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A batch algorithm for estimating trajectories of
point targets using expectation maximization

Abu Sajana Rahmathullah, Raghavendra Selvan, Lennart Svensson

Abstract—In this paper, we propose a strategy that is based on
expectation maximization for tracking multiple point targets. The
algorithm is similar to probabilistic multi-hypothesis tracking
(PMHT), but does not relax the point target model assumptions.
According to the point target models, a target can generate
at most one measurement and a measurement is generated
by at most one target. With this model assumption, we show
that the proposed algorithm can be implemented as iterations
of Rauch-Tung-Striebel (RTS) smoothing for state estimation,
and the loopy belief propagation method for marginal data
association probabilities calculation. Using example illustrations
with tracks, we compare the proposed algorithm with PMHT and
joint probabilistic data association (JPDA) and show that PMHT
and JPDA exhibit coalescence when there are closely moving
targets whereas the proposed algorithm does not. Furthermore,
extensive simulations comparing the mean optimal sub-pattern
assignment (MOSPA) performance of the algorithm for different
scenarios averaged over several Monte Carlo iterations show
that the proposed algorithm performs better than JPDA and
PMHT. We also compare it to benchmarking algorithm: N -
scan pruning based track-oriented multiple hypothesis tracking
(TOMHT). The proposed algorithm shows a good trade-off
between computational complexity and the MOSPA performance.

Index Terms—Data association, expectation maximisation,
loopy belief propagation, probabilistic multi-hypothesis tracking
(PMHT).

I. Introduction
There are many interesting applications based on tracking

multiple targets, and the range of applications are only increas-
ing by the day. With the well justified enthusiasm in the domain
of autonomous vehicular navigation [1], computer vision [2]
and the classical radar based tracking applications [3], the
need for tractable multi-target tracking algorithms that perform
close to optimal in real-time, has risen in the last few years.
The problem of multi-target tracking is widely studied [4]–[6],
and newer paradigms are being investigated to solve existing
bottlenecks, and to enable further possibilities [7].

The focus of this paper is on tracking multiple point targets,
and one of the main challenges in such a tracking problem is
to resolve uncertainties in the origin of measurements from
targets [8], [9]. Discerning target-generated measurements
from clutter, and finding correspondence between targets and
measurements, in order to estimate target tracks in space
and time forms the crux of the problem. The uncertainty
in data association can be handled by maintaining data as-
sociation hypotheses, which map partitions of measurement
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data to different targets [10], [11]. While this approach of
maintaining data hypotheses might seem plausible to resolve
measurement uncertainties, it scales poorly with number of
targets and measurements, when aggregated over different time
instants [12]. The number of hypotheses grows exponentially,
and most existing multi-target tracking algorithms propose
solutions which can circumvent handling massive number
of data association hypotheses, making a trade-off between
optimality and complexity [13].
One of the earliest multi-target tracking algorithms devel-

oped was multiple hypothesis tracking (MHT) [4], [9], [11],
with a possibility of maintaining all data association hypothe-
ses in a tree form, making it optimal and at the same time
rendering it computationally intractable. To reduce complexity
there have been many approximations to the original MHT,
that do not maintain all possibilities in the hypothesis tree.
One such common version of MHT is the N -scan pruning
based track-oriented MHT (TOMHT) [12], which maintains a
hypothesis tree only for the latest N scans of measurements,
and prunes away all hypotheses before N scans, in effect
leaving only a single data association hypothesis before N
scans. While this strategy reduces complexity, low scan depths
can considerably degrade performance of the algorithm.
Another strategy that has received considerable attention

in the past is the joint probabilistic data association (JPDA)
filter [11], [14], [15]. JPDA performs moment matching at
each time instant to merge multiple hypotheses into a single
hypothesis, which is equivalent to performing the filter update
with composite measurements. The composite measurements
are obtained by weighting measurements at each time instant
with their corresponding marginal data association probabili-
ties. Computing marginal probabilities for a high number of
targets can be expensive, but there exist efficient approximate
techniques like k-best hypotheses based on Murty’s algo-
rithm [11], [16], Monte Carlo sampling method [17], tree-
based approach [18] and loopy belief propagation (LBP) [19]
algorithm. Another disadvantage with JPDA is coalescence
which is a consequence of moment matching when there are
closely moving targets [20], [21].
Probabilistic multi-hypothesis tracking (PMHT) [22], [23],

on the other hand, uses multiple scans of data and iteratively
optimizes the maximum a posteriori (MAP) estimate of the
target states, using the expectation maximization (EM) algo-
rithm [24], [25]. While PMHT handles measurement data from
all scans in its EM iterations, it does not maintain a hypothesis
tree, resulting in reduced complexity when compared to MHT.
Further, PMHT makes a model assumption that befits extended
targets and not point targets [26], to avoid the computation of
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marginal data association probabilities. This relaxation further
reduces complexity, but makes PMHT susceptible to track
coalescence.

In this paper, we propose a batch algorithm that uses
EM [25] to obtain MAP estimates of target states, by treating
the data association variable as a hidden variable, for the
case of known number of targets. We show that the main
steps involved in the algorithm are smoothing and computing
marginal data association probabilities. It turns out that the
algorithm we propose is similar to PMHT, as both are batch
solutions and use EM to obtain MAP estimate of target states,
but with an important difference in the model assumptions:
our assumptions are consistent for point targets, meaning, each
target is assumed to generate and hence be associated only
to one measurement, whereas this constraint is relaxed in
PMHT. Further, the need to compute marginal data association
probabilities in the proposed algorithm is similar to JPDA, but
differing in the fact that we do not perform moment matching.
Our implementation of the algorithm uses Rauch-Tung-Striebel
(RTS) smoother [27] for smoothing, and an extension to the
LBP [19] to approximate the marginal probabilities. Although
it is beyond the scope of the current article, the strategies used
to turn PMHT into an online algorithm and to perform track-
handling can be adopted to extend our algorithm.

We compare the performance of the proposed algorithm
with MHT, PMHT and JPDA. We illustrate the conceptual
differences with PMHT and JPDA, while comparing it to
the benchmark algorithm, the N -scan pruning-based TOMHT
algorithm. The proposed algorithm does not suffer from track
coalescence, when there are closely moving or crossing targets,
in contrast to the PMHT or the JPDA algorithms. Plus, a
good initialisation can significantly improve the performance
of the proposed algorithm compared to PMHT. We also
compare these algorithms for different scenarios to highlight
the accuracy and computational advantage of the proposed
algorithm. In all the scenarios considered, the proposed al-
gorithm shows improvements in mean optimal sub-pattern
assignment (MOSPA) [28], [29] when compared to PMHT
and JPDA, while being computationally cheaper than MHT.

The organization of the paper is as follows: In Section II, we
present the model assumptions and main challenges addressed
in this paper. In Sections III and IV, our main contributions
are presented, where we elaborate on the role of expectation
maximization and computing marginal probabilities in the
presented algorithm.In Section V, algorithm-level details of
the proposed solution are presented. In Section VI, the pro-
posed solution is contrasted with two closely related methods,
PMHT and JPDA. Performance evaluation of our solution is
presented in Section VII. Finally, we present our conclusions
and possible tracks for future work in Section VIII.

II. Problem formulation and background

In this section, we begin by presenting the model assump-
tions based on which the algorithm will be derived, followed
by a discussion on the problem we are interested in solving.
After that, we describe a few existing multi-target tracking
algorithms, providing a context for our contribution.

A. Nomenclature
The following list consolidates the index notations used in

this paper:
T Batch duration

NT Number of targets
t Time index

Mt Number of measurements at time t
i Target index
j Measurement index
n EM iteration index

B. Problem formulation
We consider multiple point targets moving in a cluttered

background. The number of targets, NT , is assumed to be
known and all targets are assumed to be present in the
observation region at all times. The state vector Xt,i for target
i at time t is varying according to the process model,

Xt,i = FXt−1,i + Vt,i, (1)

where Vt,i ∼ N (0, Q). This model implies that targets move
independently of other targets. We also assume we have a
Gaussian prior distribution on each target i with mean µ0,i

and covariance P0,i. A target is detected with probability PD
and the detected target gives a measurement according to

Y target
t,i = HXt,i +Wt,i, (2)

where Wt,i ∼ N (0, R). Thus, the measurement set Yt at
each time is the union of the target measurements (of the
detected targets) and a set of clutter detections. The clutter
measurements are assumed to be distributed according to a
Poisson process with intensity βcV where V is the volume of
the observation region and βc is the clutter density per volume.
In this paper, we consider a batch problem in which

we have access to the data Y = (Y1, . . . , YT ) and we
seek to obtain the MAP estimate of the state X =
(X1,1, . . . , X1,NT

, X2,1, . . . , XT,NT
), given as

XMAP = argmax
X

p(X|Y ). (3)

That is, the goal is to estimate the trajectories of all targets.
Also, an estimate of the quality of the state estimates, often
captured in a covariance matrix, is desirable.
The density involved in MAP estimation is p(X|Y ), and

evaluating this density is tractable and straightforward if there
is no uncertainty in the measurement origin, for the model
assumptions described above. However, in the multi-target
tracking problems, the measurement set comprises both the
measurements from the targets that are detected and the
clutter measurements. And the information regarding which
measurements correspond to which targets is not available.
To describe this uncertainty in the measurement origin, one
traditional way is to introduce the data association variable
K = (k1,1, . . . , kT,NT

), where kt,i = j denotes that the
measurement Yt,j was generated by the target i at time t. Note
that these variables should take values that satisfy the point
target assumptions, i.e., a target can generate at most one mea-
surement, and a measurement can be assigned to at most one
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target. With these variables, the density of interest becomes
p(X,K|Y ), using which the estimates can be computed. For
instance, consider XMAP = argmaxX

∑
K p(X,K|Y ) for

MAP estimation of X . Here, introducing the data association
variable makes it easier to represent the measurement uncer-
tainty. However, the estimation problem is still intractable due
to the sheer number of possibilities of K. The number of
possible hypotheses, K, grows exponentially with the number
of measurements and the trajectory length, thus making it
intractable to marginalize or maximize with respect to K. In
the remainder of this section, we will give a brief overview
of some of the existing sub-optimal algorithms to estimate X .
Adhering to the conventional terminology, we will refer to an
instance of K as the data association hypothesis.

C. Background
For each K, the density p(X|K,Y ) is a Gaussian density

based on our model assumptions. This implies that p(X|Y )
is a Gaussian mixture (GM) with exponential number of
terms. Handling such mixture densities is prohibitive, and
some of the sub-optimal multi-target tracking algorithms resort
to estimating X by making approximations to the posterior
density. In the remainder of this section, we will give a
summary of a few existing algorithms, the approximations
involved and their limitations. Two of the algorithms discussed
here, namely, MHT and JPDA, are for filtering problems,
wherein the algorithms obtain target states Xt recursively
by approximating the posterior density p(Xt|Y1:t) every time
instant, where Y1:t denotes the set of measurements from time
1 to t. It is possible to extend these filtering algorithms to batch
problems by performing smoothing on the filtered estimates.
We also discuss a batch solution, PMHT, which is based on
EM and is very similar to the proposed algorithm in this paper.

The JPDA algorithm, first introduced in [14], approximates
the posterior density GM p(Xt|Y1:t) as a single Gaussian using
moment matching. For linear models, moment matching of
the posterior density is equivalent to updating the prediction
density with a single composite measurement [11] Ỹt,i,

Ỹt,i =

Mt∑
j=1

ωt,i,jYt,j . (4)

Here, ωt,i,j , is the marginal probability that measurement Yt,j
is associated to target i, given by,

ωt,i,j =
∑

K:kt,i=j

Pr{K1:t|Y1:t}. (5)

For linear-Gaussian point target models, (5) can be written as,

ωt,i,j ∝
∑

K:kt,i=j

∏
t,i

(
PDN (Yt,j ;Hµ

p
t,i, HP

p
t,iH

† +R)

(1− PD)βc

)1kt,i

where µpt,i and P pt,i denote the mean and covariance of the
predicted density at time t for target i, and the indicator

function 1kt,i , is described as, 1kt,i =

{
1 kt,i 6= 0

0 kt,i = 0
. As can

be observed in (4), we need to know the marginal probabilities

ωt,i,j for the measurement update. A straightforward com-
putation of these marginal probabilities is expensive, again
because of the number of possibilities of K with kt,i = j
and also due to the constraints on K for point targets. That
is, for each wt,i,j , all the possible hypotheses K that assigns
target i to measurement j should be considered; in addition,
these hypotheses should ensure point target assumptions and
be such that a target is assigned to at most one measurement
and a measurement is assigned to at most one target. In
the literature, there are different strategies to compute these
marginal probabilities by efficiently traversing through the
hypotheses [17], [18], [30]. The methods proposed in [17]
and [30] are approximations whereas the method in [18]
returns the exact marginal probabilities, trading off complexity
for accuracy.
A disadvantage of moment matching in JPDA is that it

suffers from track coalescence problem when there are closely
moving targets. In such scenarios, the priors and likelihoods
are almost identical for the two targets. As a result, the
posterior, which is a GM can have equally likely Gaussian
components, which when moment matched yields almost
identical tracks for the targets leading to coalescence [20], [21].
Note that this problem is also possible in many of the tracking
algorithms [31], however it is prevalent in the JPDA case.
Like JPDA, MHT is also a filtering algorithm but maintains

many Gaussian components in the posterior p(Xt|K1:t). In
other words, it maintains many hypotheses K1:t at each time
instant. Before propagation to the next time, it prunes away
hypotheses K1:t that are insignificant, which corresponds to
reducing the number of global hypotheses in MHT nomen-
clature. For this pruning purpose, N -scan pruning [4], [9],
[11] is one of the commonly implemented algorithms in MHT.
The N -scan pruning algorithm traces back N time scans and
prunes away all hypotheses at t − N , but the one that is the
ancestor of the current best hypothesis K∗1:t. Thus, the history
before t − N has just one data association possibility. The
accuracy of the MHT algorithm depends on the depth N .
Larger the N is, the better the accuracy is. However, larger N
implies that at each t there will be many hypotheses retained
which in turn implies higher computational complexity.
In case of PMHT algorithms [22], the MAP estimates of

the states are obtained using a variational inference method,
expectation maximization. This batch method is iterative and
involves several local optimizations,

X(n+1) = argmax
X

∑
K

Pr{K|Y,X(n)} ln p(X,K, Y ) (6)

where the superscripts (n) and (n + 1) refer to the iteration
indices. As one can observe from the above equation, there
is the distribution Pr{K|Y,X(n)} on K. With each iteration,
this distribution on K varies and the state is estimated accord-
ing to this new distribution. One important aspect regarding
PMHT is that it allows a target to be associated to multiple
measurements, which is more suitable for the extended target
models than the point target model assumptions presented in
the beginning of this section. As a consequence, PMHT allows
the same measurement to be associated to multiple targets,
which can lead to track coalescence when there are closely
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moving targets. In the next section we present an algorithm
for tracking of multiple point targets which is based on EM
similar to PMHT. But in contrast to PMHT, we derive the
algorithm without relaxing the point target assumptions.

III. EM for target tracking

In this section, we apply EM to a batch version of multiple
point target tracking problem and derive our solution. We
show that E and M steps in the proposed algorithm mainly
comprise of obtaining marginal data association probabilities,
which serve as weights for the composite measurements, and
smoothing using thus obtained composite measurements. We
first present a background on EM and continue with the
derivation for the model assumptions in Section II.

A. Expectation maximization for MAP estimation
Expectation maximization (EM), first discussed in [24], is

an iterative technique, widely used to obtain, both, approximate
maximum likelihood (ML) or MAP estimates of parameters
from incomplete observed data. Equivalently, EM is a common
choice for parameter estimation when the model has hidden
variables, relating the data with parameters. We present a brief
introduction to EM for MAP estimation, touching upon the
idea of it being a strategy that increases a lower bound on the
logarithm of the joint density.

The MAP estimation of state variable X , including the
hidden data association variable can be written as,

argmax
X

p(X,Y ) = argmax
X

ln
∑
K

p(X,Y,K). (7)

The logarithm of summation over K in (7) has exponential
complexity, making the MAP estimation problem NP-hard.
EM tackles this complexity of working through all possible
values of K by introducing a distribution over the data
association variable, qK(K), and obtaining a term that can be
interpreted as a lower bound on ln p(X,Y ) [24], [32], shown
below using Jensen’s inequality,

ln p(X,Y ) ≥
∑
K

qK(K) ln
p(X,Y,K)

qK(K)
. (8)

It is evident from (8) that the lower bound is a functional
of qK and X . Using them as parameters in the n-th iteration,
EM alternates between finding the best estimate q(n)K (K) given
X(n), and finding the MAP estimate X(n+1) given q(n)K (K).
This alternative optimization is guaranteed to increase the
lower bound ln p(X,Y ) until convergence to an optimum [24],
at which point the MAP estimate obtained would be the
best approximation. Thus, using the lower bound (8) in (7),
and collecting the terms dependent on X , the original MAP
problem can now be written as,

argmax
X

p(X,Y ) ≈ arg max
X,qK

∑
K

qK(K) ln p(X,Y,K).

From the above equation it is clear that there is an expectation
(E-step) with respect to qK(K) and a maximization (M-step)
with respect to X , which form the core of the EM algorithm

iterations. It can be shown that the E and M step iterations
can be uncoupled as [32]

q
(n)
K (K) = Pr{K|X(n), Y } (9)

X(n+1) = argmax
X

∑
K

q
(n)
K (K) ln p(X,Y,K). (10)

The main computational advantage of using EM is that it
converts the log-sum problem in (7), into the sum-log form
in (10), as this gain can be often substantial. Further, in cases
where the joint distribution can be expressed as a product of
distributions from the exponential family, these factors reduce
to polynomial terms, which further decreases the complexity.

B. Derivation of the EM algorithm for tracking multiple point
targets
In this subsection, we derive the E and M steps for the point

target tracking problem formulated in Section II. The E-step
derivation is immediately obtained from the model description,
whereas, we derive the M-step in some detail to show that
the MAP estimate of states can be obtained by smoothing
using composite measurements. We show that the composite
measurements are weighted by the marginal probabilities of
the data association variables, that are in turn distributed
according to the density qK returned by the E-step.
Starting with the expression for the E-step from (9),

q
(n)
K (K) = Pr{K|X(n), Y } ∝ p(K,Y |X(n)). (11)

For the Gaussian model assumptions in Section II, it can be
shown that [11], [23]

p(K,Y |X) ∝
∏
i,t

p(Yt,j , kt,i = j|Xt,i), (12)

where

p(Yt,j , kt,i = j|Xt,i) =

{
(1− PD)βc kt,i = 0

PDN (Yt,j ;HXt,i, R) kt,i 6= 0
.

Incorporating the conditions described above using an indica-
tor function 1kt,i , it follows that

q
(n)
K (K) ∝

∏
t,i

(
PDN (Yt,kt,i ;HX

(n)
t,i , R)

(1− PD)βc

)1kt,i

, (13)

where X(n)
t,i is the state estimate target i at time t.

In the M-step, we solve a convex maximization problem at
iteration n. There are many ways to solve such problems, but
our strategy is to show that the criterion can be rewritten as a
Gaussian distribution for which the mean and the covariance
have closed form expressions. Based on that result, it is trivial
to see that the desired MAP estimate is the mean of that
Gaussian distribution.
We begin by rewriting (10) as

X(n+1) = argmax
X

exp
(∑

K

q
(n)
K (K) ln p(X,Y,K)

)
. (14)

Next, we make use of the factorization of p(X,Y,K) in
order to simplify the log term inside the summation in (14).
One natural factorization is p(X,Y,K) = p(K,Y |X)p(X),
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where the first factor p(K,Y |X) has already been discussed
in (12). Proceeding to the prior term p(X), we notice that it
factorizes across targets: p(X) =

∏
i p(Xi), since the individ-

ual target motions are assumed independent of other targets’
evolution. Further, the Markovian property of individual target
states sequences can also be used to factorize the prior term
as, p(X) =

∏
t,i p(Xt,i|Xt−1,i). Using these simplifications

in (14), we get

X(n+1) = argmax
X

(∏
t,i

p(Xt,i|Xt−1,i)

× exp
( ∑
K,t,i

q
(n)
K (K) ln p(Yt,j , kt,i = j|Xt,i)

))
. (15)

We next focus on simplifying the exponent term in (15), and
observe that in summing over K, each kt,i ∈ {0, 1, . . . ,Mt}.
There can be several values of K, in which kt,i = j, and
we use the notation Kt,i,j to denote these sets of hypotheses
with assignment kt,i = j. The implication of this analysis is
that for a fixed value of j, ln p(Yt,j , kt,i = j|Xt,i) appears in
Kt,i,j terms along with the weights q(n)K . Using this insight,
the exponent in (15) can be rewritten as∑

t,i

Mt∑
j=0

( ∑
Kt,i,j

q
(n)
K (K)

)
ln p(Yt,j , kt,i = j|Xt,i). (16)

The term
(∑

Kt,i,j
q
(n)
K (K)

)
is in fact the marginal proba-

bility of assigning target i to measurement j, according to the
distribution q(n)K . We use the notation

w
(n)
t,i,j =

∑
Kt,i,j

q
(n)
K (K) (17)

to denote these marginal probabilities. Substituting the
marginal probabilities in (15) and moving the summations out
of the exponents, we get

X(n+1) = argmax
X

∏
t,i

p(Xt,i|Xt−1,i)

× exp

Mt∑
j=0

w
(n)
t,i,j ln p(Yt,j , kt,i = j|Xt,i)

 . (18)

Using the Gaussian process model for state transition den-
sity p(Xt,i|Xt−1,i) from (1), and also using (13) in (18), it
further simplifies to

X(n+1) = argmax
X

∏
i,t

N (Xt,i;FXt−1,i, Q)

×N
(
Ỹ

(n)
t,i ;HXt,i, R̃

(n)
t,i

)
, (19)

where, Ỹ (n)
t,i and R̃(n)

t,i are the composite measurements and
composite measurement covariances, given as

Ỹ
(n)
t,i =

Mt∑
j=1

w
(n)
t,i,j Yt,j

1− w(n)
t,i,0

(20)

R̃
(n)
t,i =

R

1− w(n)
t,i,0

. (21)

Details of this simplification are provided in Appendix A. Note

that
Mt∑
j=0

w
(n)
t,i,j = 1. When w

(n)
t,i,0 = 1 in (20) and (21), the

likelihood term N
(
Ỹ

(n)
t,i ;HXt,i, R̃

(n)
t,i

)
= 1 in (19).

From (19), it can be inferred that the objective function of
each target state Xt,i is proportional to a Gaussian density.
First factor in (19) is the prior term, while the second factor is
likelihood of the composite measurement. A straightforward
method to obtain these marginal posterior densities is by
performing forward-backward smoothing, and the resulting
mean yields the MAP estimates of state variables.

From (13), (17) and (19), it can be seen that the link between
the E and M steps are through the marginal probabilities.
The state estimate X(n+1) in (19) depends on the distribution
q
(n)
K in (13) through the marginal probabilities w(n)

t,i,j in (17).
In the next section, we elaborate on the role of marginal
probabilities in (17), and show how the LBP method in [19]
can be employed to approximate them.

IV. Marginal data association probabilities
calculation using Loopy belief propagation

In this section, we discuss the challenges involved in com-
puting the marginal data association probabilities w(n)

t,i,j , that
appear in (19) as part of the proposed algorithm. We also
provide a brief overview of techniques to compute or approx-
imate these probabilities. In this paper, we use loopy belief
propagation (LBP) for computing these marginal probabilities.
This LBP algorithm is inspired by the method employed in
[19] for JPDA filtering. We extend it to compute marginal
data association probabilities efficiently for batch problems.

To compute the marginal probabilities in (17), we make
use of the expression for the data hypothesis probabilities in
(13). The constraints that are implicitly in (13) due to the
point target model assumptions pose the main challenge in
computing the marginal probabilities in (17). At each time
instant, there are constraints on the kt,i variables introducing
dependency across targets. The constraint on kt,i at every
time instant t ensures that no two targets share the same
measurement at the same time. That is, kt,i1 6= 0 and kt,i2 6= 0
for i1 6= i2 implies that kt,i1 6= kt,i2 . However, no such
constraints apply across time, that is, for targets i1 and i2, at
different time instants, t1 and t2, the data association variables
kt1,i1 and kt2,i2 are independent. Due to these constraints on
the kt,i variables, qK(K) in (13) only factorizes across time,
but not across targets within every time instant. Consequently,
the marginalization of the data association variable can be
performed at each time independently. Even so, the number of
possible data associations at each time is very high, and it is
computationally expensive to perform marginalization through
an exhaustive listing of different possible values of K. Instead,
there are less computationally intensive methods to obtain the
marginal probabilities.

Techniques like k-best hypotheses based on Murty’s al-
gorithm [11], [16], Monte Carlo sampling method [17] and
the tree-based approach [18] can be used to compute joint
probabilities without explicit enumeration of all possible K.
The method in [18] gives exact probability values whereas
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kt,NT

kt,2

kt,1

bt,Mt

bt,2

bt,1

Figure 1: Belief propagation makes use of the dependencies across the
(redundant) data association variables. As can be seen, the graph is bipartite
which implies that the message flow is from the set of nodes on the left to
the right and vice versa, when performing LBP.

the methods in [11], [16] and [17] give approximations. The
method we have employed to compute wt,i,j in (17) in our
implementation is inspired by the graph based approach, loopy
belief propagation presented in [19], which has been shown to
provide good accuracy versus computation time trade-off. In
the next subsection, we present how the method proposed in
[19] can be employed to the proposed algorithm. For the sake
of brevity, we will drop the iteration indices.

A. Loopy belief propagation algorithm

The idea behind applying LBP is to use a factorization of
qK(K) and apply the sum-product algorithm [33] to compute
the marginal probabilities. In fact, in [19], a redundant repre-
sentation for qK(K) is introduced and a factorization of this
new representation is used to compute the marginals more
accurately compared to what would have been possible with
applying LBP on qK(K) directly.
The LBP method proposed in [19] is for computing the

marginal probabilities for JPDA filtering, whereas in this paper,
the marginal probabilities are calculated for the batch problem
where estimates from the smoothed posterior density. Consider
the distribution of data association in (13), with the point target
constraints expressed explicitly in the equation using factors
denoted φt,i,i′ :

qK(K) ∝
∏
t,i

ψt,i(kt,i)

NT∏
j=i+1

φt,i,i′(kt,i, kt,i′) (22)

where

ψt,i(kt,i) =

(
PDN (Yt,kt,i ;HXt,i, R)

(1− PD)βc

)1kt,i

, (23)

φt,i,i′ =

{
0 kt,i = kt,i′ 6= 0

1 otherwise
. (24)

In our problem, the factors ψt,i depend on the smoothed esti-
mates of Xt,i, whereas in [19], they depend on the estimates
from the prediction density. However, the constraints on the
variable kt,i are the same in both the problems. So, the LBP
method in [19] is applicable here wherein we use the smoothed
estimates of Xt,i instead of the predicted estimates.

Similar to [19], another set of variables B = {bt,j ,∀t, j}
is introduced such that we have a redundant representa-
tion qK,B(K,B) instead of qK(K). The bt,j variables are
the measurement-oriented data association variables, i.e., bt,j
stands for assigning the measurement Yt,j to the target bt,j at
time t. Using these variables, qK,B(K,B) can be comprehen-
sively expressed, including the constraints as follows:

qK,B(K,B) ∝
∏
t,i

ψt,i(kt,i)

Mt∏
j=1

ψt,i,j(kt,i, bt,j), (25)

where

ψt,i,j(kt,i, bt,j) =

{
0, kt,i=j,bt,j 6=i

kt,i 6=j,bt,j=i

1, otherwise
. (26)

Interpretation of the function ψt,i,j(kt,i, bt,j) is that it takes
the value ‘1’ when the target-oriented variable kt,i and the
measurement-oriented variable bt,j agree regarding the asso-
ciation and the value ‘0’ when there is a disagreement. So,
these ψt,i,j functions capture the constraints that a target can
be assigned to at most one measurement and a measurement
can be assigned to at most one target. The important advantage
of introducing these new functions in the representation of
qK(K) is that the dependency among the variables kt,i is only
through the variables bt,j . This dependency is best illustrated
in the factor graph for (25) in Figure 1. The graph as can be
seen is bipartite. This is advantageous because the possible
message flow in LBP will be from the nodes on the left side
of the graph to the right side of the graph and vice versa.
Once the factorization with ψt,i and ψt,i,j functions is es-

tablished, one can follow the procedures discussed in Sections
III-A and III-B of [19] to arrive at the expressions for the
messages. The messages passed during the iteration l from
kt,i variables to bt,j variables are

η
(l)
t,i→j =

ψt,i(kt,i = j)

1 +
∑

j′ 6=j,j′>0

ψt,i(kt,i = j′)ν
(l−1)
t,j′→i

(27)

and the messages passed from bt,j to kt,i variables are

ν
(l)
t,j→i =

1

1 +
∑

i′ 6=i,i′>0

η
(l)
t,i′→j

. (28)

The messages are passed in both directions until convergence.
Upon convergence, it follows from [19] that the marginal
probabilities are calculated according to

wt,i,j =
ψt,i(kt,i = j)ν

(l)
t,j→i∑

j′
ψt,i(kt,i = j′)ν

(l)
t,j′→i

. (29)

A step-by-step algorithmic description for every time instant
t is given in Algorithm 1.

V. Algorithm
In this section, we present implementation details of the

proposed algorithm for the Gaussian model assumptions. We
discuss how the equations and methods derived in Section III,
and Section IV can be interpreted, and implemented using
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Algorithm 1 Loopy belief propagation algorithm for calculat-
ing marginal data association probabilities
Require: ψt,i(j), i = 1, . . . ,NT , j = 1, . . . ,Mt

1: Set l = 0.
2: Initialize ν(l)t,j→i = 1.
3: while Not converged do
4: Set l = l + 1.
5: for i = 1, . . . , NT , j = 1, . . . ,Mt do
6: Compute η(l)t,i→j according to (27).
7: end for
8: for i = 1, . . . , NT , j = 1, . . . ,Mt do
9: Compute ν(l)t,j→i according to (28).
10: end for
11: end while
12: for i = 1, . . . , NT , j = 0, . . . ,Mt do
13: Compute wt,i,j according to (29).
14: end for
Ensure: wt,i,j , i = 1, . . . , NT , j = 0, . . . ,Mt

existing algorithms in the literature. We present a step-by-step
algorithm that describes the proposed solution.

The E and M steps in the proposed algorithm involve
obtaining the marginal data association probabilities and MAP
estimates of the state variable, as described in Section III. To
initialize the algorithm, we assume that the estimates X(0)

t,i ,
∀ t, i are known. In our implementation, we use the true
target states at time zero, i.e., for X(0)

0,i and run Kalman
filters using the composite measurements, whose weights are
obtained using the LBP, as described in Section IV and obtain
X

(0)
t,i for all t and i.
In the E-step, we compute ψt,i according to (23). Given

these values, the marginal probabilities w(n)
t,i,j are computed

using the LBP method in Algorithm 1. With these marginal
probabilities, the composite measurements and covariances in
(20) and (21), respectively, are computed. The M-step in (19)
involves forward-backward smoothing for each target i with
the likelihood N

(
Ỹt,i;HXt,i, R̃t,i

)
of these composite mea-

surements and covariances. In our implementation, forward-
backward smoothing is carried out using RTS smoother (de-
scribed in Appendix B) which provide the desired MAP
estimates X(n)

t,i in (19). Note that the complexity of running
the RTS smoothers, thus, scales linearly with the number of
targets. The new estimates X(n)

t,i from the RTS smoother are
passed on to the next iteration of E-step, and the algorithm is
run until convergence.

One can use common ways of checking for convergence, for
instance, to check for the change in estimates after each itera-
tion. In our implementation, when the change is sufficiently
small, we terminate the algorithm. The entire algorithm is
summarized in Algorithm 2.

VI. Comparison with PMHT and JPDA
In this section, we compare the proposed method with

PMHT and JPDA to highlight some of the similarities and
differences using example illustrations. The comparison with
PMHT is presented based on marginal probabilities, where

Algorithm 2 Proposed multi-target tracking algorithm based
on EM
Input: Measurements Y
1: Initialize X(n)

t,i , t = 1, . . . , T, i = 1, . . . , NT for n = 0.
2: while not converged do
3: E step
4: for t = 1, . . . , T do
5: Compute ψ

(n)
t,i (kt,i) ∀ i and ∀ kt,i = 1, . . . ,Mt

according to (23).
6: Marginal probabilities: Compute w

(n)
t,i,j according

to (29) using loopy belief propagation, described in
Algorithm 1.

7: end for
8: M step
9: Composite measurements: With inputs w(n)

t,i,j , compute
Ỹt,i, R̃t,i ∀ t, i, according to (20) and (21).

10: for i = 1, . . . , NT do
11: RTS Smoothing: With inputs X(n)

0,i , P
(n)
0,i , Ỹt,i, R̃t,i

compute the means X(n)
t,i ∀ t using RTS smoother

described in Algorithm 3.
12: end for
13: Set X(n+1)

t,i = X
(n)
t,i ,∀t, i.

14: Set n = n+ 1.
15: end while
Output: X(n)

t,i , w
(n)
t,i,j ∀ t, i, j

we show that PMHT can coalesce trajectories as it does
not enforce the point target constraints. Similar coalescence
property is also exhibited by JPDA [21], but in this case it is
due to moment matching.

A. Comparison with PMHT
As pointed in Section II-C, the proposed algorithm is similar

to PMHT, as both algorithms are based on EM and treat
the data association variables as the hidden variables. The
similarity becomes even more pronounced in the algorithmic
details, as both perform smoothing with composite measure-
ments of the form in (20) and covariances as in (21). Further,
local hypothesis probability calculation is identical as in (23).
However, the two algorithms differ in the computation of
marginal probabilities for composite measurements from the
local hypothesis probabilities.
PMHT assumes that a target can be assigned to multi-

ple measurements, implying that there are no constraints on
the data association variables kt,i, and distribution over the
data association variables, qK(K), in (22) factorizes across
time and targets. Consequently, the weights for composite
measurements are computed directly from local hypothesis
probabilities, ψt,i(kt,i), after normalizing them as probabil-
ities. On the other hand, in the proposed EM algorithm,
there are constraints on kt,i across targets at each time as
was discussed in Section IV. As a result, calculation of the
weights is performed conforming to the constraints, which in
this work is implemented using the LBP method presented
in Section IV-A. In summary, the proposed EM algorithm
with an unconstrained marginal probability computation (but
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with normalized ψt,i) would be converted into the PMHT
algorithm.
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Figure 2: The figure shows slowly moving, crossing target trajectories, along
with their corresponding measurements. Numbers adjacent to the measure-
ments indicate time indices of the corresponding measurements. Also shown
are the trajectory estimates returned by N -scan pruning based TOMHT with
a scan depth of 4, the proposed algorithm and PMHT.

One possible implication of relaxing the point target model
constraints in PMHT, when computing marginal probabilities,
is track coalescence. We illustrate this using the crossing
targets example, depicted in Figure 2, and compare it to
the proposed EM algorithm and an N -scan pruning based
TOMHT algorithm with a scan depth. The figure shows two
crossing trajectories generated with zero process noise; the
measurements shown are generated by setting PD = 1 and
βc = 0. It also shows the trajectory estimates (with process
noise standard deviation of 0.2165m) returned by PMHT, the
proposed EM algorithm and TOMHT. From the figure, it
is evident that PMHT algorithm coalesces both trajectories
after the crossing point. This behaviour can be best explained
by observing the marginal probabilities, ωt,i,j , returned by
PMHT, when the targets cross. For instance, the marginal
probabilities at t = 6 are shown in Table I. As it has been
emphasized before, PMHT can allow targets to be associated
to the same measurement; in this case, both targets get high
weights for measurement 2, and get updated with the same
measurement, resulting in similar trajectories. On the other
hand, weights returned by the proposed algorithm are shown
in Table II, wherein, we see that it has ruled out the possibility
of assigning the same measurement to both targets and thus,
target 1 has high weight for measurement 1 and target 2 for
measurement 2. Thus, the targets are kept separated when there
are well-spaced measurements as shown in Figure 2. It can also
be observed that the estimates from the proposed algorithm are
very close to the estimates from TOMHT algorithm, which we
use as the benchmark.

B. Comparison with JPDA
The similarities between JPDA [11], [14] and the proposed

EM algorithm arise from the fact that both algorithms use
composite measurements to update target states at each time
instant, which requires computation of the marginal proba-
bilities. One can therefore use similar strategies to compute
these probabilities for both algorithms, see Section IV for a

Table I: The table shows values of marginal probabilities ωt,i,j ∝ ψt,i(j)
returned by PMHT at t = 6.

ωt,i,j Measurement 1 Measurement 2
Target 1 0.06 0.93
Target 2 0.08 0.92

Table II: The table shows values of marginal probabilities ωt,i,j returned by
EM algorithm at t = 6.

ωt,i,j Measurement 1 Measurement 2
Target 1 0.987 0.013
Target 2 0.077 0.923

discussion on these strategies. However, there is a fundamental
difference in the objective of the two algorithms, as pointed
out in Section II-C. JPDA is primarily a filtering algorithm
that approximates the posterior density p(Xt|Y1:t) by moment
matching, whereas the proposed EM algorithm is a batch solu-
tion that provides MAP estimates of the states. A shortcoming
of the recursive moment matching in JPDA is that it can lead
to coalescence when there are closely moving targets.
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Figure 3: The figure shows two closely moving targets with the correspond-
ing measurements. Also shown are the trajectories estimated by MHT, the
proposed EM algorithm and JPDA.

3.5 4 4.5 5

-0.5

0

0.5

1

4

4

Gaussian prediction
p(X

t,i
|Y

1:t-1
)

GM posterior
 p(X

t
|Y

1:t
)

Gaussian
posterior
p

MM
(X

t,i
|Y

1:t
)

after
moment
matching

Figure 4: The figure shows the illustration of densities showing the coalescence
effect in JPDA due to moment matching at time t = 4 for the example in
Figure 3. The pink and dark green ellipses represent the Gaussian prediction
density for the two targets. The cyan and black pairs of ellipses represent the
two Gaussian components in the joint posterior density of the two targets.
The purple and the grey ellipses show the posterior density of the two target
states after moment matching.

We illustrate the coalescence effect in JPDA using an
example shown in Figure 3. The figure shows two targets that
are moving slowly in close proximity of each other, along with
the measurements that are generated with PD = 1 and βc = 0.
For this example, JPDA, TOMHT and the proposed algorithm
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have the same initialization for X0,i; the values of X0,i are
very close for the two targets i = 1, 2. Figure 3 shows the
trajectories returned by the three algorithms. It can be observed
that MHT and the proposed algorithm return almost identical
results whereas JPDA has coalesced the two trajectories. The
coalescence in JPDA is due to moment matching, which can
be explained by looking closer at the densities, for instance,
at time t = 4 (Figure 4). Due to close initiations, the
prediction densities p(Xt,i|Y1:t−1) at t = 4 for both the targets
are almost identical for both targets. The similarity between
the densities is illustrated by the overlapping pink and dark
green ellipses in Figure 4. Given this prior, there are two
possible hypotheses – target 1 is assigned to measurement 1,
whereas target 2 assigned to measurement 2 and vice versa
– leading to a Gaussian mixture posterior density p(Xt|Y1:t)
with two components, corresponding to the two hypotheses.
However, since the priors are very similar, the two components
corresponding to the two hypotheses are almost identical,
shown by the overlapping cyan and black ellipses in the figure.
Given this posterior density, any MAP estimation algorithm
would pick the mean of one of the components, i.e., either the
cyan or the black. However, JPDA does a moment matching of
the two components and arrives at a Gaussian posterior density
pMM (Xt,i|Y1:t) for the two target states, which are again
almost identical, shown by the purple and grey ellipses in the
figure. From this illustration, it is clear that the JPDA algorithm
tends to coalesce close trajectories even if the measurements
are far apart, due to moment matching of the GM.

There are versions of the JPDA algorithm that reduce coa-
lescence effectively. The coupled JPDA filter [34] overcomes
coalescence by approximating the joint posterior density across
all the targets as a Gaussian, whereas in conventional JPDA fil-
ters [35], the target states are assumed to be independent given
the measurements until the last time and the marginals are
approximated to a Gaussian. However, when there are slowly
crossing targets, retaining the correlation between targets can
lead to strong coupling leading to coalescence [34, pp. 254],
[36]. There are also mixture reduction algorithms [37] where
more than one Gaussian component per target is propagated
to successive time instants. This could reduce, but does not
entirely eliminate the effects of coalescence, especially when
the targets stay close for long time [34]. On the other hand,
a MAP estimation algorithm like the proposed algorithm or
TOMHT, outputs the mode of the posterior density, thus
avoiding coalescence, as shown in Figure 3.

VII. Simulations and results

In this section, we evaluate the proposed algorithm for
different scenarios and compare its performance with PMHT,
JPDA and N -scan pruning based TOMHT. In Section VII-A,
we first describe the simulation set-up in terms of model
parameter values, comparison metrics and methods of com-
parison. In Section VII-B, we briefly describe two tech-
niques used for handling the sensitivity to initialization of
the proposed algorithm. In Section VII-C, we evaluate the
impact of initialization techniques on the proposed algorithm.
Computation of marginal data association probabilities using

LBP is compared with brute force approach to show the
difference in performance of the proposed algorithm. Finally, a
comprehensive comparison based on MOSPA and computation
time of the four aforementioned algorithms is presented.

A. Simulation scenarios
To evaluate the performance of the proposed EM algorithm,

TOMHT, PMHT and JPDA, we have used a four-dimensional
constant-velocity model with additive discrete-time noise, with
parameters,

Xt,i =


x
y
ẋ
ẏ

 , F =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 ,

Q = σ2
v


T 4
s /4 0 T 3

s /2 0
0 T 4

s /4 0 T 3
s /2

T 3
s /2 0 T 2

s 0
0 T 3

s /2 0 T 2
s

 ,
H =

[
1 0 0 0
0 1 0 0

]
and R = σ2

w

[
1 0
0 1

]
.

In the above equations, Ts is the sampling time. The values of
the parameters are Ts = 0.5 s, σv = 8m/s2 and σw =

√
5m

for all scenarios and the batch length T is 20. The initial
velocity for the constant velocity model was set at 20 m/s on
both the x and y directions. The x- and y-coordinates of the
initial points X0,i, i = 1, . . . , NT for the targets were chosen
uniformly from a region of width 80m. To simulate different
scenarios, the following combinations of parameters have been
used:
• NT = [10, 20, 30], PD = 0.9 and βc = 1.5× 10−4

• βc = [0.5, 2.5, 4.5]× 10−4, PD = 0.9 and NT = 20
• PD = [0.8, 0.9, 0.99], βc = 1.5× 10−4 and NT = 20.
For N -scan pruning based TOMHT, we have used a scan

depth of 3 in all the scenarios. In JPDA, the LBP method
described in Section IV-A has been used to compute the
marginal probabilities. We have used Euclidean distance based
MOSPA [28] and computation time as the metrics to compare
performances. MOPSA calculation was performed using the
modified auction algorithm [38]. To compare the computation
time, all four algorithms were run on a desktop computer with
quad-core processor and 8 gigabyte RAM, running Debian
operating system.

B. Handling sensitivity to initialization
The proposed algorithm and PMHT are based on EM, and

it is well known that EM algorithm is sensitive to initial-
ization [25], [39] and can converge to a local optimum. To
deal with this issue, we use two common strategies in our
implementation: 1) Deterministic annealing [25], 2) Homotopy
methods [40]. In this section, we describe these methods
briefly and show empirically that these methods improve the
performance compared to naive initializations.
In the deterministic annealing (DA) [25] strategy, the idea

is to compute the E-step with (q
(n)
K )β instead of q(n)K , where

0 < β ≤ 1. The value of β is increased successively, from a
small value to begin with, reaching 1 when EM iterations stop.



10

Table III: The table shows RMSE per time scan for position estimates (in m), and velocity estimates (in m/s) based on the MOSPA assignment. The values
for each of the scenarios are averaged over 1000 Monte Carlo trials. The values of βc shown in the table are scaled by 104, i.e., in the range of 0.5× 10−4

to 4.5× 10−4.

Scenario Position estimates Velocity estimates
TOMHT Prop.Alg. PMHT JPDA TOMHT Prop.Alg. PMHT JPDA

PD = 0.9
NT =

10 0.94 1.53 3.27 3.86 0.44 0.59 0.80 0.89
20 1.23 1.30 2.35 2.61 0.43 0.47 0.78 0.76

βc = 1.5 30 1.32 0.98 1.77 1.88 0.42 0.34 0.61 0.68

PD = 0.9
βc =

0.5 1.19 0.79 2.76 2.57 0.43 0.34 0.95 0.75
2.5 1.35 1.25 2.71 2.75 0.48 0.46 0.88 0.78

NT = 20 4.5 1.47 1.58 2.55 2.97 0.50 0.56 0.81 0.82

NT = 20
PD =

0.8 1.46 1.51 2.34 2.62 0.51 0.52 0.78 0.79
0.9 1.08 1.15 2.59 2.79 0.39 0.43 0.76 0.81

βc = 1.5 0.99 0.88 0.60 2.56 2.97 0.35 0.31 0.73 0.94
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Figure 5: Comparison of MOSPA based position error for the proposed algo-
rithm and PMHT, with GNN based initialization and true state initialization.
The impact of deterministic annealing and inflated measurement noise on the
MOSPA performance of the proposed algorithm is also shown.

3 4 5 6

0.55

0.6

0.65

0.7

0.75

0.8

Number of targets

M
O
SP

A
po

s.
er
ro
r
(m

)

Proposed algorithm with LBP
Proposed Alg. with brute force marg.prob.

Figure 6: Comparison of MOSPA based position error for the proposed algo-
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and the approximation using LBP.

In our algorithm 2, introducing the deterministic annealing
only affects the Step 5; before passing ψs to the next step, we
raise these values by the exponent β in the current iteration.
Inspired from the homotopy methods [40], we use a strat-

egy to run several instances of the algorithm with varying
measurement noise covariance R, which we refer to as the
inflated R strategy. The value of R is changed only within the
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Figure 7: Comparison of MOSPA based position error for the different
algorithms considered, for varying number of targets scenario corresponding
to the first row in Table III.
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Figure 8: Computation time comparison for the different algorithms consid-
ered, for varying number of targets scenario corresponding to the first row in
Table III.

algorithm, and not in the generation of the measurements. To
begin with, the measurement noise covariance is set to a higher
value compared to the true value and the entire EM algorithm
is run with this inflated R. After the EM algorithm converges
with the current inflated R, the estimates from this run are
used as the initialization for the next run of the algorithm.
This procedure is repeated until R is reduced to its true value.
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C. Results
In this subsection, we present the simulation results high-

lighting different aspects of the proposed algorithm. First, we
present the impact of using homotopy methods and DA on the
performance of the proposed algorithm. Second, we compare
the quality of the approximation of the marginal probabilities
using LBP in the proposed algorithm with the brute force
approach. Finally, we compare the MOSPA and computation
time performances of the proposed algorithm with TOMHT,
PMHT and JPDA for varying set of parameters. All simulation
results presented are averaged over 1000 Monte Carlo runs.

1) Impact of homotopy methods and DA: The gains
achieved by using homotopy methods and DA for the proposed
algorithm are large compared to those achieved by varying
PMHT initializations. To highlight these differences, perfor-
mance of both the algorithms implemented with these methods
is compared against two other naive (without homotopy and
deterministic annealing) strategies: the naive implementation
with the true target states as initialization, and the naive
implementation with a global nearest neighbor (GNN) based
initializations. The observations are presented in Figure 5 for
NT = [10, 20, 30], βc = 1.5 × 10−4 and σv = 6m/s2. From
Figure 5, it is clearly seen that the proposed algorithm benefits
from DA and inflated R strategy. It shows further improved
performance when initialized with true target states. On the
contrary, we observe that PMHT shows no such improvement
even when initialized with true target states. In summary,
the proposed algorithm in all its variations considered shows
improved performance when compared to PMHT. We also
expect it to improve further with better initializations.

2) Comparison of brute force and LBP computation of
marginal probabilities: In Section IV, we presented LBP as
an efficient method to approximate the marginal association
probabilities. We substantiate this approximation by comparing
the difference in performance when the proposed algorithm
uses LBP and brute force method for the same scenarios. We
compared the difference in the position root mean squared
error (RMSE) for the two instances of the proposed algo-
rithm, one with LBP and the other with brute force for
NT = [3, 4, 5, 6], limited by the massive computation time
of brute force approach. The results are presented in Figure 6,
where we observe that there is no significant difference in
performance of the proposed algorithm for both methods
of computing marginal data association probabilities. Based
on this observation, we conclude that the approximation of
marginal data association probabilities using LBP does not
degrade the performance of the proposed algorithm, despite
providing large (from exponential to quadratic) computational
advantage.

3) Performance evaluation of the proposed algorithm:
In Table III, we present a comprehensive comparison of
the MOSPA results for different scenarios for the different
algorithms. The table shows the mean values of root mean
squared error in position and velocity components of the
estimated states. The table captures the performance trend
of each of the algorithms in the scenarios considered. For
instance, the first row of numeric entries correspond to the
scenario when PD = 0.9, NT = 20, βc = 0.5 × 10−4,

and we notice that the mean position and velocity errors for
the proposed algorithm are lower than the other algorithms.
Although not reported in the table, we have observed a similar
trend of lower standard deviation of the position and velocity
errors for the proposed algorithm, by which we infer that the
proposed algorithm is more robust than JPDA and PMHT for
the scenarios considered. MOSPA based position error for the
varying number of targets scenario is presented in Figure 7.
From the figure it can be seen that the proposed algorithm
performs better than PMHT and JPDA for all scenarios. For
dense scenarios, the proposed algorithm even outperforms the
TOMHT considered.
In Figure 7, we observe that for the proposed algorithm,

PMHT and JPDA, the MOSPA performance decreases with
increasing number of targets. This trend is due to two reasons.
First, the OSPA computation returns average error per target
because of the normalisation in its definition [28]. Therefore,
it is possible that the average error decreases with increasing
number of targets even though the overall error (without the
normalisation) increases. The second reason is that the volume
in which the initial positions for the targets are generated is
fixed. So, the tracks tend to be dense with increasing number of
targets. Due to this reason, while computing OSPA, it becomes
easier to find assignments that are close to each other with
large number of targets. Despite these two reasons, MOSPA
error of TOMHT increases with increasing number of targets
in Figure 7. This trend is because as the tracks get denser with
more number of targets, the hypotheses tree for each target
in TOMHT is also denser. So, to obtain a similar average
performance with increasing number of targets, one needs to
correspondingly increase the scan depth. But for computational
reasons, we have fixed the scan depth to 3 for all the scenarios,
leading to the trend in Figure 7.
The computation time comparison is performed based on

the run time of the algorithm for varying number of targets,
shown in Figure 8. The results presented capture the trend in
computation time of the proposed algorithm in comparison to
the existing algorithms. It should be noted that the implemen-
tation of all the four algorithms can be optimized for run time;
for instance, one can parallelize the implementations. In that
case, we expect the graph shown in Figure 8 to scale down
by an appropriate factor. Nevertheless, it can be seen that the
proposed algorithm’s run time is less than our implementation
of TOMHT.
When the targets are far apart, the proposed algorithm

converges within fewer iterations, while giving good MOSPA
performance. In our implementation, this happens when there
are fewer targets (NT = 10 in Figures 7 and 8), as the
volume in which the initial positions are generated is fixed
across the varying scenarios. As mentioned before, we use
LBP in both the proposed algorithm and JPDA. Therefore,
computational cost of the proposed algorithm is roughly same
as the computational cost of the JPDA, where as the proposed
algorithm clearly outperforms JPDA in terms of MOSPA.
The proposed algorithm delivers improved MOSPA per-

formance in comparison to PMHT. By employing LBP to
compute marginal probabilities, the computation time only
increases marginally when compared to JPDA (that also uses
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LBP) and PMHT. In summary, the proposed algorithm yields
performance close to TOMHT, but with a significant compu-
tational advantage.

VIII. Conclusions and future work
In conclusion, we have presented a multi-target tracking

algorithm based on expectation maximization, and marginal
data association probabilities. We have shown that our solution
for tracking point targets uses the correct point target model
assumptions and does not violate these assumptions in deriving
the solution. The solution has been presented for the case of
known number of targets and for batch problems, and has been
compared comprehensively with JPDA, PMHT and TOMHT,
highlighting the prominent differences between them. The
performance of the proposed algorithm has been evaluated for
varying number of targets, clutter intensities and probability
of detection, and we have shown that for the scenarios consid-
ered, our algorithm performs considerably better than JPDA
and PMHT in MOSPA sense, and is computationally more
inexpensive than a basic TOMHT.

We see substantial potential in the proposed algorithm, and
envisage many possible enhancements to it. While we have
discussed the proposed algorithm as a batch solution, one
evident limitation with this approach, as with PMHT, is it
not being an online solution, which might be a requirement in
many tracking applications. Another possible extension is to
accommodate target birth/death into the solution framework,
to complete the tracking solution. One of the commonly used
strategies to initialize new targets is measurement-driven track
initialization. A more coherent approach to track handling is
to model target existence uncertainties as a random variable
and estimating it. The algorithm has been observed to be sen-
sitive to initialization. So, further improvement to initialization
techniques would be desirable as well.

Appendix A
Derivation of the EM algorithm for the Gaussian case
In this section, we will sketch the derivations starting from

(18) to (19) in Section III. Starting with (18),

X(n+1) = argmax
X

∏
t,i

p(Xt,i|Xt−1,i)

× exp

Mt∑
j=0

w
(n)
t,i,j ln p(Yt,j , kt,i = j|Xt,i)

 . (30)

Moving around the ln and exp, the above equation becomes

X(n+1) = argmax
X

∏
t,i

p(Xt,i|Xt−1,i)

×

Mt∏
j=0

p(Yt,j , kt,i = j|Xt,i)
w

(n)
t,i,j

 .(31)

Substituting the expressions for p(Yt,j , kt,i = j|Xt,i) and
considering only the terms that depend on X , we get

X(n+1) = argmax
X

∏
t,i

p(Xt,i|Xt−1,i)

×

Mt∏
j=1

N (Yt,j ;HXt,i, R)
w

(n)
t,i,j

 . (32)

Note that N (Yt,j ;HXt,i, R)
w

(n)
t,i,j ∝ N (Yt,j ;HXt,i,

R

w
(n)
t,i,j

).
Along with this relation, the following result for the product
of Gaussians can be used in (32),

N∏
i=1

N (x;µi, Pi) ∝ N (x;µ, P ) (33)

where P =

(
N∑
i=1

P−1i

)−1
and µ = P

(
N∑
i=1

P−1i µi

)
. After

simplifications, we get

X(n+1) = argmax
X

∏
i,t

N (Xt,i;FXt−1,i, Q)

×N
(
Ỹ

(n)
t,i ;HXt,i, R̃

(n)
t,i

)
. (34)

Equation (34) is same as the equation for the joint density of a
single target, where instead of a simple measurement update,
the update is performed with the composite measurement
Ỹ

(n)
t,i , given in (20), and with uncertainty R̃(n)

t,i , given in (21).

Appendix B
Smoothing with the RTS smoother

Rauch-Tung-Striebel (RTS) smoother is the ubiquitously
used forward-backward smoothing solution. For linear Gaus-
sian models, the forward filtering is performed using a Kalman
filter, with the moments calculated as,

µt+1|t = Fµt (35)
Pt+1|t = FPtF

† +Q (36)
St+1 = HPt+1|tH

† +R (37)
Kt+1 = Pt+1|tH

†S−1t+1 (38)
µt+1 = µt+1|t +Kt(yt+1 −Hµt+1|t) (39)
Pt+1 = Pt+1|t −Kt+1HPt+1|t. (40)

Backward smoothing is performed using the moments com-
puted from the forward filter, with the following smoothing
equations:

Gt = PtF
†P−1t+1|t (41)

µst = µt +Gt(µ
s
t+1 − µt+1|t) (42)

P st = Pt +Gt[P
s
k+1 − Pt+1|t]G

†
t . (43)
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