Prospective life cycle assessment of adipic acid production from forest residue

Matty Janssen, Rio Aryapratama & Anne-Marie Tillman

Division of Environmental Systems Analysis Department of Energy & Environment Chalmers University of Technology Göteborg, Sweden

September 22, 2016

Outline

- 1 Traditional and alternative production of adipic acid
- 2 Previous LCAs of adipic acid production
- 3 Goal and scope of the assessment
- 4 Results
- 5 Conclusions

Fossil-based production of adipic acid

- $\blacksquare Main application \rightarrow Production of nylon-6,6$
- Traditional production from fossil resources \rightarrow KA oil¹

¹ A. Shimizu, K. Tanaka, and M. Fujimori. Chemosphere - Global Change Science 2.3-4 (2000), pp. 425-434.

Bio-based production of adipic acid

Biorefinery concept for the production of bulk and fine chemicals

- $\blacksquare \ \mbox{Bulk chemical} \rightarrow \mbox{Adipic acid, lignin derivative, e.g. terephthalic acid}$
- Fine chemical → Lutein

Previous LCAs of adipic acid production

- ecoinvent process for adipic acid production^{2,3}
 - $\blacksquare~$ Global warming $\approx 25~kg~CO_2\text{-}eq/kg$ adipic acid produced
 - \blacksquare Elimination of N_2O emissions \rightarrow 75% reduction of global warming
 - Switch to renewable resource \rightarrow 10% reduction of global warming

²H.-J. Althaus et al. Tech. rep. ecoinvent report No. 8. EMPA Dübendorf, 2007.

³E. Svensson et al. 10th Conference on Sustainable Development of Energy, Water and Environment Systems. 2015.

Previous LCAs of adipic acid production

- ecoinvent process for adipic acid production^{2,3}
 - \blacksquare Global warming $\approx 25~\text{kg}~\text{CO}_2\text{-}\text{eq/kg}$ adipic acid produced
 - \blacksquare Elimination of N_2O emissions \rightarrow 75% reduction of global warming
 - Switch to renewable resource \rightarrow 10% reduction of global warming
- Production from cyclohexene using H₂O₂⁴
 - Fossil-based feedstock but no use of HNO₃
 - Global warming \approx 6 kg CO₂-eq/kg adipic acid produced
- Production from aromatic compounds via fermentation⁵
 - Both fossil-based and bio-based feedstock, no N₂O emissions
 - Global warming reduction \rightarrow 9 to 17 kg CO₂-eq/kg adipic acid produced

²H.-J. Althaus et al. Tech. rep. ecoinvent report No. 8. EMPA Dübendorf, 2007.

³E. Svensson et al. 10th Conference on Sustainable Development of Energy, Water and Environment Systems. 2015.

⁴O. Wang et al. Chemical Engineering Journal 234 (2013), pp. 300-311.

⁵J. van Duuren et al. *Biotechnology and Bioengineering* 108.6 (2011), pp. 1298–1306.

Outline Introduction Literature review LCA set-up Results Conclusions

System description I

- $\blacksquare \ Goal \rightarrow Guide \ technology \ development$
- \blacksquare Functional unit \rightarrow 1 kg of adipic acid produced

CHALMERS
undernetry or receive ony

System description II

Pretreatment

- $\blacksquare \ Acid-catalyzed \rightarrow SO_2$
- $\blacksquare \ Alkaline \rightarrow NaBH_4$
- Additional fuel use → Fossil, biomass
 - Fermentation yield
 - Concentration of product

System description II

- Pretreatment
 - $\blacksquare \text{ Acid-catalyzed} \rightarrow SO_2$
 - $\blacksquare Alkaline \rightarrow NaBH_4$
- Additional fuel use → Fossil, biomass
 - Fermentation yield
 - Concentration of product
- Lignin use → As fuel, as product

	LCA set-up	Conclusions

System description II

- Soil organic carbon change
- Pretreatment
 - $\blacksquare \ \text{Acid-catalyzed} \to \text{SO}_2$
 - $\blacksquare Alkaline \rightarrow NaBH_4$
- Additional fuel use → Fossil, biomass
 - Fermentation yield
 - Concentration of product
- Lignin use → As fuel, as product

Acid-catalyzed pretreatment

- \blacksquare Bio-based pathway \rightarrow Significant environmental benefits
- $\blacksquare \ Hotspots \rightarrow Downstream, \ GROT \ pretreatment, \ enzyme$

INIVERSITY OF TECHNOLOGY				Department of Energy and Env	vironment
Outline	Introduction	Literature review	LCA set-up	Results	Conclusio
Alkalin	e pretreatr	nent			
GWP [kg CO ₂ -eq]	0 Fossil: 25.6 kg CO ₂ -eq 8	1,5×10 ² Fossi: 2 0 ⁴ 1,0×10 ² 0 ⁴ 1,0×10 ² 0 ⁴ 1,0×10 ² 0 ⁴ 1,0×10 ³ 0,0	-9×10 ² kg PQ, sq -	External forestry Sawmill plant Forest harvesting NaBH, production and use GROT pertreatment GROT neutralization Enzyme production and use Hydrolysis & fermentation Downstream processing Base case - lignin incinerated, foss for additional energy needs	;e
6,0×10 De OS Dy dy 2,0×10 dy 2,0×10	Feesle 3.1×10 ² kg SO ₂ eq	10	.3.10 ⁻³ kg ethylen-eq	Scenario 1 - lignin incirented, bior for additional energy needs Scenario 2 - lignin soud, fossi luel for additional energy needs Scenario 3 - lignin sold, biomass for additional energy needs	1855

Higher impacts when compared to the acid pretreatment

Process options

 $\blacksquare \ Hotspots \rightarrow NaBH_4, \ downstream, \ GROT \ neutralization$

Process options

NaBH₄ production and use

■ Switch to biomass use for energy purposes in NaBH₄ production

Scenario	GWP change [%]
Base case	-22
1	-32
2	-19
3	-32

NaBH₄ production and use

Switch to biomass use for energy purposes in NaBH₄ production

Scenario	GWP change [%]
Base case	-22
1	-32
2	-19
3	-32

■ Change in dosage of NaBH₄ in pretreatment step

10/13

Outline Introduction Literature review LCA set-up Results Conclusions

SOC change due to adipic acid production

- SOC change over 100 years⁶
- Plant capacity of 100 000 t per year \rightarrow 2.9 TWh (or 6 × 10⁵ t) of extra GROT extracted
- Loss of carbon of 3.2 g C (or 11.7 g CO₂) per kg adipic acid

⁶C. A. Ortiz et al. Biomass and Bioenergy 70 (2014), pp. 230-238.

Conclusions

- Significant environmental benefit when using to a forest-based feedstock
 - In some cases, worse AP
 - Further improvement by using biomass as an energy source

Conclusions

CHALMERS

Outline

- Significant environmental benefit when using to a forest-based feedstock
 - In some cases, worse AP
 - Further improvement by using biomass as an energy source
- What are the environmental hotspots?
 - Acid-catalyzed pretreatment → Downstream processing, GROT pretreatment
 - Alkaline pretreatment → NaBH₄ production and use, downstream processing
- Alkaline pretreatment results in a higher environmental impact
 - Cleaner production of NaBH₄ can be achieved
 - Lower usage of NaBH₄

Conclusions

Results

Conclusions

Conclusions

CHALMERS

- Significant environmental benefit when using to a forest-based feedstock
 - In some cases, worse AP
 - Further improvement by using biomass as an energy source
- What are the environmental hotspots?
 - Acid-catalyzed pretreatment \rightarrow Downstream processing, GROT pretreatment
 - \blacksquare Alkaline pretreatment $\rightarrow NaBH_4$ production and use, downstream processing
- Alkaline pretreatment results in a higher environmental impact
 - Cleaner production of NaBH₄ can be achieved
 - Lower usage of NaBH₄
- Changes in organic carbon content in the soil due to adipic acid production are small
 - Insignificant climate impact
 - Other impacts?

THANK YOU Any questions?

