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Svensk populirvetenskaplig sammanfattning

Cancerbehandling handlar om att himma tumdrtillvixt. Helst vill man inte bara att
tumdrerna ska vixa langsammare, utan att de slutar vixa och borjar krympa istél-
let. Behandling med kombinationsterapi innebir att man ger tva eller flera likemedel
samtidigt. Varfor gors da detta? En viktig anledning dr att likemedel kan paverka
varandra. Till exempel kan det ena likemedlet kraftigt dka effekten av det andra
och resultera i kraftig tumérhdmning. Ett sddant samband mellan likemedel kallas
synergi. Men hur avgdr vi utifran data om det &r synergi mellan tva likemedel eller
inte? Kanske dnnu viktigare, hur avgor vi om en kombinationsterapi dr béttre dn
en annan? Da behdvs ett bra sétt att rangordna kombinationer mot varandra. I ett
annat scenario kanske vi har en kombination som vi tror pa. Fragan blir da hur vi
bést administrerar 1lakemedlen. Ska den ena substansen ges forst? Ska vi ge bada
samtidigt? Skall vi ge en ligre dos dagligen eller en hogre dos varannan dag?

Ett sitt att forsoka svara pa den hir typen av fragor dr med hjilp av matematisk
modellering. Bygger vi en modell f6r att beskriva mitdata fér hur tumorers storlek
utvecklas 6ver tiden for olika doseringsscheman kan vi sedan kvantifiera olika effekter.
Vi kan dven simulera modellen for andra doseringsscheman &n vi hade data for. Pa
sa sétt far vi en prediktion som kan peka oss i ratt riktning for att hitta optimal
dosering. Helst vill vi att modellen, eventuellt efter sma &ndringar, kan ateranvin-
das for andra kombinationer. Da kan vi enkelt jimféra de olika kombinationerna och
hitta den bésta.

T den hér uppsatsen bygger vi modeller f6r tva olika kombinationsterapier utifran ex-
periment, gjorda pa mdoss. Vi analyserar modellerna med vad vi kallar koncentration
for statisk tumor eng. tumor static concentration (TSC). Om man bara administerar
ett likemedel &r TSC den ligsta drogkoncentration fér musen som gor att tumoren
borjar krympa. I figur 1 visar den bla kurvan hur drogkoncentrationen av likemedlet
cisplatin varierar hos en mus for ett sdrskilt doseringsschema. Vi ser hur kurvan éver
tiden varierar mellan att ligga 6ver och under TSC-nivan (den grona linjen). Under
den tid som drogkoncentrationen ligger 6ver kurvan kommer tumdéren att krympa,
medan det dr tvirtom den tid drogkoncentrationen ligger under kurvan - da vixer
tumdren. Da skulle man till exempel vilja hitta ett doseringsschema som gor att man
ligger 6ver den gréna linjen sa lange som mdgjligt.

Om man ger tva likemedel samtidigt blir motsvarigheten den sa kallade TSC-kurvan
(se figur 2). TSC-kurvan &r ett sétt att visualisera vilka kombinationer av drogkoncen-
trationer som medfor att tumoren krymper. I figur 2 motsvarar det grona omradet alla
koncentrationer som gor att tumdéren krymper, medan det réda omradet motsvarar
alla koncentrationer fér vilka tumoren fortfarande vixer. Ett enkelt sitt att se pa
det dr att man vill att det grona omradet ska vara sa stort som méjligt och det réda
omradet sa litet som mdjligt. Da finns det fler koncentrationer som fa tumoren att
krympa. Hur stor den grona ytan blir, eller mer precist hur mycket kurvan som delar
de tva omradena kroker sig, dr kopplat till synergin mellan 1ikemedlen. For den forsta
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Figure 1: Den bld kurvan wvisar koncentrationsprofilen over tid for cisplatin ndr man
doserar dag 0,3,7,10 och 14. Den gréna kurvan visar TSC-vdrdet for cisplatin.

kombinationsterapin vi testar far vi bara en liten krékning, medan vi for den andra
kombinationen ser en betydligt kraftigare krokning och ddrmed synergi. Genom att
titta pa TSC och krékning kan vi dven avgora vilken utav flera kombinationer som
dr mest effektiv.
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Figure 2: [ blatt: TSC-kurva féor kombinationsterapi med tvd olika likemedel. Det gréona
omradet ovanfor TSC-kurvan innebdr att tumoren krymper. Det réda omridet
under kurvan innebdr att tumdren vdizer.

iv



Data-driven modeling of combination
therapy in oncology

Tim Cardilin

Department of Mathematical Sciences,
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis contains two manuscripts: Tumor Static Concentration Curves in Com-
bination Therapy and Extending the Tumor Static Concentration Curve to Ezposure
- A Combination Therapy Example with Radiation Therapy. There is also an intro-
ductory chapter presenting some basic facts necessary to understand the appended
manuscripts. The manuscripts share the common goal of developing model-based
data-driven tools and techniques to quantitatively assess the effectiveness of anti-
cancer combinations. The first paper presents a dynamical systems model for com-
bination therapy with the anticancer drugs cetuximab and cisplatin. Using a mixed-
effects approach the model is shown to adequately describe a preclinical dataset.
The model is then analyzed by introducing the Tumor Static Concentration (TSC)
curve, a curve of cetuximab-cisplatin concentration pairs all of which, if maintained,
result in tumor stasis. The TSC analysis reveals a modest gain from combining the
compounds. The variability of the TSC curve across the population is also explored.
In the second paper we develop a dynamical systems model for combination ther-
apy with ionizing radiation and a test compound. For this combination we introduce
an extension of the TSC curve called the (average) Tumor Static Ezposure (TSE)
curve based on average, as opposed to pointwise, tumor stasis. The TSE analysis for
combinations of radiation and the test compound demonstrates a large synergistic
effect.

Keywords: Combination Therapy, Mathematical Modeling, Model-Based
Drug Development, Nonlinear Mixed-Effects Models, Oncology, Pharma-
cokinetics /Pharmacodynamics
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1 Introduction

The purpose of this introduction is to make it easier for the reader, who is assumed
to have some knowledge of mathematics and statistics, to understand the appended
manuscripts. It does not attempt to give a comprehensive view of the topics presented.
For this, references are given to the appropriate works.

1.1 Combination Therapy in Oncology

By combination therapy in oncology we mean the simultaneous administration of two
or more anticancer agents. These include substances given orally, intravenously, and
intraperitoneally (injected into the stomach cavity) and also treatment with ioniz-
ing radiation. There are several reasons why combination therapy could be preferred
over single-agent treatments. These include reduced toxicity through lower doses, de-
creased risk of developing resistances by targeting multiple sites, and the potential
for synergistic effects (1, 7). A synergistic effect is a positive interaction between
compounds leading to a greater effect, e.g., a lower tumor growth rate, compared to
the case with no interaction. Similarly, a negative interaction is called antagonism (9).

In recent years the importance of combination therapies has increased and is believed
to be necessary to handle many diseases, particularly in light of the growing problem
of drug resistances (8). However, there is currently a lack of understanding of how
to select the best combinations for testing and how to get the best result out of
a given combination. This is an area where mathematical modeling, together with
knowledge of the underlying biology, can be a great asset. Mathematical tools and
techniques that can be reused for different combinations can make it possible to
rank combinations against one another. We can also use it to make predictions of
the effects of new combinations as well as optimize the administration schedule of a
given combination.

1.2 Pharmacokinetics and Pharmacodynamics

In simple terms pharmacokinetics is what the body does to the drug, and conversely,
pharmacodynamics is what the drug does to the body. These are obviously connected
and both need to be studied to properly ascertain the effects of a drug.

1.2.1 Pharmacokinetics

Building a pharmacokinetic model is often the first step. A drug is administered, e.g.,
orally or intravenously, and we want to describe the exposure of drug in the body,
usually by finding the drug plasma concentration as a function of both time and
dose. Tt is most common to use so-called compartmental models are used although
non-compartmental alternatives also exist. The simplest example of a compartmental
model consist of a single compartment representing drug plasma concentration in the



subject, with a zero-order input, the drug dose, and a first-order output, correspond-
ing to drug elimination or clearance. This one-compartment model may be written
as an ordinary differential equation

dC D

— = keC, C(0) =3 (1)

where C denotes the plasma concentration of the compound, D the administered
dose, k. the elimination rate and V the distribution volume. More complicated com-
partmental models consist of an absorption step, as well as other compartments cor-
responding to drug exposure to tissue or other organs. Higher-order input and output
terms may occur, resulting in nonlinear systems of ordinary differential equations.

1.2.2 Pharmacodynamics

In oncology, the pharmacodynamic model usually describes the time evolution of
tumor volume. The most basic model assumes that the tumor grows exponentially
without drug intervention

av
&k, V(0) = Vo (2)
dt

where V' denotes tumor volume, k; the net growth rate and Vj the initial tumor

volume. We then include drug action as a linear function of plasma concentration

C(t)

av

dt
where kj is the kill-rate associated with the drug. In this case, we have viewed the
drug as inducing death of tumor cells. The drug is then classified as cytotozic. There
is another important class of drugs called cytostatic comprised of drugs that inhibit
the tumor cells’ ability to proliferate. Note that the pharmacodynamic model is de-
pendent on the pharmacokinetic model, since drug plasma concentration is used as
input to drive the system.

=k,V — kxC, V(0) =V, (3)

For a more complete picture of pharmacokinetics and pharmacodynamics, we refer
the reader to the book by Gabrielsson and Wiener (6).

1.3 Nonlinear Mixed-Effects Modeling

Pharmacokinetic and pharmacodynamic models contain unknown parameters that
need to be somehow estimated. To do this we need measurement data, usually drug
concentrations in plasma for pharmacokinetic studies and tumor volumes for phar-
macodynamic studies. These data consist of time series from many different individ-
uals in a population. To make a proper assessment of combination therapy with two
compounds, it is further necessary to have data from four different treatment arms:
vehicle (control), each compound given as a single-agent, as well as the combination.



The vehicle arm is needed as a reference to determine if the drugs have any effect
at all. The single-agent arms are necessary to determine whether or not there is an
interaction.

Once we have data and a model structure, we need a framework to estimate the
parameters. The most appropriate and sophisticated one for population data, which
we have used in the appended manuscripts, is called the Mixed-Effects framework.
Mixed-Effects refers to effects composed of both fixed and random components. A
fixed effect is something that is common to all individuals in the population, whereas a
random effect is specific to a particular individual. Formally, we describe a population
as a system of ordinary differential equations

dx i
dt

= f(zi, Zi, 0,mi), 2i(0) = g(Z;,0,m:) (4)

where z;, Z;, and n; are vectors of states, covariates, and random effects for the
i:th individual. The vector 6 denotes the fixed effects and is the same for the entire
population. We assume that the random effects are multivariate normal distributed
random variables with zero mean and covariance matrix 2. The entries of 2 are
usually fixed effects and are therefore included in the vector #. Model observations
at discrete time points t; are then described by

Yij = h(zi(t)), Zi(t;),0,mi, t5) + eij (5)

where y;; denotes the observation, or measurement, for individual ¢ at time ¢;, and
e;j is a multivariate normal distributed residual error.

In the context of tumor modeling the states are usually compartments of cancer cells
representing different stages of degradation, and the observed tumor volume is thus
the sum of all the states. Covariates are either drug doses D; or functions describing
drug plasma concentration C;(t).

Parameter estimation is done by maximizing the population likelihood, which in its
exact form is

L(0) =11, / p(ds 0, 1) (s 9) i (6)

where d; is the vector of observations for individual ¢ and p denotes a conditional prob-
ability densitiy. The software used for the estimations in the appended manuscripts
uses a version of the first-order conditional estimation method (commonly abbrevi-
ated as FOCE) to approximate the likelihood function. Details on the estimation
method can be found in the paper by Almquist et al. (2). A thorough description
of Mixed-Effects modeling framework can be found in the book by Davidian and
Giltinan, which laid the theoretical foundations in the field (5).



2 Summary of Papers

These manuscripts are based on posters presented at the PAGE meeting in 2015 and
2016, respectively (3, 4).

2.1 Summary of Paper I

A model is constructed to describe combination therapy with the anticancer agents
cetuximab and cisplatin based on preclinical data. Cetuximab inhibits cell prolifer-
ation, whereas cisplatin stimulates cell death via a chain of damage compartments.
The model, which assumes no direct interaction between the compounds, is shown
to adequately explain the data. From a steady-state analysis, we derive the Tumor
Static Concentrations (TSC) for each compound, i.e., the the plasma concentration
of a drug such that if it were maintained indefinitely would result in tumor stasis.
We further extend the TSC concept to the combination of two compounds. With
an additional degree of freedom, the TSC value instead becomes the TSC curve of
concentration pairs all of which result in tumor stasis if maintained. The curvature
of the TSC curve is analyzed, with convexity associated with synergy and concavity
associated with antagonism. In the particular case of the studied cetuximab-cisplatin
combinations, the TSC curve exhibits a modest curvature. We finally explore how the
TSC curve may vary between different individuals in a population and derive a TSC
curve such that if the concentration pair is above the curve, 95% of the population
is expected to show tumor regression.

2.2 Summary of Paper II

In the second paper we contruct a model for combination therapy with ionizing
radiation together with a test compound. Preclinical data suggest that there is a
strong synergistic effect. Tonizing radiation is modeled as an instant mass transfer
between a proliferating compartment and a chain of damage compartments. The test
compound stimulates both the natural and the radiation-induced cell deaths, the
latter being an interaction effect only present when the treatments are combined. For
this model, we derive a new TSC-like curve by requiring tumor stasis not at each time
point, but on average over a given time period. This new curve, called the (averaged)
Tumor Static Exposure (TSE) curve consists of pairs of test compound concentrations
and radiation doses that yield (average) tumor stasis. For the combination of test
compound and ionizing radiation the TSE curve is heavily curved, indicating a large
synergistic effect.
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