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Abstra
t

This thesis is 
on
erned with traje
tory estimation, whi
h �nds appli
ations

in various �elds su
h as automotive safety and air tra�
 surveillan
e. More

spe
i�
ally, the thesis fo
uses on the data asso
iation part of the problem,

for single and multiple targets, and on performan
e metri
s.

Data asso
iation for single-traje
tory estimation is typi
ally performed

using Gaussian mixture smoothing. To limit 
omplexity, pruning or merg-

ing approximations are used. In this thesis, we propose systemati
 ways to

perform a 
ombination of merging and pruning for two smoothing strate-

gies: forward-ba
kward smoothing (FBS) and two-�lter smoothing (TFS).

We present novel solutions to the ba
kward smoothing step of FBS and a

likelihood approximation, 
alled smoothed posterior pruning, for the ba
k-

ward �ltering in TFS.

For data asso
iation in multi-traje
tory estimation, we propose two it-

erative solutions based on expe
tation maximization (EM). The appli
ation

of EM enables us to independently address the data asso
iation problems

at di�erent time instants, in ea
h iteration. In the �rst solution, the best

data asso
iation is estimated at ea
h time instant using 2-D assignment,

and given the best asso
iation, the states of the individual traje
tories are

immediately 
omputed using Gaussian smoothing. In the se
ond solution,

we average the states of the individual traje
tories over the data asso
ia-

tion distribution, whi
h in turn is approximated using loopy belief propaga-

tion. Using simulations, we show that both solutions provide good trade-o�s

between a

ura
y and 
omputation time 
ompared to multiple hypothesis

tra
king.

For evaluating the performan
e of traje
tory estimation, we propose two

metri
s that behave in an intuitive manner, 
apturing the relevant features

in target tra
king. First, the generalized optimal sub-pattern assignment

metri
 
omputes the distan
e between �nite sets of states, and addresses

properties su
h as lo
alization errors and missed and false targets, whi
h

are all relevant to target estimation. The se
ond metri
 
omputes the dis-

tan
e between sets of traje
tories and 
onsiders the temporal dimension of

traje
tories. We re�ne the 
on
epts of tra
k swit
hes, whi
h allow a traje
-
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t

tory from one set to be paired with multiple traje
tories in the other set

a
ross time, while penalizing it for these multiple assignments in an intuitive

manner. We also present a lower bound for the metri
 that is remarkably

a

urate while being 
omputable in polynomial time.

Keywords: Traje
tory estimation, data asso
iation, metri
s, Gaussian

mixtures, smoothing, expe
tation maximization
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Chapter 1

Introdu
tion

In many appli
ations, the obje
tive is to systemati
ally and sequentially es-

timate quantities of interest from a dynami
 system using indire
t and ina
-


urate sensor observations. For instan
e, in radar tra
king, the aim is often

to determine the position and velo
ity of a moving or stationary air
raft or

ship. In 
ommuni
ation systems, the 
on
ern is to determine the messages

transmitted through a noisy 
hannel. In driver assistan
e systems, the ob-

je
tive is to monitor several features about the driver, the vehi
le and the

surroundings. There are also several other appli
ations su
h as fore
asting

weather or �nan
ial trends, predi
ting house pri
es, handwriting re
ogni-

tion, speaker identi�
ation, and positioning in navigation systems.

The sequential estimation problem 
an be 
ategorized into three di�er-

ent problem formulations: predi
tion, �ltering and smoothing. The predi
-

tion problem is to fore
ast the values of the parameters of interest, given

information up to an earlier time, whereas the �ltering problem is about

estimating the parameter at the 
urrent time, given information up to and

in
luding that time. The smoothing problem is to estimate the past state of

the parameter using all the observations made. An example from [1℄ 
an be

used to explain these di�erent problem formulations, in layman terms. As-

sume that we have re
eived a garbled telegram and that the task is to read

it word-by-word and make sense of what the telegram means. The �ltering

formulation would be to read ea
h word and understand the meaning so far.

The predi
tion formulation would be to guess the 
oming words, based on

what have been read thus far. In the smoothing formulation, the reader is

allowed to look ahead one or more words. Clearly, as the idiom quoted in

the book goes �it is easy to be wise after the event�, the smoothing formula-

tion will give the best result on average, given that a delay 
an be tolerated.

In many of the above-mentioned appli
ations, the aim is not only to

1



Chapter 1. Introdu
tion

estimate the parameters of interest termed `states', but also to des
ribe the

un
ertainties in the states. The un
ertainties are used to des
ribe the re-

liability or trustworthiness of the produ
ed estimates. Mathemati
ally, an

estimate and its asso
iated un
ertainty is quanti�ed using either a probabil-

ity density fun
tion (for 
ontinuous states) or a probability mass fun
tion

(for dis
rete states). In sequential estimation, the probability fun
tion of the

state, whi
h has the information about its estimate and the 
orresponding

un
ertainty, are propagated a
ross time to estimate the subsequent states.

For 
ontinuous states, one of the most 
ommonly used density fun
tions is

the Gaussian density fun
tion, whi
h is often referred to as the `bell-shaped'


urve. The famous Kalman �lter [2℄ is developed as a solution to the �l-

tering problem when the un
ertainties are modelled using Gaussian density

fun
tions. There also exist (analyti
al) solutions to the smoothing problem

with Gaussian densities.

Even though the Gaussian density models and the Kalman �lter solu-

tions work well for a wide range of appli
ations, this may not be enough

for 
omplex systems. There are many appli
ations where the un
ertainty

in the evolution of the state or the observation noise 
annot be a

urately

modelled using Gaussian densities. For instan
e, in the data asso
iation

problem, observations are often re
eived from obje
ts that are not of inter-

est and the information regarding whi
h measurement belongs to the target

of interest is not available. In su
h 
ases, the un
ertainty about the states

are 
lustered in several small regions where ea
h region 
orresponds to ea
h

measurement. This happens in ship surveillan
e, when false measurements

are re
eived from re�e
tions of the sea, and in air tra�
 surveillan
e, where

extraneous observations from 
louds and birds are re
eived. In these kinds

of s
enarios, instead of a single Gaussian density, the system or the obser-

vations are often modelled using what is 
alled a Gaussian-mixture density.

In essen
e, the un
ertainty of the state 
an be des
ribed using a Gaus-

sian mixture where we have a Gaussian 
omponent for ea
h 
luster/region

around whi
h the un
ertainty/data is 
entered, along with a weight that


aptures the intensity. The advantage of using a Gaussian mixture (GM)

is that it is made up of several Gaussian 
omponents, whi
h allows one to

extend the Kalman �lter solutions to these problems as well. However, in

most problems, the number of possibilities and thus the number of Gaussian


omponents in the mixture grows with time, whi
h adds to the 
omplexity

of the algorithms.

In the data asso
iation problem, the interpretation of a GM density of

the state is that we have Gaussian un
ertainty about the state for every

2



possibility of mat
hing the obje
ts (also referred to as targets) of interest to

the individual observations from the sensors. To give a sense of the number

of possibilities, assume that there are k targets and n measurements. Then,

the number is

n!
(n−k)!

where n! = n× (n− 1)× . . .× 1, assuming that every

target produ
es a measurement at ea
h time instant. Thus, at ea
h time

instant, we have a GM with a large number of 
omponents. When this

density is propagated to the next time to perform the Bayesian inferen
e

we dis
ussed in the beginning of the 
hapter, the 
omplexity of the problem

explodes. Even for single target, i.e. for k = 1, the 
omputation of the

optimal solution be
omes intra
table. Thus, approximations are inevitable.

In this thesis, we provide e�
ient and e�e
tive solutions for both single and

multi-target s
enarios.

Another aspe
t 
onsidered in this thesis is the performan
e evaluation

of traje
tory estimation algorithms. The main obje
tive of this part is to be

able to quantify the similarity between the ground truth and the estimates

returned by an algorithm. We might observe that there is a good mat
h

between some of the states in the ground truth and the estimates. We will

want to quantify the similarity to judge how di�erent algorithms perform.

Besides this kind of error, it is possible that there are 
ertain states in the

ground truth that do not have any good mat
h in the estimates, or vi
e

versa. We would like to take into a

ount these kinds of errors as well when

de�ning the similarity between the ground truth and the estimates. In this

thesis, we have fo
ussed on mathemati
ally quantifying these kind of simi-

larities for traje
tory estimation.

The resear
h presented in this thesis has been sponsored by Vinnova

(The Swedish Governmental Agen
y for Innovation Systems), under the

resear
h program �Nationella �ygtekniska forskningsprogrammet" (NFFP

6), and by Ele
troni
 Defen
e Systems, Saab AB.

Outline of the thesis

The thesis is divided into two parts, where Part I presents the theoreti-


al ba
kground of the Gaussian mixture smoothing problem and Part II


ontains a set of appended papers. Part I 
ontains six 
hapters, among

whi
h Chapter 2 presents the mathemati
al formulations of the �ltering

and smoothing problems and di�erent models used. Chapter 3 dis
usses

in detail the Gaussian mixture smoothing problem in the 
ontext of single

traje
tory estimation, and the di�
ulties involved. In Chapter 4, we dis
uss

the data asso
iation problem in multi target tra
king. Chapter 5 presents

3



Chapter 1. Introdu
tion

a summary of the metri
 problem. In Chapter 6, we provide a summary of

the 
ontributions in the appended papers and also dis
uss possible future

resear
h dire
tions.

In Part II, the 
ontributions of the thesis are presented in Papers I

through VI. In Paper I and Paper II, we 
onsidered the data asso
iation

problem in estimating a single target traje
tory in the presen
e of 
lut-

ter. Typi
ally, this is 
arried out using pruning approximations on GMs.

In the papers, we present an in-depth study of how to design forward�

ba
kward smoothing and two-�lter smoothing for Gaussian mixtures, based

on both merging and pruning approximations. In Paper III and Paper IV,

we 
onsider the data asso
iation problem when estimating multiple target

traje
tories in the presen
e of 
lutter. We present two solutions based on

expe
tation maximization (EM) that are iterative. The major 
onsequen
e

of applying EM is that the problem of GM smoothing redu
es to Gaussian

smoothing in ea
h iteration. In Paper V and Paper VI, we address the prob-

lem of de�ning metri
s for sets of target states and for sets of traje
tories,

respe
tively.

4



Chapter 2

Models, obje
tives and


on
eptual solution

In traje
tory estimation, the goal is to sequentially estimate an unknown

variable, given noisy observations of the variable. A

ording to the Bayesian

estimation prin
iple, whi
h is 
ommonly used for these problems, the idea

is that based on our prior knowledge of the pro
ess, we predi
t the vari-

able with some un
ertainty. Then, at a point when new information is

available, the predi
tion is updated to get the `posterior'. For traje
tory

estimation, the term 'posterior' takes di�erent meanings depending on the

set of measurement that we 
ondition on. When the most re
ent state of

the traje
tory is newer than the 
omplete 
olle
tion of measurements over

time, we have a predi
tion problem; for equally new information we have

a �ltering problem; and, for a state that is older than the newest pie
e of

information, we have a smoothing problem.

In this 
hapter, we brie�y dis
uss the mathemati
al representation of

the variables and how the traje
tory estimation problem 
an be posed. We

also present a brief summary of the models used in traje
tory estimation.

2.1 State spa
e representation

In a state-spa
e representation, the unknown variable to be estimated is

termed the `state'. The state variable at time k is here denoted as xk ∈
Rn

and the observed data as zk ∈ Rm
. The time variability of the state

is des
ribed by a motion model while the relation between the state and

the measurements are given by a sensor model. The impli
it Markovian

assumption of the state spa
e is that the state xk at time k, given all the

states until time k − 1, depends only on the state xk−1 at time k − 1. The
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Chapter 2. Models, obje
tives and 
on
eptual solution

motion model 
an then be written as

xk = gk(xk−1, vk), (2.1)

where vk is the pro
ess noise. Using this motion model one 
an des
ribe the

transition model fk(xk|xk−1). It is assumed that we have some knowledge

of the state at time 0, de�ned by the prior density p0(x0).

The measurement zk is given by the sensor model

zk = hk(xk, wk), (2.2)

where wk is the measurement noise random variable. The sensor model is

used to obtain the likelihood fun
tion pk(zk|xk). In the remainder of the

introdu
tory 
hapters, the subs
ript k in the notation of the fun
tions gk(·),
hk(·), and pk(·|·) will be dropped without loss of generality and for ease of

writing, and be represented as g(·), h(·), and p(·|·).

2.2 Problem statement and 
on
eptual solu-

tion

The posterior density of the state xk is used to determine our estimates of

the state and also des
ribes our un
ertainties in the state. The obje
tive

is to re
ursively 
ompute the posterior density of the state ve
tor xk using

the Bayesian prin
iple [1℄. In the predi
tion problem, the goal is to obtain

the density p(xk|z1:l) for l < k, given the measurements obtained from time

1 to time l, denoted z1:l. In the �ltering problem, the goal is to obtain the

posterior density p(xk|z1:k) of the state xk. In the smoothing problem, we

are interested in 
omputing the posterior density p(xk|z1:K), where K > k.
Below, we present the 
on
eptual solutions to these problems.

2.2.1 Predi
tion and �ltering

The predi
tion and �ltering densities 
an be obtained re
ursively in two

steps, namely, predi
tion and update, using the prior p(x0), the pro
ess

model f(xk|xk−1) and the likelihood p(zk|xk). The one-step predi
tion

(where l = k − 1 in p(xk|z1:l)) gives the predi
tion density at time k by

evaluating the integral

p(xk|z1:k−1) =

∫
p(xk−1|z1:k−1)f(xk|xk−1)dxk−1, (2.3)
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2.2. Problem statement and 
on
eptual solution

where p(xk−1|z1:k−1) denotes the �ltered density at time k−1, and p(xk|z1:k−1)

the predi
tion density at time k. An update of the predi
tion density at

time k gives the �ltered density at time k as

p(xk|z1:k) ∝ p(xk|z1:k−1)p(zk|xk). (2.4)

The 
onstant of proportionality in the above equation is

1
p(zk|z1:k−1)

, where

p(zk|z1:k−1) =

∫
p(xk|z1:k−1)p(zk|xk)dxk. (2.5)

It should be mentioned here that the equations in (2.3), (2.4) and (2.5) pro-

vide the theoreti
al solutions but, in pra
ti
e, these equations are in general

not tra
table. For instan
e, the integrals 
annot be 
omputed a

urately,

or the representation of the di�erent densities in these equations 
an be

intra
table and so on.

2.2.2 Smoothing

Similar to the �ltering problem, sequential estimation of the smoothed pos-

terior 
an be obtained using the Bayesian prin
iple. Though the approa
hes

dis
ussed here have been designed towards �xed-interval smoothing, they

are in their 
ontextual form, appli
able to the �xed-lag and �xed point

smoothing as well [1℄. One 
an also refer to [3℄ for a

umulated state den-

sity formulation of the smoothing problem.

The �rst approa
h is forward�ba
kward smoothing (FBS) [4℄. As the

name suggests, the �rst step is forward �ltering from time 1 to K, to ob-

tain the �ltered density p(xk|z1:k) at ea
h k. This is followed by ba
kward

smoothing from time K to time 1. The ba
kward smoothing step at time k

uses the smoothed density at time k+1 together with the �ltering densities

at time k as

p(xk|z1:K) = p(xk|z1:k)
∫
p(xk+1|z1:K)
p(xk+1|z1:k)

f(xk+1|xk)dxk+1. (2.6)

The integral in the above equation is proportional to p(zk+1:K |xk), termed

as the ba
kward likelihood in this thesis. Therefore, it is possible to in-

terpret the division in the ba
kward smoother as 
omputing the ba
kward

likelihood impli
itly.

The se
ond approa
h to smoothing is the two-�lter smoothing (TFS)

method [5℄. To obtain the smoothed density at time k by this method,

forward �ltering is performed from time 1 to k to get the �ltered density
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Chapter 2. Models, obje
tives and 
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eptual solution

p(xk|z1:k) and ba
kward �ltering is run from time K to time k to get the

ba
kward likelihood p(zk+1:K |xk). The produ
t of the two �lter outputs

gives the smoothed density,

p(xk|z1:K) ∝ p(xk|z1:k)p(zk+1:K |xk). (2.7)

The ba
kward �ltering, similar to the forward �lter, is performed re
ursively

using two steps: update and retrodi
tion. The update step 
omputes the

likelihood

p(zk+1:K|xk+1) = p(zk+1|xk+1)p(zk+2:K|xk+1) (2.8)

and the retrodi
tion step 
omputes the ba
kward likelihood as

p(zk+1:K |xk) =
∫
p(zk+1:K |xk+1)f(xk+1|xk)dxk+1. (2.9)

Comparing the individual terms in (2.6) and (2.7) and using (2.9), one


an observe that the di�eren
e between the two smoothing methods arises

due to the di�eren
e in the ways the term p(zk+1:K |xk+1) is 
omputed. FBS


omputes it from the division of the predi
tion and smoothing densities

p(zk+1:K |xk+1) ∝
p(xk+1|z1:K)
p(xk+1|z1:k)

. (2.10)

whereas the TFS method uses a �ltering approa
h as in (2.8).

2.3 Models

In this se
tion, we dis
uss the di�erent models relevan
e to traje
tory esti-

mation. We present them in di�erent 
ategories based on their properties.

All these models determine whether or not the integrals in the 
on
eptual

solutions presented in the last se
tion are tra
table or not. For instan
e,

as we dis
uss in the next 
hapter, when we have a single target with lin-

ear pro
ess and measurement models, along with Gaussian noise terms and

Gaussian prior densities, the predi
tion, �ltered and smoothed densities are

all Gaussian densities. In this 
ase, the Kalman �lter and the Rau
h-Tung-

Striebel (RTS) smoother provide a re
ursive solution to obtain the mean

and the 
ovarian
e of these densities in 
losed form. Below we summarize

some of the possible models used in the traje
tory estimation literature.

The pro
ess model g(xk−1, vk) and/or the measurement model h(xk, wk)


an be non-linear fun
tions of the state and the noise variables. A 
ommonly

used non-linear measurement model is when we have range and bearing

measurements and the state that we are interested in is Cartesian position.
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2.3. Models

These kind of non-linear fun
tions are often handled using extended Kalman

�lter (EKF) [1,6℄, uns
ented Kalman �ler (UKF) [7,8℄, quadrature Kalman

�lter [9℄, 
ubature Kalman �lter (CKF) [10℄ or the parti
le �lter [11�16℄.

Often in appli
ations, we re
eive measurements, not only from the tar-

get of interest, but also from sour
es that are not of interest to us. These

measurements are termed 
lutter and often yield un
ertainties in the data

asso
iations. The problem arises when it is not immediate whi
h measure-

ments are from the single target and whi
h are from 
lutter. The data

asso
iation problem also arises when we have multiple targets in the region

of interest. Again, we re
eive a set of measurements whi
h may not have

the target identity. The problem is only aggravated when we also have the


lutter data in addition.
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Chapter 3

Single traje
tory estimation

In this 
hapter, we brie�y dis
uss the various 
hallenges in �ltering and

smoothing problems that arise in the single�traje
tory estimation problem.

We dis
uss in detail the Gaussian mixture �ltering and smoothing problems,

whi
h are fo
us areas of the thesis.

3.1 Linear and Gaussian �ltering and smooth-

ing

Assume that the prior, p(x0), is a Gaussian density, and that the motion

and sensor models are linear fun
tions of the state ve
tor xk, with additive

Gaussian noise, i.e.,

xk = Fkxk−1 + vk (3.1)

and

zk = Hkxk + wk, (3.2)

where Fk ∈ Rn×n
, Hk, ∈ Rm×n

, vk ∼ N (0, Qk) and wk ∼ N (0, Rk). Then,
it 
an be shown that the posterior densities are Gaussian and have 
losed

form expressions [2℄. Again, for 
onvenien
e of writing, the subs
ript k
will be dropped from the matrix notations. In this se
tion, we dis
uss the

algorithms to obtain the mean and 
ovarian
e of the �ltered and smoothed

densities.

3.1.1 Kalman �ltering

Let the predi
tion density, p(xk|Z1:k−1), and �ltered density, p(xk|Z1:k), be

denoted as N
(
xk;µk|k−1, Pk|k−1

)
and N

(
xk;µk|k, Pk|k

)
, respe
tively. The

notationN (x;µ, P ) denotes a Gaussian density in the variable x with mean

µ and 
ovarian
e P . The goal of predi
tion and �ltering is then to �nd the
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Chapter 3. Single traje
tory estimation

�rst two moments of the 
orresponding Gaussian densities. The ubiquitous

Kalman �lter equations [2℄ provide 
losed�form expressions for the �rst two

moments of the predi
tion and �ltered densities in (2.3) and (2.4). The

predi
tion equations are given by

µk|k−1 = Fµk−1|k−1 (3.3)

Pk|k−1 = FPk−1|k−1F
T +Q (3.4)

and the update equations by

Sk = HPk|k−1H
T +R (3.5)

Kk = Pk|k−1H
TS−1

k (3.6)

z̃k = zk −Hµk|k−1 (3.7)

µk|k = µk|k−1 +Kkz̃k (3.8)

Pk|k = (In −KkH)Pk|k−1. (3.9)

where In is an n-by-n identity matrix. The so�
alled innovation z̃k, and

Sk, the innovation 
ovarian
e, des
ribe the expe
ted measurement distribu-

tions. Kk is the Kalman gain, whi
h 
an be viewed as the weight for new

information in the innovation 
ompared to the predi
tion.

3.1.2 Smoothing

Below we provide the two versions�forward�ba
kward smoothing (FBS)

and two��lter smoothing(TFS)�of the smoothing algorithm dis
ussed in

Se
tion 2.2.2 to obtain the mean and 
ovarian
e of the smoothed density

under linear and Gaussian assumptions.

For the FBS method, the Rau
h-Tung-Striebel (RTS) [4℄ smoother gives

the 
losed-form expressions for the mean and 
ovarian
e of the smoothed

density. Using notations similar to the ones for the predi
tion and �ltered

densities, the smoothed density at time k is denoted as N
(
xk;µk|K, Pk|K

)
.

The RTS equations are

µk|K = µk|k + Ck

(
µk+1|K − µk+1|k

)
(3.10)

Pk|K = Pk|k + Ck

(
Pk+1|K − Pk+1|k

)
CT

k , (3.11)

where

Ck = Pk|kF
TP−1

k+1|k (3.12)

is similar to the Kalman gain in the Kalman �lter equations (3.3) to (3.9).
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3.2. Non-linear models

For the TFS method, the work in [17℄ provides the 
losed-form solu-

tion for the moments of the smoothed density. Let the likelihoods be de-

noted as p(Zk+1:K|xk+1) = N (Uk+1xk+1;ψk+1, Gk+1) and p(Zk+1:K|xk) =

N (Jkxk; ηk, Bk). Let the starting 
onditions at time K be JK = [ ],
ηK = [ ] and BK = [ ]. The update step in (2.8) of the ba
kward �lter is

then given by

Uk+1 =

[
Jk+1

H

]
(3.13)

ψk+1 =

[
ηk+1

zk+1

]
(3.14)

Gk+1 =

[
Bk+1 0

0 R

]
(3.15)

while the retrodi
tion step in (2.9) is given by

Jk = Uk+1F (3.16)

ηk = ψk+1 (3.17)

Bk = Uk+1QU
T
k+1 +Gk+1. (3.18)

Using the outputs of the forward �lter and the ba
kward �lter at time k,

the smoothed density in (2.7) is given by

µk|K = µk|k +Wk

(
ηk − Jkµk|k

)
(3.19)

Pk|K = (In −WkJk)Pk|k, (3.20)

with gain

Wk = Pk|kJ
T
k

(
JkPk|kJ

T
k +Bk

)−1
. (3.21)

Note that the above three equations have similarities to the Kalman update

equations in (3.8) and (3.9). Here, the �ltering parameters, µk|k and Pk|k,

are updated with the innovation from the future measurements from time

k + 1 to K, whereas in the Kalman �lter the predi
tion parameters are

updated with the innovation from the measurement at time k.

3.2 Non-linear models

When the motion model g(·) and/or the measurement model h(·) are non-
linear or when the noise is not additive Gaussian, the posterior density for

the predi
tion, �ltering and smoothing is, in general, not a Gaussian den-

sity. One example is when we obtains range and bearing measurements
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from a radar and want to tra
k the position and the velo
ity of the target.

The optimal solution then be
omes intra
table as the integrals 
annot be


omputed in 
losed form. Approximations and sub�optimal approa
hes are

therefore inevitable. There are several sub-optimal approa
hes to estimate

the �ltered density in this 
ase, some of whi
h are dis
ussed in this se
tion

su
h as the Gaussian and parti
le �lters. We dis
uss Gaussian mixtures,

whi
h is appli
able when the posterior has multimodal shape, in more detail

in subsequent se
tions of this 
hapter.

The smoothing problem has additional 
hallenges 
ompared to the �l-

tering problem. First, the equation in the FBS method involves division of

densities, whi
h is di�
ult to 
ompute for arbitrary densities. Se
ond, the

a

ura
y of the approximations in the forward �ltering highly a�e
ts the

ba
kward smoothing and the smoothed density. The TFS method, on the

other hand, does not involve density divisions and the two �lters 
an ideally

be run independently of ea
h other. However, the likelihood p(zk+1:K |xk)
is not, in general, a normalizable density fun
tion, whi
h limits the possi-

bilities to apply 
onventional approximation te
hniques for densities during

the ba
kward �ltering. Due to these additional 
ompli
ations, applying the

te
hniques used for non-linear �ltering to non-linear smoothing does not

always produ
e fruitful results. In this se
tion, we also dis
uss the 
hal-

lenges in extending te
hniques su
h as sequential Monte Carlo sampling,

linearization and sigma-point methods to the smoothing problem.

3.2.1 Gaussian �lters

One approa
h to handle non-linear models is to approximate the posterior

density as a Gaussian density. The methods that use this approa
h are


alled Gaussian �lters/smoothers, named appropriately. There are several

methods to make a Gaussian approximation of the �ltered density and to


ompute its �rst two moments. One method is based on linearizations of

the fun
tions, g(·) and h(·), after whi
h the Kalman �lter equations in (3.3)

to (3.9) 
an be used to obtain the mean and 
ovarian
e of the Gaussian

approximation of the �ltered density. The famous extended Kalman �l-

ter [1,6,18℄ and the many variants of it are based on this approa
h. Though

these algorithms work for a good number of models, their performan
e de-

teriorates when the fun
tions are highly non-linear.

Another type of methods used to obtain a Gaussian approximation of

the �ltered density is based on sigma-points, su
h as the uns
ented Kalman

�lter [7, 8℄, the quadrature Kalman �lter [9℄ and the 
ubature Kalman �l-
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3.2. Non-linear models

ter [10℄. In these methods, a handful of points, termed sigma-points, are


hosen deterministi
ally based on the �rst two moments of the prior den-

sity. The sigma points are then propagated through the non-linear models

to obtain the means and 
ovarian
es used to 
ompute the moments of the

Gaussian approximation of the �ltered density. The sigma-point methods

also impli
itly perform a linearisation using statisti
al linear regression [19℄.

The analogue of Gaussian �ltering methods, su
h as the extended Kalman

�lter and the uns
ented Kalman �lter, exists for TFS of non-linear mod-

els. The extended Kalman smoother [20℄, similar to its �ltering 
ounter-

part, has poor performan
e when the non-linearity is severe. The uns
ented

Kalman smoother [21℄, [20, Chap. 7℄ needs the inverse of the dynami
 model

fun
tions, whi
h may not be feasible in all s
enarios. The uns
ented RTS

smoother [22℄ is the FBS version of a Gaussian smoother and is shown to

have similar performan
e as the uns
ented Kalman smoother, but without

the need of inverting the model fun
tions.

3.2.2 Parti
le �lters

Parti
le �lters or sequential Monte Carlo �lters [11�16℄ are based on repre-

senting the density p(x) with a set of randomly drawn samples x(m)
, termed

`parti
les', along with their 
orresponding weights. The parti
les de�ne the

positions of Dira
 delta fun
tions su
h that the weighted sum of the Dira


delta fun
tions of the parti
les provides a good approximation of the true

density:

p(x) ≈ 1

N

N∑

m=1

δ
(
x− x(m)

)
. (3.22)

These methods use the 
on
ept of importan
e sampling, where the parti-


les are generated from a proposal density, whi
h is simpler to generate

the samples from, instead of the true density. The parti
les are propagated

through the pro
ess model and the weights are updated using the likelihood

to obtain the posterior density. The 
hoi
e of proposal density is 
ru
ial to

parti
le �lters, and the proposal density should have the same support as

the true density and should be as similar to the true density as possible.

The advantages of parti
le �lters are that the performan
e of su
h �lters

is una�e
ted by the severity of the non-linearity in g(·) and h(·), that they
are are asymptoti
ally optimal also when the fun
tions are non-linear, and

that they are often easy to implement. However, they 
an be 
omputa-

tionally demanding as the dimension of the state ve
tor in
reases. Another

problem with parti
le �lters is that they degenerate, whi
h means that
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the weights of most parti
les be
ome zero. This 
an be over
ome by re-

sampling [16℄ frequently, where multiple 
opies of the `good' parti
les with

signi�
ant weights are retained and the `poor' parti
les are removed.

Similar to the �ltering method, sequential Monte Carlo smoothing is

based on approximating the smoothed posterior density using a set of par-

ti
les. In parti
le Markov 
hain Monte Carlo (MCMC) methods [23℄, par-

ti
le �lters are use to approximate the joint posterior distribution, whi
h

is then used to generate proposals for MCMC. In 
ase of FBS based on

these methods, a vanilla version works well when k ≈ K, where K is the

bat
h duration. However, when k ≪ K [24℄, be
ause of su

essive resam-

pling steps, the marginal density be
omes approximated by a single parti
le

whi
h leads to deteriorated performan
e. This is the degenera
y problem

that is inherent in parti
le �lters [11℄. One simple approa
h is to use the

forgetting properties of the Markov model, i.e., to approximate the �xed-

interval smoothed density p(xk|z1:K) using the �xed-lag smoothed density

p(xk|z1:k+δ) [25, 26℄. Unfortunately, automati
 sele
tion of δ is di�
ult.

In 
ase of TFS, it is not straightforward to approximate the output of

the ba
kward �lter using parti
les, as it it not a normalizable density. The

arti�
ial prior method [5℄ uses the auxiliary probability density p̃(xk|zk+1:K)

instead of the likelihood p(zk+1:K |xk). The auxiliary density is obtained

using what is 
alled arti�
ial prior densities. The 
hoi
e of the arti�
ial

prior plays a major role in the performan
e of the TFS algorithm for parti
le

methods.

3.3 Gaussian mixture �ltering and smoothing

There are many appli
ations in whi
h we re
eive several measurements on

the state variable, where the reliability of the measurements 
an vary. The

likelihood in these appli
ations are 
onveniently modelled as mixtures. In

the 
lassi
 data asso
iation problem, where we do not have information

about whi
h measurement 
orresponds to whi
h target upon re
eiving a set

of measurements, the posterior density is a Gaussian mixture, even if we

assume the motion and measurements models are linear and Gaussian. We

dis
uss more on this problem in the next 
hapter.

Gaussian mixtures are weighted sum of Gaussian densities, whi
h usually

make a good approximation for the multi-modal densities. In this se
tion,

we explain that when the likelihood and/or the state transition density are

Gaussian mixtures, the true posterior densities after �ltering and smoothing
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are also Gaussian mixtures. The number of terms in the GM usually grows

exponentially with time, and we therefore need to 
onstrain the number of

terms. In these situations, redu
tion algorithms 
an be used to approximate

the posteriors. In this se
tion, we provide a brief overview of the most


ommonly used mixture redu
tion methods and dis
uss the 
hallenges in

applying these to smoothing problems.

3.3.1 Optimal solution

It was presented in the last 
hapter that the forward-ba
kward smooth-

ing (FBS) method is based on forward �ltering and ba
kward smoothing

while the two-�lter smoothing (TFS) method involves forward �ltering and

ba
kward �ltering. These steps involve the predi
tion, update and retrod-

i
tion steps stated in equations (2.3), (2.4), (2.8) and (2.9). One 
an noti
e

that all these equations involve produ
ts of fun
tions, whi
h in this 
ase

are Gaussian mixtures. When the state transition densities and the likeli-

hoods are both GMs, one 
an use the fa
t that a produ
t of GMs yields a

GM and show that the posterior densities are all Gaussian mixtures. The

number of 
omponents in the resulting GM is the produ
t of the number of


omponents in the individual mixtures, whi
h explains why the number of


omponents grows exponentially with time.

Forward �ltering

One 
an show that, starting with a GM prior, the predi
tion and the up-

date steps of forward �ltering result in a Gaussian mixture posterior density.

Evaluating these steps with GMs is equivalent to using Kalman �lters, one

for every triplet of Gaussian 
omponents in the prior p(xk−1|z1:k−1), the tran-

sition density f(xk|xk−1) and the likelihood p(zk|xk), yielding a Gaussian

term in the posterior p(xk|z1:k). The term in the 
onstant of proportion-

ality p(zk|z1:k−1) in (2.5), is not 
al
ulated expli
itly in the update step of

the Kalman �lter, whi
h involves produ
t of Gaussian densities. However,

in the 
ase with GMs, this 
onstant of proportionality is used in the up-

dated weight 
al
ulation. The updated weight for the resulting Gaussian


omponent is given by the produ
t of the individual weights of the 
ompo-

nents in the predi
tion density and the likelihood along with the 
onstant

of proportionality.

Ba
kward smoothing of FBS

The ba
kward smoothing of FBS involves a division of the smoothed and

the predi
tion GM densities as in equation (2.6). Starting from time K,
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using the prin
iple of mathemati
al indu
tion, it 
an be shown that the

division results in a GM and therefore the smoothed posterior p(xk|z1:K)
is also a GM whi
h has the same number of 
omponents for k = 1, . . . , K.

The weights of the 
omponents in the the smoothed density at time k are

the same as the weights of the 
omponents in the smoothed density at time

k + 1. Instead of performing the division, an equivalent way of obtaining

the smoothed posterior is as follows [3, Se
. V A℄: starting from k = K−1,

the RTS re
ursions are used for every triplet of asso
iated 
omponents in

the smoothed density at time k + 1, the predi
tion at time k and in the

�ltered density at time k, to 
ompute the smoothed density at time k.

Ba
kward �lter of TFS

In the ba
kward �lter of TFS, we need to 
ompute the ba
kward likelihood

as in equations (2.8) and (2.9). The ideas in forward �ltering 
annot be

applied dire
tly to the ba
kward �lter be
ause often the likelihoods 
an be

of the form

w0 +
∑

i

wiN (Hixk;µi, Pi) (3.23)

where di�erent Hi 
an 
apture di�erent features of the state xk. Stri
tly

speaking, these are not Gaussian mixture densities; they are neither Gaus-

sian nor densities in xk. We refer to them as redu
ed dimension Gaussian

mixtures in this thesis. To 
ompute the produ
t of likelihoods, one 
an use

the following general produ
t rule:

wiN (Hix;µi, Pi)× wjN (Hjx;µj, Pj) = wijN (Hijx;µij, Pij) (3.24)

where

wij = wiwj (3.25)

Hij =

[
Hi

Hj

]
(3.26)

µij =

[
µi

µj

]
(3.27)

Pij =

[
Pi 0

0 Pj

]
. (3.28)

Using this in equations (2.8) and (2.9), one 
an show that the output of

the ba
kward �lter has a stru
ture similar to the inputs as in (3.23). The

smoothed density is given by the produ
t of the outputs of the two �lters,

that 
an be 
omputed similarly to the update step in the forward �lter of

GMs, in
luding the weight update using the proportionality 
onstant as

dis
ussed in Se
tion (3.3.1).
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3.4 Gaussian mixture redu
tion

The number of 
omponents in the resulting GM, after update, predi
tion

and retrodi
tion iterations, grows exponentially with time. Therefore, ap-

proximations are ne
essary to redu
e the number of 
omponents. There are

several Gaussian mixture redu
tion (GMR) algorithms that are well stud-

ied in the literature, whi
h 
an be used for �ltering and smoothing. The

GMR algorithms are based on pruning insigni�
ant 
omponents from the

GM and/or merging similar 
omponents.

3.4.1 Pruning

The number of 
omponents in the posterior GM 
an be prevented from

growing exponentially by pruning some of the 
omponents after ea
h iter-

ation. There are several pruning strategies that 
an be adopted. Three

methods that are 
ommonly used are threshold-based pruning [27℄, M-best

pruning [28�30℄ and N-s
an pruning. In threshold-based pruning, only the


omponents that have a weight greater than a prede�ned threshold are

retained and used for predi
tion in the next iteration. The number of 
om-

ponents in the resulting GM 
an vary based on the threshold. The idea

behind the M-best pruning algorithm is that only the nodes with the M
highest weights (or asso
iation probabilities) are retained.

To explain the N-s
an pruning [27℄, whi
h is designed for redu
tion dur-

ing �ltering, let us say we are interested in performing pruning at time k.
We pi
k the 
omponent that has the maximum weight. Starting from this


omponent, we tra
e ba
kwards N steps to �nd its parent 
omponent, at

time k−N . Only the o�spring at time k, of this parent node at time k−N ,

are retained. To be mentioned here is that the multiple hypothesis tra
king

(MHT) �ltering [27℄ is often based on N-s
an pruning.

3.4.2 Merging

One 
an also use merging of similar 
omponents to redu
e the number

of 
omponents in a GM . There are several merging algorithms su
h as

Salmond's [31�33℄, Runnalls' [34℄, Williams' [35℄ algorithms and many more

[36�39℄. These algorithms work based on the following three steps:

1. Find the most suitable pair of 
omponents to merge a

ording to a

`merging 
ost' 
riterion.

2. Merge the similar pair and repla
e the pair with the merged Gaussian


omponent.
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3. Che
k if a stopping 
riterion is met. Otherwise, set the redu
ed mix-

ture to the new mixture and go to step 1.

The merging 
ost in step 1 looks for similarity of the 
omponents and it 
an

be di�erent a
ross algorithms. A few of the 
ommonly used merging 
osts

are the Kullba
k-Leibler divergen
e [40℄ and the integral-squared error [41�

43℄. The merging of the 
omponents in step 2 is usually based on moment

mat
hing [40℄. That is, the moments of the GM before and after merging are

the same. The stopping 
riterion 
an also vary a
ross algorithms, e.g., it 
an

be based on if the 
omponents in the redu
ed mixture is at a manageable

number. In 
ertain algorithms, it is 
he
ked based on that the 
omponents

in the redu
ed GM are not similar.

3.4.3 Choi
e of GMR

Two main 
riteria in 
hoosing the appropriate GMR algorithm are the 
om-

putational 
omplexity involved and the a

ura
y. Most of the pruning al-

gorithms are usually simpler to implement, 
ompared to merging. There is

information about the un
ertainty of the estimate in the 
ovarian
e matri-


es of the pruned 
omponents. So, as a result of pruning, we might have

underestimated un
ertainties. In 
ontrast, for merging, the un
ertainty is

preserved be
ause of moment-mat
hing. However, the merging algorithms

are more 
omputationally intensive than pruning. As a trade-o� between


omplexity and a

ura
y of the un
ertainty, it may be more feasible to use a


ombination of pruning and merging. Pruning ensures that the 
omponents

with negligible weights are removed, without being aggressive. Merging re-

du
es the number of 
omponents further, but keeping the moments of the

retained density the same as before.

3.4.4 GMR for FBS and TFS

Applying GMR, both pruning and merging for the forward �ltering is straight-

forward. When the forward �ltering is based on pruning, it is trivial to

perform the ba
kward smoothing of the FBS similar to the optimal solu-

tion, using the �ltered densities. Starting from the last time instant, RTS is

performed ba
kwards on the individual retained 
omponents. This method

su�ers from degenera
y similar to parti
le smoothing. This is be
ause for

k ≪ K, the number of 
omponents in the forward �lter that 
orresponds

to the 
omponents in the smoothed posterior will be one. A solution to

the degenera
y is to perform FBS based on merging, something that has

not been explored mu
h in the literature. The main 
hallenge is that for

the ba
kward smoothing, the asso
iations a
ross 
omponents are no longer
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simple, to use RTS dire
tly and 
ompute the weights of the smoothed den-

sity. In Paper I [44℄ of this thesis, the problem of FBS based on merging is

investigated.

The literature on TFS for Gaussian mixture densities is also sparse. The

two �lters of the TFS 
an be run independently of ea
h other. This allows

the GMR algorithms to be used on both the �lters. Then the di�
ulty is

in using the Gaussian mixture redu
tion te
hniques in the ba
kward �lter,

sin
e its output is not a density fun
tion. So, the GMR algorithms dis
ussed

here 
annot be applied dire
tly. In Paper II [45℄ of this thesis, we propose a

method 
alled smoothed posterior pruning, through whi
h pruning 
an be

employed in the ba
kward �lter.
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Chapter 4

Multi�traje
tory estimation

In the previous 
hapter, we presented a brief dis
ussion of the data as-

so
iation problem. Even with linear Gaussian assumptions, the number of

Gaussian terms in the Gaussian mixture form of the posterior density grows

exponentially. In this 
hapter, we dis
uss the problem further in the multi�

target setting. Additional 
hallenges are posed by having a set of data from

multiple targets, where the target identities are not available.

4.1 Data asso
iation

In the presen
e of multiple point targets, ea
h of whi
h follows a linear-

Gaussian pro
ess and measurement model, at ea
h time we observe a set

of measurements. If the identity of a target is not available in the mea-

surements, then there is un
ertainty about whi
h measurement belongs to

whi
h target. In 
ase of a single traje
tory, ea
h hypothesis is an event of

assigning a target to a measurement from the set. In this 
ase, the number

of possibilities at ea
h time is the same as the number of measurements,

whi
h when multiplied a
ross time be
omes exponential.

With multiple targets, at ea
h time, the problem is even worse. Let

us say we have n targets and m measurements at a parti
ular time. Now,

ea
h hypothesis, often referred to as a global hypothesis, is the event of

asso
iating the n targets to the m measurements (assuming n ≤ m) su
h

that a target is assigned to at most one measurement and a measurement is

assigned to at most one target. The number of possibilities is 
ombinatorial

given by

m!
(m−n)!

; for instan
e, if we assume n = 2 and m = 3, the number of


ombinatorial possibilities is 6; if we double them up, n = 4 and m = 6, the
number of possibilities is 360. If we also 
onsider the possibility that a tar-

get does not need to generate a measurement, in other words, a target 
an
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be missed, the number of possibilities is even higher, and again 
ombinato-

rial. A
ross time, the 
omplexity of the problem gets multiplied. Therefore,

the optimal way of solving the problem 
onsidering all the possibilities is

intra
table. Below we dis
uss brie�y the traditional approa
h taken.

Let K denote the bat
h duration, k the time index, NK the number of

targets in the entire bat
h duration and Mk the number of measurements

obtained at k. Assume the state variable is X = (Xk,i : k = 1, . . . , K, i =

1 . . . , NK) and the measurement is Z = (Zk,j : k = 1, . . . , K, j = 1 . . . ,Mk)
where i stands for the target index and j for the measurement index.

If we know the posterior density p(X|Z), we 
an estimate the states,

whi
h are tra
table and straightforward if there is no un
ertainty in the

measurement origin. However, in the multi�target tra
king problems, the

measurement set 
omprises the measurements from the targets that are

dete
ted as well as the 
lutter measurements, and the origin of the mea-

surements in the set are not known. To handle this un
ertainty in the

measurement origin, one traditional way is to introdu
e a data asso
ia-

tion variable φ = {φk,i, ∀k, i}, where φk,i = j denotes the assignment of

the target i at time k to the measurement Zk,j. With these variables,

the density of interest be
omes p(X, φ|Z), using whi
h the estimates 
an

be 
omputed. Though the introdu
tion of this variable makes it easier

to represent the measurement un
ertainty, the estimation problem is still

intra
table due to the sheer number of possibilities of φ. For instan
e, 
on-

sider X̂
MAP

= argmaxX p(X|Z) = argmaxX maxφ p(X, φ|Z). The optimal

point is sear
hed over all the possibilities of φ, whi
h is exponential in the

number of measurements. Thus, sub-optimal approa
hes are inevitable. In

the remainder of this se
tion, we give a brief overview of some of the ex-

isting sub-optimal algorithms to estimate X . Adhering to the 
onventional

terminology, we refer to an instan
e of φ as the data asso
iation hypothesis.

4.2 Tra
king algorithms

The existing algorithms for tra
king 
an be broadly 
ategorised into two:

the ones that jointly estimate X and φ, and the others that estimate X
while marginalizing φ. Global nearest neighbour (GNN) [27℄ and multiple

hypothesis tra
king (MHT) [27,46,47℄ belong to the �rst 
ategory, whereas

joint probabilisti
 data asso
iation (JPDA) [27, 48�55℄, probabilisti
 MHT

(PMHT) [56�59℄ and their variants belong to the se
ond one. There are

also sampling�based algorithms like Markov 
hain Monte Carlo data asso-


iation (MCMCDA) [60℄. In this algorithm, an estimate of a hypothesis is
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obtained by making several random 
hanges to the existing hypothesis. The


omputational and memory requirements of this algorithm are very high,

in general. In this se
tion, we �rst fo
us on the �rst 
ategory of algorithms

that estimate φ, while estimating X , followed by the se
ond 
ategory that

estimate X .

4.2.1 Global nearest neighbour

In 
ase of the global nearest neighbour algorithm, at ea
h time instant k,
the best data asso
iation hypothesis is 
hosen to be the one with the largest

Pr{φk|Z1:k}, where φk stands for the data asso
iation at time k and Z1:k

for the set of measurements from time 1 to k, respe
tively. This hypothesis

is propagated to the next time and asso
iated with the new set of mea-

surements to form a new set of hypotheses. The best hypothesis is 
hosen

to be the one with the largest Pr{φ1:k+1|Z1:k+1} and the whole pro
edure

is repeated for subsequent time instants. This algorithm is very simple to

implement using 2-D assignment algorithms [61℄ su
h as the au
tion algo-

rithm [62℄ or Jonker-Volgenant-Castanon (JVC) [63℄, but sin
e it makes

hard de
isions every time instant, it underestimates the 
ovarian
e and 
an

often lead to tra
k loss.

4.2.2 Multiple hypothesis tra
king

Similar to GNN, MHT generally makes hard de
isions when estimating φ.

However, unlike GNN, the MHT algorithms make hard de
isions based on

multiple s
ans of data. The 
ommonly used N-s
an pruning based tra
k�

oriented MHT algorithm 
hooses the best set of hypotheses at time k based

on the last N s
ans of data and, propagates them, and repeats the pro
e-

dure again. In essen
e, the algorithm estimates the best hypothesis at time

k − N based on the information until the 
urrent time instant k. The N-

s
an pruning algorithm is typi
ally implemented using the N-dimensional

assignment algorithms as in [64�66℄. Another popular version of MHT is

to retain the M-best hypotheses at ea
h time and propagate only these M

hypotheses to the next time instant. This is typi
ally implemented using

Murty's algorithm [28�30,67℄.

As 
an be noti
ed, MHT maintains multiple data asso
iation hypotheses

every time instant and, hen
e the name `multiple hypothesis tra
king'. The

larger the N (orM) is, the more a

urate the estimates are. However, larger

N leads to higher 
omplexity; and smaller N leads to the `short' history

problem of MHT. That is, the di�erent hypotheses that are maintained

ea
h time instant k di�er only in the most re
ent N (k − (N + 1), . . . , k)
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asso
iations and are identi
al from time 1 to k−N . Therefore, there is only

one data asso
iation sequen
e maintained from time 1 to k − N and any

new information from future measurements 
annot be used to update the

data asso
iation in those time instants.

4.2.3 Joint probabilisti
 data asso
iation

Let us now shift our fo
us to the other 
lass of algorithms whi
h estimate

X by integrating out φ. The JPDA algorithm integrates out φ at ea
h time

instant and performs moment mat
hing to approximate the distribution

over X to a Gaussian density. That is, the possibly multi�modal density

p(X|Z) =
∑
φ

p(X, φ|Z) is approximated to a uni-modal density p̃(X|Z)
where the in
lusive KL divergen
e KL(p(X|Z)||p̃(X|Z)) [68℄ is minimized.

Again, this algorithm is 
omputationally simpler than MHT, but when the

approximated posterior density is propagated a
ross time, the performan
e

degrades.

4.2.4 Probabilisti
 multiple hypothesis tra
king

Another popular tra
king algorithm is the probabilisti
 multiple hypothesis

tra
king (PMHT), whi
h aims to 
ompute the maximum a posteriori (MAP)

estimates of the entire sequen
e of target states. The idea is to obtain these

estimates using the expe
tation maximization (EM) algorithm, where the

solution is iterative and involves several lo
al optimisations:

X̂(n+1) = argmax
X

∑

φ

Pr{φ|Z, X̂(n)} ln p(X, φ, Z). (4.1)

PMHT allows a target to be asso
iated to multiple measurements, whi
h

enables 
losed�form expressions to 
ompute the marginal asso
iation prob-

abilities of the di�erent traje
tories. However, this approximation is more

suitable for extended target models than the point target model assump-

tions presented in the beginning of this se
tion. Paper III [69℄ of this thesis

also uses EM similar to PMHT to estimate the states; however, we retain

the point�target 
onstraints that a target is assigned to at most one mea-

surement and a measurement is assigned to at most one target.

4.3 EM for data asso
iation

Expe
tation maximization (EM), �rst dis
ussed in [70, 71℄, is an iterative

te
hnique, widely used to obtain approximate maximum�likelihood estima-

tion (MLE), or MAP estimates of parameters from observed data. In the
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EM solution, the model is assumed to have hidden variables that relate the

measurements with the states. This makes the posterior density analysis

simpler, whi
h is otherwise intra
table. In traje
tory estimation, we are

interested in obtaining estimates of the state ve
tor X . In this se
tion, we

propose two versions of EM to obtain the state estimates using the joint

density p(X, φ, Z). To start with, we present a brief introdu
tion to the EM
algorithm for MAP estimation.

To derive EM in its general form, we adhere to a notation that is 
ommon

in the EM literature. A

ording to the notation, θ is the parameter to

be estimated, Z the observed data and γ the hidden variable. The MAP

estimation of θ is given by,

θ̂ = argmax
θ
p(θ|Z) = argmax

θ
ln

∫
p(θ, Z, γ)dγ. (4.2)

Note that the logarithm that has been introdu
ed in the maximization is a

monotoni
ally in
reasing fun
tion and does not a�e
t the MAP estimation.

In many appli
ations (in
luding tra
king, as will be shown), the integral

in the MAP estimation a

ording to (4.2) is not always tra
table. To get a

tra
table approximation, qγ(γ) over the hidden variable γ is introdu
ed in

the obje
tive fun
tion in (4.2):

ln p(θ, Z) = ln

∫
qγ(γ)

p(θ, Z, γ)

qγ(γ)
dγ (4.3)

≥
∫
qγ(γ) ln

p(θ, Z, γ)

qγ(γ)
dγ (4.4)

, F(qγ(γ), θ). (4.5)

Jensen's inequality is used to go from (4.3) to (4.4). As 
an be observed,

the term F(qγ(γ), θ) on the right�hand side of (4.4) is a lower bound on the

logarithm of the joint density ln p(θ, Z) [71℄ and is a fun
tional of qγ and θ.

In EM, this lower bound is in
reased with iterations su
h that the di�eren
e

between the bound and the logarithm of the density is de
reased [70℄. This

is a
hieved by performing the following set of operations in ea
h iteration

(n + 1):

q(n+1)
γ (γ) = argmax

qγ(γ)
F(qγ(γ), θ(n)) (4.6)

θ(n+1) = argmax
θ
F(q(n+1)

γ (γ), θ). (4.7)

The �rst step is 
alled the the E-step, where the best q
(n+1)
γ (γ) is 
omputed

given θ(n). The se
ond step, 
alled the M-step, 
omputes the best θn given
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q
(n+1)
γ (γ).

In Paper III [69℄ and Paper IV [72℄, we have used two approa
hes in EM

to obtain the estimates. In Paper III, we use the EM problem formulation

to estimate the state X dire
tly from the joint density p(X, φ, Z). In other

words, we set θ = X and γ = φ. In Paper IV, we reverse the roles of X and

φ. That is, we use EM to estimate the data asso
iation φ, from whi
h we


an obtain the state estimates X immediately.
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Metri
s

Metri
s are important in multi-target tra
king (MTT) for performan
e eval-

uation and algorithm design. In essen
e, metri
s are ne
essary to quantify

the 
loseness between a ground truth and an estimate thereof. When design-

ing metri
s for MTT, there are spe
i�
 
hallenges that must be addressed,

su
h as lo
alisation error, error due to missed and false targets and penalty

for tra
k swit
hes.

In this 
hapter, we dis
uss the need for metri
s in MTT, followed by a

dis
ussion on the basi
 metri
 properties. We also present a summary on

the 
ommonly used metri
s, and brie�y dis
uss the 
hallenges in designing

a metri
 for traje
tory estimation.

5.1 Need for a metri


Metri
s are needed in traje
tory estimation for two main reasons: designing

algorithms and performan
e evaluation. In algorithm design, one wants an

estimate that is 
lose to the true state in some sense. It is reasonable that a

metri
 is used to de�ne this 
loseness. When evaluating the performan
e of

an algorithm, one needs a similarity measure to quantify the error between

the obtained estimates and the ground truth. On
e again, it seems natural

that a metri
 is used to quantify this error.

In multi-target tra
king (MTT), the estimation is often formulated as a

Bayesian �ltering problem where the ground truth is a random quantity and

the estimates depend deterministi
ally on the observed data. For perfor-

man
e evaluation, in many 
ases, we average over several realizations of the

data, so estimates are random as well. In both the s
enarios we dis
ussed

above�designing algorithms and performan
e evaluation�the obje
tives
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involve an averaging of the metri
 over di�erent instan
es of the random

quantities involved, i.e., the ground truth and the estimate. In other words,

the similarity between the ground truth and the estimate is 
omputed in

an average sense. It is again important that this similarity whi
h involves

averaging is also a metri
.

5.2 Metri
 properties

The de�nition of a metri
 varies slightly based on if the variables involved

are random or not. In this se
tion, we summarize the properties of a metri


on general spa
es and on probability spa
es. We also dis
uss the signi�
an
e

of these properties brie�y.

De�nition 5.1. A metri
 dA(·, ·) on a set A is a fun
tion that satis�es the

following properties for any x, y, z ∈ A [73, Se
. 2.15℄:

1. Non-negativity: dA(x, y) ≥ 0.

2. De�niteness: dA(x, y) = 0 ⇔ x = y.

3. Symmetry: dA(x, y) = dA(y, x).

4. Triangle inequality: dA(x, y) ≤ dA(x, z) + dA(z, y).

For metri
s in a probability spa
e A, the de�niteness between random

variables is in the almost�sure sense [74, Se
. 2.2℄, as des
ribed in the fol-

lowing de�nition.

De�nition 5.2. A metri
 dA(·, ·) on a set A is a fun
tion that satis�es the

following properties for random variables x, y, z ∈ A:

1. Non-negativity: dA(x, y) ≥ 0.

2. De�niteness: dA(x, y) = 0 ⇔ Pr(x = y) = 1.

3. Symmetry: dA(x, y) = dA(y, x).

4. Triangle inequality: dA(x, y) ≤ dA(x, z) + dA(z, y).

In the above de�nition, Pr(x = y) = 1 implies that the event that x and y
take the same value has probability 1.

We now pro
eed to des
ribe and dis
uss the signi�
an
e of these prop-

erties, with more emphasis on the triangle inequality property. The non-

negativity property ensures that the distan
e 
annot be negative. The de�-

niteness property ensures that a distan
e between a point to itself is 0. For
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random variables, this property is in essen
e ensured for all the points that

have non-zero probability. The symmetry property 
on�rms that the dis-

tan
e from point x to y should be the same as the distan
e from point y to x.

The triangle inequality property, despite its abstra
tness, has a major

pra
ti
al importan
e in algorithm assessment [75, Se
. 6.2.1℄. Suppose there

are two estimates y and z for a ground truth x. Let us assume that a

ording

to dA, the estimate z is 
lose to the ground truth x and is also 
lose to the

other estimate y. Then, a

ording to intuition, the se
ond estimate y should

also be 
lose to the ground truth x. This property is ensured by the triangle

inequality property. The triangle inequality also has pra
ti
al impli
ations

to ensure the quality of approximate optimal estimators. Consider x to be

the ground truth, and z to be the optimal estimate, a

ording to a 
ertain


riterion. Let us assume that it is di�
ult to 
ompute the optimal estimate

z su
h that we resort to an approximation y of the optimal z. This happens

often in pra
ti
e. If the triangle inequality does not hold, it would mean

that even if we have a good estimate y, 
lose to the optimal z, whi
h in

turn is 
lose to the ground truth x, it is possible that the distan
e from y
to the ground truth x is high. This property is 
learly not desirable.

5.3 Common metri
s

In this se
tion, we dis
uss some of the 
ommonly used metri
s in the litera-

ture. One way of 
ategorizing the metri
s is based on the kind of variables

involved. Below, we summarize the metri
s used for ve
tors, �nite sets of

ve
tors and �nite sets of traje
tories. Before we present the metri
s, we �rst

dis
uss in ea
h se
tion in whi
h s
enarios these kinds of metri
s are useful.

5.3.1 On ve
tor spa
es

Metri
 on ve
tor spa
es is a well studied problem with the most 
ommon

one being the Eu
lidean metri
. The root mean square error (RMSE) is

based on the Eu
lidean metri
 and is 
ommonly used when the involved

quantities are random. Below we present a slightly general version of the

RMSE.

De�nition 5.3. Given two ve
tors x, y in RN
, then the p-norm for any

1 ≤ p ≤ ∞ is a metri
. It is de�ned as follows:

dp(x, y) ,
p

√√√√
N∑

i=1

|xi − yi|p. (5.1)
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De�nition 5.4. If the ve
tors x and y are random ve
tors with joint dis-

tribution f(x, y), then the following de�nition is also a metri
:

d̄p(x, y) ,
p

√
E[dp(x, y)p], (5.2)

where the expe
tation is de�ned with respe
t to the joint distribution f(x, y).
When we set p = 2 in the above de�nition, we get the 
ommonly used RMSE

metri
.

The Eu
lidean metri
 is also 
ommonly used in the traje
tory estimation

problem for simple s
enarios. For instan
e, in the single traje
tory estima-

tion problem, where there is no un
ertainty in the birth time and the death

time of the traje
tory, then there is a one-to-one 
orresponden
e between

the estimated state and the ground truth at ea
h time instant. In this 
ase,

one 
an just use the metri
 for ve
tors at ea
h time instant.

5.3.2 On the spa
e of �nite sets of ve
tors

Let us now 
onsider s
enarios with multiple targets, where we are inter-

ested in how good the lo
alisation is at ea
h time instant. In this 
ase, at

ea
h time instant, both the ground truth and the estimates are sets of state

ve
tors, where there is un
ertainty about whi
h ve
tor in the estimated set


orresponds to whi
h ve
tor in the ground truth. Now, the quantity of in-

terest is a metri
 between sets of ve
tors.

The study of the metri
s in this spa
e is relatively new. In the MTT lit-

erature, there are several metri
s that have been proposed for this purpose,

su
h as the Wasserstein metri
 [75,76℄, the Hausdor� metri
 [76℄, the OSPA

metri
 [77℄ and many more [78�83℄. Among these, the optimal sub-pattern

assignment (OSPA) metri
 is the most 
ommonly used one. The metri
s

in [82℄ and [83℄ propose a base distan
e in the metri
 that also takes into

the a

ount the quality information about the estimated state. Below we

present the OSPA metri
.

De�nition 5.5. Let d(·, ·) denote a metri
 on RN
su
h that d(x, y) is the

distan
e between x, y ∈ RN
and let d(c)(x, y) = min(d(x, y), c) be the 
ut-o�

metri
 asso
iated with d(x, y) [75, Se
. 6.2.1℄. We also refer to d(c)(x, y)

as base distan
e. Let Πn be the set of all permutations in {1, . . . , n} for any
n ∈ N. Any element π ∈ Πn is a sequen
e (π(1), . . . , π(n)).

Let X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} be �nite subsets of a

bounded observation window W ⊂ RN
, where |A| denotes the 
ardinality of
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a set A. For 1 ≤ p <∞ and |X| ≤ |Y |, OSPA [77℄ is de�ned as

d(c)p (X, Y ) ,


 1

|Y |


 min

π∈Π|Y |

|X|∑

i=1

d(c)(xi, yπ(i))
p + cp(|Y | − |X|)






1
p

. (5.3)

For |X| > |Y |, d(c)p (X, Y ) = d
(c)
p (Y,X). The ∞-OSPA is de�ned as

d(c)∞ (X, Y ) ,





min
π∈Π|Y |

max
1≤i≤|X|

d(c)(xi, yπ(i)) |X| = |Y |

c otherwise

. (5.4)

In Paper V [84℄, we dis
uss the short
omings of the above formulation.

We propose a new metri
 whi
h addresses lo
alisation error as well as missed

and false targets that are of interest in MTT. We also extend the metri
 to


ompute the equivalents of the RMSE metri
 for ve
tors.

5.3.3 On the spa
e of �nite sets of traje
tories

In many tra
king algorithms, su
h as in multiple hypothesis tra
king (MHT)

[27,46,47℄ and joint probabilisti
 data asso
iation (JPDA) [49,50℄, the out-

put of the algorithm is not just the set of states at ea
h time. Instead, the

output is a set of time sequen
es of states, i.e., traje
tories of states. Note

that the theory for sets of traje
tories has been well established in [85℄. To

de�ne a metri
 between sets of traje
tories, it is 
ommon to use the metri


dis
ussed in Se
tion 5.3.2 or a simpler modi�
ation of it. But this strategy

produ
es strange and 
ounter�intuitive behavior. Below, we dis
uss some

of those approa
hes and their short
omings.

One approa
h is to use OSPA on the entire sets of traje
tories [86,87℄. In

this approa
h, one uses the OSPA de�nition where the base metri
 between

two tra
ks is de�ned. To dis
uss the problems with this approa
h, let us


onsider a new set of examples in Figures 5.1 and 5.2. The ground truth is

the traje
tory shown in blue o's in both the �gures and the estimates are

the ones shown in red x's. A

ording to the metri
 we just dis
ussed, OSPA

pi
ks the one with the minimum of the base distan
e between the tra
ks

in the ground truth and the tra
ks in the estimates. Assuming ǫ is almost

0 and ρ is large, the OSPA distan
e indi
ates that both the estimates in

Figure 5.1 and 5.2 have the same distan
e to the ground truth. This is


learly 
ounter�intuitive. The estimate in Figure 5.1 is 
learly a better one


ompared to the one in Figure 5.2. This undesirable behavior is due to

the property that OSPA assigns ea
h tra
k in the ground truth to exa
tly

one tra
k in the estimate, assuming the estimate has more tra
ks than the
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ground truth.

1 2 3 4 5 6

∆

∆+ ǫ

time

state

Figure 5.1: If ǫ is small, the estimate indi
ated by red ×'s is still a good estimate


ompared to the one in Figure 5.2 for the ground truth in blue o's. The only problem

with this estimate is that it has split a single traje
tory into two.

1 2 3 4 5 6

∆

∆+ ǫ

∆+ ρ

time

state

Figure 5.2: If ǫ is small and ρ is large, the estimate tra
ks in red 
olor with×'s should have
a larger distan
e to the ground truth in blue o's 
ompared to the estimate in Figure 5.1.

It is 
ommon to dire
tly use the OSPA metri
 on the set of states of

the traje
tories at ea
h time instant. A short
oming of this approa
h 
an

be illustrated with a simple example. Let us assume that in the ground

truth we have a traje
tory of states, i.e., a time sequen
e of states. Let us


onsider two di�erent version of the estimates:
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• Estimate 1: we obtain a time sequen
e of states exa
tly identi
al to

the one in the ground truth,

• Estimate 2: we obtain two time sequen
es of states, one whi
h ex-

a
tly mat
hes the �rst half of the tra
k in the ground truth and the

se
ond sequen
e whi
h exa
tly mat
hes the se
ond half of the tra
k

in the ground truth. (This 
orresponds to ǫ = 0 in the example in

Figure 5.1).

Using the strategy we just dis
ussed, we get the exa
t same value, 0, for
the `metri
' for both these estimates. This property 
learly violates the

de�niteness property we dis
ussed in the beginning of the 
hapter.

A summary of the learnings from the above two approa
hes is that you


an assign a tra
k in the ground truth to di�erent tra
ks at di�erent times,

but there should be an additional 
ost for being assigned to di�erent tra
ks.

This we refer to as the swit
hing 
ost. We have used this approa
h in

Paper VI of the thesis. In the paper [88℄, we 
ompare our metri
 to some

of the other metri
s [89, 90℄ in the literature that uses the same approa
h.
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Contributions and future work

The main obje
tives of the thesis are to design algorithms for addressing the

data asso
iation problem in traje
tory estimation and to design a metri
 to

evaluate the algorithms. The 
ontributions of ea
h paper 
omprising the

thesis are dis
ussed brie�y in this 
hapter. Furthermore, possible ideas for

future resear
h that arose during the writing of this thesis are presented.

6.1 Contributions

In the following se
tion, the 
ontributions of the six papers in the thesis,

and the relations between them, are presented.

Paper I

In this paper, the problem of forward-ba
kward smoothing (FBS) of Gaus-

sian mixture (GM) densities based on merging is addressed. The existing

literature provides pra
ti
al algorithms for the FBS of GMs that are based

on pruning. The drawba
k of a pruning strategy is that as a result of ex
es-

sive pruning, the forward �ltering 
an result in degenera
y. The ba
kward

smoothing on this degenerate forward �lter 
an lead to highly underesti-

mated data asso
iation un
ertainties. To over
ome this, we propose us-

ing merging of the GM during forward �ltering as well as during ba
kward

smoothing. As mentioned before, the forward �lter based on merging is well

studied in the literature. A strategy to perform the ba
kward smoothing

on �ltered densities with merged 
omponents is analysed and explained in

this paper. When 
ompared to FBS based on an N-s
an pruning algorithm,

the two-�lter smoothed densities obtained using the presented approxima-

tions of the ba
kward �lter show better tra
k-loss, root mean squared error

(RMSE) and normalized estimation error squared (NEES) for lower 
om-

plexity.
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Paper II

The obje
tive of this paper is to obtain an algorithm for two-�lter smooth-

ing (TFS) of GM densities based on merging approximations. The TFS

involves two �lters, namely the forward �lter and the ba
kward �lter, where

the former has been studied extensively in the literature. The latter, i.e.,

the ba
kward �lter, has a stru
ture similar to a GM, but is not a normaliz-

able density. Therefore, the traditional Gaussian mixture redu
tion (GMR)

algorithms 
annot be applied dire
tly in the ba
kward �lter. The existing

literature, though providing an analysis of the ba
kward �lter, does not

present a strategy for the involved GMR. This paper presents two strate-

gies using whi
h the Gaussian mixture redu
tion (GMR) 
an be applied to

the ba
kward �lter. The �rst one is an intragroup approximation method

whi
h depends on the stru
ture of the ba
kward �lter, and presents a way

in whi
h GMR 
an be applied within 
ertain groups of 
omponents. The

se
ond method is a smoothed posterior pruning method, whi
h is similar to

the pruning strategy for the (forward) �ltered densities dis
ussed in [91℄. In

Paper I, the posterior pruning idea is formulated and proved to be a valid

operation for both the forward and the ba
kward �lters. When 
ompared to

FBS based on an N-s
an pruning algorithm, the two-�lter smoothed densi-

ties obtained using the presented approximations of the ba
kward �lter are

shown to have better tra
k-loss, RMSE and NEES for lower 
omplexity.

Paper III

This paper address the data asso
iation problem in multiple traje
tory es-

timation. The obje
tive in this paper is to obtain the maximum aposteriori

(MAP) estimate of the state X from the joint density p(X, φ, Z). This prob-

lem is not tra
table as the number of possibilities of φ is exponential. In

this paper, we address the problem using expe
tation maximisation (EM)

to estimate X , while treating φ as a hidden variable. We show that state

estimates 
an be obtained by running an iterative algorithm, where in ea
h

iteration, a Rau
h-Tung Striebel (RTS) smoother is run for ea
h target.

The measurements updates in the �lter and smoother is 
arried out with

the 
omposite measurements, whi
h are weighted sums of the measurements

at ea
h time instant. The weights, whi
h are the marginal data asso
iation

probabilities, are 
omputed using loopy belief propagation. We show in the

paper, that despite the simpli
ity, the algorithm performan
e is 
omparable

to a multiple hypothesis tra
king (MHT) algorithm.
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Paper IV

The data asso
iation problem is addressed in this paper by estimating the

data asso
iation variable φ from the joint density p(X, φ, Z). On
e φ is es-

timated, X is immediate to estimate using an RTS smoother. The strategy

is to use EM to estimate φ. This strategy results in an iterative algo-

rithm, where in ea
h iteration, one runs an RTS smoother for ea
h target.

The measurements for the RTS smoother are obtained using global nearest

neighbour (GNN) at ea
h time. In the paper, we show that the algorithm

outperforms an MHT implementation in terms of mean optimal sub-pattern

assignment(OSPA) performan
e.

Paper V

In this paper, we present a metri
 named generalised OSPA (GOSPA) to


ompute distan
e between two sets of ve
tors. We show that 
ompared to

the OSPA metri
, our metri
 addresses the problem by penalising missed

and false targets, whereas OSPA penalises the 
ardinality mismat
h. We

also show that the GOSPA metri
 
an be extended to random �nite sets of

ve
tors, whi
h is relevant for performan
e evaluation and algorithm design.

We show that given a joint distribution over two sets of ve
tors, the mean

GOSPA and the root mean squared GOSPA are also metri
s.

Paper VI

In this paper, we propose a metri
 based on multidimensional assignments

in the spa
e of sets of traje
tories. Besides the lo
alisation 
ost, missed and

false targets [84℄, this metri
 also addresses the problems of tra
k swit
hes by

allowing a traje
tory to be assigned to multiple traje
tories a
ross time, but

by penalising it for these multiple assignments. We introdu
e the 
on
epts

of half and full swit
hes to quantify the penalty. As this multidimensional

assignment metri
 belongs to the NP hard 
lass of problems, we also propose

a lower bound for the metri
, whi
h is 
omputable in polynomial time using

linear programming (LP). We also show that this lower bound is a metri


in the spa
e of sets of traje
tories. From simulations, we have observed that

the lower bound 
omputed using LP often returns the optimal value for the

multidimensional metri
. An e�
ient way to 
ompute the LP metri
 using

alternating dire
tion method of multipliers (ADMM) that s
ales linearly

with time is also presented. We further adapt this metri
 to random sets of

traje
tories.
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6.2 Future work

Besides the ideas and algorithms presented in the thesis, we also obtained

a plethora of ideas to investigate in the future. In this se
tion, we present

and dis
uss the ideas, whi
h range from the extensions of GM smoothing to

more 
omplex s
enarios than single-target linear Gaussian pro
ess models,

to 
omputationally 
heaper GM merging methods and message passing in

generi
 graphs.

Merging algorithms

The TFS and FBS algorithms presented in the thesis are based on merging.

There are several methods, su
h as Runnalls', Salmond's and variants of

these, whi
h one 
an 
hoose for GM merging implementation. However,

the 
omputational 
omplexity of these methods is a serious limitation when

it 
omes to pra
ti
al implementations where GM merging is ne
essary at

ea
h time instant. In both redu
tion algorithms, the merging 
ost must be


omputed for every pair of 
omponents, whi
h involves expensive matrix

multipli
ations. Therefore, the 
omplexity of these algorithms is quadrati
,

if not exponential, in the number of 
omponents, whi
h is still expensive


onsidering predi
tion, update and retrodi
tion steps. For the results pre-

sented in the thesis, signi�
ant amount of e�ort went into devising pra
ti
al

merging algorithms, whi
h resulted in two strategies. One is a 
ombination

of Runnalls' and Salmond's algorithms, whi
h is used in the forward �lter.

The other method is a modi�ed version of Salmond's algorithm. A possible

investigation 
an be in making fewer 
ost 
omputations than 
omputing the


ost for every pair (i, j). One way of redu
ing the number of merging 
ost


omputations is by obtaining bounds on the 
ost fun
tion. Suppose there

is an upper bound on the least possible 
ost. And suppose that for some

group of pairs of 
omponents, we 
an 
ompute a lower bound on the 
osts.

If the group's lower bound is greater than the upper bound on the lowest


ost, the 
ost 
omputation for the 
omponent pairs in the group 
an be

avoided. The 
hallenge is thus in obtaining the upper bound on the least


ost, and sele
ting the group that 
an be eliminated. A 
loser analysis of

the 
ost fun
tion is ne
essary to obtain these bounds and a good 
hoi
e of

groups.

Traje
tory estimation with random birth and death events

In Paper III and Paper IV, it is assumed that all the tra
ks are present

the whole bat
h duration. It would be interesting to extend the approa
h

to 
ases where the tra
ks births and deaths happen at random times. One
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exhaustive approa
h is to 
onsider all possible birth and death time 
om-

binations for all the tra
ks. Similar to the data asso
iation problem, this

is also a 
ombinatorial problem. A more appealing approa
h would be to

model these variables into the joint density and use EM to estimate the

birth and death time variables as well.

Online algorithms

The algorithms proposed in Papers I to IV are all bat
h algorithms. Ex-

tending all these algorithms to online algorithms extends the s
ope of these

algorithms. There are several possibilities to investigate here. For instan
e,

one 
an use a sliding window approa
h, where one 
an tune the width of

the window and also the overlap a
ross the windows based on the appli
a-

tion. Another approa
h is to extend the idea of smoothed �ltering proposed

in [91℄. That is, to obtain the �ltered density p(xk|z1:k), one 
an go ba
k

and improve all the approximations made at all the previous time instants.

This improvement in approximation 
an be implemented using an iterative

approa
h in the papers.

Metri
 for sets of traje
tories based on distan
e-based

swit
hing 
ost

In Paper VI, tra
k swit
hes are used to penalise when a traje
tory in the

ground truth set is assigned to multiple traje
tories in the estimate. In

the 
urrent version, the penalty for the tra
k swit
h is a �xed parameter.

But there 
an be s
enarios when this penalty must be varied based on the

severity of the swit
h. For instan
e, 
onsider a pair of traje
tories in the

ground truth that are 
lose to ea
h other for 
ertain duration and then

move apart. Let us 
onsider two estimates for the ground truth. First is

an estimate with traje
tories su
h that the tra
k swit
h happens when the

traje
tories in the ground truth are 
lose together. The se
ond estimate has

traje
tories su
h that the tra
k swit
h happens when the two traje
tories

in the ground truth are far apart. A

ording to intuition, the �rst estimate

is better than the se
ond, as the tra
k swit
h happens in a region where it

might be di�
ult to resolve. This di�eren
e should be possible to address

by de�ning a penalty for the tra
k swit
h that depends on the 
loseness

of traje
tories in the ground truth and their 
orresponding traje
tories in

the estimate. The major 
hallenge here 
an be in de�ning the penalty in

a 
onsistent way that still retains the metri
 properties. This would be an

interesting problem to investigate.
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