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Abstract

This thesis is concerned with trajectory estimation, which finds applications
in various fields such as automotive safety and air traffic surveillance. More
specifically, the thesis focuses on the data association part of the problem,
for single and multiple targets, and on performance metrics.

Data association for single-trajectory estimation is typically performed
using Gaussian mixture smoothing. To limit complexity, pruning or merg-
ing approximations are used. In this thesis, we propose systematic ways to
perform a combination of merging and pruning for two smoothing strate-
gies: forward-backward smoothing (FBS) and two-filter smoothing (TFS).
We present novel solutions to the backward smoothing step of FBS and a
likelihood approximation, called smoothed posterior pruning, for the back-
ward filtering in TF'S.

For data association in multi-trajectory estimation, we propose two it-
erative solutions based on expectation maximization (EM). The application
of EM enables us to independently address the data association problems
at different time instants, in each iteration. In the first solution, the best
data association is estimated at each time instant using 2-D assignment,
and given the best association, the states of the individual trajectories are
immediately computed using Gaussian smoothing. In the second solution,
we average the states of the individual trajectories over the data associa-
tion distribution, which in turn is approximated using loopy belief propaga-
tion. Using simulations, we show that both solutions provide good trade-offs
between accuracy and computation time compared to multiple hypothesis
tracking.

For evaluating the performance of trajectory estimation, we propose two
metrics that behave in an intuitive manner, capturing the relevant features
in target tracking. First, the generalized optimal sub-pattern assignment
metric computes the distance between finite sets of states, and addresses
properties such as localization errors and missed and false targets, which
are all relevant to target estimation. The second metric computes the dis-
tance between sets of trajectories and considers the temporal dimension of
trajectories. We refine the concepts of track switches, which allow a trajec-
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ABSTRACT

tory from one set to be paired with multiple trajectories in the other set
across time, while penalizing it for these multiple assignments in an intuitive
manner. We also present a lower bound for the metric that is remarkably
accurate while being computable in polynomial time.

KEYWORDS: Trajectory estimation, data association, metrics, Gaussian
mixtures, smoothing, expectation maximization
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Chapter 1

Introduction

In many applications, the objective is to systematically and sequentially es-
timate quantities of interest from a dynamic system using indirect and inac-
curate sensor observations. For instance, in radar tracking, the aim is often
to determine the position and velocity of a moving or stationary aircraft or
ship. In communication systems, the concern is to determine the messages
transmitted through a noisy channel. In driver assistance systems, the ob-
jective is to monitor several features about the driver, the vehicle and the
surroundings. There are also several other applications such as forecasting
weather or financial trends, predicting house prices, handwriting recogni-
tion, speaker identification, and positioning in navigation systems.

The sequential estimation problem can be categorized into three differ-
ent problem formulations: prediction, filtering and smoothing. The predic-
tion problem is to forecast the values of the parameters of interest, given
information up to an earlier time, whereas the filtering problem is about
estimating the parameter at the current time, given information up to and
including that time. The smoothing problem is to estimate the past state of
the parameter using all the observations made. An example from [1] can be
used to explain these different problem formulations, in layman terms. As-
sume that we have received a garbled telegram and that the task is to read
it word-by-word and make sense of what the telegram means. The filtering
formulation would be to read each word and understand the meaning so far.
The prediction formulation would be to guess the coming words, based on
what have been read thus far. In the smoothing formulation, the reader is
allowed to look ahead one or more words. Clearly, as the idiom quoted in
the book goes “it is easy to be wise after the event”, the smoothing formula-
tion will give the best result on average, given that a delay can be tolerated.

In many of the above-mentioned applications, the aim is not only to
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estimate the parameters of interest termed ‘states’, but also to describe the
uncertainties in the states. The uncertainties are used to describe the re-
liability or trustworthiness of the produced estimates. Mathematically, an
estimate and its associated uncertainty is quantified using either a probabil-
ity density function (for continuous states) or a probability mass function
(for discrete states). In sequential estimation, the probability function of the
state, which has the information about its estimate and the corresponding
uncertainty, are propagated across time to estimate the subsequent states.
For continuous states, one of the most commonly used density functions is
the Gaussian density function, which is often referred to as the ‘bell-shaped’
curve. The famous Kalman filter |2| is developed as a solution to the fil-
tering problem when the uncertainties are modelled using Gaussian density
functions. There also exist (analytical) solutions to the smoothing problem
with Gaussian densities.

Even though the Gaussian density models and the Kalman filter solu-
tions work well for a wide range of applications, this may not be enough
for complex systems. There are many applications where the uncertainty
in the evolution of the state or the observation noise cannot be accurately
modelled using Gaussian densities. For instance, in the data association
problem, observations are often received from objects that are not of inter-
est and the information regarding which measurement belongs to the target
of interest is not available. In such cases, the uncertainty about the states
are clustered in several small regions where each region corresponds to each
measurement. This happens in ship surveillance, when false measurements
are received from reflections of the sea, and in air traffic surveillance, where
extraneous observations from clouds and birds are received. In these kinds
of scenarios, instead of a single Gaussian density, the system or the obser-
vations are often modelled using what is called a Gaussian-mixture density.
In essence, the uncertainty of the state can be described using a Gaus-
sian mixture where we have a Gaussian component for each cluster/region
around which the uncertainty/data is centered, along with a weight that
captures the intensity. The advantage of using a Gaussian mixture (GM)
is that it is made up of several Gaussian components, which allows one to
extend the Kalman filter solutions to these problems as well. However, in
most problems, the number of possibilities and thus the number of Gaussian
components in the mixture grows with time, which adds to the complexity
of the algorithms.

In the data association problem, the interpretation of a GM density of
the state is that we have Gaussian uncertainty about the state for every



possibility of matching the objects (also referred to as targets) of interest to
the individual observations from the sensors. To give a sense of the number
of possibilities, assume that there are k targets and n measurements. Then,
the number is (n%'k), where n! =n x (n— 1) X ... x 1, assuming that every
target produces a measurement at each time instant. Thus, at each time
instant, we have a GM with a large number of components. When this
density is propagated to the next time to perform the Bayesian inference
we discussed in the beginning of the chapter, the complexity of the problem
explodes. Even for single target, i.e. for £ = 1, the computation of the
optimal solution becomes intractable. Thus, approximations are inevitable.
In this thesis, we provide efficient and effective solutions for both single and

multi-target scenarios.

Another aspect considered in this thesis is the performance evaluation
of trajectory estimation algorithms. The main objective of this part is to be
able to quantify the similarity between the ground truth and the estimates
returned by an algorithm. We might observe that there is a good match
between some of the states in the ground truth and the estimates. We will
want to quantify the similarity to judge how different algorithms perform.
Besides this kind of error, it is possible that there are certain states in the
ground truth that do not have any good match in the estimates, or vice
versa. We would like to take into account these kinds of errors as well when
defining the similarity between the ground truth and the estimates. In this
thesis, we have focussed on mathematically quantifying these kind of simi-
larities for trajectory estimation.

The research presented in this thesis has been sponsored by Vinnova
(The Swedish Governmental Agency for Innovation Systems), under the
research program “Nationella flygtekniska forskningsprogrammet" (NFFP
6), and by Electronic Defence Systems, Saab AB.

Outline of the thesis

The thesis is divided into two parts, where Part I presents the theoreti-
cal background of the Gaussian mixture smoothing problem and Part II
contains a set of appended papers. Part I contains six chapters, among
which Chapter 2 presents the mathematical formulations of the filtering
and smoothing problems and different models used. Chapter 3 discusses
in detail the Gaussian mixture smoothing problem in the context of single
trajectory estimation, and the difficulties involved. In Chapter 4, we discuss
the data association problem in multi target tracking. Chapter 5 presents
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a summary of the metric problem. In Chapter 6, we provide a summary of
the contributions in the appended papers and also discuss possible future
research directions.

In Part II, the contributions of the thesis are presented in Papers I
through VI. In Paper I and Paper II, we considered the data association
problem in estimating a single target trajectory in the presence of clut-
ter. Typically, this is carried out using pruning approximations on GMs.
In the papers, we present an in-depth study of how to design forward-—
backward smoothing and two-filter smoothing for Gaussian mixtures, based
on both merging and pruning approximations. In Paper III and Paper IV,
we consider the data association problem when estimating multiple target
trajectories in the presence of clutter. We present two solutions based on
expectation maximization (EM) that are iterative. The major consequence
of applying EM is that the problem of GM smoothing reduces to Gaussian
smoothing in each iteration. In Paper V and Paper VI, we address the prob-
lem of defining metrics for sets of target states and for sets of trajectories,
respectively.



Chapter 2

Models, objectives and
conceptual solution

In trajectory estimation, the goal is to sequentially estimate an unknown
variable, given noisy observations of the variable. According to the Bayesian
estimation principle, which is commonly used for these problems, the idea
is that based on our prior knowledge of the process, we predict the vari-
able with some uncertainty. Then, at a point when new information is
available, the prediction is updated to get the ‘posterior’. For trajectory
estimation, the term ’posterior’ takes different meanings depending on the
set of measurement that we condition on. When the most recent state of
the trajectory is newer than the complete collection of measurements over
time, we have a prediction problem; for equally new information we have
a filtering problem; and, for a state that is older than the newest piece of
information, we have a smoothing problem.

In this chapter, we briefly discuss the mathematical representation of
the variables and how the trajectory estimation problem can be posed. We
also present a brief summary of the models used in trajectory estimation.

2.1 State space representation

In a state-space representation, the unknown variable to be estimated is
termed the ‘state’. The state variable at time k is here denoted as x; €
R™ and the observed data as z; € R™. The time variability of the state
is described by a motion model while the relation between the state and
the measurements are given by a sensor model. The implicit Markovian
assumption of the state space is that the state x; at time k, given all the
states until time k£ — 1, depends only on the state x;_; at time k — 1. The



CHAPTER 2. MODELS, OBJECTIVES AND CONCEPTUAL SOLUTION

motion model can then be written as

T = gk(%—b”k% (2-1)

where vy, is the process noise. Using this motion model one can describe the
transition model fi(zx|zr_1). It is assumed that we have some knowledge
of the state at time 0, defined by the prior density po(zo).

The measurement zj is given by the sensor model
2L = hk(:nk,wk), (2.2)

where wj, is the measurement noise random variable. The sensor model is
used to obtain the likelihood function py(zx|zx). In the remainder of the
introductory chapters, the subscript & in the notation of the functions gx(+),
hi(+), and pg(-|-) will be dropped without loss of generality and for ease of
writing, and be represented as g(-), h(-), and p(-|).

2.2 Problem statement and conceptual solu-
tion

The posterior density of the state xj is used to determine our estimates of
the state and also describes our uncertainties in the state. The objective
is to recursively compute the posterior density of the state vector x; using
the Bayesian principle [1|. In the prediction problem, the goal is to obtain
the density p(zg|z1.) for [ < k, given the measurements obtained from time
1 to time [, denoted z1,;. In the filtering problem, the goal is to obtain the
posterior density p(zg|z1.x) of the state xp. In the smoothing problem, we
are interested in computing the posterior density p(xg|z1.x), where K > k.
Below, we present the conceptual solutions to these problems.

2.2.1 Prediction and filtering

The prediction and filtering densities can be obtained recursively in two
steps, namely, prediction and update, using the prior p(xy), the process
model f(xy|rr_1) and the likelihood p(zgx|zg). The one-step prediction
(where [ = k — 1 in p(xg|z14)) gives the prediction density at time k by
evaluating the integral

p(rr|216-1) = /p(ifk—l|Z1:k—1)f(ifk|$k—1)d$k—1> (2.3)
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where p(x_1|z1.5_1) denotes the filtered density at time k—1, and p(zg|2z1.5-1)
the prediction density at time k. An update of the prediction density at
time k gives the filtered density at time k as

p(i|zix) o< p(ai|zim—1)p(zi|zr). (2.4)
The constant of proportionality in the above equation is p(Zk‘leAkil), where
p(zklz16-1) = /p($k|21;k—1)p(2k\l’k)d$k- (2.5)

It should be mentioned here that the equations in (2.3), (2.4) and (2.5) pro-
vide the theoretical solutions but, in practice, these equations are in general
not tractable. For instance, the integrals cannot be computed accurately,
or the representation of the different densities in these equations can be
intractable and so on.

2.2.2 Smoothing

Similar to the filtering problem, sequential estimation of the smoothed pos-
terior can be obtained using the Bayesian principle. Though the approaches
discussed here have been designed towards fixed-interval smoothing, they
are in their contextual form, applicable to the fixed-lag and fixed point
smoothing as well [1]. One can also refer to [3] for accumulated state den-
sity formulation of the smoothing problem.

The first approach is forward-backward smoothing (FBS) [4]. As the
name suggests, the first step is forward filtering from time 1 to K, to ob-
tain the filtered density p(xy|z1.1) at each k. This is followed by backward
smoothing from time K to time 1. The backward smoothing step at time k
uses the smoothed density at time £+ 1 together with the filtering densities
at time k as

p(k|21:) = p(wk|210) / %f(xk—i—luk)dxk—kl- (2.6)

The integral in the above equation is proportional to p(zxy1.x|Tk), termed
as the backward likelihood in this thesis. Therefore, it is possible to in-

terpret the division in the backward smoother as computing the backward
likelihood implicitly.

The second approach to smoothing is the two-filter smoothing (TFS)
method [5]. To obtain the smoothed density at time & by this method,
forward filtering is performed from time 1 to k to get the filtered density
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p(zg|2z1.6) and backward filtering is run from time K to time k to get the
backward likelihood p(zxi1.x|7k). The product of the two filter outputs
gives the smoothed density,

p(wrl21:10) o< p(ai|z10)p(zrr1k|Tn).- (2.7)

The backward filtering, similar to the forward filter, is performed recursively
using two steps: update and retrodiction. The update step computes the
likelihood

P(Zet1:x|Tht1) = P(Zg1|Ths1) P2tk [ Ths) (2-8)

and the retrodiction step computes the backward likelihood as

P(Zkt1k|Tr) = /p(2k+1;1<|$k+1)f($k+1|$k)dl’k+1- (2.9)

Comparing the individual terms in (2.6) and (2.7) and using (2.9), one
can observe that the difference between the two smoothing methods arises
due to the difference in the ways the term p(zyy1.x|r41) is computed. FBS
computes it from the division of the prediction and smoothing densities

P(%H\ZLK)

P(Tpy1]21:8) ' (2.10)

P(Zht1k|Trs1) X

whereas the TFS method uses a filtering approach as in (2.8).

2.3 Models

In this section, we discuss the different models relevance to trajectory esti-
mation. We present them in different categories based on their properties.
All these models determine whether or not the integrals in the conceptual
solutions presented in the last section are tractable or not. For instance,
as we discuss in the next chapter, when we have a single target with lin-
ear process and measurement models, along with Gaussian noise terms and
Gaussian prior densities, the prediction, filtered and smoothed densities are
all Gaussian densities. In this case, the Kalman filter and the Rauch-Tung-
Striebel (RTS) smoother provide a recursive solution to obtain the mean
and the covariance of these densities in closed form. Below we summarize
some of the possible models used in the trajectory estimation literature.

The process model g(zx_1,vx) and/or the measurement model h(xy, wy)
can be non-linear functions of the state and the noise variables. A commonly
used non-linear measurement model is when we have range and bearing
measurements and the state that we are interested in is Cartesian position.
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These kind of non-linear functions are often handled using extended Kalman
filter (EKF) [1,6], unscented Kalman filer (UKF) |7,8], quadrature Kalman
filter [9], cubature Kalman filter (CKF) |10] or the particle filter [11-16].

Often in applications, we receive measurements, not only from the tar-
get of interest, but also from sources that are not of interest to us. These
measurements are termed clutter and often yield uncertainties in the data
associations. The problem arises when it is not immediate which measure-
ments are from the single target and which are from clutter. The data
association problem also arises when we have multiple targets in the region
of interest. Again, we receive a set of measurements which may not have
the target identity. The problem is only aggravated when we also have the
clutter data in addition.



10



Chapter 3

Single trajectory estimation

In this chapter, we briefly discuss the various challenges in filtering and
smoothing problems that arise in the single-trajectory estimation problem.
We discuss in detail the Gaussian mixture filtering and smoothing problems,
which are focus areas of the thesis.

3.1 Linear and Gaussian filtering and smooth-
ing

Assume that the prior, p(z¢), is a Gaussian density, and that the motion
and sensor models are linear functions of the state vector x;, with additive
Gaussian noise, i.e.,

v = Frxp_1 + v (31)

and

where Fj, € R™" H; € R™" v ~ N (0,Qy) and wy ~ N (0, Ry). Then,
it can be shown that the posterior densities are Gaussian and have closed
form expressions [2]. Again, for convenience of writing, the subscript k
will be dropped from the matrix notations. In this section, we discuss the
algorithms to obtain the mean and covariance of the filtered and smoothed
densities.

3.1.1 Kalman filtering

Let the prediction density, p(zx|Z1.k—1), and filtered density, p(zx|Z1.), be
denoted as N(mk;uk|k_1,Pk|k_1) and N(Ik;ﬂkm,Pk\k), respectively. The
notation NV (x; i, P) denotes a Gaussian density in the variable x with mean
i and covariance P. The goal of prediction and filtering is then to find the

11
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first two moments of the corresponding Gaussian densities. The ubiquitous
Kalman filter equations |2] provide closed—form expressions for the first two
moments of the prediction and filtered densities in (2.3) and (2.4). The
prediction equations are given by

Prk—1 = Fpe—1jp—1 (3.3)
Pypr = FPpaFT+Q (3.4)

and the update equations by

S = HPy—H" +R (3.5)
K, = Py H'S;! (3.6)
Ze = 2k — Hpgjp— (3.7)
P = Hig—1 + K2y (3.8)
Py = (In — KpH)Pyjg-1- (3.9)

where [, is an n-by-n identity matrix. The so—called innovation Zzj, and
Sk, the innovation covariance, describe the expected measurement distribu-
tions. K} is the Kalman gain, which can be viewed as the weight for new
information in the innovation compared to the prediction.

3.1.2 Smoothing

Below we provide the two versions—forward-backward smoothing (FBS)
and two-filter smoothing(TFS)—of the smoothing algorithm discussed in
Section 2.2.2 to obtain the mean and covariance of the smoothed density
under linear and Gaussian assumptions.

For the FBS method, the Rauch-Tung-Striebel (RTS) [4| smoother gives
the closed-form expressions for the mean and covariance of the smoothed
density. Using notations similar to the ones for the prediction and filtered
densities, the smoothed density at time k is denoted as N (xk; k| K Pk|K).
The RTS equations are

rie =tk + Cr (Brsajx — Hrsfe) (3.10)
Py = P+ Cr (Pegajx — Porai) CF, (3.11)

where
Cr = PupF Pl (3.12)

is similar to the Kalman gain in the Kalman filter equations (3.3) to (3.9).

12
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For the TFS method, the work in [17| provides the closed-form solu-
tion for the moments of the smoothed density. Let the likelihoods be de-
noted as p(Zgs1:x|Tkt1) = N (Ups1Zps1; Vg1, Grr) and p(Ziyr.x|zr) =
N (Jyxw; e, Br). Let the starting conditions at time K be Jx = [ |,
nk = ]and Bx =[ |. The update step in (2.8) of the backward filter is
then given by

o
Upsr = ; (3.13)
Nk
Yo = | (3.14)
| Ak+1 ]
[ Byt O
Grri — 3.15
ki1 o R (3.15)

while the retrodiction step in (2.9) is given by

Jp = Up F (3.16)
M = Yr+1 (3.17)
B, = Uk+1QUZ+1 + Gra1- (318)

Using the outputs of the forward filter and the backward filter at time k,
the smoothed density in (2.7) is given by

tre = e + We (i — Jetiege) (3.19)
with gain X
W, = Pk‘kjg (Jkpk‘kjg —+ Bk)_ . (3.21)

Note that the above three equations have similarities to the Kalman update
equations in (3.8) and (3.9). Here, the filtering parameters, jig, and Py,
are updated with the innovation from the future measurements from time
k + 1 to K, whereas in the Kalman filter the prediction parameters are
updated with the innovation from the measurement at time k.

3.2 Non-linear models

When the motion model g(-) and/or the measurement model h(-) are non-
linear or when the noise is not additive Gaussian, the posterior density for
the prediction, filtering and smoothing is, in general, not a Gaussian den-
sity. One example is when we obtains range and bearing measurements

13
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from a radar and want to track the position and the velocity of the target.
The optimal solution then becomes intractable as the integrals cannot be
computed in closed form. Approximations and sub—optimal approaches are
therefore inevitable. There are several sub-optimal approaches to estimate
the filtered density in this case, some of which are discussed in this section
such as the Gaussian and particle filters. We discuss Gaussian mixtures,
which is applicable when the posterior has multimodal shape, in more detail
in subsequent sections of this chapter.

The smoothing problem has additional challenges compared to the fil-
tering problem. First, the equation in the FBS method involves division of
densities, which is difficult to compute for arbitrary densities. Second, the
accuracy of the approximations in the forward filtering highly affects the
backward smoothing and the smoothed density. The TEFS method, on the
other hand, does not involve density divisions and the two filters can ideally
be run independently of each other. However, the likelihood p(zi1.x|Tk)
is not, in general, a normalizable density function, which limits the possi-
bilities to apply conventional approximation techniques for densities during
the backward filtering. Due to these additional complications, applying the
techniques used for non-linear filtering to non-linear smoothing does not
always produce fruitful results. In this section, we also discuss the chal-
lenges in extending techniques such as sequential Monte Carlo sampling,
linearization and sigma-point methods to the smoothing problem.

3.2.1 Gaussian filters

One approach to handle non-linear models is to approximate the posterior
density as a Gaussian density. The methods that use this approach are
called Gaussian filters/smoothers, named appropriately. There are several
methods to make a Gaussian approximation of the filtered density and to
compute its first two moments. One method is based on linearizations of
the functions, g(-) and h(-), after which the Kalman filter equations in (3.3)
to (3.9) can be used to obtain the mean and covariance of the Gaussian
approximation of the filtered density. The famous extended Kalman fil-
ter [1,6,18] and the many variants of it are based on this approach. Though
these algorithms work for a good number of models, their performance de-
teriorates when the functions are highly non-linear.

Another type of methods used to obtain a Gaussian approximation of
the filtered density is based on sigma-points, such as the unscented Kalman
filter |7, 8], the quadrature Kalman filter [9] and the cubature Kalman fil-
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ter [10]. In these methods, a handful of points, termed sigma-points, are
chosen deterministically based on the first two moments of the prior den-
sity. The sigma points are then propagated through the non-linear models
to obtain the means and covariances used to compute the moments of the
Gaussian approximation of the filtered density. The sigma-point methods
also implicitly perform a linearisation using statistical linear regression |19].

The analogue of Gaussian filtering methods, such as the extended Kalman
filter and the unscented Kalman filter, exists for TFS of non-linear mod-
els. The extended Kalman smoother [20], similar to its filtering counter-
part, has poor performance when the non-linearity is severe. The unscented
Kalman smoother [21], |20, Chap. 7| needs the inverse of the dynamic model
functions, which may not be feasible in all scenarios. The unscented RTS
smoother [22] is the FBS version of a Gaussian smoother and is shown to
have similar performance as the unscented Kalman smoother, but without
the need of inverting the model functions.

3.2.2 Particle filters

Particle filters or sequential Monte Carlo filters [11-16] are based on repre-
senting the density p(z) with a set of randomly drawn samples 2(™)| termed
‘particles’; along with their corresponding weights. The particles define the
positions of Dirac delta functions such that the weighted sum of the Dirac
delta functions of the particles provides a good approximation of the true
density:

N
~ > 6(x—alm (3.22)
m=1
These methods use the concept of importance sampling, where the parti-
cles are generated from a proposal density, which is simpler to generate
the samples from, instead of the true density. The particles are propagated
through the process model and the weights are updated using the likelihood
to obtain the posterior density. The choice of proposal density is crucial to
particle filters, and the proposal density should have the same support as
the true density and should be as similar to the true density as possible.

The advantages of particle filters are that the performance of such filters
is unaffected by the severity of the non-linearity in g(-) and A(-), that they
are are asymptotically optimal also when the functions are non-linear, and
that they are often easy to implement. However, they can be computa-
tionally demanding as the dimension of the state vector increases. Another
problem with particle filters is that they degenerate, which means that
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the weights of most particles become zero. This can be overcome by re-
sampling [16] frequently, where multiple copies of the ‘good’ particles with
significant weights are retained and the ‘poor’ particles are removed.

Similar to the filtering method, sequential Monte Carlo smoothing is
based on approximating the smoothed posterior density using a set of par-
ticles. In particle Markov chain Monte Carlo (MCMC) methods [23], par-
ticle filters are use to approximate the joint posterior distribution, which
is then used to generate proposals for MCMC. In case of FBS based on
these methods, a vanilla version works well when k£ ~ K, where K is the
batch duration. However, when k < K [24], because of successive resam-
pling steps, the marginal density becomes approximated by a single particle
which leads to deteriorated performance. This is the degeneracy problem
that is inherent in particle filters [11|. One simple approach is to use the
forgetting properties of the Markov model, i.e., to approximate the fixed-
interval smoothed density p(zg|z1.x) using the fixed-lag smoothed density
p(Tk|21:6+6) [25,26]. Unfortunately, automatic selection of ¢ is difficult.

In case of TFS, it is not straightforward to approximate the output of
the backward filter using particles, as it it not a normalizable density. The
artificial prior method |5] uses the auxiliary probability density p(zg|2zk+1.x)
instead of the likelihood p(zxi1.x|zxk). The auxiliary density is obtained
using what is called artificial prior densities. The choice of the artificial
prior plays a major role in the performance of the TFS algorithm for particle
methods.

3.3 Gaussian mixture filtering and smoothing

There are many applications in which we receive several measurements on
the state variable, where the reliability of the measurements can vary. The
likelihood in these applications are conveniently modelled as mixtures. In
the classic data association problem, where we do not have information
about which measurement corresponds to which target upon receiving a set
of measurements, the posterior density is a Gaussian mixture, even if we
assume the motion and measurements models are linear and Gaussian. We
discuss more on this problem in the next chapter.

Gaussian mixtures are weighted sum of Gaussian densities, which usually
make a good approximation for the multi-modal densities. In this section,
we explain that when the likelihood and/or the state transition density are
Gaussian mixtures, the true posterior densities after filtering and smoothing
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are also Gaussian mixtures. The number of terms in the GM usually grows
exponentially with time, and we therefore need to constrain the number of
terms. In these situations, reduction algorithms can be used to approximate
the posteriors. In this section, we provide a brief overview of the most
commonly used mixture reduction methods and discuss the challenges in
applying these to smoothing problems.

3.3.1 Optimal solution

It was presented in the last chapter that the forward-backward smooth-
ing (FBS) method is based on forward filtering and backward smoothing
while the two-filter smoothing (TFS) method involves forward filtering and
backward filtering. These steps involve the prediction, update and retrod-
iction steps stated in equations (2.3), (2.4), (2.8) and (2.9). One can notice
that all these equations involve products of functions, which in this case
are Gaussian mixtures. When the state transition densities and the likeli-
hoods are both GMs, one can use the fact that a product of GMs yields a
GM and show that the posterior densities are all Gaussian mixtures. The
number of components in the resulting GM is the product of the number of
components in the individual mixtures, which explains why the number of
components grows exponentially with time.

Forward filtering

One can show that, starting with a GM prior, the prediction and the up-
date steps of forward filtering result in a Gaussian mixture posterior density.
Evaluating these steps with GMs is equivalent to using Kalman filters, one
for every triplet of Gaussian components in the prior p(xg_1|21.5-1), the tran-
sition density f(zg|zg—1) and the likelihood p(zk|xk), yielding a Gaussian
term in the posterior p(zx|z1.,). The term in the constant of proportion-
ality p(zx|z1.6—1) in (2.5), is not calculated explicitly in the update step of
the Kalman filter, which involves product of Gaussian densities. However,
in the case with GMs, this constant of proportionality is used in the up-
dated weight calculation. The updated weight for the resulting Gaussian
component is given by the product of the individual weights of the compo-
nents in the prediction density and the likelihood along with the constant
of proportionality.

Backward smoothing of FBS

The backward smoothing of FBS involves a division of the smoothed and
the prediction GM densities as in equation (2.6). Starting from time K,
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using the principle of mathematical induction, it can be shown that the
division results in a GM and therefore the smoothed posterior p(zx|21.x)
is also a GM which has the same number of components for £ =1,... K.
The weights of the components in the the smoothed density at time k are
the same as the weights of the components in the smoothed density at time
k + 1. Instead of performing the division, an equivalent way of obtaining
the smoothed posterior is as follows [3, Sec. V A]: starting from k = K —1,
the RTS recursions are used for every triplet of associated components in
the smoothed density at time k& + 1, the prediction at time k& and in the
filtered density at time k, to compute the smoothed density at time k.

Backward filter of TFS

In the backward filter of TFS, we need to compute the backward likelihood
as in equations (2.8) and (2.9). The ideas in forward filtering cannot be
applied directly to the backward filter because often the likelihoods can be
of the form

wo + Zwi/\/(Hizk; i, P) (3.23)

where different H; can capture different features of the state xp. Strictly
speaking, these are not Gaussian mixture densities; they are neither Gaus-
sian nor densities in x;. We refer to them as reduced dimension Gaussian
mixtures in this thesis. To compute the product of likelihoods, one can use
the following general product rule:

wiN (Hix; pi, Py) X wiN (Hjz; iy, Py) = wigN (Hija; iz, Piy) — (3.24)

where

- HZ
Hj
Hi
Hij = ] (3.27)
| M
_H 0
P = . (3.28)
0 P

Using this in equations (2.8) and (2.9), one can show that the output of
the backward filter has a structure similar to the inputs as in (3.23). The
smoothed density is given by the product of the outputs of the two filters,
that can be computed similarly to the update step in the forward filter of
GMs, including the weight update using the proportionality constant as
discussed in Section (3.3.1).
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3.4 (Gaussian mixture reduction

The number of components in the resulting GM, after update, prediction
and retrodiction iterations, grows exponentially with time. Therefore, ap-
proximations are necessary to reduce the number of components. There are
several Gaussian mixture reduction (GMR) algorithms that are well stud-
ied in the literature, which can be used for filtering and smoothing. The
GMR algorithms are based on pruning insignificant components from the
GM and/or merging similar components.

3.4.1 Pruning

The number of components in the posterior GM can be prevented from
growing exponentially by pruning some of the components after each iter-
ation. There are several pruning strategies that can be adopted. Three
methods that are commonly used are threshold-based pruning [27], M-best
pruning [28-30] and N-scan pruning. In threshold-based pruning, only the
components that have a weight greater than a predefined threshold are
retained and used for prediction in the next iteration. The number of com-
ponents in the resulting GM can vary based on the threshold. The idea
behind the M-best pruning algorithm is that only the nodes with the M
highest weights (or association probabilities) are retained.

To explain the N-scan pruning [27], which is designed for reduction dur-
ing filtering, let us say we are interested in performing pruning at time k.
We pick the component that has the maximum weight. Starting from this
component, we trace backwards N steps to find its parent component, at
time k£ — N. Only the offspring at time k£, of this parent node at time £k — N,
are retained. To be mentioned here is that the multiple hypothesis tracking
(MHT) filtering [27] is often based on N-scan pruning.

3.4.2 Merging

One can also use merging of similar components to reduce the number
of components in a GM . There are several merging algorithms such as
Salmond’s [31-33|, Runnalls’ 34|, Williams’ |35] algorithms and many more
|36-39]. These algorithms work based on the following three steps:

1. Find the most suitable pair of components to merge according to a
‘merging cost’ criterion.

2. Merge the similar pair and replace the pair with the merged Gaussian
component.
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3. Check if a stopping criterion is met. Otherwise, set the reduced mix-
ture to the new mixture and go to step 1.

The merging cost in step 1 looks for similarity of the components and it can
be different across algorithms. A few of the commonly used merging costs
are the Kullback-Leibler divergence [40] and the integral-squared error [41-
43|. The merging of the components in step 2 is usually based on moment
matching [40]. That is, the moments of the GM before and after merging are
the same. The stopping criterion can also vary across algorithms, e.g., it can
be based on if the components in the reduced mixture is at a manageable
number. In certain algorithms, it is checked based on that the components
in the reduced GM are not similar.

3.4.3 Choice of GMR

Two main criteria in choosing the appropriate GMR algorithm are the com-
putational complexity involved and the accuracy. Most of the pruning al-
gorithms are usually simpler to implement, compared to merging. There is
information about the uncertainty of the estimate in the covariance matri-
ces of the pruned components. So, as a result of pruning, we might have
underestimated uncertainties. In contrast, for merging, the uncertainty is
preserved because of moment-matching. However, the merging algorithms
are more computationally intensive than pruning. As a trade-off between
complexity and accuracy of the uncertainty, it may be more feasible to use a
combination of pruning and merging. Pruning ensures that the components
with negligible weights are removed, without being aggressive. Merging re-
duces the number of components further, but keeping the moments of the
retained density the same as before.

3.4.4 GMR for FBS and TFS

Applying GMR, both pruning and merging for the forward filtering is straight-
forward. When the forward filtering is based on pruning, it is trivial to
perform the backward smoothing of the FBS similar to the optimal solu-
tion, using the filtered densities. Starting from the last time instant, RTS is
performed backwards on the individual retained components. This method
suffers from degeneracy similar to particle smoothing. This is because for
k < K, the number of components in the forward filter that corresponds
to the components in the smoothed posterior will be one. A solution to
the degeneracy is to perform FBS based on merging, something that has
not been explored much in the literature. The main challenge is that for
the backward smoothing, the associations across components are no longer
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simple, to use RTS directly and compute the weights of the smoothed den-
sity. In Paper I [44] of this thesis, the problem of FBS based on merging is
investigated.

The literature on TFS for Gaussian mixture densities is also sparse. The
two filters of the TFS can be run independently of each other. This allows
the GMR algorithms to be used on both the filters. Then the difficulty is
in using the Gaussian mixture reduction techniques in the backward filter,
since its output is not a density function. So, the GMR algorithms discussed
here cannot be applied directly. In Paper II [45] of this thesis, we propose a
method called smoothed posterior pruning, through which pruning can be
employed in the backward filter.
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Chapter 4

Multi—trajectory estimation

In the previous chapter, we presented a brief discussion of the data as-
sociation problem. Even with linear Gaussian assumptions, the number of
Gaussian terms in the Gaussian mixture form of the posterior density grows
exponentially. In this chapter, we discuss the problem further in the multi—
target setting. Additional challenges are posed by having a set of data from
multiple targets, where the target identities are not available.

4.1 Data association

In the presence of multiple point targets, each of which follows a linear-
Gaussian process and measurement model, at each time we observe a set
of measurements. If the identity of a target is not available in the mea-
surements, then there is uncertainty about which measurement belongs to
which target. In case of a single trajectory, each hypothesis is an event of
assigning a target to a measurement from the set. In this case, the number
of possibilities at each time is the same as the number of measurements,
which when multiplied across time becomes exponential.

With multiple targets, at each time, the problem is even worse. Let
us say we have n targets and m measurements at a particular time. Now,
each hypothesis, often referred to as a global hypothesis, is the event of
associating the n targets to the m measurements (assuming n < m) such
that a target is assigned to at most one measurement and a measurement is
assigned to at most one target. The number of possibilities is combinatorial
given by #'n),, for instance, if we assume n = 2 and m = 3, the number of
combinatorial possibilities is 6; if we double them up, n = 4 and m = 6, the
number of possibilities is 360. If we also consider the possibility that a tar-

get does not need to generate a measurement, in other words, a target can
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be missed, the number of possibilities is even higher, and again combinato-
rial. Across time, the complexity of the problem gets multiplied. Therefore,
the optimal way of solving the problem considering all the possibilities is
intractable. Below we discuss briefly the traditional approach taken.

Let K denote the batch duration, k£ the time index, Nx the number of
targets in the entire batch duration and M the number of measurements
obtained at k. Assume the state variable is X = (X3, :k=1,... K, i =
1...,Nk) and the measurement is Z = (Z;: k=1,..., K, j=1..., M)
where ¢ stands for the target index and j for the measurement index.

If we know the posterior density p(X|Z), we can estimate the states,
which are tractable and straightforward if there is no uncertainty in the
measurement origin. However, in the multi—target tracking problems, the
measurement, set comprises the measurements from the targets that are
detected as well as the clutter measurements, and the origin of the mea-
surements in the set are not known. To handle this uncertainty in the
measurement origin, one traditional way is to introduce a data associa-
tion variable ¢ = {¢y;, Vk, i}, where ¢p; = j denotes the assignment of
the target 7 at time k to the measurement Zj ;. With these variables,
the density of interest becomes p(X, ¢|Z), using which the estimates can
be computed. Though the introduction of this variable makes it easier
to represent the measurement uncertainty, the estimation problem is still
intractable due to the sheer number of possibilities of ¢. For instance, con-
sider Xyap = argmaxy p(X|Z) = arg maxx max, p(X, ¢|Z). The optimal
point is searched over all the possibilities of ¢, which is exponential in the
number of measurements. Thus, sub-optimal approaches are inevitable. In
the remainder of this section, we give a brief overview of some of the ex-
isting sub-optimal algorithms to estimate X. Adhering to the conventional
terminology, we refer to an instance of ¢ as the data association hypothesis.

4.2 Tracking algorithms

The existing algorithms for tracking can be broadly categorised into two:
the ones that jointly estimate X and ¢, and the others that estimate X
while marginalizing ¢. Global nearest neighbour (GNN) [27] and multiple
hypothesis tracking (MHT) [27,46,47| belong to the first category, whereas
joint probabilistic data association (JPDA) [27,48-55], probabilistic MHT
(PMHT) [56-59] and their variants belong to the second one. There are
also sampling-based algorithms like Markov chain Monte Carlo data asso-
ciation (MCMCDA) [60]. In this algorithm, an estimate of a hypothesis is
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obtained by making several random changes to the existing hypothesis. The
computational and memory requirements of this algorithm are very high,
in general. In this section, we first focus on the first category of algorithms
that estimate ¢, while estimating X, followed by the second category that
estimate X.

4.2.1 Global nearest neighbour

In case of the global nearest neighbour algorithm, at each time instant k,
the best data association hypothesis is chosen to be the one with the largest
Pr{¢|Z1.1}, where ¢y stands for the data association at time k and Z;.
for the set of measurements from time 1 to k, respectively. This hypothesis
is propagated to the next time and associated with the new set of mea-
surements to form a new set of hypotheses. The best hypothesis is chosen
to be the one with the largest Pr{¢.;41|Z1.k+1} and the whole procedure
is repeated for subsequent time instants. This algorithm is very simple to
implement using 2-D assignment algorithms [61] such as the auction algo-
rithm [62| or Jonker-Volgenant-Castanon (JVC) [63], but since it makes
hard decisions every time instant, it underestimates the covariance and can
often lead to track loss.

4.2.2 Multiple hypothesis tracking

Similar to GNN, MHT generally makes hard decisions when estimating ¢.
However, unlike GNN, the MHT algorithms make hard decisions based on
multiple scans of data. The commonly used N-scan pruning based track—
oriented MHT algorithm chooses the best set of hypotheses at time & based
on the last N scans of data and, propagates them, and repeats the proce-
dure again. In essence, the algorithm estimates the best hypothesis at time
k — N based on the information until the current time instant k. The N-
scan pruning algorithm is typically implemented using the /N-dimensional
assignment algorithms as in [64-66]. Another popular version of MHT is
to retain the M-best hypotheses at each time and propagate only these M
hypotheses to the next time instant. This is typically implemented using
Murty’s algorithm [28-30,67].

As can be noticed, MHT maintains multiple data association hypotheses
every time instant and, hence the name ‘multiple hypothesis tracking’. The
larger the NV (or M) is, the more accurate the estimates are. However, larger
N leads to higher complexity; and smaller N leads to the ‘short’ history
problem of MHT. That is, the different hypotheses that are maintained
each time instant k differ only in the most recent N (kK — (N + 1),...,k)
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associations and are identical from time 1 to K — N. Therefore, there is only
one data association sequence maintained from time 1 to £k — N and any
new information from future measurements cannot be used to update the
data association in those time instants.

4.2.3 Joint probabilistic data association

Let us now shift our focus to the other class of algorithms which estimate

X by integrating out ¢. The JPDA algorithm integrates out ¢ at each time

instant and performs moment matching to approximate the distribution

over X to a Gaussian density. That is, the possibly multi-modal density

p(X|Z) = > p(X,¢|Z) is approximated to a uni-modal density p(X|Z)
¢

where the inclusive KL divergence KL(p(X|2)||p(X|Z)) [68] is minimized.
Again, this algorithm is computationally simpler than MHT, but when the
approximated posterior density is propagated across time, the performance
degrades.

4.2.4 Probabilistic multiple hypothesis tracking

Another popular tracking algorithm is the probabilistic multiple hypothesis
tracking (PMHT), which aims to compute the maximum a posteriori (MAP)
estimates of the entire sequence of target states. The idea is to obtain these
estimates using the expectation maximization (EM) algorithm, where the
solution is iterative and involves several local optimisations:

D) — arg m)&(LXZ Pr{¢|Z,X(")} Inp(X, ¢, 7). (4.1)
¢

PMHT allows a target to be associated to multiple measurements, which
enables closed—form expressions to compute the marginal association prob-
abilities of the different trajectories. However, this approximation is more
suitable for extended target models than the point target model assump-
tions presented in the beginning of this section. Paper III [69] of this thesis
also uses EM similar to PMHT to estimate the states; however, we retain
the point—target constraints that a target is assigned to at most one mea-
surement and a measurement is assigned to at most one target.

4.3 EM for data association

Expectation maximization (EM), first discussed in [70,71], is an iterative
technique, widely used to obtain approximate maximum-likelihood estima-
tion (MLE), or MAP estimates of parameters from observed data. In the
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EM solution, the model is assumed to have hidden variables that relate the
measurements with the states. This makes the posterior density analysis
simpler, which is otherwise intractable. In trajectory estimation, we are
interested in obtaining estimates of the state vector X. In this section, we
propose two versions of EM to obtain the state estimates using the joint
density p(X, ¢, Z). To start with, we present a brief introduction to the EM
algorithm for MAP estimation.

To derive EM in its general form, we adhere to a notation that is common
in the EM literature. According to the notation, € is the parameter to
be estimated, Z the observed data and ~ the hidden variable. The MAP

estimation of € is given by,
0 = arg mgaxp(9|Z) = arg meaxln/p(e, Z,7y)dr. (4.2)

Note that the logarithm that has been introduced in the maximization is a
monotonically increasing function and does not affect the MAP estimation.

In many applications (including tracking, as will be shown), the integral
in the MAP estimation according to (4.2) is not always tractable. To get a
tractable approximation, ¢,(v) over the hidden variable v is introduced in
the objective function in (4.2):

i p(0.Z,7)
1np(6.2) =1n [ 6,(2) o (43)
p(0.Z,7)
> /%(7) IHWGW (4.4)
= Flgy(7), 0). (4.5)

Jensen’s inequality is used to go from (4.3) to (4.4). As can be observed,
the term F(g,(),6) on the right-hand side of (4.4) is a lower bound on the
logarithm of the joint density Inp(f, Z) [71| and is a functional of ¢, and 6.
In EM, this lower bound is increased with iterations such that the difference
between the bound and the logarithm of the density is decreased [70]. This
is achieved by performing the following set of operations in each iteration
(n+1):

¢t () = arg max F (g, (7), ™) (4.6)
0+ = arg max ]-"(q,(Y"H)(v), 0). (4.7)

The first step is called the the E-step, where the best q§"+1)(fy) is computed
given ™. The second step, called the M-step, computes the best §" given
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n+1
A" ().

In Paper III [69] and Paper IV [72], we have used two approaches in EM
to obtain the estimates. In Paper III, we use the EM problem formulation
to estimate the state X directly from the joint density p(X, ¢, Z). In other
words, we set § = X and 7 = ¢. In Paper IV, we reverse the roles of X and
¢. That is, we use EM to estimate the data association ¢, from which we
can obtain the state estimates X immediately.
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Chapter 5

Metrics

Metrics are important in multi-target tracking (MTT) for performance eval-
uation and algorithm design. In essence, metrics are necessary to quantify
the closeness between a ground truth and an estimate thereof. When design-
ing metrics for MTT, there are specific challenges that must be addressed,
such as localisation error, error due to missed and false targets and penalty
for track switches.

In this chapter, we discuss the need for metrics in MTT, followed by a
discussion on the basic metric properties. We also present a summary on
the commonly used metrics, and briefly discuss the challenges in designing
a metric for trajectory estimation.

5.1 Need for a metric

Metrics are needed in trajectory estimation for two main reasons: designing
algorithms and performance evaluation. In algorithm design, one wants an
estimate that is close to the true state in some sense. It is reasonable that a
metric is used to define this closeness. When evaluating the performance of
an algorithm, one needs a similarity measure to quantify the error between
the obtained estimates and the ground truth. Once again, it seems natural
that a metric is used to quantify this error.

In multi-target tracking (MTT), the estimation is often formulated as a
Bayesian filtering problem where the ground truth is a random quantity and
the estimates depend deterministically on the observed data. For perfor-
mance evaluation, in many cases, we average over several realizations of the
data, so estimates are random as well. In both the scenarios we discussed
above—designing algorithms and performance evaluation—the objectives
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involve an averaging of the metric over different instances of the random
quantities involved, i.e., the ground truth and the estimate. In other words,
the similarity between the ground truth and the estimate is computed in
an average sense. It is again important that this similarity which involves
averaging is also a metric.

5.2 Metric properties

The definition of a metric varies slightly based on if the variables involved
are random or not. In this section, we summarize the properties of a metric
on general spaces and on probability spaces. We also discuss the significance
of these properties briefly.

Definition 5.1. A metric da(-,-) on a set A is a function that satisfies the
following properties for any x,y,z € A [73, Sec. 2.15]:

1. Non-negativity: da(x,y) > 0.

2. Definiteness: da(z,y) =0 < x =1y.

3. Symmetry: da(x,y) = da(y,x).

4. Triangle inequality: da(x,y) < da(z, z) + da(z,y).

For metrics in a probability space A, the definiteness between random
variables is in the almost—sure sense [74, Sec. 2.2|, as described in the fol-
lowing definition.

Definition 5.2. A metric da(-,-) on a set A is a function that satisfies the
following properties for random variables x,y,z € A:

1. Non-negativity: dy(z,y) > 0.

2. Definiteness: da(z,y) =0 < Pr(z =y) = 1.

3. Symmetry: da(x,y) = da(y, ).

4. Triangle inequality: da(z,y) < da(x,z) + da(z,y).

In the above definition, Pr(x = y) = 1 implies that the event that x and y
take the same value has probability 1.

We now proceed to describe and discuss the significance of these prop-
erties, with more emphasis on the triangle inequality property. The non-
negativity property ensures that the distance cannot be negative. The defi-
niteness property ensures that a distance between a point to itself is 0. For
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random variables, this property is in essence ensured for all the points that
have non-zero probability. The symmetry property confirms that the dis-
tance from point x to y should be the same as the distance from point y to x.

The triangle inequality property, despite its abstractness, has a major
practical importance in algorithm assessment |75, Sec. 6.2.1]. Suppose there
are two estimates y and z for a ground truth x. Let us assume that according
to d_4, the estimate z is close to the ground truth x and is also close to the
other estimate y. Then, according to intuition, the second estimate y should
also be close to the ground truth x. This property is ensured by the triangle
inequality property. The triangle inequality also has practical implications
to ensure the quality of approximate optimal estimators. Consider x to be
the ground truth, and z to be the optimal estimate, according to a certain
criterion. Let us assume that it is difficult to compute the optimal estimate
z such that we resort to an approximation y of the optimal z. This happens
often in practice. If the triangle inequality does not hold, it would mean
that even if we have a good estimate y, close to the optimal z, which in
turn is close to the ground truth z, it is possible that the distance from y
to the ground truth x is high. This property is clearly not desirable.

5.3 Common metrics

In this section, we discuss some of the commonly used metrics in the litera-
ture. One way of categorizing the metrics is based on the kind of variables
involved. Below, we summarize the metrics used for vectors, finite sets of
vectors and finite sets of trajectories. Before we present the metrics, we first
discuss in each section in which scenarios these kinds of metrics are useful.

5.3.1 On vector spaces

Metric on vector spaces is a well studied problem with the most common
one being the Euclidean metric. The root mean square error (RMSE) is
based on the Euclidean metric and is commonly used when the involved

quantities are random. Below we present a slightly general version of the
RMSE.

Definition 5.3. Given two vectors =, y in RY, then the p-norm for any
1 <p<ooisametric. It is defined as follows:

(5.1)
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Definition 5.4. If the vectors x and y are random vectors with joint dis-
tribution f(x,y), then the following definition is also a metric:

dy(z,y) é{’/IE[dp(yc, y)P], (5.2)

where the expectation is defined with respect to the joint distribution f(z,y).
When we set p = 2 in the above definition, we get the commonly used RMSE
metric.

The Euclidean metric is also commonly used in the trajectory estimation
problem for simple scenarios. For instance, in the single trajectory estima-
tion problem, where there is no uncertainty in the birth time and the death
time of the trajectory, then there is a one-to-one correspondence between
the estimated state and the ground truth at each time instant. In this case,
one can just use the metric for vectors at each time instant.

5.3.2 On the space of finite sets of vectors

Let us now consider scenarios with multiple targets, where we are inter-
ested in how good the localisation is at each time instant. In this case, at
each time instant, both the ground truth and the estimates are sets of state
vectors, where there is uncertainty about which vector in the estimated set
corresponds to which vector in the ground truth. Now, the quantity of in-
terest is a metric between sets of vectors.

The study of the metrics in this space is relatively new. In the MTT lit-
erature, there are several metrics that have been proposed for this purpose,
such as the Wasserstein metric |75,76|, the Hausdorff metric |76], the OSPA
metric |77] and many more [78-83|. Among these, the optimal sub-pattern
assignment (OSPA) metric is the most commonly used one. The metrics
in [82] and [83] propose a base distance in the metric that also takes into
the account the quality information about the estimated state. Below we
present the OSPA metric.

Definition 5.5. Let d(-,-) denote a metric on RN such that d(x,y) is the
distance between x,y € RN and let d©(x,y) = min(d(x,y), c) be the cut-off
metric associated with d(x,y) [75, Sec. 6.2.1]. We also refer to d\9(z,y)
as base distance. Let 11, be the set of all permutations in {1,...,n} for any
n € N. Any element 7 € I1,, is a sequence (n(1),...,m(n)).

Let X = {x1,...,¢x)} and Y = {y1,...,yy |} be finite subsets of a
bounded observation window W C RY, where |A| denotes the cardinality of

32



5.3. COMMON METRICS

a set A. For 1 <p <oo and |X| <|Y|, OSPA [77] is defined as

d9(X,Y) = min d' (i, Yu))” + (Y] — | X]) . (5.3)

[Y] | ety =

For | X| > Y], dY(X,Y) = d? (Y, X). The co-OSPA is defined as

min  max d© (T3, Yri)) | X| = Y]
dO(X,Y) 2 { mely 1<i<]X| . (5.4)
c otherwise

In Paper V [84], we discuss the shortcomings of the above formulation.
We propose a new metric which addresses localisation error as well as missed
and false targets that are of interest in MTT. We also extend the metric to
compute the equivalents of the RMSE metric for vectors.

5.3.3 On the space of finite sets of trajectories

In many tracking algorithms, such as in multiple hypothesis tracking (MHT)
|27,46,47| and joint probabilistic data association (JPDA) [49,50], the out-
put of the algorithm is not just the set of states at each time. Instead, the
output is a set of time sequences of states, i.e., trajectories of states. Note
that the theory for sets of trajectories has been well established in [85]. To
define a metric between sets of trajectories, it is common to use the metric
discussed in Section 5.3.2 or a simpler modification of it. But this strategy
produces strange and counter—intuitive behavior. Below, we discuss some
of those approaches and their shortcomings.

One approach is to use OSPA on the entire sets of trajectories [86,87|. In
this approach, one uses the OSPA definition where the base metric between
two tracks is defined. To discuss the problems with this approach, let us
consider a new set of examples in Figures 5.1 and 5.2. The ground truth is
the trajectory shown in blue o’s in both the figures and the estimates are
the ones shown in red x’s. According to the metric we just discussed, OSPA
picks the one with the minimum of the base distance between the tracks
in the ground truth and the tracks in the estimates. Assuming € is almost
0 and p is large, the OSPA distance indicates that both the estimates in
Figure 5.1 and 5.2 have the same distance to the ground truth. This is
clearly counter—intuitive. The estimate in Figure 5.1 is clearly a better one
compared to the one in Figure 5.2. This undesirable behavior is due to
the property that OSPA assigns each track in the ground truth to exactly
one track in the estimate, assuming the estimate has more tracks than the
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ground truth.

state

A+ed

1 2 3 4 5 6 time
Figure 5.1: If € is small, the estimate indicated by red x’s is still a good estimate

compared to the one in Figure 5.2 for the ground truth in blue o’s. The only problem
with this estimate is that it has split a single trajectory into two.

state
A"’,O” % x
A‘i‘E” %

Al o °

1 2 3 4 5} 6 time
Figure 5.2: If e is small and p is large, the estimate tracks in red color with x’s should have
a larger distance to the ground truth in blue o’s compared to the estimate in Figure 5.1.

It is common to directly use the OSPA metric on the set of states of
the trajectories at each time instant. A shortcoming of this approach can
be illustrated with a simple example. Let us assume that in the ground
truth we have a trajectory of states, i.e., a time sequence of states. Let us
consider two different version of the estimates:
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e Estimate 1: we obtain a time sequence of states exactly identical to
the one in the ground truth,

e LEistimate 2: we obtain two time sequences of states, one which ex-
actly matches the first half of the track in the ground truth and the
second sequence which exactly matches the second half of the track
in the ground truth. (This corresponds to € = 0 in the example in
Figure 5.1).

Using the strategy we just discussed, we get the exact same value, 0, for
the ‘metric’ for both these estimates. This property clearly violates the
definiteness property we discussed in the beginning of the chapter.

A summary of the learnings from the above two approaches is that you
can assign a track in the ground truth to different tracks at different times,
but there should be an additional cost for being assigned to different tracks.
This we refer to as the switching cost. We have used this approach in
Paper VI of the thesis. In the paper [88], we compare our metric to some
of the other metrics [89,90] in the literature that uses the same approach.
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Chapter 6

Contributions and future work

The main objectives of the thesis are to design algorithms for addressing the
data association problem in trajectory estimation and to design a metric to
evaluate the algorithms. The contributions of each paper comprising the
thesis are discussed briefly in this chapter. Furthermore, possible ideas for
future research that arose during the writing of this thesis are presented.

6.1 Contributions

In the following section, the contributions of the six papers in the thesis,
and the relations between them, are presented.

Paper I

In this paper, the problem of forward-backward smoothing (FBS) of Gaus-
sian mixture (GM) densities based on merging is addressed. The existing
literature provides practical algorithms for the FBS of GMs that are based
on pruning. The drawback of a pruning strategy is that as a result of exces-
sive pruning, the forward filtering can result in degeneracy. The backward
smoothing on this degenerate forward filter can lead to highly underesti-
mated data association uncertainties. To overcome this, we propose us-
ing merging of the GM during forward filtering as well as during backward
smoothing. As mentioned before, the forward filter based on merging is well
studied in the literature. A strategy to perform the backward smoothing
on filtered densities with merged components is analysed and explained in
this paper. When compared to FBS based on an N-scan pruning algorithm,
the two-filter smoothed densities obtained using the presented approxima-
tions of the backward filter show better track-loss, root mean squared error
(RMSE) and normalized estimation error squared (NEES) for lower com-
plexity.
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Paper 11

The objective of this paper is to obtain an algorithm for two-filter smooth-
ing (TFS) of GM densities based on merging approximations. The TFS
involves two filters, namely the forward filter and the backward filter, where
the former has been studied extensively in the literature. The latter, i.e.,
the backward filter, has a structure similar to a GM, but is not a normaliz-
able density. Therefore, the traditional Gaussian mixture reduction (GMR)
algorithms cannot be applied directly in the backward filter. The existing
literature, though providing an analysis of the backward filter, does not
present a strategy for the involved GMR. This paper presents two strate-
gies using which the Gaussian mixture reduction (GMR) can be applied to
the backward filter. The first one is an intragroup approximation method
which depends on the structure of the backward filter, and presents a way
in which GMR can be applied within certain groups of components. The
second method is a smoothed posterior pruning method, which is similar to
the pruning strategy for the (forward) filtered densities discussed in [91]. In
Paper I, the posterior pruning idea is formulated and proved to be a valid
operation for both the forward and the backward filters. When compared to
FBS based on an N-scan pruning algorithm, the two-filter smoothed densi-
ties obtained using the presented approximations of the backward filter are
shown to have better track-loss, RMSE and NEES for lower complexity.

Paper III

This paper address the data association problem in multiple trajectory es-
timation. The objective in this paper is to obtain the maximum aposteriori
(MAP) estimate of the state X from the joint density p(X, ¢, Z). This prob-
lem is not tractable as the number of possibilities of ¢ is exponential. In
this paper, we address the problem using expectation maximisation (EM)
to estimate X, while treating ¢ as a hidden variable. We show that state
estimates can be obtained by running an iterative algorithm, where in each
iteration, a Rauch-Tung Striebel (RTS) smoother is run for each target.
The measurements updates in the filter and smoother is carried out with
the composite measurements, which are weighted sums of the measurements
at each time instant. The weights, which are the marginal data association
probabilities, are computed using loopy belief propagation. We show in the
paper, that despite the simplicity, the algorithm performance is comparable
to a multiple hypothesis tracking (MHT) algorithm.
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Paper IV

The data association problem is addressed in this paper by estimating the
data association variable ¢ from the joint density p(X, ¢, Z). Once ¢ is es-
timated, X is immediate to estimate using an RTS smoother. The strategy
is to use EM to estimate ¢. This strategy results in an iterative algo-
rithm, where in each iteration, one runs an RTS smoother for each target.
The measurements for the RT'S smoother are obtained using global nearest
neighbour (GNN) at each time. In the paper, we show that the algorithm
outperforms an MHT implementation in terms of mean optimal sub-pattern
assignment(OSPA) performance.

Paper V

In this paper, we present a metric named generalised OSPA (GOSPA) to
compute distance between two sets of vectors. We show that compared to
the OSPA metric, our metric addresses the problem by penalising missed
and false targets, whereas OSPA penalises the cardinality mismatch. We
also show that the GOSPA metric can be extended to random finite sets of
vectors, which is relevant for performance evaluation and algorithm design.
We show that given a joint distribution over two sets of vectors, the mean
GOSPA and the root mean squared GOSPA are also metrics.

Paper VI

In this paper, we propose a metric based on multidimensional assignments
in the space of sets of trajectories. Besides the localisation cost, missed and
false targets |84, this metric also addresses the problems of track switches by
allowing a trajectory to be assigned to multiple trajectories across time, but
by penalising it for these multiple assignments. We introduce the concepts
of half and full switches to quantify the penalty. As this multidimensional
assignment metric belongs to the NP hard class of problems, we also propose
a lower bound for the metric, which is computable in polynomial time using
linear programming (LP). We also show that this lower bound is a metric
in the space of sets of trajectories. From simulations, we have observed that
the lower bound computed using LP often returns the optimal value for the
multidimensional metric. An efficient way to compute the LP metric using
alternating direction method of multipliers (ADMM) that scales linearly
with time is also presented. We further adapt this metric to random sets of
trajectories.
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6.2 Future work

Besides the ideas and algorithms presented in the thesis, we also obtained
a plethora of ideas to investigate in the future. In this section, we present
and discuss the ideas, which range from the extensions of GM smoothing to
more complex scenarios than single-target linear Gaussian process models,
to computationally cheaper GM merging methods and message passing in
generic graphs.

Merging algorithms

The TFS and FBS algorithms presented in the thesis are based on merging.
There are several methods, such as Runnalls’, Salmond’s and variants of
these, which one can choose for GM merging implementation. However,
the computational complexity of these methods is a serious limitation when
it comes to practical implementations where GM merging is necessary at
each time instant. In both reduction algorithms, the merging cost must be
computed for every pair of components, which involves expensive matrix
multiplications. Therefore, the complexity of these algorithms is quadratic,
if not exponential, in the number of components, which is still expensive
considering prediction, update and retrodiction steps. For the results pre-
sented in the thesis, significant amount of effort went into devising practical
merging algorithms, which resulted in two strategies. One is a combination
of Runnalls” and Salmond’s algorithms, which is used in the forward filter.
The other method is a modified version of Salmond’s algorithm. A possible
investigation can be in making fewer cost computations than computing the
cost, for every pair (7,7). One way of reducing the number of merging cost
computations is by obtaining bounds on the cost function. Suppose there
is an upper bound on the least possible cost. And suppose that for some
group of pairs of components, we can compute a lower bound on the costs.
If the group’s lower bound is greater than the upper bound on the lowest
cost, the cost computation for the component pairs in the group can be
avoided. The challenge is thus in obtaining the upper bound on the least
cost, and selecting the group that can be eliminated. A closer analysis of
the cost function is necessary to obtain these bounds and a good choice of
groups.

Trajectory estimation with random birth and death events

In Paper III and Paper IV, it is assumed that all the tracks are present
the whole batch duration. It would be interesting to extend the approach
to cases where the tracks births and deaths happen at random times. One
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exhaustive approach is to consider all possible birth and death time com-
binations for all the tracks. Similar to the data association problem, this
is also a combinatorial problem. A more appealing approach would be to
model these variables into the joint density and use EM to estimate the
birth and death time variables as well.

Online algorithms

The algorithms proposed in Papers I to IV are all batch algorithms. Ex-
tending all these algorithms to online algorithms extends the scope of these
algorithms. There are several possibilities to investigate here. For instance,
one can use a sliding window approach, where one can tune the width of
the window and also the overlap across the windows based on the applica-
tion. Another approach is to extend the idea of smoothed filtering proposed
in [91]. That is, to obtain the filtered density p(zx|z1.%), one can go back
and improve all the approximations made at all the previous time instants.
This improvement in approximation can be implemented using an iterative
approach in the papers.

Metric for sets of trajectories based on distance-based
switching cost

In Paper VI, track switches are used to penalise when a trajectory in the
ground truth set is assigned to multiple trajectories in the estimate. In
the current version, the penalty for the track switch is a fixed parameter.
But there can be scenarios when this penalty must be varied based on the
severity of the switch. For instance, consider a pair of trajectories in the
ground truth that are close to each other for certain duration and then
move apart. Let us consider two estimates for the ground truth. First is
an estimate with trajectories such that the track switch happens when the
trajectories in the ground truth are close together. The second estimate has
trajectories such that the track switch happens when the two trajectories
in the ground truth are far apart. According to intuition, the first estimate
is better than the second, as the track switch happens in a region where it
might be difficult to resolve. This difference should be possible to address
by defining a penalty for the track switch that depends on the closeness
of trajectories in the ground truth and their corresponding trajectories in
the estimate. The major challenge here can be in defining the penalty in
a consistent way that still retains the metric properties. This would be an
interesting problem to investigate.
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