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Abstrat

This thesis is onerned with trajetory estimation, whih �nds appliations

in various �elds suh as automotive safety and air tra� surveillane. More

spei�ally, the thesis fouses on the data assoiation part of the problem,

for single and multiple targets, and on performane metris.

Data assoiation for single-trajetory estimation is typially performed

using Gaussian mixture smoothing. To limit omplexity, pruning or merg-

ing approximations are used. In this thesis, we propose systemati ways to

perform a ombination of merging and pruning for two smoothing strate-

gies: forward-bakward smoothing (FBS) and two-�lter smoothing (TFS).

We present novel solutions to the bakward smoothing step of FBS and a

likelihood approximation, alled smoothed posterior pruning, for the bak-

ward �ltering in TFS.

For data assoiation in multi-trajetory estimation, we propose two it-

erative solutions based on expetation maximization (EM). The appliation

of EM enables us to independently address the data assoiation problems

at di�erent time instants, in eah iteration. In the �rst solution, the best

data assoiation is estimated at eah time instant using 2-D assignment,

and given the best assoiation, the states of the individual trajetories are

immediately omputed using Gaussian smoothing. In the seond solution,

we average the states of the individual trajetories over the data assoia-

tion distribution, whih in turn is approximated using loopy belief propaga-

tion. Using simulations, we show that both solutions provide good trade-o�s

between auray and omputation time ompared to multiple hypothesis

traking.

For evaluating the performane of trajetory estimation, we propose two

metris that behave in an intuitive manner, apturing the relevant features

in target traking. First, the generalized optimal sub-pattern assignment

metri omputes the distane between �nite sets of states, and addresses

properties suh as loalization errors and missed and false targets, whih

are all relevant to target estimation. The seond metri omputes the dis-

tane between sets of trajetories and onsiders the temporal dimension of

trajetories. We re�ne the onepts of trak swithes, whih allow a traje-
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Abstrat

tory from one set to be paired with multiple trajetories in the other set

aross time, while penalizing it for these multiple assignments in an intuitive

manner. We also present a lower bound for the metri that is remarkably

aurate while being omputable in polynomial time.

Keywords: Trajetory estimation, data assoiation, metris, Gaussian

mixtures, smoothing, expetation maximization
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Introdutory hapters





Chapter 1

Introdution

In many appliations, the objetive is to systematially and sequentially es-

timate quantities of interest from a dynami system using indiret and ina-

urate sensor observations. For instane, in radar traking, the aim is often

to determine the position and veloity of a moving or stationary airraft or

ship. In ommuniation systems, the onern is to determine the messages

transmitted through a noisy hannel. In driver assistane systems, the ob-

jetive is to monitor several features about the driver, the vehile and the

surroundings. There are also several other appliations suh as foreasting

weather or �nanial trends, prediting house pries, handwriting reogni-

tion, speaker identi�ation, and positioning in navigation systems.

The sequential estimation problem an be ategorized into three di�er-

ent problem formulations: predition, �ltering and smoothing. The predi-

tion problem is to foreast the values of the parameters of interest, given

information up to an earlier time, whereas the �ltering problem is about

estimating the parameter at the urrent time, given information up to and

inluding that time. The smoothing problem is to estimate the past state of

the parameter using all the observations made. An example from [1℄ an be

used to explain these di�erent problem formulations, in layman terms. As-

sume that we have reeived a garbled telegram and that the task is to read

it word-by-word and make sense of what the telegram means. The �ltering

formulation would be to read eah word and understand the meaning so far.

The predition formulation would be to guess the oming words, based on

what have been read thus far. In the smoothing formulation, the reader is

allowed to look ahead one or more words. Clearly, as the idiom quoted in

the book goes �it is easy to be wise after the event�, the smoothing formula-

tion will give the best result on average, given that a delay an be tolerated.

In many of the above-mentioned appliations, the aim is not only to

1



Chapter 1. Introdution

estimate the parameters of interest termed `states', but also to desribe the

unertainties in the states. The unertainties are used to desribe the re-

liability or trustworthiness of the produed estimates. Mathematially, an

estimate and its assoiated unertainty is quanti�ed using either a probabil-

ity density funtion (for ontinuous states) or a probability mass funtion

(for disrete states). In sequential estimation, the probability funtion of the

state, whih has the information about its estimate and the orresponding

unertainty, are propagated aross time to estimate the subsequent states.

For ontinuous states, one of the most ommonly used density funtions is

the Gaussian density funtion, whih is often referred to as the `bell-shaped'

urve. The famous Kalman �lter [2℄ is developed as a solution to the �l-

tering problem when the unertainties are modelled using Gaussian density

funtions. There also exist (analytial) solutions to the smoothing problem

with Gaussian densities.

Even though the Gaussian density models and the Kalman �lter solu-

tions work well for a wide range of appliations, this may not be enough

for omplex systems. There are many appliations where the unertainty

in the evolution of the state or the observation noise annot be aurately

modelled using Gaussian densities. For instane, in the data assoiation

problem, observations are often reeived from objets that are not of inter-

est and the information regarding whih measurement belongs to the target

of interest is not available. In suh ases, the unertainty about the states

are lustered in several small regions where eah region orresponds to eah

measurement. This happens in ship surveillane, when false measurements

are reeived from re�etions of the sea, and in air tra� surveillane, where

extraneous observations from louds and birds are reeived. In these kinds

of senarios, instead of a single Gaussian density, the system or the obser-

vations are often modelled using what is alled a Gaussian-mixture density.

In essene, the unertainty of the state an be desribed using a Gaus-

sian mixture where we have a Gaussian omponent for eah luster/region

around whih the unertainty/data is entered, along with a weight that

aptures the intensity. The advantage of using a Gaussian mixture (GM)

is that it is made up of several Gaussian omponents, whih allows one to

extend the Kalman �lter solutions to these problems as well. However, in

most problems, the number of possibilities and thus the number of Gaussian

omponents in the mixture grows with time, whih adds to the omplexity

of the algorithms.

In the data assoiation problem, the interpretation of a GM density of

the state is that we have Gaussian unertainty about the state for every
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possibility of mathing the objets (also referred to as targets) of interest to

the individual observations from the sensors. To give a sense of the number

of possibilities, assume that there are k targets and n measurements. Then,

the number is

n!
(n−k)!

where n! = n× (n− 1)× . . .× 1, assuming that every

target produes a measurement at eah time instant. Thus, at eah time

instant, we have a GM with a large number of omponents. When this

density is propagated to the next time to perform the Bayesian inferene

we disussed in the beginning of the hapter, the omplexity of the problem

explodes. Even for single target, i.e. for k = 1, the omputation of the

optimal solution beomes intratable. Thus, approximations are inevitable.

In this thesis, we provide e�ient and e�etive solutions for both single and

multi-target senarios.

Another aspet onsidered in this thesis is the performane evaluation

of trajetory estimation algorithms. The main objetive of this part is to be

able to quantify the similarity between the ground truth and the estimates

returned by an algorithm. We might observe that there is a good math

between some of the states in the ground truth and the estimates. We will

want to quantify the similarity to judge how di�erent algorithms perform.

Besides this kind of error, it is possible that there are ertain states in the

ground truth that do not have any good math in the estimates, or vie

versa. We would like to take into aount these kinds of errors as well when

de�ning the similarity between the ground truth and the estimates. In this

thesis, we have foussed on mathematially quantifying these kind of simi-

larities for trajetory estimation.

The researh presented in this thesis has been sponsored by Vinnova

(The Swedish Governmental Ageny for Innovation Systems), under the

researh program �Nationella �ygtekniska forskningsprogrammet" (NFFP

6), and by Eletroni Defene Systems, Saab AB.

Outline of the thesis

The thesis is divided into two parts, where Part I presents the theoreti-

al bakground of the Gaussian mixture smoothing problem and Part II

ontains a set of appended papers. Part I ontains six hapters, among

whih Chapter 2 presents the mathematial formulations of the �ltering

and smoothing problems and di�erent models used. Chapter 3 disusses

in detail the Gaussian mixture smoothing problem in the ontext of single

trajetory estimation, and the di�ulties involved. In Chapter 4, we disuss

the data assoiation problem in multi target traking. Chapter 5 presents

3



Chapter 1. Introdution

a summary of the metri problem. In Chapter 6, we provide a summary of

the ontributions in the appended papers and also disuss possible future

researh diretions.

In Part II, the ontributions of the thesis are presented in Papers I

through VI. In Paper I and Paper II, we onsidered the data assoiation

problem in estimating a single target trajetory in the presene of lut-

ter. Typially, this is arried out using pruning approximations on GMs.

In the papers, we present an in-depth study of how to design forward�

bakward smoothing and two-�lter smoothing for Gaussian mixtures, based

on both merging and pruning approximations. In Paper III and Paper IV,

we onsider the data assoiation problem when estimating multiple target

trajetories in the presene of lutter. We present two solutions based on

expetation maximization (EM) that are iterative. The major onsequene

of applying EM is that the problem of GM smoothing redues to Gaussian

smoothing in eah iteration. In Paper V and Paper VI, we address the prob-

lem of de�ning metris for sets of target states and for sets of trajetories,

respetively.
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Chapter 2

Models, objetives and

oneptual solution

In trajetory estimation, the goal is to sequentially estimate an unknown

variable, given noisy observations of the variable. Aording to the Bayesian

estimation priniple, whih is ommonly used for these problems, the idea

is that based on our prior knowledge of the proess, we predit the vari-

able with some unertainty. Then, at a point when new information is

available, the predition is updated to get the `posterior'. For trajetory

estimation, the term 'posterior' takes di�erent meanings depending on the

set of measurement that we ondition on. When the most reent state of

the trajetory is newer than the omplete olletion of measurements over

time, we have a predition problem; for equally new information we have

a �ltering problem; and, for a state that is older than the newest piee of

information, we have a smoothing problem.

In this hapter, we brie�y disuss the mathematial representation of

the variables and how the trajetory estimation problem an be posed. We

also present a brief summary of the models used in trajetory estimation.

2.1 State spae representation

In a state-spae representation, the unknown variable to be estimated is

termed the `state'. The state variable at time k is here denoted as xk ∈
Rn

and the observed data as zk ∈ Rm
. The time variability of the state

is desribed by a motion model while the relation between the state and

the measurements are given by a sensor model. The impliit Markovian

assumption of the state spae is that the state xk at time k, given all the

states until time k − 1, depends only on the state xk−1 at time k − 1. The
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Chapter 2. Models, objetives and oneptual solution

motion model an then be written as

xk = gk(xk−1, vk), (2.1)

where vk is the proess noise. Using this motion model one an desribe the

transition model fk(xk|xk−1). It is assumed that we have some knowledge

of the state at time 0, de�ned by the prior density p0(x0).

The measurement zk is given by the sensor model

zk = hk(xk, wk), (2.2)

where wk is the measurement noise random variable. The sensor model is

used to obtain the likelihood funtion pk(zk|xk). In the remainder of the

introdutory hapters, the subsript k in the notation of the funtions gk(·),
hk(·), and pk(·|·) will be dropped without loss of generality and for ease of

writing, and be represented as g(·), h(·), and p(·|·).

2.2 Problem statement and oneptual solu-

tion

The posterior density of the state xk is used to determine our estimates of

the state and also desribes our unertainties in the state. The objetive

is to reursively ompute the posterior density of the state vetor xk using

the Bayesian priniple [1℄. In the predition problem, the goal is to obtain

the density p(xk|z1:l) for l < k, given the measurements obtained from time

1 to time l, denoted z1:l. In the �ltering problem, the goal is to obtain the

posterior density p(xk|z1:k) of the state xk. In the smoothing problem, we

are interested in omputing the posterior density p(xk|z1:K), where K > k.
Below, we present the oneptual solutions to these problems.

2.2.1 Predition and �ltering

The predition and �ltering densities an be obtained reursively in two

steps, namely, predition and update, using the prior p(x0), the proess

model f(xk|xk−1) and the likelihood p(zk|xk). The one-step predition

(where l = k − 1 in p(xk|z1:l)) gives the predition density at time k by

evaluating the integral

p(xk|z1:k−1) =

∫
p(xk−1|z1:k−1)f(xk|xk−1)dxk−1, (2.3)
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2.2. Problem statement and oneptual solution

where p(xk−1|z1:k−1) denotes the �ltered density at time k−1, and p(xk|z1:k−1)

the predition density at time k. An update of the predition density at

time k gives the �ltered density at time k as

p(xk|z1:k) ∝ p(xk|z1:k−1)p(zk|xk). (2.4)

The onstant of proportionality in the above equation is

1
p(zk|z1:k−1)

, where

p(zk|z1:k−1) =

∫
p(xk|z1:k−1)p(zk|xk)dxk. (2.5)

It should be mentioned here that the equations in (2.3), (2.4) and (2.5) pro-

vide the theoretial solutions but, in pratie, these equations are in general

not tratable. For instane, the integrals annot be omputed aurately,

or the representation of the di�erent densities in these equations an be

intratable and so on.

2.2.2 Smoothing

Similar to the �ltering problem, sequential estimation of the smoothed pos-

terior an be obtained using the Bayesian priniple. Though the approahes

disussed here have been designed towards �xed-interval smoothing, they

are in their ontextual form, appliable to the �xed-lag and �xed point

smoothing as well [1℄. One an also refer to [3℄ for aumulated state den-

sity formulation of the smoothing problem.

The �rst approah is forward�bakward smoothing (FBS) [4℄. As the

name suggests, the �rst step is forward �ltering from time 1 to K, to ob-

tain the �ltered density p(xk|z1:k) at eah k. This is followed by bakward

smoothing from time K to time 1. The bakward smoothing step at time k

uses the smoothed density at time k+1 together with the �ltering densities

at time k as

p(xk|z1:K) = p(xk|z1:k)
∫
p(xk+1|z1:K)
p(xk+1|z1:k)

f(xk+1|xk)dxk+1. (2.6)

The integral in the above equation is proportional to p(zk+1:K |xk), termed

as the bakward likelihood in this thesis. Therefore, it is possible to in-

terpret the division in the bakward smoother as omputing the bakward

likelihood impliitly.

The seond approah to smoothing is the two-�lter smoothing (TFS)

method [5℄. To obtain the smoothed density at time k by this method,

forward �ltering is performed from time 1 to k to get the �ltered density
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Chapter 2. Models, objetives and oneptual solution

p(xk|z1:k) and bakward �ltering is run from time K to time k to get the

bakward likelihood p(zk+1:K |xk). The produt of the two �lter outputs

gives the smoothed density,

p(xk|z1:K) ∝ p(xk|z1:k)p(zk+1:K |xk). (2.7)

The bakward �ltering, similar to the forward �lter, is performed reursively

using two steps: update and retrodition. The update step omputes the

likelihood

p(zk+1:K|xk+1) = p(zk+1|xk+1)p(zk+2:K|xk+1) (2.8)

and the retrodition step omputes the bakward likelihood as

p(zk+1:K |xk) =
∫
p(zk+1:K |xk+1)f(xk+1|xk)dxk+1. (2.9)

Comparing the individual terms in (2.6) and (2.7) and using (2.9), one

an observe that the di�erene between the two smoothing methods arises

due to the di�erene in the ways the term p(zk+1:K |xk+1) is omputed. FBS

omputes it from the division of the predition and smoothing densities

p(zk+1:K |xk+1) ∝
p(xk+1|z1:K)
p(xk+1|z1:k)

. (2.10)

whereas the TFS method uses a �ltering approah as in (2.8).

2.3 Models

In this setion, we disuss the di�erent models relevane to trajetory esti-

mation. We present them in di�erent ategories based on their properties.

All these models determine whether or not the integrals in the oneptual

solutions presented in the last setion are tratable or not. For instane,

as we disuss in the next hapter, when we have a single target with lin-

ear proess and measurement models, along with Gaussian noise terms and

Gaussian prior densities, the predition, �ltered and smoothed densities are

all Gaussian densities. In this ase, the Kalman �lter and the Rauh-Tung-

Striebel (RTS) smoother provide a reursive solution to obtain the mean

and the ovariane of these densities in losed form. Below we summarize

some of the possible models used in the trajetory estimation literature.

The proess model g(xk−1, vk) and/or the measurement model h(xk, wk)

an be non-linear funtions of the state and the noise variables. A ommonly

used non-linear measurement model is when we have range and bearing

measurements and the state that we are interested in is Cartesian position.
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2.3. Models

These kind of non-linear funtions are often handled using extended Kalman

�lter (EKF) [1,6℄, unsented Kalman �ler (UKF) [7,8℄, quadrature Kalman

�lter [9℄, ubature Kalman �lter (CKF) [10℄ or the partile �lter [11�16℄.

Often in appliations, we reeive measurements, not only from the tar-

get of interest, but also from soures that are not of interest to us. These

measurements are termed lutter and often yield unertainties in the data

assoiations. The problem arises when it is not immediate whih measure-

ments are from the single target and whih are from lutter. The data

assoiation problem also arises when we have multiple targets in the region

of interest. Again, we reeive a set of measurements whih may not have

the target identity. The problem is only aggravated when we also have the

lutter data in addition.
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Chapter 3

Single trajetory estimation

In this hapter, we brie�y disuss the various hallenges in �ltering and

smoothing problems that arise in the single�trajetory estimation problem.

We disuss in detail the Gaussian mixture �ltering and smoothing problems,

whih are fous areas of the thesis.

3.1 Linear and Gaussian �ltering and smooth-

ing

Assume that the prior, p(x0), is a Gaussian density, and that the motion

and sensor models are linear funtions of the state vetor xk, with additive

Gaussian noise, i.e.,

xk = Fkxk−1 + vk (3.1)

and

zk = Hkxk + wk, (3.2)

where Fk ∈ Rn×n
, Hk, ∈ Rm×n

, vk ∼ N (0, Qk) and wk ∼ N (0, Rk). Then,
it an be shown that the posterior densities are Gaussian and have losed

form expressions [2℄. Again, for onveniene of writing, the subsript k
will be dropped from the matrix notations. In this setion, we disuss the

algorithms to obtain the mean and ovariane of the �ltered and smoothed

densities.

3.1.1 Kalman �ltering

Let the predition density, p(xk|Z1:k−1), and �ltered density, p(xk|Z1:k), be

denoted as N
(
xk;µk|k−1, Pk|k−1

)
and N

(
xk;µk|k, Pk|k

)
, respetively. The

notationN (x;µ, P ) denotes a Gaussian density in the variable x with mean

µ and ovariane P . The goal of predition and �ltering is then to �nd the
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Chapter 3. Single trajetory estimation

�rst two moments of the orresponding Gaussian densities. The ubiquitous

Kalman �lter equations [2℄ provide losed�form expressions for the �rst two

moments of the predition and �ltered densities in (2.3) and (2.4). The

predition equations are given by

µk|k−1 = Fµk−1|k−1 (3.3)

Pk|k−1 = FPk−1|k−1F
T +Q (3.4)

and the update equations by

Sk = HPk|k−1H
T +R (3.5)

Kk = Pk|k−1H
TS−1

k (3.6)

z̃k = zk −Hµk|k−1 (3.7)

µk|k = µk|k−1 +Kkz̃k (3.8)

Pk|k = (In −KkH)Pk|k−1. (3.9)

where In is an n-by-n identity matrix. The so�alled innovation z̃k, and

Sk, the innovation ovariane, desribe the expeted measurement distribu-

tions. Kk is the Kalman gain, whih an be viewed as the weight for new

information in the innovation ompared to the predition.

3.1.2 Smoothing

Below we provide the two versions�forward�bakward smoothing (FBS)

and two��lter smoothing(TFS)�of the smoothing algorithm disussed in

Setion 2.2.2 to obtain the mean and ovariane of the smoothed density

under linear and Gaussian assumptions.

For the FBS method, the Rauh-Tung-Striebel (RTS) [4℄ smoother gives

the losed-form expressions for the mean and ovariane of the smoothed

density. Using notations similar to the ones for the predition and �ltered

densities, the smoothed density at time k is denoted as N
(
xk;µk|K, Pk|K

)
.

The RTS equations are

µk|K = µk|k + Ck

(
µk+1|K − µk+1|k

)
(3.10)

Pk|K = Pk|k + Ck

(
Pk+1|K − Pk+1|k

)
CT

k , (3.11)

where

Ck = Pk|kF
TP−1

k+1|k (3.12)

is similar to the Kalman gain in the Kalman �lter equations (3.3) to (3.9).
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3.2. Non-linear models

For the TFS method, the work in [17℄ provides the losed-form solu-

tion for the moments of the smoothed density. Let the likelihoods be de-

noted as p(Zk+1:K|xk+1) = N (Uk+1xk+1;ψk+1, Gk+1) and p(Zk+1:K|xk) =

N (Jkxk; ηk, Bk). Let the starting onditions at time K be JK = [ ],
ηK = [ ] and BK = [ ]. The update step in (2.8) of the bakward �lter is

then given by

Uk+1 =

[
Jk+1

H

]
(3.13)

ψk+1 =

[
ηk+1

zk+1

]
(3.14)

Gk+1 =

[
Bk+1 0

0 R

]
(3.15)

while the retrodition step in (2.9) is given by

Jk = Uk+1F (3.16)

ηk = ψk+1 (3.17)

Bk = Uk+1QU
T
k+1 +Gk+1. (3.18)

Using the outputs of the forward �lter and the bakward �lter at time k,

the smoothed density in (2.7) is given by

µk|K = µk|k +Wk

(
ηk − Jkµk|k

)
(3.19)

Pk|K = (In −WkJk)Pk|k, (3.20)

with gain

Wk = Pk|kJ
T
k

(
JkPk|kJ

T
k +Bk

)−1
. (3.21)

Note that the above three equations have similarities to the Kalman update

equations in (3.8) and (3.9). Here, the �ltering parameters, µk|k and Pk|k,

are updated with the innovation from the future measurements from time

k + 1 to K, whereas in the Kalman �lter the predition parameters are

updated with the innovation from the measurement at time k.

3.2 Non-linear models

When the motion model g(·) and/or the measurement model h(·) are non-
linear or when the noise is not additive Gaussian, the posterior density for

the predition, �ltering and smoothing is, in general, not a Gaussian den-

sity. One example is when we obtains range and bearing measurements
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Chapter 3. Single trajetory estimation

from a radar and want to trak the position and the veloity of the target.

The optimal solution then beomes intratable as the integrals annot be

omputed in losed form. Approximations and sub�optimal approahes are

therefore inevitable. There are several sub-optimal approahes to estimate

the �ltered density in this ase, some of whih are disussed in this setion

suh as the Gaussian and partile �lters. We disuss Gaussian mixtures,

whih is appliable when the posterior has multimodal shape, in more detail

in subsequent setions of this hapter.

The smoothing problem has additional hallenges ompared to the �l-

tering problem. First, the equation in the FBS method involves division of

densities, whih is di�ult to ompute for arbitrary densities. Seond, the

auray of the approximations in the forward �ltering highly a�ets the

bakward smoothing and the smoothed density. The TFS method, on the

other hand, does not involve density divisions and the two �lters an ideally

be run independently of eah other. However, the likelihood p(zk+1:K |xk)
is not, in general, a normalizable density funtion, whih limits the possi-

bilities to apply onventional approximation tehniques for densities during

the bakward �ltering. Due to these additional ompliations, applying the

tehniques used for non-linear �ltering to non-linear smoothing does not

always produe fruitful results. In this setion, we also disuss the hal-

lenges in extending tehniques suh as sequential Monte Carlo sampling,

linearization and sigma-point methods to the smoothing problem.

3.2.1 Gaussian �lters

One approah to handle non-linear models is to approximate the posterior

density as a Gaussian density. The methods that use this approah are

alled Gaussian �lters/smoothers, named appropriately. There are several

methods to make a Gaussian approximation of the �ltered density and to

ompute its �rst two moments. One method is based on linearizations of

the funtions, g(·) and h(·), after whih the Kalman �lter equations in (3.3)

to (3.9) an be used to obtain the mean and ovariane of the Gaussian

approximation of the �ltered density. The famous extended Kalman �l-

ter [1,6,18℄ and the many variants of it are based on this approah. Though

these algorithms work for a good number of models, their performane de-

teriorates when the funtions are highly non-linear.

Another type of methods used to obtain a Gaussian approximation of

the �ltered density is based on sigma-points, suh as the unsented Kalman

�lter [7, 8℄, the quadrature Kalman �lter [9℄ and the ubature Kalman �l-
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3.2. Non-linear models

ter [10℄. In these methods, a handful of points, termed sigma-points, are

hosen deterministially based on the �rst two moments of the prior den-

sity. The sigma points are then propagated through the non-linear models

to obtain the means and ovarianes used to ompute the moments of the

Gaussian approximation of the �ltered density. The sigma-point methods

also impliitly perform a linearisation using statistial linear regression [19℄.

The analogue of Gaussian �ltering methods, suh as the extended Kalman

�lter and the unsented Kalman �lter, exists for TFS of non-linear mod-

els. The extended Kalman smoother [20℄, similar to its �ltering ounter-

part, has poor performane when the non-linearity is severe. The unsented

Kalman smoother [21℄, [20, Chap. 7℄ needs the inverse of the dynami model

funtions, whih may not be feasible in all senarios. The unsented RTS

smoother [22℄ is the FBS version of a Gaussian smoother and is shown to

have similar performane as the unsented Kalman smoother, but without

the need of inverting the model funtions.

3.2.2 Partile �lters

Partile �lters or sequential Monte Carlo �lters [11�16℄ are based on repre-

senting the density p(x) with a set of randomly drawn samples x(m)
, termed

`partiles', along with their orresponding weights. The partiles de�ne the

positions of Dira delta funtions suh that the weighted sum of the Dira

delta funtions of the partiles provides a good approximation of the true

density:

p(x) ≈ 1

N

N∑

m=1

δ
(
x− x(m)

)
. (3.22)

These methods use the onept of importane sampling, where the parti-

les are generated from a proposal density, whih is simpler to generate

the samples from, instead of the true density. The partiles are propagated

through the proess model and the weights are updated using the likelihood

to obtain the posterior density. The hoie of proposal density is ruial to

partile �lters, and the proposal density should have the same support as

the true density and should be as similar to the true density as possible.

The advantages of partile �lters are that the performane of suh �lters

is una�eted by the severity of the non-linearity in g(·) and h(·), that they
are are asymptotially optimal also when the funtions are non-linear, and

that they are often easy to implement. However, they an be omputa-

tionally demanding as the dimension of the state vetor inreases. Another

problem with partile �lters is that they degenerate, whih means that
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Chapter 3. Single trajetory estimation

the weights of most partiles beome zero. This an be overome by re-

sampling [16℄ frequently, where multiple opies of the `good' partiles with

signi�ant weights are retained and the `poor' partiles are removed.

Similar to the �ltering method, sequential Monte Carlo smoothing is

based on approximating the smoothed posterior density using a set of par-

tiles. In partile Markov hain Monte Carlo (MCMC) methods [23℄, par-

tile �lters are use to approximate the joint posterior distribution, whih

is then used to generate proposals for MCMC. In ase of FBS based on

these methods, a vanilla version works well when k ≈ K, where K is the

bath duration. However, when k ≪ K [24℄, beause of suessive resam-

pling steps, the marginal density beomes approximated by a single partile

whih leads to deteriorated performane. This is the degeneray problem

that is inherent in partile �lters [11℄. One simple approah is to use the

forgetting properties of the Markov model, i.e., to approximate the �xed-

interval smoothed density p(xk|z1:K) using the �xed-lag smoothed density

p(xk|z1:k+δ) [25, 26℄. Unfortunately, automati seletion of δ is di�ult.

In ase of TFS, it is not straightforward to approximate the output of

the bakward �lter using partiles, as it it not a normalizable density. The

arti�ial prior method [5℄ uses the auxiliary probability density p̃(xk|zk+1:K)

instead of the likelihood p(zk+1:K |xk). The auxiliary density is obtained

using what is alled arti�ial prior densities. The hoie of the arti�ial

prior plays a major role in the performane of the TFS algorithm for partile

methods.

3.3 Gaussian mixture �ltering and smoothing

There are many appliations in whih we reeive several measurements on

the state variable, where the reliability of the measurements an vary. The

likelihood in these appliations are onveniently modelled as mixtures. In

the lassi data assoiation problem, where we do not have information

about whih measurement orresponds to whih target upon reeiving a set

of measurements, the posterior density is a Gaussian mixture, even if we

assume the motion and measurements models are linear and Gaussian. We

disuss more on this problem in the next hapter.

Gaussian mixtures are weighted sum of Gaussian densities, whih usually

make a good approximation for the multi-modal densities. In this setion,

we explain that when the likelihood and/or the state transition density are

Gaussian mixtures, the true posterior densities after �ltering and smoothing
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3.3. Gaussian mixture filtering and smoothing

are also Gaussian mixtures. The number of terms in the GM usually grows

exponentially with time, and we therefore need to onstrain the number of

terms. In these situations, redution algorithms an be used to approximate

the posteriors. In this setion, we provide a brief overview of the most

ommonly used mixture redution methods and disuss the hallenges in

applying these to smoothing problems.

3.3.1 Optimal solution

It was presented in the last hapter that the forward-bakward smooth-

ing (FBS) method is based on forward �ltering and bakward smoothing

while the two-�lter smoothing (TFS) method involves forward �ltering and

bakward �ltering. These steps involve the predition, update and retrod-

ition steps stated in equations (2.3), (2.4), (2.8) and (2.9). One an notie

that all these equations involve produts of funtions, whih in this ase

are Gaussian mixtures. When the state transition densities and the likeli-

hoods are both GMs, one an use the fat that a produt of GMs yields a

GM and show that the posterior densities are all Gaussian mixtures. The

number of omponents in the resulting GM is the produt of the number of

omponents in the individual mixtures, whih explains why the number of

omponents grows exponentially with time.

Forward �ltering

One an show that, starting with a GM prior, the predition and the up-

date steps of forward �ltering result in a Gaussian mixture posterior density.

Evaluating these steps with GMs is equivalent to using Kalman �lters, one

for every triplet of Gaussian omponents in the prior p(xk−1|z1:k−1), the tran-

sition density f(xk|xk−1) and the likelihood p(zk|xk), yielding a Gaussian

term in the posterior p(xk|z1:k). The term in the onstant of proportion-

ality p(zk|z1:k−1) in (2.5), is not alulated expliitly in the update step of

the Kalman �lter, whih involves produt of Gaussian densities. However,

in the ase with GMs, this onstant of proportionality is used in the up-

dated weight alulation. The updated weight for the resulting Gaussian

omponent is given by the produt of the individual weights of the ompo-

nents in the predition density and the likelihood along with the onstant

of proportionality.

Bakward smoothing of FBS

The bakward smoothing of FBS involves a division of the smoothed and

the predition GM densities as in equation (2.6). Starting from time K,
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Chapter 3. Single trajetory estimation

using the priniple of mathematial indution, it an be shown that the

division results in a GM and therefore the smoothed posterior p(xk|z1:K)
is also a GM whih has the same number of omponents for k = 1, . . . , K.

The weights of the omponents in the the smoothed density at time k are

the same as the weights of the omponents in the smoothed density at time

k + 1. Instead of performing the division, an equivalent way of obtaining

the smoothed posterior is as follows [3, Se. V A℄: starting from k = K−1,

the RTS reursions are used for every triplet of assoiated omponents in

the smoothed density at time k + 1, the predition at time k and in the

�ltered density at time k, to ompute the smoothed density at time k.

Bakward �lter of TFS

In the bakward �lter of TFS, we need to ompute the bakward likelihood

as in equations (2.8) and (2.9). The ideas in forward �ltering annot be

applied diretly to the bakward �lter beause often the likelihoods an be

of the form

w0 +
∑

i

wiN (Hixk;µi, Pi) (3.23)

where di�erent Hi an apture di�erent features of the state xk. Stritly

speaking, these are not Gaussian mixture densities; they are neither Gaus-

sian nor densities in xk. We refer to them as redued dimension Gaussian

mixtures in this thesis. To ompute the produt of likelihoods, one an use

the following general produt rule:

wiN (Hix;µi, Pi)× wjN (Hjx;µj, Pj) = wijN (Hijx;µij, Pij) (3.24)

where

wij = wiwj (3.25)

Hij =

[
Hi

Hj

]
(3.26)

µij =

[
µi

µj

]
(3.27)

Pij =

[
Pi 0

0 Pj

]
. (3.28)

Using this in equations (2.8) and (2.9), one an show that the output of

the bakward �lter has a struture similar to the inputs as in (3.23). The

smoothed density is given by the produt of the outputs of the two �lters,

that an be omputed similarly to the update step in the forward �lter of

GMs, inluding the weight update using the proportionality onstant as

disussed in Setion (3.3.1).
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3.4. Gaussian mixture redution

3.4 Gaussian mixture redution

The number of omponents in the resulting GM, after update, predition

and retrodition iterations, grows exponentially with time. Therefore, ap-

proximations are neessary to redue the number of omponents. There are

several Gaussian mixture redution (GMR) algorithms that are well stud-

ied in the literature, whih an be used for �ltering and smoothing. The

GMR algorithms are based on pruning insigni�ant omponents from the

GM and/or merging similar omponents.

3.4.1 Pruning

The number of omponents in the posterior GM an be prevented from

growing exponentially by pruning some of the omponents after eah iter-

ation. There are several pruning strategies that an be adopted. Three

methods that are ommonly used are threshold-based pruning [27℄, M-best

pruning [28�30℄ and N-san pruning. In threshold-based pruning, only the

omponents that have a weight greater than a prede�ned threshold are

retained and used for predition in the next iteration. The number of om-

ponents in the resulting GM an vary based on the threshold. The idea

behind the M-best pruning algorithm is that only the nodes with the M
highest weights (or assoiation probabilities) are retained.

To explain the N-san pruning [27℄, whih is designed for redution dur-

ing �ltering, let us say we are interested in performing pruning at time k.
We pik the omponent that has the maximum weight. Starting from this

omponent, we trae bakwards N steps to �nd its parent omponent, at

time k−N . Only the o�spring at time k, of this parent node at time k−N ,

are retained. To be mentioned here is that the multiple hypothesis traking

(MHT) �ltering [27℄ is often based on N-san pruning.

3.4.2 Merging

One an also use merging of similar omponents to redue the number

of omponents in a GM . There are several merging algorithms suh as

Salmond's [31�33℄, Runnalls' [34℄, Williams' [35℄ algorithms and many more

[36�39℄. These algorithms work based on the following three steps:

1. Find the most suitable pair of omponents to merge aording to a

`merging ost' riterion.

2. Merge the similar pair and replae the pair with the merged Gaussian

omponent.
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3. Chek if a stopping riterion is met. Otherwise, set the redued mix-

ture to the new mixture and go to step 1.

The merging ost in step 1 looks for similarity of the omponents and it an

be di�erent aross algorithms. A few of the ommonly used merging osts

are the Kullbak-Leibler divergene [40℄ and the integral-squared error [41�

43℄. The merging of the omponents in step 2 is usually based on moment

mathing [40℄. That is, the moments of the GM before and after merging are

the same. The stopping riterion an also vary aross algorithms, e.g., it an

be based on if the omponents in the redued mixture is at a manageable

number. In ertain algorithms, it is heked based on that the omponents

in the redued GM are not similar.

3.4.3 Choie of GMR

Two main riteria in hoosing the appropriate GMR algorithm are the om-

putational omplexity involved and the auray. Most of the pruning al-

gorithms are usually simpler to implement, ompared to merging. There is

information about the unertainty of the estimate in the ovariane matri-

es of the pruned omponents. So, as a result of pruning, we might have

underestimated unertainties. In ontrast, for merging, the unertainty is

preserved beause of moment-mathing. However, the merging algorithms

are more omputationally intensive than pruning. As a trade-o� between

omplexity and auray of the unertainty, it may be more feasible to use a

ombination of pruning and merging. Pruning ensures that the omponents

with negligible weights are removed, without being aggressive. Merging re-

dues the number of omponents further, but keeping the moments of the

retained density the same as before.

3.4.4 GMR for FBS and TFS

Applying GMR, both pruning and merging for the forward �ltering is straight-

forward. When the forward �ltering is based on pruning, it is trivial to

perform the bakward smoothing of the FBS similar to the optimal solu-

tion, using the �ltered densities. Starting from the last time instant, RTS is

performed bakwards on the individual retained omponents. This method

su�ers from degeneray similar to partile smoothing. This is beause for

k ≪ K, the number of omponents in the forward �lter that orresponds

to the omponents in the smoothed posterior will be one. A solution to

the degeneray is to perform FBS based on merging, something that has

not been explored muh in the literature. The main hallenge is that for

the bakward smoothing, the assoiations aross omponents are no longer
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3.4. Gaussian mixture redution

simple, to use RTS diretly and ompute the weights of the smoothed den-

sity. In Paper I [44℄ of this thesis, the problem of FBS based on merging is

investigated.

The literature on TFS for Gaussian mixture densities is also sparse. The

two �lters of the TFS an be run independently of eah other. This allows

the GMR algorithms to be used on both the �lters. Then the di�ulty is

in using the Gaussian mixture redution tehniques in the bakward �lter,

sine its output is not a density funtion. So, the GMR algorithms disussed

here annot be applied diretly. In Paper II [45℄ of this thesis, we propose a

method alled smoothed posterior pruning, through whih pruning an be

employed in the bakward �lter.
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Chapter 4

Multi�trajetory estimation

In the previous hapter, we presented a brief disussion of the data as-

soiation problem. Even with linear Gaussian assumptions, the number of

Gaussian terms in the Gaussian mixture form of the posterior density grows

exponentially. In this hapter, we disuss the problem further in the multi�

target setting. Additional hallenges are posed by having a set of data from

multiple targets, where the target identities are not available.

4.1 Data assoiation

In the presene of multiple point targets, eah of whih follows a linear-

Gaussian proess and measurement model, at eah time we observe a set

of measurements. If the identity of a target is not available in the mea-

surements, then there is unertainty about whih measurement belongs to

whih target. In ase of a single trajetory, eah hypothesis is an event of

assigning a target to a measurement from the set. In this ase, the number

of possibilities at eah time is the same as the number of measurements,

whih when multiplied aross time beomes exponential.

With multiple targets, at eah time, the problem is even worse. Let

us say we have n targets and m measurements at a partiular time. Now,

eah hypothesis, often referred to as a global hypothesis, is the event of

assoiating the n targets to the m measurements (assuming n ≤ m) suh

that a target is assigned to at most one measurement and a measurement is

assigned to at most one target. The number of possibilities is ombinatorial

given by

m!
(m−n)!

; for instane, if we assume n = 2 and m = 3, the number of

ombinatorial possibilities is 6; if we double them up, n = 4 and m = 6, the
number of possibilities is 360. If we also onsider the possibility that a tar-

get does not need to generate a measurement, in other words, a target an
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Chapter 4. Multi�trajetory estimation

be missed, the number of possibilities is even higher, and again ombinato-

rial. Aross time, the omplexity of the problem gets multiplied. Therefore,

the optimal way of solving the problem onsidering all the possibilities is

intratable. Below we disuss brie�y the traditional approah taken.

Let K denote the bath duration, k the time index, NK the number of

targets in the entire bath duration and Mk the number of measurements

obtained at k. Assume the state variable is X = (Xk,i : k = 1, . . . , K, i =

1 . . . , NK) and the measurement is Z = (Zk,j : k = 1, . . . , K, j = 1 . . . ,Mk)
where i stands for the target index and j for the measurement index.

If we know the posterior density p(X|Z), we an estimate the states,

whih are tratable and straightforward if there is no unertainty in the

measurement origin. However, in the multi�target traking problems, the

measurement set omprises the measurements from the targets that are

deteted as well as the lutter measurements, and the origin of the mea-

surements in the set are not known. To handle this unertainty in the

measurement origin, one traditional way is to introdue a data assoia-

tion variable φ = {φk,i, ∀k, i}, where φk,i = j denotes the assignment of

the target i at time k to the measurement Zk,j. With these variables,

the density of interest beomes p(X, φ|Z), using whih the estimates an

be omputed. Though the introdution of this variable makes it easier

to represent the measurement unertainty, the estimation problem is still

intratable due to the sheer number of possibilities of φ. For instane, on-

sider X̂
MAP

= argmaxX p(X|Z) = argmaxX maxφ p(X, φ|Z). The optimal

point is searhed over all the possibilities of φ, whih is exponential in the

number of measurements. Thus, sub-optimal approahes are inevitable. In

the remainder of this setion, we give a brief overview of some of the ex-

isting sub-optimal algorithms to estimate X . Adhering to the onventional

terminology, we refer to an instane of φ as the data assoiation hypothesis.

4.2 Traking algorithms

The existing algorithms for traking an be broadly ategorised into two:

the ones that jointly estimate X and φ, and the others that estimate X
while marginalizing φ. Global nearest neighbour (GNN) [27℄ and multiple

hypothesis traking (MHT) [27,46,47℄ belong to the �rst ategory, whereas

joint probabilisti data assoiation (JPDA) [27, 48�55℄, probabilisti MHT

(PMHT) [56�59℄ and their variants belong to the seond one. There are

also sampling�based algorithms like Markov hain Monte Carlo data asso-

iation (MCMCDA) [60℄. In this algorithm, an estimate of a hypothesis is
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4.2. Traking algorithms

obtained by making several random hanges to the existing hypothesis. The

omputational and memory requirements of this algorithm are very high,

in general. In this setion, we �rst fous on the �rst ategory of algorithms

that estimate φ, while estimating X , followed by the seond ategory that

estimate X .

4.2.1 Global nearest neighbour

In ase of the global nearest neighbour algorithm, at eah time instant k,
the best data assoiation hypothesis is hosen to be the one with the largest

Pr{φk|Z1:k}, where φk stands for the data assoiation at time k and Z1:k

for the set of measurements from time 1 to k, respetively. This hypothesis

is propagated to the next time and assoiated with the new set of mea-

surements to form a new set of hypotheses. The best hypothesis is hosen

to be the one with the largest Pr{φ1:k+1|Z1:k+1} and the whole proedure

is repeated for subsequent time instants. This algorithm is very simple to

implement using 2-D assignment algorithms [61℄ suh as the aution algo-

rithm [62℄ or Jonker-Volgenant-Castanon (JVC) [63℄, but sine it makes

hard deisions every time instant, it underestimates the ovariane and an

often lead to trak loss.

4.2.2 Multiple hypothesis traking

Similar to GNN, MHT generally makes hard deisions when estimating φ.

However, unlike GNN, the MHT algorithms make hard deisions based on

multiple sans of data. The ommonly used N-san pruning based trak�

oriented MHT algorithm hooses the best set of hypotheses at time k based

on the last N sans of data and, propagates them, and repeats the proe-

dure again. In essene, the algorithm estimates the best hypothesis at time

k − N based on the information until the urrent time instant k. The N-

san pruning algorithm is typially implemented using the N-dimensional

assignment algorithms as in [64�66℄. Another popular version of MHT is

to retain the M-best hypotheses at eah time and propagate only these M

hypotheses to the next time instant. This is typially implemented using

Murty's algorithm [28�30,67℄.

As an be notied, MHT maintains multiple data assoiation hypotheses

every time instant and, hene the name `multiple hypothesis traking'. The

larger the N (orM) is, the more aurate the estimates are. However, larger

N leads to higher omplexity; and smaller N leads to the `short' history

problem of MHT. That is, the di�erent hypotheses that are maintained

eah time instant k di�er only in the most reent N (k − (N + 1), . . . , k)
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assoiations and are idential from time 1 to k−N . Therefore, there is only

one data assoiation sequene maintained from time 1 to k − N and any

new information from future measurements annot be used to update the

data assoiation in those time instants.

4.2.3 Joint probabilisti data assoiation

Let us now shift our fous to the other lass of algorithms whih estimate

X by integrating out φ. The JPDA algorithm integrates out φ at eah time

instant and performs moment mathing to approximate the distribution

over X to a Gaussian density. That is, the possibly multi�modal density

p(X|Z) =
∑
φ

p(X, φ|Z) is approximated to a uni-modal density p̃(X|Z)
where the inlusive KL divergene KL(p(X|Z)||p̃(X|Z)) [68℄ is minimized.

Again, this algorithm is omputationally simpler than MHT, but when the

approximated posterior density is propagated aross time, the performane

degrades.

4.2.4 Probabilisti multiple hypothesis traking

Another popular traking algorithm is the probabilisti multiple hypothesis

traking (PMHT), whih aims to ompute the maximum a posteriori (MAP)

estimates of the entire sequene of target states. The idea is to obtain these

estimates using the expetation maximization (EM) algorithm, where the

solution is iterative and involves several loal optimisations:

X̂(n+1) = argmax
X

∑

φ

Pr{φ|Z, X̂(n)} ln p(X, φ, Z). (4.1)

PMHT allows a target to be assoiated to multiple measurements, whih

enables losed�form expressions to ompute the marginal assoiation prob-

abilities of the di�erent trajetories. However, this approximation is more

suitable for extended target models than the point target model assump-

tions presented in the beginning of this setion. Paper III [69℄ of this thesis

also uses EM similar to PMHT to estimate the states; however, we retain

the point�target onstraints that a target is assigned to at most one mea-

surement and a measurement is assigned to at most one target.

4.3 EM for data assoiation

Expetation maximization (EM), �rst disussed in [70, 71℄, is an iterative

tehnique, widely used to obtain approximate maximum�likelihood estima-

tion (MLE), or MAP estimates of parameters from observed data. In the
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EM solution, the model is assumed to have hidden variables that relate the

measurements with the states. This makes the posterior density analysis

simpler, whih is otherwise intratable. In trajetory estimation, we are

interested in obtaining estimates of the state vetor X . In this setion, we

propose two versions of EM to obtain the state estimates using the joint

density p(X, φ, Z). To start with, we present a brief introdution to the EM
algorithm for MAP estimation.

To derive EM in its general form, we adhere to a notation that is ommon

in the EM literature. Aording to the notation, θ is the parameter to

be estimated, Z the observed data and γ the hidden variable. The MAP

estimation of θ is given by,

θ̂ = argmax
θ
p(θ|Z) = argmax

θ
ln

∫
p(θ, Z, γ)dγ. (4.2)

Note that the logarithm that has been introdued in the maximization is a

monotonially inreasing funtion and does not a�et the MAP estimation.

In many appliations (inluding traking, as will be shown), the integral

in the MAP estimation aording to (4.2) is not always tratable. To get a

tratable approximation, qγ(γ) over the hidden variable γ is introdued in

the objetive funtion in (4.2):

ln p(θ, Z) = ln

∫
qγ(γ)

p(θ, Z, γ)

qγ(γ)
dγ (4.3)

≥
∫
qγ(γ) ln

p(θ, Z, γ)

qγ(γ)
dγ (4.4)

, F(qγ(γ), θ). (4.5)

Jensen's inequality is used to go from (4.3) to (4.4). As an be observed,

the term F(qγ(γ), θ) on the right�hand side of (4.4) is a lower bound on the

logarithm of the joint density ln p(θ, Z) [71℄ and is a funtional of qγ and θ.

In EM, this lower bound is inreased with iterations suh that the di�erene

between the bound and the logarithm of the density is dereased [70℄. This

is ahieved by performing the following set of operations in eah iteration

(n + 1):

q(n+1)
γ (γ) = argmax

qγ(γ)
F(qγ(γ), θ(n)) (4.6)

θ(n+1) = argmax
θ
F(q(n+1)

γ (γ), θ). (4.7)

The �rst step is alled the the E-step, where the best q
(n+1)
γ (γ) is omputed

given θ(n). The seond step, alled the M-step, omputes the best θn given
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q
(n+1)
γ (γ).

In Paper III [69℄ and Paper IV [72℄, we have used two approahes in EM

to obtain the estimates. In Paper III, we use the EM problem formulation

to estimate the state X diretly from the joint density p(X, φ, Z). In other

words, we set θ = X and γ = φ. In Paper IV, we reverse the roles of X and

φ. That is, we use EM to estimate the data assoiation φ, from whih we

an obtain the state estimates X immediately.
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Chapter 5

Metris

Metris are important in multi-target traking (MTT) for performane eval-

uation and algorithm design. In essene, metris are neessary to quantify

the loseness between a ground truth and an estimate thereof. When design-

ing metris for MTT, there are spei� hallenges that must be addressed,

suh as loalisation error, error due to missed and false targets and penalty

for trak swithes.

In this hapter, we disuss the need for metris in MTT, followed by a

disussion on the basi metri properties. We also present a summary on

the ommonly used metris, and brie�y disuss the hallenges in designing

a metri for trajetory estimation.

5.1 Need for a metri

Metris are needed in trajetory estimation for two main reasons: designing

algorithms and performane evaluation. In algorithm design, one wants an

estimate that is lose to the true state in some sense. It is reasonable that a

metri is used to de�ne this loseness. When evaluating the performane of

an algorithm, one needs a similarity measure to quantify the error between

the obtained estimates and the ground truth. One again, it seems natural

that a metri is used to quantify this error.

In multi-target traking (MTT), the estimation is often formulated as a

Bayesian �ltering problem where the ground truth is a random quantity and

the estimates depend deterministially on the observed data. For perfor-

mane evaluation, in many ases, we average over several realizations of the

data, so estimates are random as well. In both the senarios we disussed

above�designing algorithms and performane evaluation�the objetives
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involve an averaging of the metri over di�erent instanes of the random

quantities involved, i.e., the ground truth and the estimate. In other words,

the similarity between the ground truth and the estimate is omputed in

an average sense. It is again important that this similarity whih involves

averaging is also a metri.

5.2 Metri properties

The de�nition of a metri varies slightly based on if the variables involved

are random or not. In this setion, we summarize the properties of a metri

on general spaes and on probability spaes. We also disuss the signi�ane

of these properties brie�y.

De�nition 5.1. A metri dA(·, ·) on a set A is a funtion that satis�es the

following properties for any x, y, z ∈ A [73, Se. 2.15℄:

1. Non-negativity: dA(x, y) ≥ 0.

2. De�niteness: dA(x, y) = 0 ⇔ x = y.

3. Symmetry: dA(x, y) = dA(y, x).

4. Triangle inequality: dA(x, y) ≤ dA(x, z) + dA(z, y).

For metris in a probability spae A, the de�niteness between random

variables is in the almost�sure sense [74, Se. 2.2℄, as desribed in the fol-

lowing de�nition.

De�nition 5.2. A metri dA(·, ·) on a set A is a funtion that satis�es the

following properties for random variables x, y, z ∈ A:

1. Non-negativity: dA(x, y) ≥ 0.

2. De�niteness: dA(x, y) = 0 ⇔ Pr(x = y) = 1.

3. Symmetry: dA(x, y) = dA(y, x).

4. Triangle inequality: dA(x, y) ≤ dA(x, z) + dA(z, y).

In the above de�nition, Pr(x = y) = 1 implies that the event that x and y
take the same value has probability 1.

We now proeed to desribe and disuss the signi�ane of these prop-

erties, with more emphasis on the triangle inequality property. The non-

negativity property ensures that the distane annot be negative. The de�-

niteness property ensures that a distane between a point to itself is 0. For
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random variables, this property is in essene ensured for all the points that

have non-zero probability. The symmetry property on�rms that the dis-

tane from point x to y should be the same as the distane from point y to x.

The triangle inequality property, despite its abstratness, has a major

pratial importane in algorithm assessment [75, Se. 6.2.1℄. Suppose there

are two estimates y and z for a ground truth x. Let us assume that aording

to dA, the estimate z is lose to the ground truth x and is also lose to the

other estimate y. Then, aording to intuition, the seond estimate y should

also be lose to the ground truth x. This property is ensured by the triangle

inequality property. The triangle inequality also has pratial impliations

to ensure the quality of approximate optimal estimators. Consider x to be

the ground truth, and z to be the optimal estimate, aording to a ertain

riterion. Let us assume that it is di�ult to ompute the optimal estimate

z suh that we resort to an approximation y of the optimal z. This happens

often in pratie. If the triangle inequality does not hold, it would mean

that even if we have a good estimate y, lose to the optimal z, whih in

turn is lose to the ground truth x, it is possible that the distane from y
to the ground truth x is high. This property is learly not desirable.

5.3 Common metris

In this setion, we disuss some of the ommonly used metris in the litera-

ture. One way of ategorizing the metris is based on the kind of variables

involved. Below, we summarize the metris used for vetors, �nite sets of

vetors and �nite sets of trajetories. Before we present the metris, we �rst

disuss in eah setion in whih senarios these kinds of metris are useful.

5.3.1 On vetor spaes

Metri on vetor spaes is a well studied problem with the most ommon

one being the Eulidean metri. The root mean square error (RMSE) is

based on the Eulidean metri and is ommonly used when the involved

quantities are random. Below we present a slightly general version of the

RMSE.

De�nition 5.3. Given two vetors x, y in RN
, then the p-norm for any

1 ≤ p ≤ ∞ is a metri. It is de�ned as follows:

dp(x, y) ,
p

√√√√
N∑

i=1

|xi − yi|p. (5.1)
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De�nition 5.4. If the vetors x and y are random vetors with joint dis-

tribution f(x, y), then the following de�nition is also a metri:

d̄p(x, y) ,
p

√
E[dp(x, y)p], (5.2)

where the expetation is de�ned with respet to the joint distribution f(x, y).
When we set p = 2 in the above de�nition, we get the ommonly used RMSE

metri.

The Eulidean metri is also ommonly used in the trajetory estimation

problem for simple senarios. For instane, in the single trajetory estima-

tion problem, where there is no unertainty in the birth time and the death

time of the trajetory, then there is a one-to-one orrespondene between

the estimated state and the ground truth at eah time instant. In this ase,

one an just use the metri for vetors at eah time instant.

5.3.2 On the spae of �nite sets of vetors

Let us now onsider senarios with multiple targets, where we are inter-

ested in how good the loalisation is at eah time instant. In this ase, at

eah time instant, both the ground truth and the estimates are sets of state

vetors, where there is unertainty about whih vetor in the estimated set

orresponds to whih vetor in the ground truth. Now, the quantity of in-

terest is a metri between sets of vetors.

The study of the metris in this spae is relatively new. In the MTT lit-

erature, there are several metris that have been proposed for this purpose,

suh as the Wasserstein metri [75,76℄, the Hausdor� metri [76℄, the OSPA

metri [77℄ and many more [78�83℄. Among these, the optimal sub-pattern

assignment (OSPA) metri is the most ommonly used one. The metris

in [82℄ and [83℄ propose a base distane in the metri that also takes into

the aount the quality information about the estimated state. Below we

present the OSPA metri.

De�nition 5.5. Let d(·, ·) denote a metri on RN
suh that d(x, y) is the

distane between x, y ∈ RN
and let d(c)(x, y) = min(d(x, y), c) be the ut-o�

metri assoiated with d(x, y) [75, Se. 6.2.1℄. We also refer to d(c)(x, y)

as base distane. Let Πn be the set of all permutations in {1, . . . , n} for any
n ∈ N. Any element π ∈ Πn is a sequene (π(1), . . . , π(n)).

Let X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} be �nite subsets of a

bounded observation window W ⊂ RN
, where |A| denotes the ardinality of
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a set A. For 1 ≤ p <∞ and |X| ≤ |Y |, OSPA [77℄ is de�ned as

d(c)p (X, Y ) ,


 1

|Y |


 min

π∈Π|Y |

|X|∑

i=1

d(c)(xi, yπ(i))
p + cp(|Y | − |X|)






1
p

. (5.3)

For |X| > |Y |, d(c)p (X, Y ) = d
(c)
p (Y,X). The ∞-OSPA is de�ned as

d(c)∞ (X, Y ) ,





min
π∈Π|Y |

max
1≤i≤|X|

d(c)(xi, yπ(i)) |X| = |Y |

c otherwise

. (5.4)

In Paper V [84℄, we disuss the shortomings of the above formulation.

We propose a new metri whih addresses loalisation error as well as missed

and false targets that are of interest in MTT. We also extend the metri to

ompute the equivalents of the RMSE metri for vetors.

5.3.3 On the spae of �nite sets of trajetories

In many traking algorithms, suh as in multiple hypothesis traking (MHT)

[27,46,47℄ and joint probabilisti data assoiation (JPDA) [49,50℄, the out-

put of the algorithm is not just the set of states at eah time. Instead, the

output is a set of time sequenes of states, i.e., trajetories of states. Note

that the theory for sets of trajetories has been well established in [85℄. To

de�ne a metri between sets of trajetories, it is ommon to use the metri

disussed in Setion 5.3.2 or a simpler modi�ation of it. But this strategy

produes strange and ounter�intuitive behavior. Below, we disuss some

of those approahes and their shortomings.

One approah is to use OSPA on the entire sets of trajetories [86,87℄. In

this approah, one uses the OSPA de�nition where the base metri between

two traks is de�ned. To disuss the problems with this approah, let us

onsider a new set of examples in Figures 5.1 and 5.2. The ground truth is

the trajetory shown in blue o's in both the �gures and the estimates are

the ones shown in red x's. Aording to the metri we just disussed, OSPA

piks the one with the minimum of the base distane between the traks

in the ground truth and the traks in the estimates. Assuming ǫ is almost

0 and ρ is large, the OSPA distane indiates that both the estimates in

Figure 5.1 and 5.2 have the same distane to the ground truth. This is

learly ounter�intuitive. The estimate in Figure 5.1 is learly a better one

ompared to the one in Figure 5.2. This undesirable behavior is due to

the property that OSPA assigns eah trak in the ground truth to exatly

one trak in the estimate, assuming the estimate has more traks than the
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ground truth.

1 2 3 4 5 6

∆

∆+ ǫ

time

state

Figure 5.1: If ǫ is small, the estimate indiated by red ×'s is still a good estimate

ompared to the one in Figure 5.2 for the ground truth in blue o's. The only problem

with this estimate is that it has split a single trajetory into two.

1 2 3 4 5 6

∆

∆+ ǫ

∆+ ρ

time

state

Figure 5.2: If ǫ is small and ρ is large, the estimate traks in red olor with×'s should have
a larger distane to the ground truth in blue o's ompared to the estimate in Figure 5.1.

It is ommon to diretly use the OSPA metri on the set of states of

the trajetories at eah time instant. A shortoming of this approah an

be illustrated with a simple example. Let us assume that in the ground

truth we have a trajetory of states, i.e., a time sequene of states. Let us

onsider two di�erent version of the estimates:
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• Estimate 1: we obtain a time sequene of states exatly idential to

the one in the ground truth,

• Estimate 2: we obtain two time sequenes of states, one whih ex-

atly mathes the �rst half of the trak in the ground truth and the

seond sequene whih exatly mathes the seond half of the trak

in the ground truth. (This orresponds to ǫ = 0 in the example in

Figure 5.1).

Using the strategy we just disussed, we get the exat same value, 0, for
the `metri' for both these estimates. This property learly violates the

de�niteness property we disussed in the beginning of the hapter.

A summary of the learnings from the above two approahes is that you

an assign a trak in the ground truth to di�erent traks at di�erent times,

but there should be an additional ost for being assigned to di�erent traks.

This we refer to as the swithing ost. We have used this approah in

Paper VI of the thesis. In the paper [88℄, we ompare our metri to some

of the other metris [89, 90℄ in the literature that uses the same approah.
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Chapter 6

Contributions and future work

The main objetives of the thesis are to design algorithms for addressing the

data assoiation problem in trajetory estimation and to design a metri to

evaluate the algorithms. The ontributions of eah paper omprising the

thesis are disussed brie�y in this hapter. Furthermore, possible ideas for

future researh that arose during the writing of this thesis are presented.

6.1 Contributions

In the following setion, the ontributions of the six papers in the thesis,

and the relations between them, are presented.

Paper I

In this paper, the problem of forward-bakward smoothing (FBS) of Gaus-

sian mixture (GM) densities based on merging is addressed. The existing

literature provides pratial algorithms for the FBS of GMs that are based

on pruning. The drawbak of a pruning strategy is that as a result of exes-

sive pruning, the forward �ltering an result in degeneray. The bakward

smoothing on this degenerate forward �lter an lead to highly underesti-

mated data assoiation unertainties. To overome this, we propose us-

ing merging of the GM during forward �ltering as well as during bakward

smoothing. As mentioned before, the forward �lter based on merging is well

studied in the literature. A strategy to perform the bakward smoothing

on �ltered densities with merged omponents is analysed and explained in

this paper. When ompared to FBS based on an N-san pruning algorithm,

the two-�lter smoothed densities obtained using the presented approxima-

tions of the bakward �lter show better trak-loss, root mean squared error

(RMSE) and normalized estimation error squared (NEES) for lower om-

plexity.
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Paper II

The objetive of this paper is to obtain an algorithm for two-�lter smooth-

ing (TFS) of GM densities based on merging approximations. The TFS

involves two �lters, namely the forward �lter and the bakward �lter, where

the former has been studied extensively in the literature. The latter, i.e.,

the bakward �lter, has a struture similar to a GM, but is not a normaliz-

able density. Therefore, the traditional Gaussian mixture redution (GMR)

algorithms annot be applied diretly in the bakward �lter. The existing

literature, though providing an analysis of the bakward �lter, does not

present a strategy for the involved GMR. This paper presents two strate-

gies using whih the Gaussian mixture redution (GMR) an be applied to

the bakward �lter. The �rst one is an intragroup approximation method

whih depends on the struture of the bakward �lter, and presents a way

in whih GMR an be applied within ertain groups of omponents. The

seond method is a smoothed posterior pruning method, whih is similar to

the pruning strategy for the (forward) �ltered densities disussed in [91℄. In

Paper I, the posterior pruning idea is formulated and proved to be a valid

operation for both the forward and the bakward �lters. When ompared to

FBS based on an N-san pruning algorithm, the two-�lter smoothed densi-

ties obtained using the presented approximations of the bakward �lter are

shown to have better trak-loss, RMSE and NEES for lower omplexity.

Paper III

This paper address the data assoiation problem in multiple trajetory es-

timation. The objetive in this paper is to obtain the maximum aposteriori

(MAP) estimate of the state X from the joint density p(X, φ, Z). This prob-

lem is not tratable as the number of possibilities of φ is exponential. In

this paper, we address the problem using expetation maximisation (EM)

to estimate X , while treating φ as a hidden variable. We show that state

estimates an be obtained by running an iterative algorithm, where in eah

iteration, a Rauh-Tung Striebel (RTS) smoother is run for eah target.

The measurements updates in the �lter and smoother is arried out with

the omposite measurements, whih are weighted sums of the measurements

at eah time instant. The weights, whih are the marginal data assoiation

probabilities, are omputed using loopy belief propagation. We show in the

paper, that despite the simpliity, the algorithm performane is omparable

to a multiple hypothesis traking (MHT) algorithm.
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Paper IV

The data assoiation problem is addressed in this paper by estimating the

data assoiation variable φ from the joint density p(X, φ, Z). One φ is es-

timated, X is immediate to estimate using an RTS smoother. The strategy

is to use EM to estimate φ. This strategy results in an iterative algo-

rithm, where in eah iteration, one runs an RTS smoother for eah target.

The measurements for the RTS smoother are obtained using global nearest

neighbour (GNN) at eah time. In the paper, we show that the algorithm

outperforms an MHT implementation in terms of mean optimal sub-pattern

assignment(OSPA) performane.

Paper V

In this paper, we present a metri named generalised OSPA (GOSPA) to

ompute distane between two sets of vetors. We show that ompared to

the OSPA metri, our metri addresses the problem by penalising missed

and false targets, whereas OSPA penalises the ardinality mismath. We

also show that the GOSPA metri an be extended to random �nite sets of

vetors, whih is relevant for performane evaluation and algorithm design.

We show that given a joint distribution over two sets of vetors, the mean

GOSPA and the root mean squared GOSPA are also metris.

Paper VI

In this paper, we propose a metri based on multidimensional assignments

in the spae of sets of trajetories. Besides the loalisation ost, missed and

false targets [84℄, this metri also addresses the problems of trak swithes by

allowing a trajetory to be assigned to multiple trajetories aross time, but

by penalising it for these multiple assignments. We introdue the onepts

of half and full swithes to quantify the penalty. As this multidimensional

assignment metri belongs to the NP hard lass of problems, we also propose

a lower bound for the metri, whih is omputable in polynomial time using

linear programming (LP). We also show that this lower bound is a metri

in the spae of sets of trajetories. From simulations, we have observed that

the lower bound omputed using LP often returns the optimal value for the

multidimensional metri. An e�ient way to ompute the LP metri using

alternating diretion method of multipliers (ADMM) that sales linearly

with time is also presented. We further adapt this metri to random sets of

trajetories.
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6.2 Future work

Besides the ideas and algorithms presented in the thesis, we also obtained

a plethora of ideas to investigate in the future. In this setion, we present

and disuss the ideas, whih range from the extensions of GM smoothing to

more omplex senarios than single-target linear Gaussian proess models,

to omputationally heaper GM merging methods and message passing in

generi graphs.

Merging algorithms

The TFS and FBS algorithms presented in the thesis are based on merging.

There are several methods, suh as Runnalls', Salmond's and variants of

these, whih one an hoose for GM merging implementation. However,

the omputational omplexity of these methods is a serious limitation when

it omes to pratial implementations where GM merging is neessary at

eah time instant. In both redution algorithms, the merging ost must be

omputed for every pair of omponents, whih involves expensive matrix

multipliations. Therefore, the omplexity of these algorithms is quadrati,

if not exponential, in the number of omponents, whih is still expensive

onsidering predition, update and retrodition steps. For the results pre-

sented in the thesis, signi�ant amount of e�ort went into devising pratial

merging algorithms, whih resulted in two strategies. One is a ombination

of Runnalls' and Salmond's algorithms, whih is used in the forward �lter.

The other method is a modi�ed version of Salmond's algorithm. A possible

investigation an be in making fewer ost omputations than omputing the

ost for every pair (i, j). One way of reduing the number of merging ost

omputations is by obtaining bounds on the ost funtion. Suppose there

is an upper bound on the least possible ost. And suppose that for some

group of pairs of omponents, we an ompute a lower bound on the osts.

If the group's lower bound is greater than the upper bound on the lowest

ost, the ost omputation for the omponent pairs in the group an be

avoided. The hallenge is thus in obtaining the upper bound on the least

ost, and seleting the group that an be eliminated. A loser analysis of

the ost funtion is neessary to obtain these bounds and a good hoie of

groups.

Trajetory estimation with random birth and death events

In Paper III and Paper IV, it is assumed that all the traks are present

the whole bath duration. It would be interesting to extend the approah

to ases where the traks births and deaths happen at random times. One
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exhaustive approah is to onsider all possible birth and death time om-

binations for all the traks. Similar to the data assoiation problem, this

is also a ombinatorial problem. A more appealing approah would be to

model these variables into the joint density and use EM to estimate the

birth and death time variables as well.

Online algorithms

The algorithms proposed in Papers I to IV are all bath algorithms. Ex-

tending all these algorithms to online algorithms extends the sope of these

algorithms. There are several possibilities to investigate here. For instane,

one an use a sliding window approah, where one an tune the width of

the window and also the overlap aross the windows based on the applia-

tion. Another approah is to extend the idea of smoothed �ltering proposed

in [91℄. That is, to obtain the �ltered density p(xk|z1:k), one an go bak

and improve all the approximations made at all the previous time instants.

This improvement in approximation an be implemented using an iterative

approah in the papers.

Metri for sets of trajetories based on distane-based

swithing ost

In Paper VI, trak swithes are used to penalise when a trajetory in the

ground truth set is assigned to multiple trajetories in the estimate. In

the urrent version, the penalty for the trak swith is a �xed parameter.

But there an be senarios when this penalty must be varied based on the

severity of the swith. For instane, onsider a pair of trajetories in the

ground truth that are lose to eah other for ertain duration and then

move apart. Let us onsider two estimates for the ground truth. First is

an estimate with trajetories suh that the trak swith happens when the

trajetories in the ground truth are lose together. The seond estimate has

trajetories suh that the trak swith happens when the two trajetories

in the ground truth are far apart. Aording to intuition, the �rst estimate

is better than the seond, as the trak swith happens in a region where it

might be di�ult to resolve. This di�erene should be possible to address

by de�ning a penalty for the trak swith that depends on the loseness

of trajetories in the ground truth and their orresponding trajetories in

the estimate. The major hallenge here an be in de�ning the penalty in

a onsistent way that still retains the metri properties. This would be an

interesting problem to investigate.
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