is
consistent with our new measurement of = or 1.01 0.293,1 .
J04135+10277 has a previous CO(1–0) measurement using the
GBT (Riechers et al. 2011a), which gave = or 0.93 0.253,1 .
However, higher angular resolution observations of the
CO(3–2) line with the Combined Array for Research in
Millimeter-wave Astronomy revealed that the CO emission

was not associated with the nearby optically luminous quasar
and is actually an SMG (Riechers 2013). We use the SMG
classification and our new VLA-determined CO(1–0) flux here,
but wenote that our new measurement has significantly larger
uncertainties ( = or 1.45 0.35;3,1 although this value of the
line ratio is consistent with the previous measurement). SMG
J044307+0210 has a previous measurement of

= or 0.61 0.153,1 from the GBT (Harris et al. 2010), and
our new measurement ( = or 0.70 0.203,1 ) is consistent with
that value. Lastly, the SMGs J14009+0252 and J14011+0252
were both observed in CO(1–0) at the GBT, giving

= or 0.67 0.083,1 and = or 0.76 0.123,1 , respectively (Har-
ris et al. 2010). However, subsequent VLA observations in
Thomson et al. (2012) and Sharon et al. (2013) gave ~25%
lower CO(1–0) fluxes, yielding = or 0.97 0.123,1 for J14009
+0252 and = or 0.97 0.163,1 for J14011+0252. For J14011
+0252 the two line ratios are consistent with one another, and
for J14009+0252 the two line ratios are marginally incon-
sistent. Since interferometers generally provide better ampl-
itude stability, and the GBT/Zpectromer used for the CO(1–0)
detections is broadened by a sinc(x) response function
thatleads to larger line widths and fluxes (see discussion of
J14011+0252 in Sharon et al. 2013), we therefore favor the
VLA CO(1–0) measurements in the subsequent analyses.
Three of our new detections (HE0230–2130, HE1104–1805,

and J04135+10277) and our single line ratio limit (MG 0414
+0534) result in peculiarly large values of >r 1.43,1 , although
they are consistent at the 1– s2 level with =r 13,1 because
oftheir large uncertainties. Values of >r 13,1 are unlikely to
occur under normal conditions for SMGs (where the ISM is
dominated by molecular gas and emission is optically thick)
but can occur when the emission is optically thin, when
CO(1–0) is self-absorbed, when the CO emission is optically
thick but emitted from an ensemble of small unresolved clouds,
or when the source of the optically thick emission has a
temperature gradient (e.g., Bolatto et al. 2000, 2003). We also
note that the new VLA measurements of the CO(1–0) line are
systematically lower than (albeit consistent with) the previous
GBT measurements, as might be expected if the interferometer
is resolving out part of the emission.16 While it is unlikely that
many ~z 2 galaxies are more spatially extended than the
largest angular scale accessible with the VLA at these
frequencies orconfigurations (∼40″–50″), many of our mea-
surements have modest S/Ns, which could yield weak
extended emission undetected by our current observations.
We suspect weak extended emission below our detection
threshold is the explanation for two of the three sources with

>r 13,1 (and may be contributing to our nondetection). The
third outlier, J04135+10277, is also among the sources with
lower interferometric fluxes, despite being detected at s>9 . In
this case, weak extended emission seems like an unlikely cause
of the discrepancy between the interferometric and single-dish
fluxes, and some other origin is likely given its redshift
discrepancy (discussed previously). In the subsequent analysis
of the r3,1 distributions, we consider the distributions both with
and without the peculiar r3,1 measurements, as well as the

16 We also note that the flux scales assumed for the original Harris et al. (2010)
GBT measurements differ from the Perley-Butler 2013 standards used in the
VLA pipeline. However, the assumed calibration fluxes for 3C286 and 3C48
are larger for the VLA observations than for the GBT observations (by as much
as ~10%), making the flux calibration issues an unlikely sourceof our
measured flux discrepancies.
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distributions using previous r3,1 measurements for these
sources.

Characterizations of strongly lensed sources may also be
affected by differential lensing: the variation of the magnifica-
tion factor across a spatially extended source. Differential
lensing tends to bias CO excitation measurements to more
compact and therefore higher excitation (higher r3,1) values
(e.g., Hezaveh et al. 2012; Serjeant 2012). However, this is less
likely to be important for the low-J CO lines studied here, and
there is little observational evidence supporting the existence of
this effect in these transitions (although see F10214+4724;
Deane et al. 2013a). We do note that some of our most extreme
line ratios are observed in our high-magnification (m > 10)
sources, but that does not explain values of >r 13,1 and is
degenerate with the high proportion of AGN host galaxies in
the new observations (which might be expected to have ~r 13,1
based on previous line ratio measurements; Riechers et al.
2011a).

4.2. Is There a Difference in r3,1 Values for SMGs
and AGN Host Galaxies?

Given the difference in r3,1 values observed for SMGs and
AGN host galaxies in Harris et al. (2010), Ivison et al.
(2010a, 2011), andRiechers et al. (2011a, 2011b), we look for
this difference in our new expanded sample using CO(3–2)
fluxes collected from the literature (Table 2). In Figure 7 we
show the original distribution of r3,1 values for AGN host
galaxies and SMGs taken from the literature (Harris et al. 2010;
Ivison et al. 2010a, 2011; Riechers et al. 2011a, 2011b),
illustrating a clear difference in r3,1 values for these popula-
tions. In Figure 8, we show the updated distribution including
our new r3,1 measurements and any new orupdated values
from the literature. For the updated distributions of r3,1 values,
despite the tentative appearance of offsets for SMGs to lower
r3,1 values, we find no statistically significant difference
between the population of SMGs and AGN host galaxies
(assuming a significance threshold of a = 0.05 throughout).
We perform a Student’s t-test on the distribution of r3,1 values
and find t=1.62, which gives a probability of p=0.12 of
measuring mean r3,1 values at least as different as measured
here, assuming the null hypothesis (that the SMGs and AGNs
have the same average r3,1) is true. Using the cumulative
distributions and a two-sample Kolmogorov–Smirnov test
(KStest), we obtain a test statistic of D=0.48, which gives
a p=0.052 chance of measuring r3,1 distributions at least as
different as these given that AGNs and SMGs have the same
parent distribution, which is just above the significance
threshold.

In order to examine the robustness of this result, we also
evaluate the distribution of r3,1 values while switching potential
misclassifications or excluding particular measurements. Since
there does appear to be some offset between the SMGs and
AGN host galaxies in the cumulative distribution (albeit an
offset that is not statistically significant), we particularly test
physically motivated scenarios that might push the offset to
statistical significance. Since three sources (one SMG and two
AGN host galaxies) have unusually large r3,1 values, likely due
to emission below our detection threshold, we evaluate the
binned and cumulative r3,1 distributions with those sources
removed. We find the probability of these two populations
having different mean values or distributions decreases when we
exclude the outliers, and we obtain significance values of

p=0.18 of measuring similar average r3,1 values assuming the
two populations have the same mean (t=1.40), and p=0.086
that the two populations have at least as similar distributions
given that our measured values for AGNs and SMGs are drawn
from the same parent population (D=0.47). Five of our new
measurements are only tentatively detected at the 3– s5 level
(HE 0230–2130, RX J1249–0559, J1543+5359, HS 1611
+4719, and J22174+0015). We perform both statistical tests
with these five sources removed and do not find a statistically
significant difference between the mean r3,1 values of the two
populations at the a = 0.05 level ( =t 1.06; p=0.31) nor
between the two distributions ( =D 0.52; p=0.063). We
also look for differences between the two distributions with
removing these five tentative detections and the remaining two
outlier measurements, and we still find no difference between the
mean and distributions of the two populations’ r3,1 values at the
a = 0.05 level ( = =t p1.05, 0.32; = =D p0.55, 0.064).
We conclude that our marginal detections are not significantly
influencing our comparisons between the two populations.
Three objects (J00266+1708, J02399–0136, and J14009

+0252, discussed further below) have somewhat ambiguous
classifications as SMGs. We perform both statistical tests
where we have swapped the classifications (SMGs to AGN
host galaxies) for these three objects and find a p=0.12
chance of measuring average r3,1 values at least similar tothese
given the null hypothesis (that AGNs and SMGs have the same
mean r ;3,1 t=1.60) and p=0.04 chance of measuring r3,1
distributions at least as similar as obtained here (D=0.50).
We also check whether removing the three >r 1.43,1
measurements affects the resulting probabilities when we have
switched these three classifications, and we obtain similar
results: p=0.097 significance for the similarity of the mean
value (t=1.73) and p=0.038 significance for the similarity
of the distributions (D=0.53). Switching the three objects’
classifications from SMGs to AGNswithout removing the
three outliers is the only way to make the difference in
distributions between the SMGs and AGN host galaxies
statistically significant with our new measurements. Given this
degree of manipulation and the limited sensitivities of some
new detections, we conclude that we cannot reject the null
hypothesis that r3,1 values for SMGs and AGN host galaxies are
the same with our present data, obtaining a global average

= or 0.90 0.403,1 (or = or 1.03 0.503,1 for AGN host
galaxies and = or 0.78 0.273,1 for SMGs, which are con-
sistent with the previous values to within the uncertainties).
However, a good deal of the scatter on these average values is
caused by the outliers where we have likely resolved out part of
the flux; excluding thethree sources with >r 1.43,1 , we obtain
an average = or 0.79 0.243,1 (or = or 0.87 0.273,1 for AGN
host galaxies and = or 0.73 0.203,1 for SMGs). The standard
deviations of these populations’ CO(3–2)/CO(1–0) ratios are
likely somewhat inflated by the scatter introduced from the
larger uncertainties on some of our new detections; larger
sample sizes and improved r3,1 measurements for the outliers
and weakly detected sources would help constrain the true
means and distributions of these populations’ r3,1 values.
Given the previous CO(1–0) detections that exist for some of

these sources, we also consider the effect of using older
measurements on the distributions of r3,1 values (even though
individual galaxies’ measurements are largely consistent with
one another). Using all of the older values reproduces the
previously observed difference in r3,1 values between SMGs
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and AGN host galaxies, both in the mean and thedistribution
of the r3,1 values (again, assuming a significance threshold of
a = 0.05); the Student’s t-test yields t=2.16, which gives a
p=0.048 chance of measuring average r3,1 values at least as
different as we obtain given the null hypothesis that the two
populations have the same mean r3,1, and the KStest yields
D=0.57, which gives a p=0.012 chance of obtaining
distributions at least as different as we measure given the null
hypothesis that the AGN and SMG r3,1 values are drawn from
the same parent population. The likelihood of these differences
reduces a bit if we remove the remaining two outliers with

>r 1.43,1 (HE1104–1805 and J04135+10277), giving
p=0.12 and p=0.037 for the statistical tests of differences
in the means and distributions, respectively. Since J04135

+10277 is an outlier in r3,1 and has a previous single-dish
measurement of the CO(1–0) flux thatis noticeably discrepant
from our new measurement, we also evaluate the r3,1
distributions using the older single-dish value for J04135
+10277 on its own (since there are no obvious problems or
discrepancies between the other interferometric and single-dish
measurements). The Student’s t-test gives a p=0.071
(t=1.94) chance of obtaining average r3,1 measurements at
least as different as measured given the null hypothesis that the
two populations share the same mean; the KStest gives a
p=0.018 (D=0.55) chance of measuring r3,1 distributions as
different as these given the null hypothesis that SMGs and
AGNs have the same r3,1 distribution. Removing the remaining
two galaxies with >r 1.43,1 increases those likelihoods to a

Figure 7. Histogram (left) and cumulative distribution (right) of r3,1 values for AGN host galaxies (red) and SMGs (blue) for the original detections that showed a clear
difference between the two populations. Histogram bin sizes are D =r 0.253,1 . Measured r3,1 values are from Harris et al. (2010), Ivison et al. (2010a, 2011),
andRiechers et al. (2011b) for the SMGs and Riechers et al. (2011a) for the AGN host galaxies. For the cumulative distributions,the shaded regions denote so1
regions for the distributions. The vertical dashed line shows =r 13,1 for reference.

Figure 8. Full updated histogram (left) and cumulative distribution (right) of r3,1 values for AGN host galaxies (red) and SMGs (blue) including our new detections
and literature values (which includesome updated classifications and CO(1–0) measurements). We perform a Student’s t-test on the distribution of r3,1 values and find
no difference in the mean r3,1 values at the a = 0.05 significance level ( = =t p1.62, 0.12). We also perform a two-sample KStest on the unbinned r3,1 distributions,
and wefind no difference in the shape of the distributions at the a = 0.05 significance level ( = =D p0.48, 0.052). Histogram bin sizes areD =r 0.253,1 . Note that
measured values of >r 13,1 also have large uncertainties and are consistent with =r 13,1 . For the cumulative distributions, the shaded regions denote so1 regions for
the distributions. The vertical dashed line shows =r 13,1 for reference.
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p=0.22 (t=1.28) chance of measuring at least as similar
average r3,1 values and a p=0.074 (D=0.48) probability of
measuring r3,1 distributions at least as similar. These results
show that any differences in the mean between the two
populations are largely driven by our outlier measurements
where we have likely resolved out weak extended emission,
and therefore there areno statistically significant differences in
their average r3,1 values. However, the KS testresults are more
ambiguousand tentatively suggest there may be some
difference in the r3,1 distributions for SMGs and AGN host
galaxies, although that result is not uniformly statistically
significant. The apparent disappearance of the difference in r3,1
values between SMGs and AGN host galaxies has multiple
causes, including new measurements and misclassifications.
Improved S/N observations of weakly detected sources and
sources with >r 1.43,1 would help resolve the remaining
ambiguities in potential differences in these populations, as
would an increased number of SMGs and AGNswith r3,1
measurements.

While intriguing, it is perhaps not surprising that the
difference in r3,1 values for SMGs and AGNs largely disappears
in our expanded sample. First, the excitation temperature for
the CO(3–2) transition is not so high that it requires a
particularly energetic source (like an AGN) to drive its
excitation; a compact starburst and molecular gas reservoir
could plausibly create the near-thermalized ~r 13,1 we observe
in some SMGs’ molecular gas (e.g., Narayanan & Krumholz
2014). Second, the division between AGNsand SMGs may not
be strict. It very possible that SMGs contain a dust-enshrouded
AGN (which may also be a viewing angle effect) that is not
identified in optical wavelengths. Several objects are suspected
of potentially harboring an AGN based on their continuum
emission at mid-IR wavelengths (J00266+1708; Valiante et al.
2007; Sharon et al. 2015), large line widths (J02399–0136 and
J14009+0252; e.g., Ivison et al. 1998, 2000; Thomson et al.
2012), or high-J CO emission and radio excess (HLSW–01;
e.g., Scott et al. 2011), and these objects contain a range of line
ratios ( ~r 0.63,1 –1). As samples of ~z 2 galaxies with
CO(1–0) detections expand beyond the initial small numbers
that largely contained the best-studied and most wellchar-
acterized objects, one would expect to find more hybrid objects
and galaxies with ambiguous classifications. In addition,
several types of AGN host galaxies are considered in this
study, including optically selected quasars and highly obscured
AGNs selected in the infrared, which may alter the distribution
of r3,1 values if there are systematically different molecular gas
conditions in different types of AGN host galaxies. Lastly,
galaxies’ AGNs may not be the dominant source of dust and
gas heating, even if the AGNs are providing some additional
excitation for low-J CO lines. We also note that observations of
galaxies at lowz have also measured a range of r3,1 values for
systems thatdo and do not host a central AGN (e.g.,
Mauersberger et al. 1999; Yao et al. 2003; Mao et al. 2010).

It may be that the excitation difference as probed by the
CO(3–2)/CO(1–0) line ratio for these objects is actually a
function of other physical parameters of the galaxies (Table 3).
In subsequent sections we explore the excitation dependence of
these galaxies’ SFRs and dynamical properties. We calculate
Pearson’s and Spearman’s correlation coefficients to look for
monotonic trends in r3,1 with redshift, dust temperature, line
FWHM, dust-to-gas mass ratio (Figure 9), and dust mass (not
pictured). We find no significant correlation for SMGs, AGNs,

or both populations in aggregate except for r3,1 versus z for
SMGs and r3,1 versus FWHM for both populations in aggregate
(but excluding the three sources with >r 1.43,1 ). For the
potential correlation with redshift, the likelihood of obtaining
as tight of a trend assuming the null hypothesis of no
correlation is true has a frequency of a < 0.05 for Spearman’s
r = 0.67 (p=0.0061) and Kendall’s t = 0.47 ( =p 0.015).
For the potential correlation with the line FWHM (which uses
the CO(3–2) FWHMs from the literature since we cannot
measure the FWHM of the CO(1–0) line for all objects in our
sample), the likelihood of obtaining as tight of a trend assuming
the null hypothesis of no correlation is true has a frequency of
a < 0.05 for Spearman’s r = -0.44 (p=0.029), but only
p=0.055 for Kendall’s t = -0.055. Previous results for local
galaxies (Mauersberger et al. 1999; Yao et al. 2003; Mao
et al. 2010) show no correlation between r3,1 and any value
(except star-formation efficiency (SFE); see subsequent
section), but those studies obviously cannot address trends
with redshift. Given the number of correlations we explore
here, it is not surprising that we find one or two to be
statistically significant; expanding the sample of r3,1-measured
SMGs would provide greater confidence on whether these
trends persist or not.

4.3. Excitation Dependence of Galaxies’
Star-formation Properties

Since we do not have spatially resolved measurements of the
SFR or molecular gas for most objects in our new observations,
nor for most literature objects, we evaluate the effects of CO
excitation on the integrated form of the Schmidt–Kennicutt
relation. By looking at the correlation between LFIR and ¢LCO,
we can also avoid uncertainty in the gas mass conversion
factor, a ;CO the traditionally assumed bimodal values of aCO
are suspected to strongly affect comparisons between galaxy
populations, including comparisons between galaxies at
different redshifts. In addition, the luminosity–luminosity
correlation may be better for probing variations in aCO with
gas physical conditions (e.g., gas temperature and density;
Bolatto et al. 2013 and references therein), which also set the
relative CO line strengths. We analyze the integrated Schmidt–
Kennicutt relation (Figure 10) using both the SMGs in our
sample and the galaxies known to host a bright central AGN
even though the AGN may be contributing additional
luminosity that is not associated with star formation.
In Table 4 we list both the offset and the index to our fits for

AGNs and SMGs, analyzed both separately and together, and
in combination with local U/LIRGs from Papadopoulos et al.
(2012) and Greve et al. (2014) and the low-z IR-bright galaxies
from Yao et al. (2003), which generally reach lower
luminosities.17 All fits are from an ordinary least-squares
bisector linear regression. Since the molecular gas measure-
ments and FIR luminosities are collected from across the
literature and use a variety of methods, we neglect measure-
ment uncertainties in the linear fit and assume an equal weight
for every measurement, neglecting all upper limits. We also
examine potential differences in the Schmidt–Kennicutt
relation for these sources as a function of gas excitation and
check that including certain subsets of sources does not bias
our results (particularly the CO(3–2)-detected source that only

17 Some sources are repeated between the two low-z samples, in which case
we use the Papadopoulos et al. (2012) orGreve et al. (2014) values.
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has a CO(1–0) upper limit, the two AGN host galaxies B1938
+666 and B1359+154, which potentially have very low
intrinsic luminosities, and the Cloverleaf and J2135-0102,
which have high luminosities prior to magnification correc-
tion). Since the lensing magnification factors are an additional
source of uncertainty, particularly for the largest magnifica-
tions, we also evaluate the Schmidt–Kennicutt relation without
corrections for gravitational lensing to illustrate the potential
range of effects caused by applying incorrect magnification
factors.

We note that Greve et al. (2014) usethe 50–300 μm
integrated flux to determine LFIR,while Yao et al. (2003)
usethe 40–1000 μm range. Since the two samples use different
techniques for fitting the dust SED, one cannot use a simple
rescaling to correct between the two wavelength regimes. For
typical assumptions of dust temperatures and modified black-
body indices, the correction only ranges between 0% and10%
for these two low-z samples, but itcan be as high as ~30% to
correct to the LFIR wavelength coverage assumed for many of
the high-z galaxies studied here (40–400 μm). A more uniform
determination of the FIR luminosity across populations,
including corrections for AGN contamination (like in Greve
et al. 2014; only five galaxies in our high-z sample are shared
between our analyses), would improve the robustness ofthese
results.

In short, we find no significant difference in either the slope
or offset for the integrated Schmidt–Kennicutt relation between
any of the high-z subpopulations, with or without correction for
lensing magnification, or between the correlation using the
CO(3–2) and CO(1–0) lines. All of the best-fit indices are
consistent with a slope of N= 1 at the 1 s2 level. In addition,
the offsets (or yintercepts) of our best-fit functions areconsis-
tent and have considerable uncertainty. One might expect the
offset to be different between the correlations using the
CO(3–2) and CO(1–0) line luminosities since we do not apply
an excitation correction, but the expected offset is only

´N rlog 3,1( ), which is at most a difference in the offset of
∼0.1–0.3 and well within our uncertainties. We do find some
tension between the offsets and slopes measured for the high-z
SMGs and AGNs (for the CO(1–0) line and the CO(3–2) line
without magnification corrections), but the inconsistencies are
1 s2 . As expected, removing corrections for lensing magnifica-
tion adds considerable scatter to the best-fit relationships of the
high-z samples.

The most conspicuous difference we find in our analysis of
the integrated Schmidt–Kennicutt relation comes with the
inclusion of the low-z more “normal” IR-bright galaxies from
Yao et al. (2003). Including the low-z IR-bright galaxies we get
a superlinear slope of ~N 1.15–1.2. Whether there is an offset
(i.e., a change in SFE) between starburst galaxies and quiescent
galaxies or simply a nonunity slope in the Schmidt–Kennicutt
relation is a long-standing debate (e.g., Daddi et al. 2010;
Genzel et al. 2010). However, observed offsets between
starburst and quiescent star-forming galaxies have largely been
attributed to different assumptions about gas mass conversion
factors. Here we have made no assumptions on conversion
factor, yet we still find offsets orindexchanges depending on
which galaxies we include in the linear fits. This result
indicates that assumed gas mass conversion factors are not the
sole and artificial cause of high SFEs for U/LIRGs and SMGs,
which has also been seen in some spatially resolved
measurements (e.g., Sharon et al. 2013) (although this result

does not rule out that different galaxy populations may have
different CO-to-H2 abundances). Although the starbursts and
normal galaxies analyzed here prefer different Schmidt–
Kennicutt indices, the Yao et al. (2003) galaxies dominate
linear fits to combined populations, due to the large scatter and
uncertainties on the high-z galaxies and thedifferent luminosity
regimes covered by these populations. The scatter and different
luminosity ranges make it difficult to distinguishbetween the
scenario where starbursts (and AGNs) are offset from the
Schmidt–Kennicutt relation for local galaxies and the scenario
where starbursts are not offset but instead extend the super-
linear local relation to higher luminosities. Interestingly, linear
fits to the SMGs on their own are mostly consistent with fits to
the Yao et al. (2003) sample. More consistent measurements of
both the FIR and CO luminosities across populations would
help clarify these results (as illustrated by the differing indices
determined using the same U/LIRG data in Greve et al. 2014
versus Kamenetzky et al. 2015), as would adding populations
of high-z normal galaxies (e.g., Tacconi et al. 2013) to the
analysis. Given the relatively small differences in fluxes that
likely arise from thedifferent wavelength ranges used to
calculate LFIR for the two low-z samples, and that a larger
Schmidt–Kennicutt index arises only when using the Yao et al.
(2003) sample, we find it unlikely that thedifference in FIR
definitions dominates the change in Schmidt–Kennicutt
indices. More reliable stellar mass measurements may also
help determine if there are truly different star-formation
mechanisms; Sargent et al. (2014) find that true outliers in
SFEs largely correspond to outliers in specific SFRs relative to
the (redshift-appropriate) galaxy main sequence.
While there is theoretical motivation for the Schmidt–

Kennicutt index to change with the excitation of the gas phase
tracer (e.g., Narayanan et al. 2008b, 2011),18the observed lack
of difference in the index of the integrated Schmidt–Kennicutt
relation when using CO(1–0) and CO(3–2) as the tracers is
consistent with some previous analyses (e.g., Greve
et al. 2014), but not all (e.g., Yao et al. 2003; Bayet
et al. 2009; see also Kamenetzky et al. 2015). The lack of
excitation difference is best demonstrated by looking for a
correlation between the FIR luminosity and the low-J CO
excitation (Figure 11). As seen previously for the low-z IR-
bright galaxies (e.g., Mauersberger et al. 1999; Yao et al. 2003;
Mao et al. 2010), we find no correlation between the FIR
luminosity and r3,1 (although see Kamenetzky et al. 2015). A
likely explanation for the lack of a trend is that in many cases
both CO lines are largely tracing the same physical regions that
emit in the infrared, and the sources with a strong spatial
division between the multiphase components of the ISM may
add additional scatter.
The only significant trend we do find with excitation and the

galaxies’ star-forming properties is with theSFE as traced by
¢ -L LFIR CO 1 0( ) (Figure 11). We evaluate the Spearman’s and

Kendall’s rank correlation coefficients for the SMGs, AGNs, all
high-z sources, the two low-z populations, and all sources
together. With the exception of the high-z AGN host galaxies
evaluated on their own, for all other populations and combinations
of populations we find a likelihood of <p 0.05 of getting
correlations as strong as observed given the null hypothesis of no
correlation between r3,1 and SFE (the AGNs evaluated separately
have >p 0.05). In fact, the correlations are highly significant,

18 However, these theoretical predictions are for measurements of the gas and
star formation surface densities, and we only analyze total luminosities here.
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and we find a 1p 0.0003 likelihood of finding a correlation at
least as strong as these given the null hypothesis of no correlation,
except for the SMGs evaluated on their own (which give
r = 0.64/p=0.010 and t = 0.49/p=0.012 for the Spearman
and Kendall rank correlation coefficients, respectively). We
perform an orthogonal least-squares bisector fit to the high-z
galaxies in Figure 11 and find a slope of o ´ -5.6 1.8 10 3( ) and
intercept of 0.08± 0.20 (neglecting lower limits). Combining
both the high-z and low-z sources, we find a slope of

o ´ -5.9 0.9 10 3( ) and intercept of 0.23± 0.06 (neglecting
lower limits), which areconsistent with the best-fit line for high-z
sources. We note that the fit to our data is unweighted since we
want to make a fair comparison between the samples and do not
have uncertainties on the SFEs for all low-z galaxies. However,
given that the uncertainties are correlated and heteroscedastic, the
fit is somewhat biased toward the more uncertain values of large
r3,1 and large SFEs. Excluding the outlier sources with >r 1.43,1
decreases the slope and increases the offset, but the fit
uncertainties still have considerable overlap when considering
either the high-z galaxies or galaxies at all redshifts combined.

The correlation between r3,1 and SFE in Figure 11 is in line
with the theoretical results of Narayanan & Krumholz (2014).
They find that the CO spectral line energy distributions of

galaxies can be described as a function of a single parameter,
the SFR surface density, where higher-excitation molecular gas
states were achieved with higher star-formation surface
densities. The physical explanation for their correlation is that
higher SFR density regions provide more sources of energy to
inject into the molecular gas in that volume. Similarly, if there
is a higher SFR per unit of molecular gas mass (i.e., a larger

¢L LFIR CO ratio), then we would expect to get larger fractions of
the molecular gas in higher excitation states (i.e., larger r3,1
values). The correlation between r3,1 and SFE might also imply
that dense molecular gas (which naturally produces larger r3,1
values since a larger fraction of the gas is above the critical
density necessary to excite CO into the J= 3 state) is the
component of the molecular ISM actively forming starsand
therefore has a larger SFR per unit of molecular gas than low-
density gas (where there is additional mass not involved in star
formation). In principle, this correlation indicates that there is
in fact an excitation-dependent offset in our measured
Schmidt–Kennicutt relation, but it is buried in the scatter of
the relation (or perhaps is hidden by errors in the assumed
magnification factors), so we cannot identify the offset directly.
We compare the best-fit linear relations between the SFE and

r3,1 for the high-z and low-z galaxy correlations in Figure 11

Table 3
Other Galaxy Properties from the Literature Used Here

Source Tdust Mdust M Mlog BH( )☉ References
(K) M108( )☉

New

B1938+666 L 0.21a L Barvainis & Ivison (2002)
HS 1002+4400 38±7 17.30 10.14±0.20 Beelen et al. (2006), Coppin et al. (2008)
HE 0230–2130 L 1.62a 7.95±0.24 Barvainis & Ivison (2002), Pooley et al. (2007)
RX J1249–0559 39±4 L 9.76±0.20 Khan-Ali et al. (2015), Coppin et al. (2008)
HE 1104–1805 L 1.53a 9.38 Barvainis & Ivison (2002), Peng et al. (2006)
J1543+5359 L L 10.13±0.15 Coppin et al. (2008)
HS 1611+4719 L L 9.26±0.2 Coppin et al. (2008)
J044307+0210 L L L L
VCV J1409+5628 35±2 48.60 9.28±0.20 Beelen et al. (2006), Coppin et al. (2008)
MG 0414+0534 L 0.93a 9.04±0.17 Barvainis & Ivison (2002), Pooley et al. (2007)
RX J0911+0551 L 1.37a 8.6±0.18 Barvainis & Ivison (2002), Pooley et al. (2007)
J04135+10277 38 18±3 L Knudsen et al. (2003)
J22174+0015 L L L L
B1359+154 L 0.11a L Barvainis & Ivison (2002)

Literature

J123549+6215 L L L L
F10214+4724 80±10 2.84 8.36±0.56 Ao et al. (2008), Deane et al. (2013b)
HXMM01 55±3 29±7 L Fu et al. (2013)
J2135-0102 34 4.00 L Ivison et al. (2010b)
J163650+4057 43.2±4.7 9.69±0.17 L Kovács et al. (2006)
J163658+4105 34.8±3.2 9.04±0.14 L Kovács et al. (2006)
J123707+6214 L L L L
J16359+6612 39±1b 0.78±0.09b L Magnelli et al. (2012)
Cloverleaf 50±2 0.61±0.07 9.24±0.51 Weiß et al. (2003), Pooley et al. (2007)
J14011+0252 41±1 3.07±1.08 L Magnelli et al. (2012)
J00266+1708 39±1 4.47±0.52 L Magnelli et al. (2012)
J02399-0136 41±1 0.32±0.04 L Magnelli et al. (2012)
J14009+0252 43±1 4.47±0.52 L Magnelli et al. (2012)
HLSW–01 88 5.20±1.60 L Scott et al. (2011)
MG 0751+2716 L 1.82a L Barvainis & Ivison (2002)

Notes.
a Corrected to account for the cosmology, redshifts, and magnificationfactors assumed here (see Table 2).
b Averaged over the three components.
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and find that the slope of the Yao et al. (2003) low-zIR-bright
correlation is marginally inconsistent with those involving the
high-z sources. While the offsets are consistent, we find slopes
of 0.0093± 0.0012 for the Yao et al. (2003) low-z IR-bright
galaxies, 0.0034± 0.0012 for the SMGs, and 0.0056± 0.0018
for the combined high-z galaxies. As seen in the Schmidt–
Kennicutt relation, the high-z galaxies appear to have higher
SFEs than in local galaxies, butthat would result in a
difference offset in the r3,1–SFE correlation, not a difference
in slope. The difference in slope implies that there is less
excitation per unit increase of SFE for high-z galaxies than for
the low-z galaxies. This could arise from the difference in slope
in the Schmidt–Kennicutt relation between the two populations
(when evaluated separately), or it could be a resolution effect if
the low-z IR-bright galaxies have a significant extended cold-
gas component traced by CO(1–0) that was not accounted for
with the primary beam correction applied in Yao et al. (2003).

We find that the average gas consumption timescales (the
inverse of the SFE) for SMGs and AGN host galaxies are broadly
consistent19; we obtain t = o38 18 Myr for AGN host
galaxies, t = o63 28 Myr for SMGs, and t = o52 27 Myr
for both populations combined. While the uncertainties for the
SFRs are inhomogeneously determined and perhaps under-
estimated, if we trust those uncertainties and calculate weighted-
average properties of the two populations, we find t = o17
1 Myr for AGN host galaxies, t = o20 1 Myr for SMGs, and
t = o18.4 0.9 Myr for both populations combined.

Mid-IR excesses are known to arise in the dusty tori of AGNs
(e.g., Weiß et al. 2003; Beelen et al. 2006), and it is plausible that
highly obscured AGNs would have some FIR emission that does

Figure 9. Redshift (top left), dust temperature (top right), CO(3–2) line FWHM (bottom left), and dust-to-gas ratio (bottom right) as afunction of r3,1 for the complete
sample of SMGs (blue circles) and AGNs (red squares). Gravitationally lensed objects are shown with opensymbols and unlensed objects have filledsymbols; all
gravitationally lensed objects have been lensing-corrected. The =r 13,1 line (dashed) and upper limits for new measurements are also shown. For the latter three
panels, we adopt values from the literature (when available), which may not have published uncertainties (see Tables 2 and 3). In only the top left panel, literature
values are in lighter shades of blue orred to highlight the new observations, and the sources are labeled by name. For the dust-to-gas mass we assume a CO luminosity
to molecular gas mass conversion factor of a = - -M0.8 K km s pcCO

1 2 1( )☉ . We calculate Pearson’s and Spearman’s correlation coefficients to look for monotonic
trends for these variables and find no significant correlationat the a = 0.05 significance level (except for r3,1 vs.z for SMGs and r3,1 vs.FWHM using both
populations except sources with >r 1.43,1 ).

19 We assume a CO-to-H2 conversion factor of a = M0.8CO ☉
- -K km s pc1 2 1( ) and determine the SFRs from LFIR using the equations from

Kennicutt & Evans (2012) (note that we do not correct to the
m- L3 1100 m TIR used there).
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not arise from dust heated by star formation. Leipski et al. (2013)
found that among 1.2 mm-detected >z 5 quasars, 25%–60% of
the FIR emission is associated with dust heating by star formation
(as opposed to emission from a dusty torus surrounding the
AGN). Since this cold dust heated by star formation dominates at
the longest wavelengths, FIR luminosities determined from small
numbers of photometric data points on the Rayleigh–Jeans tail of
the cold dust peak more accurately trace SFRs than dosingle-
component fits to the full dust SED (which does not account for
the warm/hot dust emission from the AGN; see also quasars
without FIR detections in Leipski et al. 2014). Kirkpatrick et al.
(2015) break down the IR SEDs of low- and high-z U/LIRGs into
warm and cold componentsand find that thewarm dust
component gets hotter and contributes a larger fraction to the
total infrared luminosity with increasing AGN activity (as
diagnosed by mid-IR polycyclic aromatic hydrocarbonspectro-
scopy). Therefore, SED fits that do not account for two dust
components will likely attribute too much IR flux to star
formation. It is likely that the FIR measurements and implied
SFRs for some galaxies in our sample are similarly affected,
causing the slightly elevated SFEs observed in the AGN host
galaxies. Uniformly obtained measurements of the FIR luminosity
are necessary to accurately capture these galaxies’ SFRs.
We also evaluate SFE as a function of the dust-to-gas mass

ratio in Figure 12. We calculate the Spearman’s and Kendall’s
rank correlation coefficients for the SMGs, the AGN host
galaxies, and both populations combined, and for all cases we
find a <p 0.05 likelihood of obtaining a correlation at least as
strong as observed assuming the null hypothesis of no
correlation between SFE and dust-to-gas ratio (for the SMGs,
Kendall’s rank correlation coefficient gives >p 0.05). How-
ever, this correlation is not unexpected given that the gas mass
is proportional to ¢LCO and the dust masses are either
proportional to the same continuum flux measurements
extrapolated to determine the FIR luminosity (e.g., Barvainis
& Ivison 2002) or luminosity-weighted values since they are
determined from fits to the spectral energy distribution (e.g.,
Magnelli et al. 2012). Therefore, since the dust-to-gas mass
ratios and SFEs are largely proportional to one another, we do
not ascribe much significance to the correlation.

4.4. ¢LCO–FWHM Correlation

Harris et al. (2012), Bothwell et al. (2013), and Goto & Toft
(2015) find a correlation between the CO line luminosity and the
CO line FWHM for SMGs. However, Aravena et al. (2016)
donot find a significant correlation for their sample of dusty
star-forming galaxies, nor doCarilli & Walter (2013) when
evaluating a variety of different star-forming galaxy populations.
A correlation between the line brightness and FWHM could
occur if the CO line is tracing the gravitational potential
occupied by the molecular gas,especially if the molecular gas is
dominating the dynamical mass. Some scatter would be expected
in this correlation due to the unknown inclinations of any large-
scale dynamical structures (such as disks), galaxymerger states,
or outflows (although emission from outflows is likely much
weaker than the emission from the bulk of the gas). This
correlation has some potential predictive power for determining
the magnification for gravitationally lensed objects (Harris et al.
2012) or measuring cosmological distances for unlensed sources
(if the scatter in the relation is reduced; Goto & Toft 2015). For
strongly lensed sources, differential lensing can also affect the
shape of emission line profiles (Riechers et al. 2008a; C. E.

Figure 10. Integrated Schmidt–Kennicutt relation where the high-redshift
sources have either been magnification corrected (top) or not magnification
corrected (middle/bottom), where the bottom panel shows a zoom-in of only
the high-z sources. AGN host galaxies are shown as red squares, SMGs are
blue circles, low-z U/LIRGs from Papadopoulos et al. (2012) orGreve et al.
(2014) are diamonds, low-z IR-bright galaxies from Yao et al. (2003) are dots,
and other reference high-z sources are the labeled stars. For the SMGs and
AGNs, opensymbols denote objects that are gravitationally lensed. Darker
colored symbols andlines use the CO(1–0)-determined CO line luminosities,
while the lighter colored symbols andlines use the CO(3–2)-determined CO
line luminosities. Solid lines are fits to the Schmidt–Kennicutt relation using
only the high-z objects, while dashed lines include the low-z sources; the fits do
not use the three labeled comparison objects. We find no significant difference
in either the slope or offset for the integrated Schmidt–Kennicutt relation
between any of the high-z subpopulations, with or without correction for
lensing magnification, or between the correlation using the CO(3–2) and
CO(1–0) lines. All of the best-fit indices are consistent with a slope of N=1 at
the 1 s2 level unless we include the Yao et al. (2003) IR-bright sample (see
Table 4).
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Sharon et al. 2016, in preparation) and thus the measured line
FWHMs.

We evaluate the possibility of correlation between the CO
line luminosity and FWHM of our sample in Figure 13, and
weshow both the gravitational lensing corrected and uncor-
rected line luminosities. We calculate the Spearman’s and
Kendall’s rank correlation coefficients (neglecting all upper
limits) and find no significant trend between the line luminosity
and FWHM, regardless of theCO line used, thepopulation
evaluated (SMGs, AGNs, or both together), orthemagnifica-
tion correction (at a significance level of a = 0.05). The only
exception is for the CO(1–0)-determined line luminosities for
all galaxies (SMGs and AGNs) with magnification corrections
applied, where we find that the probability of finding a
monotonic correlation between the variables at least as extreme
as observed to be <p 0.05 (assuming a null hypothesis of no
correlation; Kendall’s τ = 0.30, p = 0.024; Spearman’s ρ =
0.43, p = 0.022). However, this correlation is largely the
product of the low-luminosity AGN host galaxy outliers, which
have large uncertainties in their magnification factors (e.g,
Barvainis & Ivison 2002), so we do not ascribe much
significance to this result. When we compare the trend in
FWHM with CO line luminosity, instead of finding a shallow
correlation before lensing correction and a steeper correlation
after lensing correction (e.g., Harris et al. 2012), we find that
the lensed objects fill in a wedge-shaped region. The
distribution of sources suggests that we are probing a wider
range of intrinsic luminosities per FWHM than the Herschel-

selected sample of Harris et al. (2012), likely due to the
heterogeneity of our sample, which is not selected via a
brightness cutoff and may probe a variety of dynamical states
(which is in line with the results of Carilli & Walter 2013; see
also Aravena et al. 2016). One potential limitation of this
analysis is that we use the same FWHMs for the analysis of
both CO lines (because our new CO(1–0) detections largely
lack the required sensitivity to measure line shapes), and it may
be that sources with a spatially extended cold molecular gas
phase would have a larger FWHM for the CO(1–0) line than
for the CO(3–2) line (e.g., Ivison et al. 2011; Thomson et al.
2012; for comparisons to higher-J CO line widths, see also
Hainline et al. 2006; Riechers et al. 2011d).

4.5. Excitation and Evidence for an SMG–Quasar Transition

Much of the circumstantial evidence for the SMG–quasar
transition is based on the similarity of their properties (their FIR
luminosities and inferred SFRs, molecular gas masses, and
temporal coincidence) and the supposed analogous transition
for low-z U/LIRGs (which are more clearly major mergers)
and quasars. These results also show broadly similar properties
between SMGs and AGN host galaxies, including their
molecular gas excitation and their trends in r3,1 with different
physical properties. Previous work demonstrating a difference
in the r3,1 ratio for SMGs and AGN host galaxies weakens with
our expanded sample since we do not find a statistically
significant difference, although tighter uncertainties on some
objects would help solidify this result. If AGNs are providing

Table 4
Fits to the Integrated Schmidt–Kennicutt Relation

Sources CO(1–0) CO(3–2) Matcha CO(3–2) Allb

Offset Slope Offset Slope Offset Slope

Magnification-corrected

SMGs 0.42±1.10 1.14±0.11 1.10±0.67 1.10±0.07 L L
AGN 2.02±0.89 1.02±0.09 2.09±0.60 1.01±0.06 2.21±0.54 1.00±0.05
AGN (w/o bias)c 3.67±1.27 0.86±0.12 1.43±1.95 1.08±0.18 2.01±1.42 1.02±0.13
SMGs+AGN 2.11±0.77 1.00±0.07 2.05±0.61 1.01±0.06 2.18±0.58 1.00±0.06
SMGs+AGN (w/o bias)c 2.35±1.20 0.98±0.11 1.40±1.00 1.07±0.09 1.75±0.93 1.04±0.09
SMGs+AGN+U/LIRGs 1.14±0.43 1.08±0.04 1.87±0.30 1.02±0.03 L L
SMGs+AGN+all low-z −0.34±0.45 1.22±0.05 0.56±0.27 1.15±0.03 L L

No Magnification Correction

SMGs −1.93±2.43 1.35±0.22 −0.34±1.56 1.22±0.14 L L
SMGs (w/o bias)d −2.36±3.25 1.34±0.29 −0.14±2.02 1.20±0.19 L L
AGN 2.89±1.36 0.94±0.12 4.55±0.92 0.79±0.09 4.49±0.91 0.80±0.09
AGN (w/o bias)d 2.36±1.93 0.99±0.18 4.34±1.50 0.81±0.14 4.21±1.44 0.82±0.14
SMGs+AGN 0.15±1.61 1.17±0.15 1.62±1.13 1.05±0.10 1.59±1.11 1.05±0.10
SMGs+AGN (w/o bias)d −0.28±2.12 1.21±0.19 1.53±1.45 1.06±0.13 1.44±1.41 1.07±0.13
SMGs+AGN+U/LIRGs 0.90±0.38 1.10±0.04 1.71±0.27 1.04±0.03 L L
SMGs+AGN+all low-z −0.14±0.37 1.20±0.04 0.74±0.23 1.13±0.02 L L

Low-redshift Sources Only

IR-bright (Y03) −0.89±1.15 1.27±0.13 −0.24±0.63 1.23±0.07 L L
U/LIRGs (P12+G14) 2.63±0.54 0.92±0.06 3.10±0.36 0.89±0.04 L L
All −0.20±0.64 1.21±0.07 0.53±0.39 1.15±0.04 L L

Notes.
a Uses only CO(3–2) measurements for sources with CO(1–0) detections.
b Uses all CO(3–2) measurements.
c Excludes the AGNs B1938+666 and B1359+154, which are outliers and would dominate the linear fit.
d Excludes the AGN Cloverleaf andthe SMG J2135-0102, which are outliers and would dominate the linear fit.
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an additional higher excitation phase of molecular gas (rather
than weaker forms of SMG–quasar transition where changes in
gas excitation correlatewith AGN activity because of some
other evolutionary process), that phase may not be the
bolometrically dominant part of the system (i.e., it may be a
very small fraction of the total molecular gas mass). Such

multiphase models would result in measurements of global r3,1
values near those of the dominant star-forming gas phase,
which can have a range in excitation conditions depending on
the density of star formation relative to the molecular gas
distribution. In addition, it is possible that dusty star-forming
galaxies like SMGs contain a heavily enshrouded AGN,
disguising the AGN’s effects on the CO line ratios. Therefore
the similarities in gas excitation may reinforce the similarities
between the populations of SMGs and AGN host galaxies, but
it does not reveal the evolutionary mechanisms that may
connect the two populations as a temporal sequence.
The average ~r 0.83,1 –0.9 we find for these populations

reduces the uncertainties in the total molecular gas mass (on
average) caused by observing in CO(3–2) to the ∼10%–20%
level, which is near typical flux calibration uncertainties and
well within the typically observed scatter of analyses like the
Schmidt–Kennicutt relation. However, there is still a wide
distribution in r3,1 values, and extrapolating total molecular gas
masses from mid-J CO lines may produce much larger errors
for individual systems.
Eleven of the AGN host galaxies in our sample also have

black hole mass measurements (none of the SMGs have black
hole measurements); we therefore look for correlations between
the molecular gas properties and black hole masses for these
systems. We find no correlation between the black hole mass
and r3,1 (Figure 14). Since SMGs have a similar range in r3,1
values, we suspect that including the lower-mass black holes of
the SMGs (relative to their total masses, which appear to be
consistent between these populations to the extent we can
determine from our unresolved sample; e.g., Alexander et al.
2008; Coppin et al. 2008) would not produce any correlations.
We find no clear difference in AGN types (i.e., optical versus
IR-bright, radio-loud versus radio-quiet) with measured r3,1
value or black hole mass.

Figure 11. CO(3–2)/CO(1–0) line ratio as a function of the FIR luminosity (left) and a proxy for the star-formation efficiency, ¢L LFIR CO (right), for AGN host
galaxies (red squares), SMGs (blue circles), low-z U/LIRGs from Papadopoulos et al. (2012) andGreve et al. (2014) (black diamonds), and low-z IR-bright galaxies
from Yao et al. (2003) (black dots). Gravitationally lensed sources have opensymbols, while unlensed objects have filled symbols. On the left we show the =r 13,1
line for clarity (dashed). We find no correlation between the FIR luminosity and r3,1 at the a = 0.05 significance level. We evaluate the Spearman’s and Kendall’s rank
correlation coefficients for the subpopulations for r3,1 versus ¢L LFIR CO and show the best linear fits to correlations that are significant at the a < 0.05 level: the high-z
populations together (black solid line with so1 fit uncertainties in the light shaded region; r = = ´ -p0.67, 9.3 10 ;5 t = = ´ -p0.48, 3.2 10 4), the high-z and
low-z galaxies together (black dashed line with so1 fit uncertainties in the dark shaded region; r = = ´ -p0.66, 4.5 10 ;15 t = ~p0.46, 0), the low-z galaxies on
their own (gray solid line; r = = ´ -p0.63, 1.5 10 ;10 t = ~p0.44, 0), the local U/LIRG sample from Papadopoulos et al. (2012) andGreve et al. (2014) on their
own (gray dashed line; r = = ´ -p0.54, 02.4 10 ;5 t = = ´ -p0.37, 7.5 10 5), and the Yao et al. (2003) sample of local IR-bright galaxies on their own (gray
dotted line; r = = ´ -p0.82, 2.4 10 ;8 t = = ´ -p0.65, 4.8 10 7). MG 0414+0534, which only has limits on the CO(1–0) emission, is excluded.

Figure 12. Dust-to-gas mass ratio as afunction of ¢L LFIR CO, a proxy for the SFE,
for the AGN host galaxies (red squares) and SMGs (blue circles) in our sample.
Gravitationally lensed sources have opensymbols, while unlensed objects have
filledsymbols. We calculate the Spearman’s and Kendall’s rank correlation
coefficients for each population and find a <p 0.05 likelihood of obtaining a
correlation for all. We show the best-fit linear correlations for the AGN host
galaxies (red line; r = =p0.77, 0.0092; t = =p0.60, 0.015), SMGs (blue
line; r = =p0.67, 0.023; t = =p0.49, 0.036), and both populations com-
bined (black line; r = = ´ -p0.72, 2.4 10 ;4 t = = ´ -p0.55, 4.6 10 4). For
the dust-to-gas mass, we assume a molecular gas mass conversion factor of
a = - -M0.8 K km s pcCO

1 2 1( )☉ . MG 0414+0534, which only has limits on the
CO(1–0) emission, is excluded.
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Independent of the molecular gas excitation, there is a hint of
higher SFEs (shorter gas-depletion timescales) for the AGNs
compared to the SMGs. The higher SFEs appearto be due to
larger average FIR luminosities for the AGN host galaxies over
the same range of molecular gas masses in the SMGs, which
may be due to a dusty torus contribution to the FIR luminosity
that is not actually tracing star formation (e.g., Weiß et al.
2003; Beelen et al. 2006; Leipski et al. 2013; Kirkpatrick
et al. 2015). If we force the linear fit between the FIR and CO
luminosities in the Schmidt–Kennicutt relation to have the
same index (N= 1) for both SMGs and AGN host galaxies (in
order to control for additional uncertainties in the index of the
power law), the difference between the offsets measures the
fraction of the FIR luminosity for the AGN host galaxies that is
in excess of what would be predicted for pure starburst systems
(the SMGs). Under these assumptions, on average∼10% of the

AGN host galaxies’ FIR luminosity is associated with the
central AGN rather than the star-forming gas. This fraction is
lower than previous analyses of the Schmidt–Kennicutt relation
(Riechers 2011) and analyses of the mid-IR emission from
SMGs and AGN host galaxies (e.g., Pope et al. 2008; Coppin
et al. 2010), but more uniform and reliable FIR luminosity
measurements are necessary to make a fair comparison.

5. CONCLUSIONS

We present CO(1–0) observations obtained at the VLA for
14 ~z 2 galaxies, including 11 AGN host galaxies (six lensed
and five unlensed) and three SMGs (two lensed and one
unlensed), with existing CO(3–2) measurements. We success-
fully detect 13 objects (five of which are tentative) and obtain
one new upper limit on the CO(1–0) line. We also detect
continuum emission from 10galaxies. We combine this sample
with an additional 15 ~z 2 galaxies from the literature that
have both CO(1–0) and CO(3–2) measurements: three lensed
AGN host galaxies and 12 SMGs (eight lensed and four
unlensed). In contrast to previous work that showed a
systematic difference between the CO(3–2)/CO(1–0) line
ratios for SMGs and AGN host galaxies (which have

~r 0.63,1 and ~r 1.03,1 , respectively; e.g., Harris et al.
2010; Swinbank et al. 2010; Ivison et al. 2011; Riechers
et al. 2011a), we find no statistically significant difference
between either the average r3,1 values or thedistribution of r3,1
values for SMGs and AGN host galaxies, obtaining a global
average = or 0.90 0.403,1 (or = or 1.03 0.503,1 for AGN
host galaxies and = or 0.78 0.273,1 for SMGs, which are
consistent with the previous values to within the uncertainty).
The lack of a statistically significant difference between the
distribution of r3,1 values of the SMGs and AGN host galaxies
is not as robust; switching the class of three SMGs thatmay
have central AGNs or using prior single-dish CO(1–0)
measurements can return a significant offset between the
distributions for the two populations. The likely disappearance
of the r3,1 differences is due to multiple factors, including
revised CO(1–0) measurements and reclassifications of

Figure 13. CO line luminosity as a function of line FWHM where the line luminosity has not been magnification corrected (left) and has been magnification corrected
(right). AGN host galaxies are in red and SMGs are in blue; gravitationally lensed galaxies are opensymbols, and unlensed objects are filled. We show the CO(1–0)
line luminosity in the darker shades of red andblue and the CO(3–2) line luminosity in lighter shades of red andblue. We calculate the Spearman’s and Kendall’s rank
correlation coefficients and find no significant trend between the line luminosity and FWHM, regardless of CO line used, population evaluated, and magnification
correction, at a significance level of a = 0.05.

Figure 14. CO(3–2)/CO(1–0) line ratio as a function of the black hole mass.
Gravitationally lensed AGN host galaxies are opensymbols and unlensed
objects are filled. We calculate the Spearman’s and Kendall’s rank correlation
coefficients and find no correlation between the black hole mass and r3,1 at the
a = 0.05 significance level.
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sources. The expanded sample likely also includes “hybrid” or
misclassified sources such as SMGs with buried AGNs that
have not been detected, or galaxies where the AGN may not be
the dominant contributor to the emission at long wavelengths.
High SFR densities relative to the molecular gas distribution
could also produce high r3,1 values (e.g., Narayanan &
Krumholz 2014), broadening the observed excitation distribu-
tion. This result is in line with observations of different galaxy
populations at lowz (including normal galaxies, IR-bright
galaxies, andU/LIRGs) thatshow a range of r3,1 values in
star-forming systems both with and without central AGNs
(Mauersberger et al. 1999; Yao et al. 2003; Mao et al. 2010).

Using this sample of matched CO(1–0)- and CO(3–2)-detected
sources, we look for correlations between the low-J CO
excitation and other galaxy properties. We evaluate the integrated
Schmidt–Kennicutt relation (the correlation betweenLFIR and
¢LCO) for our sample and find no significant difference between

the slope and offset of the relation when using the different CO
lines, in line with some previous results from aggregated samples
thatdid not have both lines for every object (e.g., Greve
et al. 2014), although the results in the literature are mixed (e.g.,
Yao et al. 2003; Bayet et al. 2009; Kamenetzky et al. 2015). We
find that the index of the integrated Schmidt–Kennicutt relation is
consistent with ~N 1, even when we include low-z U/LIRGs
from Papadopoulos et al. (2012) andGreve et al. (2014) in our
analysis. However, when we include the more normal low-z IR-
bright sample from Yao et al. (2003) in our analysis (which also
has both CO(1–0) and CO(3–2) detections), the index increases
to ~N 1.2; this index is similar to the low-z objects on their
own, indicating that they dominate the fit due to the large scatter
in high-z measurements. The similarity of the Schmidt–Kennicutt
index for the two CO lines in our sample is more cleanly
illustrated by the lack of correlation between r3,1 and the FIR
luminosity. Instead, we find that r3,1 correlates with SFE, where
sources with large SFE have large r3,1 values, as found at lowz in
Yao et al. (2003). This is consistent with the theoretical results of
Narayanan & Krumholz (2014), where they find that the only
effective predictor of CO excitation was the SFR surface density,
indicating that it is density of energy sources per unit of
molecular gas that dictates the gas excitation.

We also use this sample to further test theobserved
correlations between the CO line FWHM and the line luminosity
(e.g., Harris et al. 2012; Bothwell et al. 2013; Goto & Toft 2015),
which havepotential predictive power for estimating the
magnification by gravitational lensing (Harris et al. 2012). We
do not find a statistically significant correlation and find that our
sample spans a larger range in line luminosities after correcting
by the known lensing magnification. This result is likely due to
the inhomogeneous way in which our sample is selected when
compared to Harris et al. (2012), and is in line with the results of
Carilli & Walter (2013) and Aravena et al. (2016).

Generally we find no significant difference between the
molecular gas properties of the AGNs and SMGs in our
sample, reinforcing the similarities of these two high-z
populations. Confidence in our result would be improved with
higher-sensitivity CO(1–0) measurements for our marginal
detections and uniformly measured values of the FIR
luminosities (which are gathered from the literature). Since
the lack of a dependence of r3,1 on the galaxy type may be due
to variations in the relative contributions of star-forming
regions and AGN tori to the long-wavelength properties of
these galaxies, it may be that correctly accounting for both

heating mechanisms will retrieve the original trend in r3,1
values (since high CO excitation is known to originate near
AGNs), but with larger scatter for galaxies lacking AGNs since
high star-formation densities can also drive high r3,1 values.

The National Radio Astronomy Observatory is a facility of
the National Science Foundation operated under cooperative
agreement by Associated Universities, Inc.
Facility: VLA.

REFERENCES

Aguirre, P., Baker, A. J., Menanteau, F., Lutz, D., & Tacconi, L. J. 2013, ApJ,
768, 164

Alexander, D. M., Brandt, W. N., Smail, I., et al. 2008, AJ, 135, 1968
Alexander, D. M., Smail, I., Bauer, F. E., et al. 2005, Natur, 434, 738
Alloin, D., Kneib, J.-P., Guilloteau, S., & Bremer, M. 2007, A&A, 470, 53
Ao, Y., Weiß, A., Downes, D., et al. 2008, A&A, 491, 747
Aravena, M., Carilli, C., Daddi, E., et al. 2010, ApJ, 718, 177
Aravena, M., Hodge, J. A., Wagg, J., et al. 2014, MNRAS, 442, 558
Aravena, M., Spilker, J. S., Bethermin, M., et al. 2016, MNRAS, 457, 4406
Baker, A. J., Tacconi, L. J., Genzel, R., Lehnert, M. D., & Lutz, D. 2004, ApJ,

604, 125
Barvainis, R., Alloin, D., Guilloteau, S., & Antonucci, R. 1998, ApJL,

492, L13
Barvainis, R., & Ivison, R. 2002, ApJ, 571, 712
Bayet, E., Gerin, M., Phillips, T. G., & Contursi, A. 2009, MNRAS, 399, 264
Beelen, A., Cox, P., Benford, D. J., et al. 2006, ApJ, 642, 694
Beelen, A., Cox, P., Pety, J., et al. 2004, A&A, 423, 441
Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846
Bigiel, F., Leroy, A., Walter, F., et al. 2010, AJ, 140, 1194
Blain, A. W., Chapman, S. C., Smail, I., & Ivison, R. 2004, ApJ, 611, 725
Bolatto, A. D., Jackson, J. M., Israel, F. P., Zhang, X., & Kim, S. 2000, ApJ,

545, 234
Bolatto, A. D., Leroy, A., Israel, F. P., & Jackson, J. M. 2003, ApJ, 595, 167
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207
Bonfield, D. G., Jarvis, M. J., Hardcastle, M. J., et al. 2011, MNRAS, 416, 13
Bongiorno, A., Zamorani, G., Gavignaud, I., et al. 2007, A&A, 472, 443
Bothwell, M. S., Smail, I., Chapman, S. C., et al. 2013, MNRAS, 429, 3047
Bouché, N., Cresci, G., Davies, R., et al. 2007, ApJ, 671, 303
Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001
Browne, I. W. A., Wilkinson, P. N., Jackson, N. J. F., et al. 2003, MNRAS,

341, 13
Buat, V., Deharveng, J. M., & Donas, J. 1989, A&A, 223, 42
Burud, I., Courbin, F., Lidman, C., et al. 1998, ApJL, 501, L5
Bussmann, R. S., Narayanan, D., Shirley, Y. L., et al. 2008, ApJL, 681, L73
Carilli, C. L., Cox, P., Bertoldi, F., et al. 2002, ApJ, 575, 145
Carilli, C. L., Daddi, E., Riechers, D., et al. 2010, ApJ, 714, 1407
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105
Casey, C. M., Narayanan, D., & Cooray, A. 2014, PhR, 541, 45
Chapman, S. C., Windhorst, R., Odewahn, S., Yan, H., & Conselice, C. 2003,

ApJ, 599, 92
Cicone, C., Maiolino, R., Sturm, E., et al. 2014, A&A, 562, A21
Coppin, K., Pope, A., Menéndez-Delmestre, K., et al. 2010, ApJ, 713, 503
Coppin, K. E. K., Swinbank, A. M., Neri, R., et al. 2007, ApJ, 665, 936
Coppin, K. E. K., Swinbank, A. M., Neri, R., et al. 2008, MNRAS, 389, 45
Cowie, L. L., Barger, A. J., Bautz, M. W., Brandt, W. N., & Garmire, G. P.

2003, ApJL, 584, L57
Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJL, 714, L118
Danielson, A. L. R., Swinbank, A. M., Smail, I., et al. 2011, MNRAS,

410, 1687
Dannerbauer, H., Daddi, E., Riechers, D. A., et al. 2009, ApJL, 698, L178
Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98
Davé, R., Finlator, K., Oppenheimer, B. D., et al. 2010, MNRAS, 404, 1355
Davé, R., Oppenheimer, B. D., & Finlator, K. 2011, MNRAS, 415, 11
De Breuck, C., Williams, R. J., Swinbank, M., et al. 2014, A&A, 565, A59
Deane, R. P., Heywood, I., Rawlings, S., & Marshall, P. J. 2013a, MNRAS,

434, 23
Deane, R. P., Rawlings, S., Garrett, M. A., et al. 2013b, MNRAS, 434, 3322
Downes, D., & Solomon, P. M. 2003, ApJ, 582, 37
Dye, S., Smail, I., Swinbank, A. M., Ebeling, H., & Edge, A. C. 2007,

MNRAS, 379, 308
Emonts, B. H. C., Feain, I., Mao, M. Y., et al. 2011, ApJL, 734, L25

24

The Astrophysical Journal, 827:18 (25pp), 2016 August 10 Sharon et al.

http://dx.doi.org/10.1088/0004-637X/768/2/164
http://adsabs.harvard.edu/abs/2013ApJ...768..164A
http://adsabs.harvard.edu/abs/2013ApJ...768..164A
http://dx.doi.org/10.1088/0004-6256/135/5/1968
http://adsabs.harvard.edu/abs/2008AJ....135.1968A
http://dx.doi.org/10.1038/nature03473
http://adsabs.harvard.edu/abs/2005Natur.434..738A
http://dx.doi.org/10.1051/0004-6361:20066444
http://adsabs.harvard.edu/abs/2007A&amp;A...470...53A
http://dx.doi.org/10.1051/0004-6361:200810482
http://adsabs.harvard.edu/abs/2008A&amp;A...491..747A
http://dx.doi.org/10.1088/0004-637X/718/1/177
http://adsabs.harvard.edu/abs/2010ApJ...718..177A
http://dx.doi.org/10.1093/mnras/stu838
http://adsabs.harvard.edu/abs/2014MNRAS.442..558A
http://dx.doi.org/10.1093/mnras/stw275
http://adsabs.harvard.edu/abs/2016MNRAS.457.4406A
http://dx.doi.org/10.1086/381798
http://adsabs.harvard.edu/abs/2004ApJ...604..125B
http://adsabs.harvard.edu/abs/2004ApJ...604..125B
http://dx.doi.org/10.1086/311090
http://adsabs.harvard.edu/abs/1998ApJ...492L..13B
http://adsabs.harvard.edu/abs/1998ApJ...492L..13B
http://dx.doi.org/10.1086/340096
http://adsabs.harvard.edu/abs/2002ApJ...571..712B
http://dx.doi.org/10.1111/j.1365-2966.2009.15258.x
http://adsabs.harvard.edu/abs/2009MNRAS.399..264B
http://dx.doi.org/10.1086/500636
http://adsabs.harvard.edu/abs/2006ApJ...642..694B
http://dx.doi.org/10.1051/0004-6361:20040318
http://adsabs.harvard.edu/abs/2004A&amp;A...423..441B
http://dx.doi.org/10.1088/0004-6256/136/6/2846
http://adsabs.harvard.edu/abs/2008AJ....136.2846B
http://dx.doi.org/10.1088/0004-6256/140/5/1194
http://adsabs.harvard.edu/abs/2010AJ....140.1194B
http://dx.doi.org/10.1086/422353
http://adsabs.harvard.edu/abs/2004ApJ...611..725B
http://dx.doi.org/10.1086/317794
http://adsabs.harvard.edu/abs/2000ApJ...545..234B
http://adsabs.harvard.edu/abs/2000ApJ...545..234B
http://dx.doi.org/10.1086/377230
http://adsabs.harvard.edu/abs/2003ApJ...595..167B
http://dx.doi.org/10.1146/annurev-astro-082812-140944
http://adsabs.harvard.edu/abs/2013ARA&amp;A..51..207B
http://dx.doi.org/10.1111/j.1365-2966.2011.18826.x
http://adsabs.harvard.edu/abs/2011MNRAS.416...13B
http://dx.doi.org/10.1051/0004-6361:20077611
http://adsabs.harvard.edu/abs/2007A&amp;A...472..443B
http://dx.doi.org/10.1093/mnras/sts562
http://adsabs.harvard.edu/abs/2013MNRAS.429.3047B
http://dx.doi.org/10.1086/522221
http://adsabs.harvard.edu/abs/2007ApJ...671..303B
http://dx.doi.org/10.1088/0004-637X/718/2/1001
http://adsabs.harvard.edu/abs/2010ApJ...718.1001B
http://dx.doi.org/10.1046/j.1365-8711.2003.06257.x
http://adsabs.harvard.edu/abs/2003MNRAS.341...13B
http://adsabs.harvard.edu/abs/2003MNRAS.341...13B
http://adsabs.harvard.edu/abs/1989A&amp;A...223...42B
http://dx.doi.org/10.1086/311450
http://adsabs.harvard.edu/abs/1998ApJ...501L...5B
http://dx.doi.org/10.1086/590181
http://adsabs.harvard.edu/abs/2008ApJ...681L..73B
http://dx.doi.org/10.1086/341269
http://adsabs.harvard.edu/abs/2002ApJ...575..145C
http://dx.doi.org/10.1088/0004-637X/714/2/1407
http://adsabs.harvard.edu/abs/2010ApJ...714.1407C
http://dx.doi.org/10.1146/annurev-astro-082812-140953
http://adsabs.harvard.edu/abs/2013ARA&amp;A..51..105C
http://adsabs.harvard.edu/abs/2014PhR...541...45C
http://dx.doi.org/10.1086/379120
http://adsabs.harvard.edu/abs/2003ApJ...599...92C
http://dx.doi.org/10.1051/0004-6361/201322464
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..21C
http://dx.doi.org/10.1088/0004-637X/713/1/503
http://adsabs.harvard.edu/abs/2010ApJ...713..503C
http://dx.doi.org/10.1086/519789
http://adsabs.harvard.edu/abs/2007ApJ...665..936C
http://dx.doi.org/10.1111/j.1365-2966.2008.13553.x
http://adsabs.harvard.edu/abs/2008MNRAS.389...45C
http://dx.doi.org/10.1086/368404
http://adsabs.harvard.edu/abs/2003ApJ...584L..57C
http://dx.doi.org/10.1111/j.1365-2966.2005.09675.x
http://adsabs.harvard.edu/abs/2006MNRAS.365...11C
http://dx.doi.org/10.1088/2041-8205/714/1/L118
http://adsabs.harvard.edu/abs/2010ApJ...714L.118D
http://dx.doi.org/10.1111/j.1365-2966.2010.17549.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.1687D
http://adsabs.harvard.edu/abs/2011MNRAS.410.1687D
http://dx.doi.org/10.1088/0004-637X/698/2/L178
http://adsabs.harvard.edu/abs/2009ApJ...698L.178D
http://dx.doi.org/10.1111/j.1365-2966.2011.20148.x
http://adsabs.harvard.edu/abs/2012MNRAS.421...98D
http://dx.doi.org/10.1111/j.1365-2966.2010.16395.x
http://adsabs.harvard.edu/abs/2010MNRAS.404.1355D
http://dx.doi.org/10.1111/j.1365-2966.2011.18680.x
http://adsabs.harvard.edu/abs/2011MNRAS.415...11D
http://dx.doi.org/10.1051/0004-6361/201323331
http://adsabs.harvard.edu/abs/2014A&amp;A...565A..59D
http://dx.doi.org/10.1093/mnras/stt957
http://adsabs.harvard.edu/abs/2013MNRAS.434...23D
http://adsabs.harvard.edu/abs/2013MNRAS.434...23D
http://dx.doi.org/10.1093/mnras/stt1241
http://adsabs.harvard.edu/abs/2013MNRAS.434.3322D
http://dx.doi.org/10.1086/344594
http://adsabs.harvard.edu/abs/2003ApJ...582...37D
http://dx.doi.org/10.1111/j.1365-2966.2007.11960.x
http://adsabs.harvard.edu/abs/2007MNRAS.379..308D
http://dx.doi.org/10.1088/2041-8205/734/1/L25
http://adsabs.harvard.edu/abs/2011ApJ...734L..25E


Ferrarese, L., & Merritt, D. 2000, ApJL, 539, L9
Feruglio, C., Maiolino, R., Piconcelli, E., et al. 2010, A&A, 518, L155
Frayer, D. T., Armus, L., Scoville, N. Z., et al. 2003, AJ, 126, 73
Fu, H., Cooray, A., Feruglio, C., et al. 2013, Natur, 498, 338
Gabor, J. M., Davé, R., Oppenheimer, B. D., & Finlator, K. 2011, MNRAS,

417, 2676
Gao, Y., & Solomon, P. M. 2004, ApJ, 606, 271
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJL, 539, L13
Genzel, R., Baker, A. J., Tacconi, L. J., et al. 2003, ApJ, 584, 633
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091
Goto, T., & Toft, S. 2015, A&A, 579, 17
Graciá-Carpio, J., García-Burillo, S., Planesas, P., Fuente, A., & Usero, A.

2008, A&A, 479, 703
Granato, G. L., Silva, L., Monaco, P., et al. 2001, MNRAS, 324, 757
Greve, T. R., Bertoldi, F., Smail, I., et al. 2005, MNRAS, 359, 1165
Greve, T. R., Ivison, R. J., & Papadopoulos, P. P. 2003, ApJ, 599, 839
Greve, T. R., Leonidaki, I., Xilouris, E. M., et al. 2014, ApJ, 794, 142
Hailey-Dunsheath, S., Sturm, E., Fischer, J., et al. 2012, ApJ, 755, 57
Hainline, L. J., Blain, A. W., Greve, T. R., et al. 2006, ApJ, 650, 614
Hainline, L. J., Blain, A. W., Smail, I., et al. 2011, ApJ, 740, 96
Hainline, L. J., Scoville, N. Z., Yun, M. S., et al. 2004, ApJ, 609, 61
Harris, A. I., Baker, A. J., Frayer, D. T., et al. 2012, ApJ, 752, 152
Harris, A. I., Baker, A. J., Zonak, S. G., et al. 2010, ApJ, 723, 1139
Hayward, C. C., Kereš, D., Jonsson, P., et al. 2011, ApJ, 743, 159
Hayward, C. C., Narayanan, D., Kereš, D., et al. 2013, MNRAS, 428, 2529
Hezaveh, Y. D., Marrone, D. P., & Holder, G. P. 2012, ApJ, 761, 20
Hickox, R. C., Wardlow, J. L., Smail, I., et al. 2012, MNRAS, 421, 284
Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19
Hodge, J. A., Carilli, C. L., Walter, F., et al. 2012, ApJ, 760, 11
Hodge, J. A., Karim, A., Smail, I., et al. 2013, ApJ, 768, 91
Hodge, J. A., Riechers, D., Decarli, R., et al. 2015, ApJL, 798, L18
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Iono, D., Wilson, C. D., Yun, M. S., et al. 2009, ApJ, 695, 1537
Ishibashi, W., & Fabian, A. C. 2012, MNRAS, 427, 2998
Ivison, R. J., Papadopoulos, P. P., Smail, I., et al. 2011, MNRAS, 412, 1913
Ivison, R. J., Smail, I., Amblard, A., et al. 2012, MNRAS, 425, 1320
Ivison, R. J., Smail, I., Barger, A. J., et al. 2000, MNRAS, 315, 209
Ivison, R. J., Smail, I., Le Borgne, J.-F., et al. 1998, MNRAS, 298, 583
Ivison, R. J., Smail, I., Papadopoulos, P. P., et al. 2010a, MNRAS, 404, 198
Ivison, R. J., Swinbank, A. M., Smail, I., et al. 2013, ApJ, 772, 137
Ivison, R. J., Swinbank, A. M., Swinyard, B., et al. 2010b, A&A, 518, L35
Juneau, S., Narayanan, D. T., Moustakas, J., et al. 2009, ApJ, 707, 1217
Kamenetzky, J., Rangwala, N., Glenn, J., Maloney, P. R., & Conley, A. 2015,

arXiv
Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531
Kennicutt, R. C., Jr. 1989, ApJ, 344, 685
Kennicutt, R. C., Jr. 1998, ApJ, 498, 541
Khan-Ali, A., Carrera, F. J., Page, M. J., et al. 2015, MNRAS, 448, 75
Kimball, A. E., Lacy, M., Lonsdale, C. J., & Macquart, J.-P. 2015, MNRAS,

452, 88
King, L. J., Browne, I. W. A., Muxlow, T. W. B., et al. 1997, MNRAS,

289, 450
Kirkpatrick, A., Pope, A., Sajina, A., et al. 2015, ApJ, 814, 9
Kneib, J.-P., Cohen, J. G., & Hjorth, J. 2000, ApJL, 544, L35
Kneib, J.-P., Neri, R., Smail, I., et al. 2005, A&A, 434, 819
Knudsen, K. K., van der Werf, P. P., & Jaffe, W. 2003, A&A, 411, 343
Korista, K. T., Voit, G. M., Morris, S. L., & Weymann, R. J. 1993, ApJS,

88, 357
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Kovács, A., Chapman, S. C., Dowell, C. D., et al. 2006, ApJ, 650, 592
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 699, 850
Krumholz, M. R., & Thompson, T. A. 2007, ApJ, 669, 289
La Franca, F., Fiore, F., Comastri, A., et al. 2005, ApJ, 635, 864
Leipski, C., Meisenheimer, K., Walter, F., et al. 2013, ApJ, 772, 103
Leipski, C., Meisenheimer, K., Walter, F., et al. 2014, ApJ, 785, 154
Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ,

772, 119
Liu, D., Gao, Y., Isaak, K., et al. 2015, ApJL, 810, L14
Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, MNRAS, 283, 1388
Magnelli, B., Lutz, D., Santini, P., et al. 2012, A&A, 539, A155
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285
Mao, R.-Q., Schulz, A., Henkel, C., et al. 2010, ApJ, 724, 1336
Marconi, A., & Hunt, L. K. 2003, ApJL, 589, L21
Mauersberger, R., Henkel, C., Walsh, W., & Schulz, A. 1999, A&A, 341, 256

Myers, S. T., Rusin, D., Fassnacht, C. D., et al. 1999, AJ, 117, 2565
Narayanan, D., Cox, T. J., Hayward, C. C., & Hernquist, L. 2011, MNRAS,

412, 287
Narayanan, D., Cox, T. J., Kelly, B., et al. 2008a, ApJS, 176, 331
Narayanan, D., Cox, T. J., Shirley, Y., et al. 2008b, ApJ, 684, 996
Narayanan, D., Groppi, C. E., Kulesa, C. A., & Walker, C. K. 2005, ApJ,

630, 269
Narayanan, D., & Krumholz, M. R. 2014, MNRAS, 442, 1411
Narayanan, D., Turk, M., Feldmann, R., et al. 2015, Natur, 525, 496
Omont, A., Beelen, A., Bertoldi, F., et al. 2003, A&A, 398, 857
Page, M. J., Stevens, J. A., Mittaz, J. P. D., & Carrera, F. J. 2001, Sci,

294, 2516
Papadopoulos, P. P., van der Werf, P. P., Xilouris, E. M., et al. 2012, MNRAS,

426, 2601
Peng, C. Y., Impey, C. D., Rix, H.-W., et al. 2006, ApJ, 649, 616
Perley, R. A., & Butler, B. J. 2013, ApJS, 204, 19
Pooley, D., Blackburne, J. A., Rappaport, S., & Schechter, P. L. 2007, ApJ,

661, 19
Pope, A., Chary, R.-R., Alexander, D. M., et al. 2008, ApJ, 675, 1171
Reddy, N. A., & Steidel, C. C. 2009, ApJ, 692, 778
Riechers, D. A. 2011, ApJ, 730, 108
Riechers, D. A. 2013, ApJL, 765, L31
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Natur, 496, 329
Riechers, D. A., Capak, P. L., Carilli, C. L., et al. 2010, ApJL, 720, L131
Riechers, D. A., Carilli, C. L., Capak, P. L., et al. 2014, ApJ, 796, 84
Riechers, D. A., Carilli, C. L., Maddalena, R. J., et al. 2011a, ApJL, 739, L32
Riechers, D. A., Carilli, L. C., Walter, F., et al. 2011b, ApJL, 733, L11
Riechers, D. A., Cooray, A., Omont, A., et al. 2011c, ApJL, 733, L12
Riechers, D. A., Hodge, J., Walter, F., Carilli, C. L., & Bertoldi, F. 2011d,

ApJL, 739, L31
Riechers, D. A., Walter, F., Brewer, B. J., et al. 2008a, ApJ, 686, 851
Riechers, D. A., Walter, F., Carilli, C. L., et al. 2006, ApJ, 650, 604
Riechers, D. A., Walter, F., Carilli, C. L., Bertoldi, F., & Momjian, E. 2008b,

ApJL, 686, L9
Riechers, D. A., Walter, F., Carilli, C. L., & Lewis, G. F. 2009, ApJ, 690, 463
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74
Sargent, M. T., Daddi, E., Béthermin, M., et al. 2014, ApJ, 793, 19
Schmidt, M. 1959, ApJ, 129, 243
Scott, K. S., Lupu, R. E., Aguirre, J. E., et al. 2011, ApJ, 733, 29
Seitz, S., Saglia, R. P., Bender, R., et al. 1998, MNRAS, 298, 945
Serjeant, S. 2012, MNRAS, 424, 2429
Sharon, C. E., Baker, A. J., Harris, A. I., & Thomson, A. P. 2013, ApJ, 765, 6
Sharon, C. E., Baker, A. J., Harris, A. I., et al. 2015, ApJ, 798, 133
Sheth, K., Blain, A. W., Kneib, J.-P., et al. 2004, ApJL, 614, L5
Shetty, R., & Ostriker, E. C. 2012, ApJ, 754, 2
Silk, J. 2013, ApJ, 772, 112
Smail, I., Ivison, R. J., Blain, A. W., & Kneib, J. 2002, MNRAS, 331, 495
Solomon, P. M., & Sage, L. J. 1988, ApJ, 334, 613
Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E., & Hernquist, L.

2008, MNRAS, 391, 481
Spinoglio, L., Pereira-Santaella, M., Busquet, G., et al. 2012, ApJ, 758, 108
Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289
Stacey, G. J., Hailey-Dunsheath, S., Ferkinhoff, C., et al. 2010, ApJ, 724, 957
Swinbank, A. M., Papadopoulos, P. P., Cox, P., et al. 2011, ApJ, 742, 11
Swinbank, A. M., Smail, I., Longmore, S., et al. 2010, Natur, 464, 733
Tacconi, L. J., Genzel, R., Smail, I., et al. 2008, ApJ, 680, 246
Tacconi, L. J., Neri, R., Chapman, S. C., et al. 2006, ApJ, 640, 228
Tacconi, L. J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74
Tecza, M., Baker, A. J., Davies, R. I., et al. 2004, ApJL, 605, L109
Thomson, A. P., Ivison, R. J., Owen, F. N., et al. 2015, MNRAS, 448, 1874
Thomson, A. P., Ivison, R. J., Smail, I., et al. 2012, MNRAS, 425, 2203
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740
Valiante, E., Lutz, D., Sturm, E., et al. 2007, ApJ, 660, 1060
Walter, F., Carilli, C., Bertoldi, F., et al. 2004, ApJL, 615, L17
Wang, R., Carilli, C. L., Wagg, J., et al. 2008, ApJ, 687, 848
Wei, L. H., Vogel, S. N., Kannappan, S. J., et al. 2010, ApJL, 725, L62
Weiß, A., Downes, D., Walter, F., & Henkel, C. 2007, in ASP Conf. Ser. 375,

From Z-Machines to ALMA: (Sub)Millimeter Spectroscopy of Galaxies,
ed. A. J. Baker et al. (San Francisco, CA: ASP), 25

Weiß, A., Henkel, C., Downes, D., & Walter, F. 2003, A&A, 409, L41
Weiß, A., Ivison, R. J., Downes, D., et al. 2009, ApJL, 705, L45
Weiß, A., Walter, F., Downes, D., et al. 2012, ApJ, 753, 102
Yao, L., Seaquist, E. R., Kuno, N., & Dunne, L. 2003, ApJ, 588, 771
Young, J. S., Schloerb, F. P., Kenney, J. D., & Lord, S. D. 1986, ApJ, 304, 443

25

The Astrophysical Journal, 827:18 (25pp), 2016 August 10 Sharon et al.

http://dx.doi.org/10.1086/312838
http://adsabs.harvard.edu/abs/2000ApJ...539L...9F
http://dx.doi.org/10.1051/0004-6361/201015164
http://adsabs.harvard.edu/abs/2010A&amp;A...518L.155F
http://dx.doi.org/10.1086/375653
http://adsabs.harvard.edu/abs/2003AJ....126...73F
http://dx.doi.org/10.1038/nature12184
http://adsabs.harvard.edu/abs/2013Natur.498..338F
http://dx.doi.org/10.1111/j.1365-2966.2011.19430.x
http://adsabs.harvard.edu/abs/2011MNRAS.417.2676G
http://adsabs.harvard.edu/abs/2011MNRAS.417.2676G
http://dx.doi.org/10.1086/382999
http://adsabs.harvard.edu/abs/2004ApJ...606..271G
http://dx.doi.org/10.1086/312840
http://adsabs.harvard.edu/abs/2000ApJ...539L..13G
http://dx.doi.org/10.1086/345718
http://adsabs.harvard.edu/abs/2003ApJ...584..633G
http://dx.doi.org/10.1111/j.1365-2966.2010.16969.x
http://adsabs.harvard.edu/abs/2010MNRAS.407.2091G
http://dx.doi.org/10.1051/0004-6361/201526062
http://adsabs.harvard.edu/abs/2015A&amp;A...579A..17G
http://dx.doi.org/10.1051/0004-6361:20078223
http://adsabs.harvard.edu/abs/2008A&amp;A...479..703G
http://dx.doi.org/10.1046/j.1365-8711.2001.04369.x
http://adsabs.harvard.edu/abs/2001MNRAS.324..757G
http://dx.doi.org/10.1111/j.1365-2966.2005.08979.x
http://adsabs.harvard.edu/abs/2005MNRAS.359.1165G
http://dx.doi.org/10.1086/379547
http://adsabs.harvard.edu/abs/2003ApJ...599..839G
http://dx.doi.org/10.1088/0004-637X/794/2/142
http://adsabs.harvard.edu/abs/2014ApJ...794..142G
http://dx.doi.org/10.1088/0004-637X/755/1/57
http://adsabs.harvard.edu/abs/2012ApJ...755...57H
http://dx.doi.org/10.1086/507443
http://adsabs.harvard.edu/abs/2006ApJ...650..614H
http://dx.doi.org/10.1088/0004-637X/740/2/96
http://adsabs.harvard.edu/abs/2011ApJ...740...96H
http://dx.doi.org/10.1086/420920
http://adsabs.harvard.edu/abs/2004ApJ...609...61H
http://dx.doi.org/10.1088/0004-637X/752/2/152
http://adsabs.harvard.edu/abs/2012ApJ...752..152H
http://dx.doi.org/10.1088/0004-637X/723/2/1139
http://adsabs.harvard.edu/abs/2010ApJ...723.1139H
http://dx.doi.org/10.1088/0004-637X/743/2/159
http://adsabs.harvard.edu/abs/2011ApJ...743..159H
http://dx.doi.org/10.1093/mnras/sts222
http://adsabs.harvard.edu/abs/2013MNRAS.428.2529H
http://dx.doi.org/10.1088/0004-637X/761/1/20
http://adsabs.harvard.edu/abs/2012ApJ...761...20H
http://dx.doi.org/10.1111/j.1365-2966.2011.20303.x
http://adsabs.harvard.edu/abs/2012MNRAS.421..284H
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://adsabs.harvard.edu/abs/2013ApJS..208...19H
http://dx.doi.org/10.1088/0004-637X/760/1/11
http://adsabs.harvard.edu/abs/2012ApJ...760...11H
http://dx.doi.org/10.1088/0004-637X/768/1/91
http://adsabs.harvard.edu/abs/2013ApJ...768...91H
http://dx.doi.org/10.1088/2041-8205/798/1/L18
http://adsabs.harvard.edu/abs/2015ApJ...798L..18H
http://dx.doi.org/10.1086/506610
http://adsabs.harvard.edu/abs/2006ApJ...651..142H
http://dx.doi.org/10.1088/0004-637X/695/2/1537
http://adsabs.harvard.edu/abs/2009ApJ...695.1537I
http://dx.doi.org/10.1111/j.1365-2966.2012.22074.x
http://adsabs.harvard.edu/abs/2012MNRAS.427.2998I
http://dx.doi.org/10.1111/j.1365-2966.2010.18028.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.1913I
http://dx.doi.org/10.1111/j.1365-2966.2012.21544.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.1320I
http://dx.doi.org/10.1046/j.1365-8711.2000.03376.x
http://adsabs.harvard.edu/abs/2000MNRAS.315..209I
http://dx.doi.org/10.1046/j.1365-8711.1998.01677.x
http://adsabs.harvard.edu/abs/1998MNRAS.298..583I
http://dx.doi.org/10.1111/j.1365-2966.2010.16322.x
http://adsabs.harvard.edu/abs/2010MNRAS.404..198I
http://dx.doi.org/10.1088/0004-637X/772/2/137
http://adsabs.harvard.edu/abs/2013ApJ...772..137I
http://dx.doi.org/10.1051/0004-6361/201014548
http://adsabs.harvard.edu/abs/2010A&amp;A...518L..35I
http://dx.doi.org/10.1088/0004-637X/707/2/1217
http://adsabs.harvard.edu/abs/2009ApJ...707.1217J
http://dx.doi.org/10.1146/annurev-astro-081811-125610
http://adsabs.harvard.edu/abs/2012ARA&amp;A..50..531K
http://dx.doi.org/10.1086/167834
http://adsabs.harvard.edu/abs/1989ApJ...344..685K
http://dx.doi.org/10.1086/305588
http://adsabs.harvard.edu/abs/1998ApJ...498..541K
http://dx.doi.org/10.1093/mnras/stu2719
http://adsabs.harvard.edu/abs/2015MNRAS.448...75K
http://dx.doi.org/10.1093/mnras/stv1160
http://adsabs.harvard.edu/abs/2015MNRAS.452...88K
http://adsabs.harvard.edu/abs/2015MNRAS.452...88K
http://dx.doi.org/10.1093/mnras/289.2.450
http://adsabs.harvard.edu/abs/1997MNRAS.289..450K
http://adsabs.harvard.edu/abs/1997MNRAS.289..450K
http://dx.doi.org/10.1088/0004-637X/814/1/9
http://adsabs.harvard.edu/abs/2015ApJ...814....9K
http://dx.doi.org/10.1086/317285
http://adsabs.harvard.edu/abs/2000ApJ...544L..35K
http://dx.doi.org/10.1051/0004-6361:20042034
http://adsabs.harvard.edu/abs/2005A&amp;A...434..819K
http://dx.doi.org/10.1051/0004-6361:20031291
http://adsabs.harvard.edu/abs/2003A&amp;A...411..343K
http://dx.doi.org/10.1086/191825
http://adsabs.harvard.edu/abs/1993ApJS...88..357K
http://adsabs.harvard.edu/abs/1993ApJS...88..357K
http://dx.doi.org/10.1146/annurev-astro-082708-101811
http://adsabs.harvard.edu/abs/2013ARA&amp;A..51..511K
http://dx.doi.org/10.1086/506341
http://adsabs.harvard.edu/abs/2006ApJ...650..592K
http://dx.doi.org/10.1088/0004-637X/699/1/850
http://adsabs.harvard.edu/abs/2009ApJ...699..850K
http://dx.doi.org/10.1086/521642
http://adsabs.harvard.edu/abs/2007ApJ...669..289K
http://dx.doi.org/10.1086/497586
http://adsabs.harvard.edu/abs/2005ApJ...635..864L
http://dx.doi.org/10.1088/0004-637X/772/2/103
http://adsabs.harvard.edu/abs/2013ApJ...772..103L
http://dx.doi.org/10.1088/0004-637X/785/2/154
http://adsabs.harvard.edu/abs/2014ApJ...785..154L
http://dx.doi.org/10.1088/0004-637X/772/2/119
http://adsabs.harvard.edu/abs/2013ApJ...772..119L
http://adsabs.harvard.edu/abs/2013ApJ...772..119L
http://dx.doi.org/10.1088/2041-8205/810/2/L14
http://adsabs.harvard.edu/abs/2015ApJ...810L..14L
http://dx.doi.org/10.1093/mnras/283.4.1388
http://adsabs.harvard.edu/abs/1996MNRAS.283.1388M
http://dx.doi.org/10.1051/0004-6361/201118312
http://adsabs.harvard.edu/abs/2012A&amp;A...539A.155M
http://dx.doi.org/10.1086/300353
http://adsabs.harvard.edu/abs/1998AJ....115.2285M
http://dx.doi.org/10.1088/0004-637X/724/2/1336
http://adsabs.harvard.edu/abs/2010ApJ...724.1336M
http://dx.doi.org/10.1086/375804
http://adsabs.harvard.edu/abs/2003ApJ...589L..21M
http://adsabs.harvard.edu/abs/1999A&amp;A...341..256M
http://dx.doi.org/10.1086/300875
http://adsabs.harvard.edu/abs/1999AJ....117.2565M
http://dx.doi.org/10.1111/j.1365-2966.2010.17903.x
http://adsabs.harvard.edu/abs/2011MNRAS.412..287N
http://adsabs.harvard.edu/abs/2011MNRAS.412..287N
http://dx.doi.org/10.1086/533500
http://adsabs.harvard.edu/abs/2008ApJS..176..331N
http://dx.doi.org/10.1086/588720
http://adsabs.harvard.edu/abs/2008ApJ...684..996N
http://dx.doi.org/10.1086/431171
http://adsabs.harvard.edu/abs/2005ApJ...630..269N
http://adsabs.harvard.edu/abs/2005ApJ...630..269N
http://dx.doi.org/10.1093/mnras/stu834
http://adsabs.harvard.edu/abs/2014MNRAS.442.1411N
http://dx.doi.org/10.1038/nature15383
http://adsabs.harvard.edu/abs/2015Natur.525..496N
http://dx.doi.org/10.1051/0004-6361:20021652
http://adsabs.harvard.edu/abs/2003A&amp;A...398..857O
http://dx.doi.org/10.1126/science.1065880
http://adsabs.harvard.edu/abs/2001Sci...294.2516P
http://adsabs.harvard.edu/abs/2001Sci...294.2516P
http://dx.doi.org/10.1111/j.1365-2966.2012.21001.x
http://adsabs.harvard.edu/abs/2012MNRAS.426.2601P
http://adsabs.harvard.edu/abs/2012MNRAS.426.2601P
http://dx.doi.org/10.1086/506266
http://adsabs.harvard.edu/abs/2006ApJ...649..616P
http://dx.doi.org/10.1088/0067-0049/204/2/19
http://adsabs.harvard.edu/abs/2013ApJS..204...19P
http://dx.doi.org/10.1086/512115
http://adsabs.harvard.edu/abs/2007ApJ...661...19P
http://adsabs.harvard.edu/abs/2007ApJ...661...19P
http://dx.doi.org/10.1086/527030
http://adsabs.harvard.edu/abs/2008ApJ...675.1171P
http://dx.doi.org/10.1088/0004-637X/692/1/778
http://adsabs.harvard.edu/abs/2009ApJ...692..778R
http://dx.doi.org/10.1088/0004-637X/730/2/108
http://adsabs.harvard.edu/abs/2011ApJ...730..108R
http://dx.doi.org/10.1088/2041-8205/765/2/L31
http://adsabs.harvard.edu/abs/2013ApJ...765L..31R
http://dx.doi.org/10.1038/nature12050
http://adsabs.harvard.edu/abs/2013Natur.496..329R
http://dx.doi.org/10.1088/2041-8205/720/2/L131
http://adsabs.harvard.edu/abs/2010ApJ...720L.131R
http://dx.doi.org/10.1088/0004-637X/796/2/84
http://adsabs.harvard.edu/abs/2014ApJ...796...84R
http://dx.doi.org/10.1088/2041-8205/739/1/L32
http://adsabs.harvard.edu/abs/2011ApJ...739L..32R
http://dx.doi.org/10.1088/2041-8205/733/1/L11
http://adsabs.harvard.edu/abs/2011ApJ...733L..11R
http://dx.doi.org/10.1088/2041-8205/733/1/L12
http://adsabs.harvard.edu/abs/2011ApJ...733L..12R
http://dx.doi.org/10.1088/2041-8205/739/1/L31
http://adsabs.harvard.edu/abs/2011ApJ...739L..31R
http://dx.doi.org/10.1086/591434
http://adsabs.harvard.edu/abs/2008ApJ...686..851R
http://dx.doi.org/10.1086/507014
http://adsabs.harvard.edu/abs/2006ApJ...650..604R
http://dx.doi.org/10.1086/592834
http://adsabs.harvard.edu/abs/2008ApJ...686L...9R
http://dx.doi.org/10.1088/0004-637X/690/1/463
http://adsabs.harvard.edu/abs/2009ApJ...690..463R
http://dx.doi.org/10.1086/165983
http://adsabs.harvard.edu/abs/1988ApJ...325...74S
http://dx.doi.org/10.1088/0004-637X/793/1/19
http://adsabs.harvard.edu/abs/2014ApJ...793...19S
http://dx.doi.org/10.1086/146614
http://adsabs.harvard.edu/abs/1959ApJ...129..243S
http://dx.doi.org/10.1088/0004-637X/733/1/29
http://adsabs.harvard.edu/abs/2011ApJ...733...29S
http://dx.doi.org/10.1111/j.1365-8711.1998.01443.x
http://adsabs.harvard.edu/abs/1998MNRAS.298..945S
http://dx.doi.org/10.1111/j.1365-2966.2012.20761.x
http://adsabs.harvard.edu/abs/2012MNRAS.424.2429S
http://dx.doi.org/10.1088/0004-637X/765/1/6
http://adsabs.harvard.edu/abs/2013ApJ...765....6S
http://dx.doi.org/10.1088/0004-637X/798/2/133
http://adsabs.harvard.edu/abs/2015ApJ...798..133S
http://dx.doi.org/10.1086/425308
http://adsabs.harvard.edu/abs/2004ApJ...614L...5S
http://dx.doi.org/10.1088/0004-637X/754/1/2
http://adsabs.harvard.edu/abs/2012ApJ...754....2S
http://dx.doi.org/10.1088/0004-637X/772/2/112
http://adsabs.harvard.edu/abs/2013ApJ...772..112S
http://dx.doi.org/10.1046/j.1365-8711.2002.05203.x
http://adsabs.harvard.edu/abs/2002MNRAS.331..495S
http://dx.doi.org/10.1086/166865
http://adsabs.harvard.edu/abs/1988ApJ...334..613S
http://dx.doi.org/10.1111/j.1365-2966.2008.13805.x
http://adsabs.harvard.edu/abs/2008MNRAS.391..481S
http://dx.doi.org/10.1088/0004-637X/758/2/108
http://adsabs.harvard.edu/abs/2012ApJ...758..108S
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://adsabs.harvard.edu/abs/2003MNRAS.339..289S
http://dx.doi.org/10.1088/0004-637X/724/2/957
http://adsabs.harvard.edu/abs/2010ApJ...724..957S
http://dx.doi.org/10.1088/0004-637X/742/1/11
http://adsabs.harvard.edu/abs/2011ApJ...742...11S
http://dx.doi.org/10.1038/nature08880
http://adsabs.harvard.edu/abs/2010Natur.464..733S
http://dx.doi.org/10.1086/587168
http://adsabs.harvard.edu/abs/2008ApJ...680..246T
http://dx.doi.org/10.1086/499933
http://adsabs.harvard.edu/abs/2006ApJ...640..228T
http://dx.doi.org/10.1088/0004-637X/768/1/74
http://adsabs.harvard.edu/abs/2013ApJ...768...74T
http://dx.doi.org/10.1086/420895
http://adsabs.harvard.edu/abs/2004ApJ...605L.109T
http://dx.doi.org/10.1093/mnras/stv118
http://adsabs.harvard.edu/abs/2015MNRAS.448.1874T
http://dx.doi.org/10.1111/j.1365-2966.2012.21584.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.2203T
http://dx.doi.org/10.1086/341002
http://adsabs.harvard.edu/abs/2002ApJ...574..740T
http://dx.doi.org/10.1086/513306
http://adsabs.harvard.edu/abs/2007ApJ...660.1060V
http://dx.doi.org/10.1086/426017
http://adsabs.harvard.edu/abs/2004ApJ...615L..17W
http://dx.doi.org/10.1086/591076
http://adsabs.harvard.edu/abs/2008ApJ...687..848W
http://dx.doi.org/10.1088/2041-8205/725/1/L62
http://adsabs.harvard.edu/abs/2010ApJ...725L..62W
http://adsabs.harvard.edu/abs/2007ASPC..375...25W
http://dx.doi.org/10.1051/0004-6361:20031337
http://adsabs.harvard.edu/abs/2003A&amp;A...409L..41W
http://dx.doi.org/10.1088/0004-637X/705/1/L45
http://adsabs.harvard.edu/abs/2009ApJ...705L..45W
http://dx.doi.org/10.1088/0004-637X/753/2/102
http://adsabs.harvard.edu/abs/2012ApJ...753..102W
http://dx.doi.org/10.1086/374333
http://adsabs.harvard.edu/abs/2003ApJ...588..771Y
http://dx.doi.org/10.1086/164179
http://adsabs.harvard.edu/abs/1986ApJ...304..443Y

	1. INTRODUCTION
	2. OBSERVATIONS AND DATA REDUCTION
	3. RESULTS
	3.1. B1938+666
	3.2. HS&znbsp;1002+4400
	3.3. HE&znbsp;0230-2130
	3.4. RX&znbsp;J1249-0559
	3.5. HE&znbsp;1104-1805
	3.6. J1543+5359
	3.7. HS&znbsp;1611+4719
	3.8. J044307+0210
	3.9. VCV&znbsp;J1409+5628
	3.10. MG&znbsp;0414+0534
	3.11. RX&znbsp;J0911+0551
	3.12. J04135+10277
	3.13. J22174+0015
	3.14. B1359+154

	4. ANALYSIS
	4.1. Peculiar r3,1 Values and Comparisons to Previous Measurements
	4.2. Is There a Difference in r3,1 Values for SMGs and AGN Host Galaxies?
	4.3. Excitation Dependence of Galaxies&#x02019; Star-formation Properties
	4.4. LCO′-FWHM Correlation
	4.5. Excitation and Evidence for an SMG-Quasar Transition

	5. CONCLUSIONS
	REFERENCES

